xref: /openbmc/linux/drivers/gpu/drm/omapdrm/dss/dsi.c (revision f7c35abe)
1 /*
2  * linux/drivers/video/omap2/dss/dsi.c
3  *
4  * Copyright (C) 2009 Nokia Corporation
5  * Author: Tomi Valkeinen <tomi.valkeinen@nokia.com>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms of the GNU General Public License version 2 as published by
9  * the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  *
16  * You should have received a copy of the GNU General Public License along with
17  * this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #define DSS_SUBSYS_NAME "DSI"
21 
22 #include <linux/kernel.h>
23 #include <linux/io.h>
24 #include <linux/clk.h>
25 #include <linux/device.h>
26 #include <linux/err.h>
27 #include <linux/interrupt.h>
28 #include <linux/delay.h>
29 #include <linux/mutex.h>
30 #include <linux/module.h>
31 #include <linux/semaphore.h>
32 #include <linux/seq_file.h>
33 #include <linux/platform_device.h>
34 #include <linux/regulator/consumer.h>
35 #include <linux/wait.h>
36 #include <linux/workqueue.h>
37 #include <linux/sched.h>
38 #include <linux/slab.h>
39 #include <linux/debugfs.h>
40 #include <linux/pm_runtime.h>
41 #include <linux/of.h>
42 #include <linux/of_platform.h>
43 #include <linux/component.h>
44 
45 #include <video/mipi_display.h>
46 
47 #include "omapdss.h"
48 #include "dss.h"
49 #include "dss_features.h"
50 
51 #define DSI_CATCH_MISSING_TE
52 
53 struct dsi_reg { u16 module; u16 idx; };
54 
55 #define DSI_REG(mod, idx)		((const struct dsi_reg) { mod, idx })
56 
57 /* DSI Protocol Engine */
58 
59 #define DSI_PROTO			0
60 #define DSI_PROTO_SZ			0x200
61 
62 #define DSI_REVISION			DSI_REG(DSI_PROTO, 0x0000)
63 #define DSI_SYSCONFIG			DSI_REG(DSI_PROTO, 0x0010)
64 #define DSI_SYSSTATUS			DSI_REG(DSI_PROTO, 0x0014)
65 #define DSI_IRQSTATUS			DSI_REG(DSI_PROTO, 0x0018)
66 #define DSI_IRQENABLE			DSI_REG(DSI_PROTO, 0x001C)
67 #define DSI_CTRL			DSI_REG(DSI_PROTO, 0x0040)
68 #define DSI_GNQ				DSI_REG(DSI_PROTO, 0x0044)
69 #define DSI_COMPLEXIO_CFG1		DSI_REG(DSI_PROTO, 0x0048)
70 #define DSI_COMPLEXIO_IRQ_STATUS	DSI_REG(DSI_PROTO, 0x004C)
71 #define DSI_COMPLEXIO_IRQ_ENABLE	DSI_REG(DSI_PROTO, 0x0050)
72 #define DSI_CLK_CTRL			DSI_REG(DSI_PROTO, 0x0054)
73 #define DSI_TIMING1			DSI_REG(DSI_PROTO, 0x0058)
74 #define DSI_TIMING2			DSI_REG(DSI_PROTO, 0x005C)
75 #define DSI_VM_TIMING1			DSI_REG(DSI_PROTO, 0x0060)
76 #define DSI_VM_TIMING2			DSI_REG(DSI_PROTO, 0x0064)
77 #define DSI_VM_TIMING3			DSI_REG(DSI_PROTO, 0x0068)
78 #define DSI_CLK_TIMING			DSI_REG(DSI_PROTO, 0x006C)
79 #define DSI_TX_FIFO_VC_SIZE		DSI_REG(DSI_PROTO, 0x0070)
80 #define DSI_RX_FIFO_VC_SIZE		DSI_REG(DSI_PROTO, 0x0074)
81 #define DSI_COMPLEXIO_CFG2		DSI_REG(DSI_PROTO, 0x0078)
82 #define DSI_RX_FIFO_VC_FULLNESS		DSI_REG(DSI_PROTO, 0x007C)
83 #define DSI_VM_TIMING4			DSI_REG(DSI_PROTO, 0x0080)
84 #define DSI_TX_FIFO_VC_EMPTINESS	DSI_REG(DSI_PROTO, 0x0084)
85 #define DSI_VM_TIMING5			DSI_REG(DSI_PROTO, 0x0088)
86 #define DSI_VM_TIMING6			DSI_REG(DSI_PROTO, 0x008C)
87 #define DSI_VM_TIMING7			DSI_REG(DSI_PROTO, 0x0090)
88 #define DSI_STOPCLK_TIMING		DSI_REG(DSI_PROTO, 0x0094)
89 #define DSI_VC_CTRL(n)			DSI_REG(DSI_PROTO, 0x0100 + (n * 0x20))
90 #define DSI_VC_TE(n)			DSI_REG(DSI_PROTO, 0x0104 + (n * 0x20))
91 #define DSI_VC_LONG_PACKET_HEADER(n)	DSI_REG(DSI_PROTO, 0x0108 + (n * 0x20))
92 #define DSI_VC_LONG_PACKET_PAYLOAD(n)	DSI_REG(DSI_PROTO, 0x010C + (n * 0x20))
93 #define DSI_VC_SHORT_PACKET_HEADER(n)	DSI_REG(DSI_PROTO, 0x0110 + (n * 0x20))
94 #define DSI_VC_IRQSTATUS(n)		DSI_REG(DSI_PROTO, 0x0118 + (n * 0x20))
95 #define DSI_VC_IRQENABLE(n)		DSI_REG(DSI_PROTO, 0x011C + (n * 0x20))
96 
97 /* DSIPHY_SCP */
98 
99 #define DSI_PHY				1
100 #define DSI_PHY_OFFSET			0x200
101 #define DSI_PHY_SZ			0x40
102 
103 #define DSI_DSIPHY_CFG0			DSI_REG(DSI_PHY, 0x0000)
104 #define DSI_DSIPHY_CFG1			DSI_REG(DSI_PHY, 0x0004)
105 #define DSI_DSIPHY_CFG2			DSI_REG(DSI_PHY, 0x0008)
106 #define DSI_DSIPHY_CFG5			DSI_REG(DSI_PHY, 0x0014)
107 #define DSI_DSIPHY_CFG10		DSI_REG(DSI_PHY, 0x0028)
108 
109 /* DSI_PLL_CTRL_SCP */
110 
111 #define DSI_PLL				2
112 #define DSI_PLL_OFFSET			0x300
113 #define DSI_PLL_SZ			0x20
114 
115 #define DSI_PLL_CONTROL			DSI_REG(DSI_PLL, 0x0000)
116 #define DSI_PLL_STATUS			DSI_REG(DSI_PLL, 0x0004)
117 #define DSI_PLL_GO			DSI_REG(DSI_PLL, 0x0008)
118 #define DSI_PLL_CONFIGURATION1		DSI_REG(DSI_PLL, 0x000C)
119 #define DSI_PLL_CONFIGURATION2		DSI_REG(DSI_PLL, 0x0010)
120 
121 #define REG_GET(dsidev, idx, start, end) \
122 	FLD_GET(dsi_read_reg(dsidev, idx), start, end)
123 
124 #define REG_FLD_MOD(dsidev, idx, val, start, end) \
125 	dsi_write_reg(dsidev, idx, FLD_MOD(dsi_read_reg(dsidev, idx), val, start, end))
126 
127 /* Global interrupts */
128 #define DSI_IRQ_VC0		(1 << 0)
129 #define DSI_IRQ_VC1		(1 << 1)
130 #define DSI_IRQ_VC2		(1 << 2)
131 #define DSI_IRQ_VC3		(1 << 3)
132 #define DSI_IRQ_WAKEUP		(1 << 4)
133 #define DSI_IRQ_RESYNC		(1 << 5)
134 #define DSI_IRQ_PLL_LOCK	(1 << 7)
135 #define DSI_IRQ_PLL_UNLOCK	(1 << 8)
136 #define DSI_IRQ_PLL_RECALL	(1 << 9)
137 #define DSI_IRQ_COMPLEXIO_ERR	(1 << 10)
138 #define DSI_IRQ_HS_TX_TIMEOUT	(1 << 14)
139 #define DSI_IRQ_LP_RX_TIMEOUT	(1 << 15)
140 #define DSI_IRQ_TE_TRIGGER	(1 << 16)
141 #define DSI_IRQ_ACK_TRIGGER	(1 << 17)
142 #define DSI_IRQ_SYNC_LOST	(1 << 18)
143 #define DSI_IRQ_LDO_POWER_GOOD	(1 << 19)
144 #define DSI_IRQ_TA_TIMEOUT	(1 << 20)
145 #define DSI_IRQ_ERROR_MASK \
146 	(DSI_IRQ_HS_TX_TIMEOUT | DSI_IRQ_LP_RX_TIMEOUT | DSI_IRQ_SYNC_LOST | \
147 	DSI_IRQ_TA_TIMEOUT)
148 #define DSI_IRQ_CHANNEL_MASK	0xf
149 
150 /* Virtual channel interrupts */
151 #define DSI_VC_IRQ_CS		(1 << 0)
152 #define DSI_VC_IRQ_ECC_CORR	(1 << 1)
153 #define DSI_VC_IRQ_PACKET_SENT	(1 << 2)
154 #define DSI_VC_IRQ_FIFO_TX_OVF	(1 << 3)
155 #define DSI_VC_IRQ_FIFO_RX_OVF	(1 << 4)
156 #define DSI_VC_IRQ_BTA		(1 << 5)
157 #define DSI_VC_IRQ_ECC_NO_CORR	(1 << 6)
158 #define DSI_VC_IRQ_FIFO_TX_UDF	(1 << 7)
159 #define DSI_VC_IRQ_PP_BUSY_CHANGE (1 << 8)
160 #define DSI_VC_IRQ_ERROR_MASK \
161 	(DSI_VC_IRQ_CS | DSI_VC_IRQ_ECC_CORR | DSI_VC_IRQ_FIFO_TX_OVF | \
162 	DSI_VC_IRQ_FIFO_RX_OVF | DSI_VC_IRQ_ECC_NO_CORR | \
163 	DSI_VC_IRQ_FIFO_TX_UDF)
164 
165 /* ComplexIO interrupts */
166 #define DSI_CIO_IRQ_ERRSYNCESC1		(1 << 0)
167 #define DSI_CIO_IRQ_ERRSYNCESC2		(1 << 1)
168 #define DSI_CIO_IRQ_ERRSYNCESC3		(1 << 2)
169 #define DSI_CIO_IRQ_ERRSYNCESC4		(1 << 3)
170 #define DSI_CIO_IRQ_ERRSYNCESC5		(1 << 4)
171 #define DSI_CIO_IRQ_ERRESC1		(1 << 5)
172 #define DSI_CIO_IRQ_ERRESC2		(1 << 6)
173 #define DSI_CIO_IRQ_ERRESC3		(1 << 7)
174 #define DSI_CIO_IRQ_ERRESC4		(1 << 8)
175 #define DSI_CIO_IRQ_ERRESC5		(1 << 9)
176 #define DSI_CIO_IRQ_ERRCONTROL1		(1 << 10)
177 #define DSI_CIO_IRQ_ERRCONTROL2		(1 << 11)
178 #define DSI_CIO_IRQ_ERRCONTROL3		(1 << 12)
179 #define DSI_CIO_IRQ_ERRCONTROL4		(1 << 13)
180 #define DSI_CIO_IRQ_ERRCONTROL5		(1 << 14)
181 #define DSI_CIO_IRQ_STATEULPS1		(1 << 15)
182 #define DSI_CIO_IRQ_STATEULPS2		(1 << 16)
183 #define DSI_CIO_IRQ_STATEULPS3		(1 << 17)
184 #define DSI_CIO_IRQ_STATEULPS4		(1 << 18)
185 #define DSI_CIO_IRQ_STATEULPS5		(1 << 19)
186 #define DSI_CIO_IRQ_ERRCONTENTIONLP0_1	(1 << 20)
187 #define DSI_CIO_IRQ_ERRCONTENTIONLP1_1	(1 << 21)
188 #define DSI_CIO_IRQ_ERRCONTENTIONLP0_2	(1 << 22)
189 #define DSI_CIO_IRQ_ERRCONTENTIONLP1_2	(1 << 23)
190 #define DSI_CIO_IRQ_ERRCONTENTIONLP0_3	(1 << 24)
191 #define DSI_CIO_IRQ_ERRCONTENTIONLP1_3	(1 << 25)
192 #define DSI_CIO_IRQ_ERRCONTENTIONLP0_4	(1 << 26)
193 #define DSI_CIO_IRQ_ERRCONTENTIONLP1_4	(1 << 27)
194 #define DSI_CIO_IRQ_ERRCONTENTIONLP0_5	(1 << 28)
195 #define DSI_CIO_IRQ_ERRCONTENTIONLP1_5	(1 << 29)
196 #define DSI_CIO_IRQ_ULPSACTIVENOT_ALL0	(1 << 30)
197 #define DSI_CIO_IRQ_ULPSACTIVENOT_ALL1	(1 << 31)
198 #define DSI_CIO_IRQ_ERROR_MASK \
199 	(DSI_CIO_IRQ_ERRSYNCESC1 | DSI_CIO_IRQ_ERRSYNCESC2 | \
200 	 DSI_CIO_IRQ_ERRSYNCESC3 | DSI_CIO_IRQ_ERRSYNCESC4 | \
201 	 DSI_CIO_IRQ_ERRSYNCESC5 | \
202 	 DSI_CIO_IRQ_ERRESC1 | DSI_CIO_IRQ_ERRESC2 | \
203 	 DSI_CIO_IRQ_ERRESC3 | DSI_CIO_IRQ_ERRESC4 | \
204 	 DSI_CIO_IRQ_ERRESC5 | \
205 	 DSI_CIO_IRQ_ERRCONTROL1 | DSI_CIO_IRQ_ERRCONTROL2 | \
206 	 DSI_CIO_IRQ_ERRCONTROL3 | DSI_CIO_IRQ_ERRCONTROL4 | \
207 	 DSI_CIO_IRQ_ERRCONTROL5 | \
208 	 DSI_CIO_IRQ_ERRCONTENTIONLP0_1 | DSI_CIO_IRQ_ERRCONTENTIONLP1_1 | \
209 	 DSI_CIO_IRQ_ERRCONTENTIONLP0_2 | DSI_CIO_IRQ_ERRCONTENTIONLP1_2 | \
210 	 DSI_CIO_IRQ_ERRCONTENTIONLP0_3 | DSI_CIO_IRQ_ERRCONTENTIONLP1_3 | \
211 	 DSI_CIO_IRQ_ERRCONTENTIONLP0_4 | DSI_CIO_IRQ_ERRCONTENTIONLP1_4 | \
212 	 DSI_CIO_IRQ_ERRCONTENTIONLP0_5 | DSI_CIO_IRQ_ERRCONTENTIONLP1_5)
213 
214 typedef void (*omap_dsi_isr_t) (void *arg, u32 mask);
215 
216 static int dsi_display_init_dispc(struct platform_device *dsidev,
217 	enum omap_channel channel);
218 static void dsi_display_uninit_dispc(struct platform_device *dsidev,
219 	enum omap_channel channel);
220 
221 static int dsi_vc_send_null(struct omap_dss_device *dssdev, int channel);
222 
223 /* DSI PLL HSDIV indices */
224 #define HSDIV_DISPC	0
225 #define HSDIV_DSI	1
226 
227 #define DSI_MAX_NR_ISRS                2
228 #define DSI_MAX_NR_LANES	5
229 
230 enum dsi_lane_function {
231 	DSI_LANE_UNUSED	= 0,
232 	DSI_LANE_CLK,
233 	DSI_LANE_DATA1,
234 	DSI_LANE_DATA2,
235 	DSI_LANE_DATA3,
236 	DSI_LANE_DATA4,
237 };
238 
239 struct dsi_lane_config {
240 	enum dsi_lane_function function;
241 	u8 polarity;
242 };
243 
244 struct dsi_isr_data {
245 	omap_dsi_isr_t	isr;
246 	void		*arg;
247 	u32		mask;
248 };
249 
250 enum fifo_size {
251 	DSI_FIFO_SIZE_0		= 0,
252 	DSI_FIFO_SIZE_32	= 1,
253 	DSI_FIFO_SIZE_64	= 2,
254 	DSI_FIFO_SIZE_96	= 3,
255 	DSI_FIFO_SIZE_128	= 4,
256 };
257 
258 enum dsi_vc_source {
259 	DSI_VC_SOURCE_L4 = 0,
260 	DSI_VC_SOURCE_VP,
261 };
262 
263 struct dsi_irq_stats {
264 	unsigned long last_reset;
265 	unsigned irq_count;
266 	unsigned dsi_irqs[32];
267 	unsigned vc_irqs[4][32];
268 	unsigned cio_irqs[32];
269 };
270 
271 struct dsi_isr_tables {
272 	struct dsi_isr_data isr_table[DSI_MAX_NR_ISRS];
273 	struct dsi_isr_data isr_table_vc[4][DSI_MAX_NR_ISRS];
274 	struct dsi_isr_data isr_table_cio[DSI_MAX_NR_ISRS];
275 };
276 
277 struct dsi_clk_calc_ctx {
278 	struct platform_device *dsidev;
279 	struct dss_pll *pll;
280 
281 	/* inputs */
282 
283 	const struct omap_dss_dsi_config *config;
284 
285 	unsigned long req_pck_min, req_pck_nom, req_pck_max;
286 
287 	/* outputs */
288 
289 	struct dss_pll_clock_info dsi_cinfo;
290 	struct dispc_clock_info dispc_cinfo;
291 
292 	struct videomode vm;
293 	struct omap_dss_dsi_videomode_timings dsi_vm;
294 };
295 
296 struct dsi_lp_clock_info {
297 	unsigned long lp_clk;
298 	u16 lp_clk_div;
299 };
300 
301 struct dsi_data {
302 	struct platform_device *pdev;
303 	void __iomem *proto_base;
304 	void __iomem *phy_base;
305 	void __iomem *pll_base;
306 
307 	int module_id;
308 
309 	int irq;
310 
311 	bool is_enabled;
312 
313 	struct clk *dss_clk;
314 
315 	struct dispc_clock_info user_dispc_cinfo;
316 	struct dss_pll_clock_info user_dsi_cinfo;
317 
318 	struct dsi_lp_clock_info user_lp_cinfo;
319 	struct dsi_lp_clock_info current_lp_cinfo;
320 
321 	struct dss_pll pll;
322 
323 	bool vdds_dsi_enabled;
324 	struct regulator *vdds_dsi_reg;
325 
326 	struct {
327 		enum dsi_vc_source source;
328 		struct omap_dss_device *dssdev;
329 		enum fifo_size tx_fifo_size;
330 		enum fifo_size rx_fifo_size;
331 		int vc_id;
332 	} vc[4];
333 
334 	struct mutex lock;
335 	struct semaphore bus_lock;
336 
337 	spinlock_t irq_lock;
338 	struct dsi_isr_tables isr_tables;
339 	/* space for a copy used by the interrupt handler */
340 	struct dsi_isr_tables isr_tables_copy;
341 
342 	int update_channel;
343 #ifdef DSI_PERF_MEASURE
344 	unsigned update_bytes;
345 #endif
346 
347 	bool te_enabled;
348 	bool ulps_enabled;
349 
350 	void (*framedone_callback)(int, void *);
351 	void *framedone_data;
352 
353 	struct delayed_work framedone_timeout_work;
354 
355 #ifdef DSI_CATCH_MISSING_TE
356 	struct timer_list te_timer;
357 #endif
358 
359 	unsigned long cache_req_pck;
360 	unsigned long cache_clk_freq;
361 	struct dss_pll_clock_info cache_cinfo;
362 
363 	u32		errors;
364 	spinlock_t	errors_lock;
365 #ifdef DSI_PERF_MEASURE
366 	ktime_t perf_setup_time;
367 	ktime_t perf_start_time;
368 #endif
369 	int debug_read;
370 	int debug_write;
371 
372 #ifdef CONFIG_OMAP2_DSS_COLLECT_IRQ_STATS
373 	spinlock_t irq_stats_lock;
374 	struct dsi_irq_stats irq_stats;
375 #endif
376 
377 	unsigned num_lanes_supported;
378 	unsigned line_buffer_size;
379 
380 	struct dsi_lane_config lanes[DSI_MAX_NR_LANES];
381 	unsigned num_lanes_used;
382 
383 	unsigned scp_clk_refcount;
384 
385 	struct dss_lcd_mgr_config mgr_config;
386 	struct videomode vm;
387 	enum omap_dss_dsi_pixel_format pix_fmt;
388 	enum omap_dss_dsi_mode mode;
389 	struct omap_dss_dsi_videomode_timings vm_timings;
390 
391 	struct omap_dss_device output;
392 };
393 
394 struct dsi_packet_sent_handler_data {
395 	struct platform_device *dsidev;
396 	struct completion *completion;
397 };
398 
399 struct dsi_module_id_data {
400 	u32 address;
401 	int id;
402 };
403 
404 static const struct of_device_id dsi_of_match[];
405 
406 #ifdef DSI_PERF_MEASURE
407 static bool dsi_perf;
408 module_param(dsi_perf, bool, 0644);
409 #endif
410 
411 static inline struct dsi_data *dsi_get_dsidrv_data(struct platform_device *dsidev)
412 {
413 	return dev_get_drvdata(&dsidev->dev);
414 }
415 
416 static inline struct platform_device *dsi_get_dsidev_from_dssdev(struct omap_dss_device *dssdev)
417 {
418 	return to_platform_device(dssdev->dev);
419 }
420 
421 static struct platform_device *dsi_get_dsidev_from_id(int module)
422 {
423 	struct omap_dss_device *out;
424 	enum omap_dss_output_id	id;
425 
426 	switch (module) {
427 	case 0:
428 		id = OMAP_DSS_OUTPUT_DSI1;
429 		break;
430 	case 1:
431 		id = OMAP_DSS_OUTPUT_DSI2;
432 		break;
433 	default:
434 		return NULL;
435 	}
436 
437 	out = omap_dss_get_output(id);
438 
439 	return out ? to_platform_device(out->dev) : NULL;
440 }
441 
442 static inline void dsi_write_reg(struct platform_device *dsidev,
443 		const struct dsi_reg idx, u32 val)
444 {
445 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
446 	void __iomem *base;
447 
448 	switch(idx.module) {
449 		case DSI_PROTO: base = dsi->proto_base; break;
450 		case DSI_PHY: base = dsi->phy_base; break;
451 		case DSI_PLL: base = dsi->pll_base; break;
452 		default: return;
453 	}
454 
455 	__raw_writel(val, base + idx.idx);
456 }
457 
458 static inline u32 dsi_read_reg(struct platform_device *dsidev,
459 		const struct dsi_reg idx)
460 {
461 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
462 	void __iomem *base;
463 
464 	switch(idx.module) {
465 		case DSI_PROTO: base = dsi->proto_base; break;
466 		case DSI_PHY: base = dsi->phy_base; break;
467 		case DSI_PLL: base = dsi->pll_base; break;
468 		default: return 0;
469 	}
470 
471 	return __raw_readl(base + idx.idx);
472 }
473 
474 static void dsi_bus_lock(struct omap_dss_device *dssdev)
475 {
476 	struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
477 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
478 
479 	down(&dsi->bus_lock);
480 }
481 
482 static void dsi_bus_unlock(struct omap_dss_device *dssdev)
483 {
484 	struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
485 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
486 
487 	up(&dsi->bus_lock);
488 }
489 
490 static bool dsi_bus_is_locked(struct platform_device *dsidev)
491 {
492 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
493 
494 	return dsi->bus_lock.count == 0;
495 }
496 
497 static void dsi_completion_handler(void *data, u32 mask)
498 {
499 	complete((struct completion *)data);
500 }
501 
502 static inline int wait_for_bit_change(struct platform_device *dsidev,
503 		const struct dsi_reg idx, int bitnum, int value)
504 {
505 	unsigned long timeout;
506 	ktime_t wait;
507 	int t;
508 
509 	/* first busyloop to see if the bit changes right away */
510 	t = 100;
511 	while (t-- > 0) {
512 		if (REG_GET(dsidev, idx, bitnum, bitnum) == value)
513 			return value;
514 	}
515 
516 	/* then loop for 500ms, sleeping for 1ms in between */
517 	timeout = jiffies + msecs_to_jiffies(500);
518 	while (time_before(jiffies, timeout)) {
519 		if (REG_GET(dsidev, idx, bitnum, bitnum) == value)
520 			return value;
521 
522 		wait = ns_to_ktime(1000 * 1000);
523 		set_current_state(TASK_UNINTERRUPTIBLE);
524 		schedule_hrtimeout(&wait, HRTIMER_MODE_REL);
525 	}
526 
527 	return !value;
528 }
529 
530 u8 dsi_get_pixel_size(enum omap_dss_dsi_pixel_format fmt)
531 {
532 	switch (fmt) {
533 	case OMAP_DSS_DSI_FMT_RGB888:
534 	case OMAP_DSS_DSI_FMT_RGB666:
535 		return 24;
536 	case OMAP_DSS_DSI_FMT_RGB666_PACKED:
537 		return 18;
538 	case OMAP_DSS_DSI_FMT_RGB565:
539 		return 16;
540 	default:
541 		BUG();
542 		return 0;
543 	}
544 }
545 
546 #ifdef DSI_PERF_MEASURE
547 static void dsi_perf_mark_setup(struct platform_device *dsidev)
548 {
549 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
550 	dsi->perf_setup_time = ktime_get();
551 }
552 
553 static void dsi_perf_mark_start(struct platform_device *dsidev)
554 {
555 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
556 	dsi->perf_start_time = ktime_get();
557 }
558 
559 static void dsi_perf_show(struct platform_device *dsidev, const char *name)
560 {
561 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
562 	ktime_t t, setup_time, trans_time;
563 	u32 total_bytes;
564 	u32 setup_us, trans_us, total_us;
565 
566 	if (!dsi_perf)
567 		return;
568 
569 	t = ktime_get();
570 
571 	setup_time = ktime_sub(dsi->perf_start_time, dsi->perf_setup_time);
572 	setup_us = (u32)ktime_to_us(setup_time);
573 	if (setup_us == 0)
574 		setup_us = 1;
575 
576 	trans_time = ktime_sub(t, dsi->perf_start_time);
577 	trans_us = (u32)ktime_to_us(trans_time);
578 	if (trans_us == 0)
579 		trans_us = 1;
580 
581 	total_us = setup_us + trans_us;
582 
583 	total_bytes = dsi->update_bytes;
584 
585 	pr_info("DSI(%s): %u us + %u us = %u us (%uHz), %u bytes, %u kbytes/sec\n",
586 		name,
587 		setup_us,
588 		trans_us,
589 		total_us,
590 		1000 * 1000 / total_us,
591 		total_bytes,
592 		total_bytes * 1000 / total_us);
593 }
594 #else
595 static inline void dsi_perf_mark_setup(struct platform_device *dsidev)
596 {
597 }
598 
599 static inline void dsi_perf_mark_start(struct platform_device *dsidev)
600 {
601 }
602 
603 static inline void dsi_perf_show(struct platform_device *dsidev,
604 		const char *name)
605 {
606 }
607 #endif
608 
609 static int verbose_irq;
610 
611 static void print_irq_status(u32 status)
612 {
613 	if (status == 0)
614 		return;
615 
616 	if (!verbose_irq && (status & ~DSI_IRQ_CHANNEL_MASK) == 0)
617 		return;
618 
619 #define PIS(x) (status & DSI_IRQ_##x) ? (#x " ") : ""
620 
621 	pr_debug("DSI IRQ: 0x%x: %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
622 		status,
623 		verbose_irq ? PIS(VC0) : "",
624 		verbose_irq ? PIS(VC1) : "",
625 		verbose_irq ? PIS(VC2) : "",
626 		verbose_irq ? PIS(VC3) : "",
627 		PIS(WAKEUP),
628 		PIS(RESYNC),
629 		PIS(PLL_LOCK),
630 		PIS(PLL_UNLOCK),
631 		PIS(PLL_RECALL),
632 		PIS(COMPLEXIO_ERR),
633 		PIS(HS_TX_TIMEOUT),
634 		PIS(LP_RX_TIMEOUT),
635 		PIS(TE_TRIGGER),
636 		PIS(ACK_TRIGGER),
637 		PIS(SYNC_LOST),
638 		PIS(LDO_POWER_GOOD),
639 		PIS(TA_TIMEOUT));
640 #undef PIS
641 }
642 
643 static void print_irq_status_vc(int channel, u32 status)
644 {
645 	if (status == 0)
646 		return;
647 
648 	if (!verbose_irq && (status & ~DSI_VC_IRQ_PACKET_SENT) == 0)
649 		return;
650 
651 #define PIS(x) (status & DSI_VC_IRQ_##x) ? (#x " ") : ""
652 
653 	pr_debug("DSI VC(%d) IRQ 0x%x: %s%s%s%s%s%s%s%s%s\n",
654 		channel,
655 		status,
656 		PIS(CS),
657 		PIS(ECC_CORR),
658 		PIS(ECC_NO_CORR),
659 		verbose_irq ? PIS(PACKET_SENT) : "",
660 		PIS(BTA),
661 		PIS(FIFO_TX_OVF),
662 		PIS(FIFO_RX_OVF),
663 		PIS(FIFO_TX_UDF),
664 		PIS(PP_BUSY_CHANGE));
665 #undef PIS
666 }
667 
668 static void print_irq_status_cio(u32 status)
669 {
670 	if (status == 0)
671 		return;
672 
673 #define PIS(x) (status & DSI_CIO_IRQ_##x) ? (#x " ") : ""
674 
675 	pr_debug("DSI CIO IRQ 0x%x: %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
676 		status,
677 		PIS(ERRSYNCESC1),
678 		PIS(ERRSYNCESC2),
679 		PIS(ERRSYNCESC3),
680 		PIS(ERRESC1),
681 		PIS(ERRESC2),
682 		PIS(ERRESC3),
683 		PIS(ERRCONTROL1),
684 		PIS(ERRCONTROL2),
685 		PIS(ERRCONTROL3),
686 		PIS(STATEULPS1),
687 		PIS(STATEULPS2),
688 		PIS(STATEULPS3),
689 		PIS(ERRCONTENTIONLP0_1),
690 		PIS(ERRCONTENTIONLP1_1),
691 		PIS(ERRCONTENTIONLP0_2),
692 		PIS(ERRCONTENTIONLP1_2),
693 		PIS(ERRCONTENTIONLP0_3),
694 		PIS(ERRCONTENTIONLP1_3),
695 		PIS(ULPSACTIVENOT_ALL0),
696 		PIS(ULPSACTIVENOT_ALL1));
697 #undef PIS
698 }
699 
700 #ifdef CONFIG_OMAP2_DSS_COLLECT_IRQ_STATS
701 static void dsi_collect_irq_stats(struct platform_device *dsidev, u32 irqstatus,
702 		u32 *vcstatus, u32 ciostatus)
703 {
704 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
705 	int i;
706 
707 	spin_lock(&dsi->irq_stats_lock);
708 
709 	dsi->irq_stats.irq_count++;
710 	dss_collect_irq_stats(irqstatus, dsi->irq_stats.dsi_irqs);
711 
712 	for (i = 0; i < 4; ++i)
713 		dss_collect_irq_stats(vcstatus[i], dsi->irq_stats.vc_irqs[i]);
714 
715 	dss_collect_irq_stats(ciostatus, dsi->irq_stats.cio_irqs);
716 
717 	spin_unlock(&dsi->irq_stats_lock);
718 }
719 #else
720 #define dsi_collect_irq_stats(dsidev, irqstatus, vcstatus, ciostatus)
721 #endif
722 
723 static int debug_irq;
724 
725 static void dsi_handle_irq_errors(struct platform_device *dsidev, u32 irqstatus,
726 		u32 *vcstatus, u32 ciostatus)
727 {
728 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
729 	int i;
730 
731 	if (irqstatus & DSI_IRQ_ERROR_MASK) {
732 		DSSERR("DSI error, irqstatus %x\n", irqstatus);
733 		print_irq_status(irqstatus);
734 		spin_lock(&dsi->errors_lock);
735 		dsi->errors |= irqstatus & DSI_IRQ_ERROR_MASK;
736 		spin_unlock(&dsi->errors_lock);
737 	} else if (debug_irq) {
738 		print_irq_status(irqstatus);
739 	}
740 
741 	for (i = 0; i < 4; ++i) {
742 		if (vcstatus[i] & DSI_VC_IRQ_ERROR_MASK) {
743 			DSSERR("DSI VC(%d) error, vc irqstatus %x\n",
744 				       i, vcstatus[i]);
745 			print_irq_status_vc(i, vcstatus[i]);
746 		} else if (debug_irq) {
747 			print_irq_status_vc(i, vcstatus[i]);
748 		}
749 	}
750 
751 	if (ciostatus & DSI_CIO_IRQ_ERROR_MASK) {
752 		DSSERR("DSI CIO error, cio irqstatus %x\n", ciostatus);
753 		print_irq_status_cio(ciostatus);
754 	} else if (debug_irq) {
755 		print_irq_status_cio(ciostatus);
756 	}
757 }
758 
759 static void dsi_call_isrs(struct dsi_isr_data *isr_array,
760 		unsigned isr_array_size, u32 irqstatus)
761 {
762 	struct dsi_isr_data *isr_data;
763 	int i;
764 
765 	for (i = 0; i < isr_array_size; i++) {
766 		isr_data = &isr_array[i];
767 		if (isr_data->isr && isr_data->mask & irqstatus)
768 			isr_data->isr(isr_data->arg, irqstatus);
769 	}
770 }
771 
772 static void dsi_handle_isrs(struct dsi_isr_tables *isr_tables,
773 		u32 irqstatus, u32 *vcstatus, u32 ciostatus)
774 {
775 	int i;
776 
777 	dsi_call_isrs(isr_tables->isr_table,
778 			ARRAY_SIZE(isr_tables->isr_table),
779 			irqstatus);
780 
781 	for (i = 0; i < 4; ++i) {
782 		if (vcstatus[i] == 0)
783 			continue;
784 		dsi_call_isrs(isr_tables->isr_table_vc[i],
785 				ARRAY_SIZE(isr_tables->isr_table_vc[i]),
786 				vcstatus[i]);
787 	}
788 
789 	if (ciostatus != 0)
790 		dsi_call_isrs(isr_tables->isr_table_cio,
791 				ARRAY_SIZE(isr_tables->isr_table_cio),
792 				ciostatus);
793 }
794 
795 static irqreturn_t omap_dsi_irq_handler(int irq, void *arg)
796 {
797 	struct platform_device *dsidev;
798 	struct dsi_data *dsi;
799 	u32 irqstatus, vcstatus[4], ciostatus;
800 	int i;
801 
802 	dsidev = (struct platform_device *) arg;
803 	dsi = dsi_get_dsidrv_data(dsidev);
804 
805 	if (!dsi->is_enabled)
806 		return IRQ_NONE;
807 
808 	spin_lock(&dsi->irq_lock);
809 
810 	irqstatus = dsi_read_reg(dsidev, DSI_IRQSTATUS);
811 
812 	/* IRQ is not for us */
813 	if (!irqstatus) {
814 		spin_unlock(&dsi->irq_lock);
815 		return IRQ_NONE;
816 	}
817 
818 	dsi_write_reg(dsidev, DSI_IRQSTATUS, irqstatus & ~DSI_IRQ_CHANNEL_MASK);
819 	/* flush posted write */
820 	dsi_read_reg(dsidev, DSI_IRQSTATUS);
821 
822 	for (i = 0; i < 4; ++i) {
823 		if ((irqstatus & (1 << i)) == 0) {
824 			vcstatus[i] = 0;
825 			continue;
826 		}
827 
828 		vcstatus[i] = dsi_read_reg(dsidev, DSI_VC_IRQSTATUS(i));
829 
830 		dsi_write_reg(dsidev, DSI_VC_IRQSTATUS(i), vcstatus[i]);
831 		/* flush posted write */
832 		dsi_read_reg(dsidev, DSI_VC_IRQSTATUS(i));
833 	}
834 
835 	if (irqstatus & DSI_IRQ_COMPLEXIO_ERR) {
836 		ciostatus = dsi_read_reg(dsidev, DSI_COMPLEXIO_IRQ_STATUS);
837 
838 		dsi_write_reg(dsidev, DSI_COMPLEXIO_IRQ_STATUS, ciostatus);
839 		/* flush posted write */
840 		dsi_read_reg(dsidev, DSI_COMPLEXIO_IRQ_STATUS);
841 	} else {
842 		ciostatus = 0;
843 	}
844 
845 #ifdef DSI_CATCH_MISSING_TE
846 	if (irqstatus & DSI_IRQ_TE_TRIGGER)
847 		del_timer(&dsi->te_timer);
848 #endif
849 
850 	/* make a copy and unlock, so that isrs can unregister
851 	 * themselves */
852 	memcpy(&dsi->isr_tables_copy, &dsi->isr_tables,
853 		sizeof(dsi->isr_tables));
854 
855 	spin_unlock(&dsi->irq_lock);
856 
857 	dsi_handle_isrs(&dsi->isr_tables_copy, irqstatus, vcstatus, ciostatus);
858 
859 	dsi_handle_irq_errors(dsidev, irqstatus, vcstatus, ciostatus);
860 
861 	dsi_collect_irq_stats(dsidev, irqstatus, vcstatus, ciostatus);
862 
863 	return IRQ_HANDLED;
864 }
865 
866 /* dsi->irq_lock has to be locked by the caller */
867 static void _omap_dsi_configure_irqs(struct platform_device *dsidev,
868 		struct dsi_isr_data *isr_array,
869 		unsigned isr_array_size, u32 default_mask,
870 		const struct dsi_reg enable_reg,
871 		const struct dsi_reg status_reg)
872 {
873 	struct dsi_isr_data *isr_data;
874 	u32 mask;
875 	u32 old_mask;
876 	int i;
877 
878 	mask = default_mask;
879 
880 	for (i = 0; i < isr_array_size; i++) {
881 		isr_data = &isr_array[i];
882 
883 		if (isr_data->isr == NULL)
884 			continue;
885 
886 		mask |= isr_data->mask;
887 	}
888 
889 	old_mask = dsi_read_reg(dsidev, enable_reg);
890 	/* clear the irqstatus for newly enabled irqs */
891 	dsi_write_reg(dsidev, status_reg, (mask ^ old_mask) & mask);
892 	dsi_write_reg(dsidev, enable_reg, mask);
893 
894 	/* flush posted writes */
895 	dsi_read_reg(dsidev, enable_reg);
896 	dsi_read_reg(dsidev, status_reg);
897 }
898 
899 /* dsi->irq_lock has to be locked by the caller */
900 static void _omap_dsi_set_irqs(struct platform_device *dsidev)
901 {
902 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
903 	u32 mask = DSI_IRQ_ERROR_MASK;
904 #ifdef DSI_CATCH_MISSING_TE
905 	mask |= DSI_IRQ_TE_TRIGGER;
906 #endif
907 	_omap_dsi_configure_irqs(dsidev, dsi->isr_tables.isr_table,
908 			ARRAY_SIZE(dsi->isr_tables.isr_table), mask,
909 			DSI_IRQENABLE, DSI_IRQSTATUS);
910 }
911 
912 /* dsi->irq_lock has to be locked by the caller */
913 static void _omap_dsi_set_irqs_vc(struct platform_device *dsidev, int vc)
914 {
915 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
916 
917 	_omap_dsi_configure_irqs(dsidev, dsi->isr_tables.isr_table_vc[vc],
918 			ARRAY_SIZE(dsi->isr_tables.isr_table_vc[vc]),
919 			DSI_VC_IRQ_ERROR_MASK,
920 			DSI_VC_IRQENABLE(vc), DSI_VC_IRQSTATUS(vc));
921 }
922 
923 /* dsi->irq_lock has to be locked by the caller */
924 static void _omap_dsi_set_irqs_cio(struct platform_device *dsidev)
925 {
926 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
927 
928 	_omap_dsi_configure_irqs(dsidev, dsi->isr_tables.isr_table_cio,
929 			ARRAY_SIZE(dsi->isr_tables.isr_table_cio),
930 			DSI_CIO_IRQ_ERROR_MASK,
931 			DSI_COMPLEXIO_IRQ_ENABLE, DSI_COMPLEXIO_IRQ_STATUS);
932 }
933 
934 static void _dsi_initialize_irq(struct platform_device *dsidev)
935 {
936 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
937 	unsigned long flags;
938 	int vc;
939 
940 	spin_lock_irqsave(&dsi->irq_lock, flags);
941 
942 	memset(&dsi->isr_tables, 0, sizeof(dsi->isr_tables));
943 
944 	_omap_dsi_set_irqs(dsidev);
945 	for (vc = 0; vc < 4; ++vc)
946 		_omap_dsi_set_irqs_vc(dsidev, vc);
947 	_omap_dsi_set_irqs_cio(dsidev);
948 
949 	spin_unlock_irqrestore(&dsi->irq_lock, flags);
950 }
951 
952 static int _dsi_register_isr(omap_dsi_isr_t isr, void *arg, u32 mask,
953 		struct dsi_isr_data *isr_array, unsigned isr_array_size)
954 {
955 	struct dsi_isr_data *isr_data;
956 	int free_idx;
957 	int i;
958 
959 	BUG_ON(isr == NULL);
960 
961 	/* check for duplicate entry and find a free slot */
962 	free_idx = -1;
963 	for (i = 0; i < isr_array_size; i++) {
964 		isr_data = &isr_array[i];
965 
966 		if (isr_data->isr == isr && isr_data->arg == arg &&
967 				isr_data->mask == mask) {
968 			return -EINVAL;
969 		}
970 
971 		if (isr_data->isr == NULL && free_idx == -1)
972 			free_idx = i;
973 	}
974 
975 	if (free_idx == -1)
976 		return -EBUSY;
977 
978 	isr_data = &isr_array[free_idx];
979 	isr_data->isr = isr;
980 	isr_data->arg = arg;
981 	isr_data->mask = mask;
982 
983 	return 0;
984 }
985 
986 static int _dsi_unregister_isr(omap_dsi_isr_t isr, void *arg, u32 mask,
987 		struct dsi_isr_data *isr_array, unsigned isr_array_size)
988 {
989 	struct dsi_isr_data *isr_data;
990 	int i;
991 
992 	for (i = 0; i < isr_array_size; i++) {
993 		isr_data = &isr_array[i];
994 		if (isr_data->isr != isr || isr_data->arg != arg ||
995 				isr_data->mask != mask)
996 			continue;
997 
998 		isr_data->isr = NULL;
999 		isr_data->arg = NULL;
1000 		isr_data->mask = 0;
1001 
1002 		return 0;
1003 	}
1004 
1005 	return -EINVAL;
1006 }
1007 
1008 static int dsi_register_isr(struct platform_device *dsidev, omap_dsi_isr_t isr,
1009 		void *arg, u32 mask)
1010 {
1011 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1012 	unsigned long flags;
1013 	int r;
1014 
1015 	spin_lock_irqsave(&dsi->irq_lock, flags);
1016 
1017 	r = _dsi_register_isr(isr, arg, mask, dsi->isr_tables.isr_table,
1018 			ARRAY_SIZE(dsi->isr_tables.isr_table));
1019 
1020 	if (r == 0)
1021 		_omap_dsi_set_irqs(dsidev);
1022 
1023 	spin_unlock_irqrestore(&dsi->irq_lock, flags);
1024 
1025 	return r;
1026 }
1027 
1028 static int dsi_unregister_isr(struct platform_device *dsidev,
1029 		omap_dsi_isr_t isr, void *arg, u32 mask)
1030 {
1031 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1032 	unsigned long flags;
1033 	int r;
1034 
1035 	spin_lock_irqsave(&dsi->irq_lock, flags);
1036 
1037 	r = _dsi_unregister_isr(isr, arg, mask, dsi->isr_tables.isr_table,
1038 			ARRAY_SIZE(dsi->isr_tables.isr_table));
1039 
1040 	if (r == 0)
1041 		_omap_dsi_set_irqs(dsidev);
1042 
1043 	spin_unlock_irqrestore(&dsi->irq_lock, flags);
1044 
1045 	return r;
1046 }
1047 
1048 static int dsi_register_isr_vc(struct platform_device *dsidev, int channel,
1049 		omap_dsi_isr_t isr, void *arg, u32 mask)
1050 {
1051 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1052 	unsigned long flags;
1053 	int r;
1054 
1055 	spin_lock_irqsave(&dsi->irq_lock, flags);
1056 
1057 	r = _dsi_register_isr(isr, arg, mask,
1058 			dsi->isr_tables.isr_table_vc[channel],
1059 			ARRAY_SIZE(dsi->isr_tables.isr_table_vc[channel]));
1060 
1061 	if (r == 0)
1062 		_omap_dsi_set_irqs_vc(dsidev, channel);
1063 
1064 	spin_unlock_irqrestore(&dsi->irq_lock, flags);
1065 
1066 	return r;
1067 }
1068 
1069 static int dsi_unregister_isr_vc(struct platform_device *dsidev, int channel,
1070 		omap_dsi_isr_t isr, void *arg, u32 mask)
1071 {
1072 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1073 	unsigned long flags;
1074 	int r;
1075 
1076 	spin_lock_irqsave(&dsi->irq_lock, flags);
1077 
1078 	r = _dsi_unregister_isr(isr, arg, mask,
1079 			dsi->isr_tables.isr_table_vc[channel],
1080 			ARRAY_SIZE(dsi->isr_tables.isr_table_vc[channel]));
1081 
1082 	if (r == 0)
1083 		_omap_dsi_set_irqs_vc(dsidev, channel);
1084 
1085 	spin_unlock_irqrestore(&dsi->irq_lock, flags);
1086 
1087 	return r;
1088 }
1089 
1090 static int dsi_register_isr_cio(struct platform_device *dsidev,
1091 		omap_dsi_isr_t isr, void *arg, u32 mask)
1092 {
1093 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1094 	unsigned long flags;
1095 	int r;
1096 
1097 	spin_lock_irqsave(&dsi->irq_lock, flags);
1098 
1099 	r = _dsi_register_isr(isr, arg, mask, dsi->isr_tables.isr_table_cio,
1100 			ARRAY_SIZE(dsi->isr_tables.isr_table_cio));
1101 
1102 	if (r == 0)
1103 		_omap_dsi_set_irqs_cio(dsidev);
1104 
1105 	spin_unlock_irqrestore(&dsi->irq_lock, flags);
1106 
1107 	return r;
1108 }
1109 
1110 static int dsi_unregister_isr_cio(struct platform_device *dsidev,
1111 		omap_dsi_isr_t isr, void *arg, u32 mask)
1112 {
1113 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1114 	unsigned long flags;
1115 	int r;
1116 
1117 	spin_lock_irqsave(&dsi->irq_lock, flags);
1118 
1119 	r = _dsi_unregister_isr(isr, arg, mask, dsi->isr_tables.isr_table_cio,
1120 			ARRAY_SIZE(dsi->isr_tables.isr_table_cio));
1121 
1122 	if (r == 0)
1123 		_omap_dsi_set_irqs_cio(dsidev);
1124 
1125 	spin_unlock_irqrestore(&dsi->irq_lock, flags);
1126 
1127 	return r;
1128 }
1129 
1130 static u32 dsi_get_errors(struct platform_device *dsidev)
1131 {
1132 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1133 	unsigned long flags;
1134 	u32 e;
1135 	spin_lock_irqsave(&dsi->errors_lock, flags);
1136 	e = dsi->errors;
1137 	dsi->errors = 0;
1138 	spin_unlock_irqrestore(&dsi->errors_lock, flags);
1139 	return e;
1140 }
1141 
1142 static int dsi_runtime_get(struct platform_device *dsidev)
1143 {
1144 	int r;
1145 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1146 
1147 	DSSDBG("dsi_runtime_get\n");
1148 
1149 	r = pm_runtime_get_sync(&dsi->pdev->dev);
1150 	WARN_ON(r < 0);
1151 	return r < 0 ? r : 0;
1152 }
1153 
1154 static void dsi_runtime_put(struct platform_device *dsidev)
1155 {
1156 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1157 	int r;
1158 
1159 	DSSDBG("dsi_runtime_put\n");
1160 
1161 	r = pm_runtime_put_sync(&dsi->pdev->dev);
1162 	WARN_ON(r < 0 && r != -ENOSYS);
1163 }
1164 
1165 static int dsi_regulator_init(struct platform_device *dsidev)
1166 {
1167 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1168 	struct regulator *vdds_dsi;
1169 
1170 	if (dsi->vdds_dsi_reg != NULL)
1171 		return 0;
1172 
1173 	vdds_dsi = devm_regulator_get(&dsi->pdev->dev, "vdd");
1174 
1175 	if (IS_ERR(vdds_dsi)) {
1176 		if (PTR_ERR(vdds_dsi) != -EPROBE_DEFER)
1177 			DSSERR("can't get DSI VDD regulator\n");
1178 		return PTR_ERR(vdds_dsi);
1179 	}
1180 
1181 	dsi->vdds_dsi_reg = vdds_dsi;
1182 
1183 	return 0;
1184 }
1185 
1186 static void _dsi_print_reset_status(struct platform_device *dsidev)
1187 {
1188 	u32 l;
1189 	int b0, b1, b2;
1190 
1191 	/* A dummy read using the SCP interface to any DSIPHY register is
1192 	 * required after DSIPHY reset to complete the reset of the DSI complex
1193 	 * I/O. */
1194 	l = dsi_read_reg(dsidev, DSI_DSIPHY_CFG5);
1195 
1196 	if (dss_has_feature(FEAT_DSI_REVERSE_TXCLKESC)) {
1197 		b0 = 28;
1198 		b1 = 27;
1199 		b2 = 26;
1200 	} else {
1201 		b0 = 24;
1202 		b1 = 25;
1203 		b2 = 26;
1204 	}
1205 
1206 #define DSI_FLD_GET(fld, start, end)\
1207 	FLD_GET(dsi_read_reg(dsidev, DSI_##fld), start, end)
1208 
1209 	pr_debug("DSI resets: PLL (%d) CIO (%d) PHY (%x%x%x, %d, %d, %d)\n",
1210 		DSI_FLD_GET(PLL_STATUS, 0, 0),
1211 		DSI_FLD_GET(COMPLEXIO_CFG1, 29, 29),
1212 		DSI_FLD_GET(DSIPHY_CFG5, b0, b0),
1213 		DSI_FLD_GET(DSIPHY_CFG5, b1, b1),
1214 		DSI_FLD_GET(DSIPHY_CFG5, b2, b2),
1215 		DSI_FLD_GET(DSIPHY_CFG5, 29, 29),
1216 		DSI_FLD_GET(DSIPHY_CFG5, 30, 30),
1217 		DSI_FLD_GET(DSIPHY_CFG5, 31, 31));
1218 
1219 #undef DSI_FLD_GET
1220 }
1221 
1222 static inline int dsi_if_enable(struct platform_device *dsidev, bool enable)
1223 {
1224 	DSSDBG("dsi_if_enable(%d)\n", enable);
1225 
1226 	enable = enable ? 1 : 0;
1227 	REG_FLD_MOD(dsidev, DSI_CTRL, enable, 0, 0); /* IF_EN */
1228 
1229 	if (wait_for_bit_change(dsidev, DSI_CTRL, 0, enable) != enable) {
1230 			DSSERR("Failed to set dsi_if_enable to %d\n", enable);
1231 			return -EIO;
1232 	}
1233 
1234 	return 0;
1235 }
1236 
1237 static unsigned long dsi_get_pll_hsdiv_dispc_rate(struct platform_device *dsidev)
1238 {
1239 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1240 
1241 	return dsi->pll.cinfo.clkout[HSDIV_DISPC];
1242 }
1243 
1244 static unsigned long dsi_get_pll_hsdiv_dsi_rate(struct platform_device *dsidev)
1245 {
1246 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1247 
1248 	return dsi->pll.cinfo.clkout[HSDIV_DSI];
1249 }
1250 
1251 static unsigned long dsi_get_txbyteclkhs(struct platform_device *dsidev)
1252 {
1253 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1254 
1255 	return dsi->pll.cinfo.clkdco / 16;
1256 }
1257 
1258 static unsigned long dsi_fclk_rate(struct platform_device *dsidev)
1259 {
1260 	unsigned long r;
1261 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1262 
1263 	if (dss_get_dsi_clk_source(dsi->module_id) == DSS_CLK_SRC_FCK) {
1264 		/* DSI FCLK source is DSS_CLK_FCK */
1265 		r = clk_get_rate(dsi->dss_clk);
1266 	} else {
1267 		/* DSI FCLK source is dsi_pll_hsdiv_dsi_clk */
1268 		r = dsi_get_pll_hsdiv_dsi_rate(dsidev);
1269 	}
1270 
1271 	return r;
1272 }
1273 
1274 static int dsi_lp_clock_calc(unsigned long dsi_fclk,
1275 		unsigned long lp_clk_min, unsigned long lp_clk_max,
1276 		struct dsi_lp_clock_info *lp_cinfo)
1277 {
1278 	unsigned lp_clk_div;
1279 	unsigned long lp_clk;
1280 
1281 	lp_clk_div = DIV_ROUND_UP(dsi_fclk, lp_clk_max * 2);
1282 	lp_clk = dsi_fclk / 2 / lp_clk_div;
1283 
1284 	if (lp_clk < lp_clk_min || lp_clk > lp_clk_max)
1285 		return -EINVAL;
1286 
1287 	lp_cinfo->lp_clk_div = lp_clk_div;
1288 	lp_cinfo->lp_clk = lp_clk;
1289 
1290 	return 0;
1291 }
1292 
1293 static int dsi_set_lp_clk_divisor(struct platform_device *dsidev)
1294 {
1295 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1296 	unsigned long dsi_fclk;
1297 	unsigned lp_clk_div;
1298 	unsigned long lp_clk;
1299 	unsigned lpdiv_max = dss_feat_get_param_max(FEAT_PARAM_DSIPLL_LPDIV);
1300 
1301 
1302 	lp_clk_div = dsi->user_lp_cinfo.lp_clk_div;
1303 
1304 	if (lp_clk_div == 0 || lp_clk_div > lpdiv_max)
1305 		return -EINVAL;
1306 
1307 	dsi_fclk = dsi_fclk_rate(dsidev);
1308 
1309 	lp_clk = dsi_fclk / 2 / lp_clk_div;
1310 
1311 	DSSDBG("LP_CLK_DIV %u, LP_CLK %lu\n", lp_clk_div, lp_clk);
1312 	dsi->current_lp_cinfo.lp_clk = lp_clk;
1313 	dsi->current_lp_cinfo.lp_clk_div = lp_clk_div;
1314 
1315 	/* LP_CLK_DIVISOR */
1316 	REG_FLD_MOD(dsidev, DSI_CLK_CTRL, lp_clk_div, 12, 0);
1317 
1318 	/* LP_RX_SYNCHRO_ENABLE */
1319 	REG_FLD_MOD(dsidev, DSI_CLK_CTRL, dsi_fclk > 30000000 ? 1 : 0, 21, 21);
1320 
1321 	return 0;
1322 }
1323 
1324 static void dsi_enable_scp_clk(struct platform_device *dsidev)
1325 {
1326 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1327 
1328 	if (dsi->scp_clk_refcount++ == 0)
1329 		REG_FLD_MOD(dsidev, DSI_CLK_CTRL, 1, 14, 14); /* CIO_CLK_ICG */
1330 }
1331 
1332 static void dsi_disable_scp_clk(struct platform_device *dsidev)
1333 {
1334 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1335 
1336 	WARN_ON(dsi->scp_clk_refcount == 0);
1337 	if (--dsi->scp_clk_refcount == 0)
1338 		REG_FLD_MOD(dsidev, DSI_CLK_CTRL, 0, 14, 14); /* CIO_CLK_ICG */
1339 }
1340 
1341 enum dsi_pll_power_state {
1342 	DSI_PLL_POWER_OFF	= 0x0,
1343 	DSI_PLL_POWER_ON_HSCLK	= 0x1,
1344 	DSI_PLL_POWER_ON_ALL	= 0x2,
1345 	DSI_PLL_POWER_ON_DIV	= 0x3,
1346 };
1347 
1348 static int dsi_pll_power(struct platform_device *dsidev,
1349 		enum dsi_pll_power_state state)
1350 {
1351 	int t = 0;
1352 
1353 	/* DSI-PLL power command 0x3 is not working */
1354 	if (dss_has_feature(FEAT_DSI_PLL_PWR_BUG) &&
1355 			state == DSI_PLL_POWER_ON_DIV)
1356 		state = DSI_PLL_POWER_ON_ALL;
1357 
1358 	/* PLL_PWR_CMD */
1359 	REG_FLD_MOD(dsidev, DSI_CLK_CTRL, state, 31, 30);
1360 
1361 	/* PLL_PWR_STATUS */
1362 	while (FLD_GET(dsi_read_reg(dsidev, DSI_CLK_CTRL), 29, 28) != state) {
1363 		if (++t > 1000) {
1364 			DSSERR("Failed to set DSI PLL power mode to %d\n",
1365 					state);
1366 			return -ENODEV;
1367 		}
1368 		udelay(1);
1369 	}
1370 
1371 	return 0;
1372 }
1373 
1374 
1375 static void dsi_pll_calc_dsi_fck(struct dss_pll_clock_info *cinfo)
1376 {
1377 	unsigned long max_dsi_fck;
1378 
1379 	max_dsi_fck = dss_feat_get_param_max(FEAT_PARAM_DSI_FCK);
1380 
1381 	cinfo->mX[HSDIV_DSI] = DIV_ROUND_UP(cinfo->clkdco, max_dsi_fck);
1382 	cinfo->clkout[HSDIV_DSI] = cinfo->clkdco / cinfo->mX[HSDIV_DSI];
1383 }
1384 
1385 static int dsi_pll_enable(struct dss_pll *pll)
1386 {
1387 	struct dsi_data *dsi = container_of(pll, struct dsi_data, pll);
1388 	struct platform_device *dsidev = dsi->pdev;
1389 	int r = 0;
1390 
1391 	DSSDBG("PLL init\n");
1392 
1393 	r = dsi_regulator_init(dsidev);
1394 	if (r)
1395 		return r;
1396 
1397 	r = dsi_runtime_get(dsidev);
1398 	if (r)
1399 		return r;
1400 
1401 	/*
1402 	 * Note: SCP CLK is not required on OMAP3, but it is required on OMAP4.
1403 	 */
1404 	dsi_enable_scp_clk(dsidev);
1405 
1406 	if (!dsi->vdds_dsi_enabled) {
1407 		r = regulator_enable(dsi->vdds_dsi_reg);
1408 		if (r)
1409 			goto err0;
1410 		dsi->vdds_dsi_enabled = true;
1411 	}
1412 
1413 	/* XXX PLL does not come out of reset without this... */
1414 	dispc_pck_free_enable(1);
1415 
1416 	if (wait_for_bit_change(dsidev, DSI_PLL_STATUS, 0, 1) != 1) {
1417 		DSSERR("PLL not coming out of reset.\n");
1418 		r = -ENODEV;
1419 		dispc_pck_free_enable(0);
1420 		goto err1;
1421 	}
1422 
1423 	/* XXX ... but if left on, we get problems when planes do not
1424 	 * fill the whole display. No idea about this */
1425 	dispc_pck_free_enable(0);
1426 
1427 	r = dsi_pll_power(dsidev, DSI_PLL_POWER_ON_ALL);
1428 
1429 	if (r)
1430 		goto err1;
1431 
1432 	DSSDBG("PLL init done\n");
1433 
1434 	return 0;
1435 err1:
1436 	if (dsi->vdds_dsi_enabled) {
1437 		regulator_disable(dsi->vdds_dsi_reg);
1438 		dsi->vdds_dsi_enabled = false;
1439 	}
1440 err0:
1441 	dsi_disable_scp_clk(dsidev);
1442 	dsi_runtime_put(dsidev);
1443 	return r;
1444 }
1445 
1446 static void dsi_pll_uninit(struct platform_device *dsidev, bool disconnect_lanes)
1447 {
1448 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1449 
1450 	dsi_pll_power(dsidev, DSI_PLL_POWER_OFF);
1451 	if (disconnect_lanes) {
1452 		WARN_ON(!dsi->vdds_dsi_enabled);
1453 		regulator_disable(dsi->vdds_dsi_reg);
1454 		dsi->vdds_dsi_enabled = false;
1455 	}
1456 
1457 	dsi_disable_scp_clk(dsidev);
1458 	dsi_runtime_put(dsidev);
1459 
1460 	DSSDBG("PLL uninit done\n");
1461 }
1462 
1463 static void dsi_pll_disable(struct dss_pll *pll)
1464 {
1465 	struct dsi_data *dsi = container_of(pll, struct dsi_data, pll);
1466 	struct platform_device *dsidev = dsi->pdev;
1467 
1468 	dsi_pll_uninit(dsidev, true);
1469 }
1470 
1471 static void dsi_dump_dsidev_clocks(struct platform_device *dsidev,
1472 		struct seq_file *s)
1473 {
1474 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1475 	struct dss_pll_clock_info *cinfo = &dsi->pll.cinfo;
1476 	enum dss_clk_source dispc_clk_src, dsi_clk_src;
1477 	int dsi_module = dsi->module_id;
1478 	struct dss_pll *pll = &dsi->pll;
1479 
1480 	dispc_clk_src = dss_get_dispc_clk_source();
1481 	dsi_clk_src = dss_get_dsi_clk_source(dsi_module);
1482 
1483 	if (dsi_runtime_get(dsidev))
1484 		return;
1485 
1486 	seq_printf(s,	"- DSI%d PLL -\n", dsi_module + 1);
1487 
1488 	seq_printf(s,	"dsi pll clkin\t%lu\n", clk_get_rate(pll->clkin));
1489 
1490 	seq_printf(s,	"Fint\t\t%-16lun %u\n", cinfo->fint, cinfo->n);
1491 
1492 	seq_printf(s,	"CLKIN4DDR\t%-16lum %u\n",
1493 			cinfo->clkdco, cinfo->m);
1494 
1495 	seq_printf(s,	"DSI_PLL_HSDIV_DISPC (%s)\t%-16lum_dispc %u\t(%s)\n",
1496 			dss_get_clk_source_name(dsi_module == 0 ?
1497 				DSS_CLK_SRC_PLL1_1 :
1498 				DSS_CLK_SRC_PLL2_1),
1499 			cinfo->clkout[HSDIV_DISPC],
1500 			cinfo->mX[HSDIV_DISPC],
1501 			dispc_clk_src == DSS_CLK_SRC_FCK ?
1502 			"off" : "on");
1503 
1504 	seq_printf(s,	"DSI_PLL_HSDIV_DSI (%s)\t%-16lum_dsi %u\t(%s)\n",
1505 			dss_get_clk_source_name(dsi_module == 0 ?
1506 				DSS_CLK_SRC_PLL1_2 :
1507 				DSS_CLK_SRC_PLL2_2),
1508 			cinfo->clkout[HSDIV_DSI],
1509 			cinfo->mX[HSDIV_DSI],
1510 			dsi_clk_src == DSS_CLK_SRC_FCK ?
1511 			"off" : "on");
1512 
1513 	seq_printf(s,	"- DSI%d -\n", dsi_module + 1);
1514 
1515 	seq_printf(s,	"dsi fclk source = %s\n",
1516 			dss_get_clk_source_name(dsi_clk_src));
1517 
1518 	seq_printf(s,	"DSI_FCLK\t%lu\n", dsi_fclk_rate(dsidev));
1519 
1520 	seq_printf(s,	"DDR_CLK\t\t%lu\n",
1521 			cinfo->clkdco / 4);
1522 
1523 	seq_printf(s,	"TxByteClkHS\t%lu\n", dsi_get_txbyteclkhs(dsidev));
1524 
1525 	seq_printf(s,	"LP_CLK\t\t%lu\n", dsi->current_lp_cinfo.lp_clk);
1526 
1527 	dsi_runtime_put(dsidev);
1528 }
1529 
1530 void dsi_dump_clocks(struct seq_file *s)
1531 {
1532 	struct platform_device *dsidev;
1533 	int i;
1534 
1535 	for  (i = 0; i < MAX_NUM_DSI; i++) {
1536 		dsidev = dsi_get_dsidev_from_id(i);
1537 		if (dsidev)
1538 			dsi_dump_dsidev_clocks(dsidev, s);
1539 	}
1540 }
1541 
1542 #ifdef CONFIG_OMAP2_DSS_COLLECT_IRQ_STATS
1543 static void dsi_dump_dsidev_irqs(struct platform_device *dsidev,
1544 		struct seq_file *s)
1545 {
1546 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1547 	unsigned long flags;
1548 	struct dsi_irq_stats stats;
1549 
1550 	spin_lock_irqsave(&dsi->irq_stats_lock, flags);
1551 
1552 	stats = dsi->irq_stats;
1553 	memset(&dsi->irq_stats, 0, sizeof(dsi->irq_stats));
1554 	dsi->irq_stats.last_reset = jiffies;
1555 
1556 	spin_unlock_irqrestore(&dsi->irq_stats_lock, flags);
1557 
1558 	seq_printf(s, "period %u ms\n",
1559 			jiffies_to_msecs(jiffies - stats.last_reset));
1560 
1561 	seq_printf(s, "irqs %d\n", stats.irq_count);
1562 #define PIS(x) \
1563 	seq_printf(s, "%-20s %10d\n", #x, stats.dsi_irqs[ffs(DSI_IRQ_##x)-1]);
1564 
1565 	seq_printf(s, "-- DSI%d interrupts --\n", dsi->module_id + 1);
1566 	PIS(VC0);
1567 	PIS(VC1);
1568 	PIS(VC2);
1569 	PIS(VC3);
1570 	PIS(WAKEUP);
1571 	PIS(RESYNC);
1572 	PIS(PLL_LOCK);
1573 	PIS(PLL_UNLOCK);
1574 	PIS(PLL_RECALL);
1575 	PIS(COMPLEXIO_ERR);
1576 	PIS(HS_TX_TIMEOUT);
1577 	PIS(LP_RX_TIMEOUT);
1578 	PIS(TE_TRIGGER);
1579 	PIS(ACK_TRIGGER);
1580 	PIS(SYNC_LOST);
1581 	PIS(LDO_POWER_GOOD);
1582 	PIS(TA_TIMEOUT);
1583 #undef PIS
1584 
1585 #define PIS(x) \
1586 	seq_printf(s, "%-20s %10d %10d %10d %10d\n", #x, \
1587 			stats.vc_irqs[0][ffs(DSI_VC_IRQ_##x)-1], \
1588 			stats.vc_irqs[1][ffs(DSI_VC_IRQ_##x)-1], \
1589 			stats.vc_irqs[2][ffs(DSI_VC_IRQ_##x)-1], \
1590 			stats.vc_irqs[3][ffs(DSI_VC_IRQ_##x)-1]);
1591 
1592 	seq_printf(s, "-- VC interrupts --\n");
1593 	PIS(CS);
1594 	PIS(ECC_CORR);
1595 	PIS(PACKET_SENT);
1596 	PIS(FIFO_TX_OVF);
1597 	PIS(FIFO_RX_OVF);
1598 	PIS(BTA);
1599 	PIS(ECC_NO_CORR);
1600 	PIS(FIFO_TX_UDF);
1601 	PIS(PP_BUSY_CHANGE);
1602 #undef PIS
1603 
1604 #define PIS(x) \
1605 	seq_printf(s, "%-20s %10d\n", #x, \
1606 			stats.cio_irqs[ffs(DSI_CIO_IRQ_##x)-1]);
1607 
1608 	seq_printf(s, "-- CIO interrupts --\n");
1609 	PIS(ERRSYNCESC1);
1610 	PIS(ERRSYNCESC2);
1611 	PIS(ERRSYNCESC3);
1612 	PIS(ERRESC1);
1613 	PIS(ERRESC2);
1614 	PIS(ERRESC3);
1615 	PIS(ERRCONTROL1);
1616 	PIS(ERRCONTROL2);
1617 	PIS(ERRCONTROL3);
1618 	PIS(STATEULPS1);
1619 	PIS(STATEULPS2);
1620 	PIS(STATEULPS3);
1621 	PIS(ERRCONTENTIONLP0_1);
1622 	PIS(ERRCONTENTIONLP1_1);
1623 	PIS(ERRCONTENTIONLP0_2);
1624 	PIS(ERRCONTENTIONLP1_2);
1625 	PIS(ERRCONTENTIONLP0_3);
1626 	PIS(ERRCONTENTIONLP1_3);
1627 	PIS(ULPSACTIVENOT_ALL0);
1628 	PIS(ULPSACTIVENOT_ALL1);
1629 #undef PIS
1630 }
1631 
1632 static void dsi1_dump_irqs(struct seq_file *s)
1633 {
1634 	struct platform_device *dsidev = dsi_get_dsidev_from_id(0);
1635 
1636 	dsi_dump_dsidev_irqs(dsidev, s);
1637 }
1638 
1639 static void dsi2_dump_irqs(struct seq_file *s)
1640 {
1641 	struct platform_device *dsidev = dsi_get_dsidev_from_id(1);
1642 
1643 	dsi_dump_dsidev_irqs(dsidev, s);
1644 }
1645 #endif
1646 
1647 static void dsi_dump_dsidev_regs(struct platform_device *dsidev,
1648 		struct seq_file *s)
1649 {
1650 #define DUMPREG(r) seq_printf(s, "%-35s %08x\n", #r, dsi_read_reg(dsidev, r))
1651 
1652 	if (dsi_runtime_get(dsidev))
1653 		return;
1654 	dsi_enable_scp_clk(dsidev);
1655 
1656 	DUMPREG(DSI_REVISION);
1657 	DUMPREG(DSI_SYSCONFIG);
1658 	DUMPREG(DSI_SYSSTATUS);
1659 	DUMPREG(DSI_IRQSTATUS);
1660 	DUMPREG(DSI_IRQENABLE);
1661 	DUMPREG(DSI_CTRL);
1662 	DUMPREG(DSI_COMPLEXIO_CFG1);
1663 	DUMPREG(DSI_COMPLEXIO_IRQ_STATUS);
1664 	DUMPREG(DSI_COMPLEXIO_IRQ_ENABLE);
1665 	DUMPREG(DSI_CLK_CTRL);
1666 	DUMPREG(DSI_TIMING1);
1667 	DUMPREG(DSI_TIMING2);
1668 	DUMPREG(DSI_VM_TIMING1);
1669 	DUMPREG(DSI_VM_TIMING2);
1670 	DUMPREG(DSI_VM_TIMING3);
1671 	DUMPREG(DSI_CLK_TIMING);
1672 	DUMPREG(DSI_TX_FIFO_VC_SIZE);
1673 	DUMPREG(DSI_RX_FIFO_VC_SIZE);
1674 	DUMPREG(DSI_COMPLEXIO_CFG2);
1675 	DUMPREG(DSI_RX_FIFO_VC_FULLNESS);
1676 	DUMPREG(DSI_VM_TIMING4);
1677 	DUMPREG(DSI_TX_FIFO_VC_EMPTINESS);
1678 	DUMPREG(DSI_VM_TIMING5);
1679 	DUMPREG(DSI_VM_TIMING6);
1680 	DUMPREG(DSI_VM_TIMING7);
1681 	DUMPREG(DSI_STOPCLK_TIMING);
1682 
1683 	DUMPREG(DSI_VC_CTRL(0));
1684 	DUMPREG(DSI_VC_TE(0));
1685 	DUMPREG(DSI_VC_LONG_PACKET_HEADER(0));
1686 	DUMPREG(DSI_VC_LONG_PACKET_PAYLOAD(0));
1687 	DUMPREG(DSI_VC_SHORT_PACKET_HEADER(0));
1688 	DUMPREG(DSI_VC_IRQSTATUS(0));
1689 	DUMPREG(DSI_VC_IRQENABLE(0));
1690 
1691 	DUMPREG(DSI_VC_CTRL(1));
1692 	DUMPREG(DSI_VC_TE(1));
1693 	DUMPREG(DSI_VC_LONG_PACKET_HEADER(1));
1694 	DUMPREG(DSI_VC_LONG_PACKET_PAYLOAD(1));
1695 	DUMPREG(DSI_VC_SHORT_PACKET_HEADER(1));
1696 	DUMPREG(DSI_VC_IRQSTATUS(1));
1697 	DUMPREG(DSI_VC_IRQENABLE(1));
1698 
1699 	DUMPREG(DSI_VC_CTRL(2));
1700 	DUMPREG(DSI_VC_TE(2));
1701 	DUMPREG(DSI_VC_LONG_PACKET_HEADER(2));
1702 	DUMPREG(DSI_VC_LONG_PACKET_PAYLOAD(2));
1703 	DUMPREG(DSI_VC_SHORT_PACKET_HEADER(2));
1704 	DUMPREG(DSI_VC_IRQSTATUS(2));
1705 	DUMPREG(DSI_VC_IRQENABLE(2));
1706 
1707 	DUMPREG(DSI_VC_CTRL(3));
1708 	DUMPREG(DSI_VC_TE(3));
1709 	DUMPREG(DSI_VC_LONG_PACKET_HEADER(3));
1710 	DUMPREG(DSI_VC_LONG_PACKET_PAYLOAD(3));
1711 	DUMPREG(DSI_VC_SHORT_PACKET_HEADER(3));
1712 	DUMPREG(DSI_VC_IRQSTATUS(3));
1713 	DUMPREG(DSI_VC_IRQENABLE(3));
1714 
1715 	DUMPREG(DSI_DSIPHY_CFG0);
1716 	DUMPREG(DSI_DSIPHY_CFG1);
1717 	DUMPREG(DSI_DSIPHY_CFG2);
1718 	DUMPREG(DSI_DSIPHY_CFG5);
1719 
1720 	DUMPREG(DSI_PLL_CONTROL);
1721 	DUMPREG(DSI_PLL_STATUS);
1722 	DUMPREG(DSI_PLL_GO);
1723 	DUMPREG(DSI_PLL_CONFIGURATION1);
1724 	DUMPREG(DSI_PLL_CONFIGURATION2);
1725 
1726 	dsi_disable_scp_clk(dsidev);
1727 	dsi_runtime_put(dsidev);
1728 #undef DUMPREG
1729 }
1730 
1731 static void dsi1_dump_regs(struct seq_file *s)
1732 {
1733 	struct platform_device *dsidev = dsi_get_dsidev_from_id(0);
1734 
1735 	dsi_dump_dsidev_regs(dsidev, s);
1736 }
1737 
1738 static void dsi2_dump_regs(struct seq_file *s)
1739 {
1740 	struct platform_device *dsidev = dsi_get_dsidev_from_id(1);
1741 
1742 	dsi_dump_dsidev_regs(dsidev, s);
1743 }
1744 
1745 enum dsi_cio_power_state {
1746 	DSI_COMPLEXIO_POWER_OFF		= 0x0,
1747 	DSI_COMPLEXIO_POWER_ON		= 0x1,
1748 	DSI_COMPLEXIO_POWER_ULPS	= 0x2,
1749 };
1750 
1751 static int dsi_cio_power(struct platform_device *dsidev,
1752 		enum dsi_cio_power_state state)
1753 {
1754 	int t = 0;
1755 
1756 	/* PWR_CMD */
1757 	REG_FLD_MOD(dsidev, DSI_COMPLEXIO_CFG1, state, 28, 27);
1758 
1759 	/* PWR_STATUS */
1760 	while (FLD_GET(dsi_read_reg(dsidev, DSI_COMPLEXIO_CFG1),
1761 			26, 25) != state) {
1762 		if (++t > 1000) {
1763 			DSSERR("failed to set complexio power state to "
1764 					"%d\n", state);
1765 			return -ENODEV;
1766 		}
1767 		udelay(1);
1768 	}
1769 
1770 	return 0;
1771 }
1772 
1773 static unsigned dsi_get_line_buf_size(struct platform_device *dsidev)
1774 {
1775 	int val;
1776 
1777 	/* line buffer on OMAP3 is 1024 x 24bits */
1778 	/* XXX: for some reason using full buffer size causes
1779 	 * considerable TX slowdown with update sizes that fill the
1780 	 * whole buffer */
1781 	if (!dss_has_feature(FEAT_DSI_GNQ))
1782 		return 1023 * 3;
1783 
1784 	val = REG_GET(dsidev, DSI_GNQ, 14, 12); /* VP1_LINE_BUFFER_SIZE */
1785 
1786 	switch (val) {
1787 	case 1:
1788 		return 512 * 3;		/* 512x24 bits */
1789 	case 2:
1790 		return 682 * 3;		/* 682x24 bits */
1791 	case 3:
1792 		return 853 * 3;		/* 853x24 bits */
1793 	case 4:
1794 		return 1024 * 3;	/* 1024x24 bits */
1795 	case 5:
1796 		return 1194 * 3;	/* 1194x24 bits */
1797 	case 6:
1798 		return 1365 * 3;	/* 1365x24 bits */
1799 	case 7:
1800 		return 1920 * 3;	/* 1920x24 bits */
1801 	default:
1802 		BUG();
1803 		return 0;
1804 	}
1805 }
1806 
1807 static int dsi_set_lane_config(struct platform_device *dsidev)
1808 {
1809 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1810 	static const u8 offsets[] = { 0, 4, 8, 12, 16 };
1811 	static const enum dsi_lane_function functions[] = {
1812 		DSI_LANE_CLK,
1813 		DSI_LANE_DATA1,
1814 		DSI_LANE_DATA2,
1815 		DSI_LANE_DATA3,
1816 		DSI_LANE_DATA4,
1817 	};
1818 	u32 r;
1819 	int i;
1820 
1821 	r = dsi_read_reg(dsidev, DSI_COMPLEXIO_CFG1);
1822 
1823 	for (i = 0; i < dsi->num_lanes_used; ++i) {
1824 		unsigned offset = offsets[i];
1825 		unsigned polarity, lane_number;
1826 		unsigned t;
1827 
1828 		for (t = 0; t < dsi->num_lanes_supported; ++t)
1829 			if (dsi->lanes[t].function == functions[i])
1830 				break;
1831 
1832 		if (t == dsi->num_lanes_supported)
1833 			return -EINVAL;
1834 
1835 		lane_number = t;
1836 		polarity = dsi->lanes[t].polarity;
1837 
1838 		r = FLD_MOD(r, lane_number + 1, offset + 2, offset);
1839 		r = FLD_MOD(r, polarity, offset + 3, offset + 3);
1840 	}
1841 
1842 	/* clear the unused lanes */
1843 	for (; i < dsi->num_lanes_supported; ++i) {
1844 		unsigned offset = offsets[i];
1845 
1846 		r = FLD_MOD(r, 0, offset + 2, offset);
1847 		r = FLD_MOD(r, 0, offset + 3, offset + 3);
1848 	}
1849 
1850 	dsi_write_reg(dsidev, DSI_COMPLEXIO_CFG1, r);
1851 
1852 	return 0;
1853 }
1854 
1855 static inline unsigned ns2ddr(struct platform_device *dsidev, unsigned ns)
1856 {
1857 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1858 
1859 	/* convert time in ns to ddr ticks, rounding up */
1860 	unsigned long ddr_clk = dsi->pll.cinfo.clkdco / 4;
1861 	return (ns * (ddr_clk / 1000 / 1000) + 999) / 1000;
1862 }
1863 
1864 static inline unsigned ddr2ns(struct platform_device *dsidev, unsigned ddr)
1865 {
1866 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1867 
1868 	unsigned long ddr_clk = dsi->pll.cinfo.clkdco / 4;
1869 	return ddr * 1000 * 1000 / (ddr_clk / 1000);
1870 }
1871 
1872 static void dsi_cio_timings(struct platform_device *dsidev)
1873 {
1874 	u32 r;
1875 	u32 ths_prepare, ths_prepare_ths_zero, ths_trail, ths_exit;
1876 	u32 tlpx_half, tclk_trail, tclk_zero;
1877 	u32 tclk_prepare;
1878 
1879 	/* calculate timings */
1880 
1881 	/* 1 * DDR_CLK = 2 * UI */
1882 
1883 	/* min 40ns + 4*UI	max 85ns + 6*UI */
1884 	ths_prepare = ns2ddr(dsidev, 70) + 2;
1885 
1886 	/* min 145ns + 10*UI */
1887 	ths_prepare_ths_zero = ns2ddr(dsidev, 175) + 2;
1888 
1889 	/* min max(8*UI, 60ns+4*UI) */
1890 	ths_trail = ns2ddr(dsidev, 60) + 5;
1891 
1892 	/* min 100ns */
1893 	ths_exit = ns2ddr(dsidev, 145);
1894 
1895 	/* tlpx min 50n */
1896 	tlpx_half = ns2ddr(dsidev, 25);
1897 
1898 	/* min 60ns */
1899 	tclk_trail = ns2ddr(dsidev, 60) + 2;
1900 
1901 	/* min 38ns, max 95ns */
1902 	tclk_prepare = ns2ddr(dsidev, 65);
1903 
1904 	/* min tclk-prepare + tclk-zero = 300ns */
1905 	tclk_zero = ns2ddr(dsidev, 260);
1906 
1907 	DSSDBG("ths_prepare %u (%uns), ths_prepare_ths_zero %u (%uns)\n",
1908 		ths_prepare, ddr2ns(dsidev, ths_prepare),
1909 		ths_prepare_ths_zero, ddr2ns(dsidev, ths_prepare_ths_zero));
1910 	DSSDBG("ths_trail %u (%uns), ths_exit %u (%uns)\n",
1911 			ths_trail, ddr2ns(dsidev, ths_trail),
1912 			ths_exit, ddr2ns(dsidev, ths_exit));
1913 
1914 	DSSDBG("tlpx_half %u (%uns), tclk_trail %u (%uns), "
1915 			"tclk_zero %u (%uns)\n",
1916 			tlpx_half, ddr2ns(dsidev, tlpx_half),
1917 			tclk_trail, ddr2ns(dsidev, tclk_trail),
1918 			tclk_zero, ddr2ns(dsidev, tclk_zero));
1919 	DSSDBG("tclk_prepare %u (%uns)\n",
1920 			tclk_prepare, ddr2ns(dsidev, tclk_prepare));
1921 
1922 	/* program timings */
1923 
1924 	r = dsi_read_reg(dsidev, DSI_DSIPHY_CFG0);
1925 	r = FLD_MOD(r, ths_prepare, 31, 24);
1926 	r = FLD_MOD(r, ths_prepare_ths_zero, 23, 16);
1927 	r = FLD_MOD(r, ths_trail, 15, 8);
1928 	r = FLD_MOD(r, ths_exit, 7, 0);
1929 	dsi_write_reg(dsidev, DSI_DSIPHY_CFG0, r);
1930 
1931 	r = dsi_read_reg(dsidev, DSI_DSIPHY_CFG1);
1932 	r = FLD_MOD(r, tlpx_half, 20, 16);
1933 	r = FLD_MOD(r, tclk_trail, 15, 8);
1934 	r = FLD_MOD(r, tclk_zero, 7, 0);
1935 
1936 	if (dss_has_feature(FEAT_DSI_PHY_DCC)) {
1937 		r = FLD_MOD(r, 0, 21, 21);	/* DCCEN = disable */
1938 		r = FLD_MOD(r, 1, 22, 22);	/* CLKINP_DIVBY2EN = enable */
1939 		r = FLD_MOD(r, 1, 23, 23);	/* CLKINP_SEL = enable */
1940 	}
1941 
1942 	dsi_write_reg(dsidev, DSI_DSIPHY_CFG1, r);
1943 
1944 	r = dsi_read_reg(dsidev, DSI_DSIPHY_CFG2);
1945 	r = FLD_MOD(r, tclk_prepare, 7, 0);
1946 	dsi_write_reg(dsidev, DSI_DSIPHY_CFG2, r);
1947 }
1948 
1949 /* lane masks have lane 0 at lsb. mask_p for positive lines, n for negative */
1950 static void dsi_cio_enable_lane_override(struct platform_device *dsidev,
1951 		unsigned mask_p, unsigned mask_n)
1952 {
1953 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1954 	int i;
1955 	u32 l;
1956 	u8 lptxscp_start = dsi->num_lanes_supported == 3 ? 22 : 26;
1957 
1958 	l = 0;
1959 
1960 	for (i = 0; i < dsi->num_lanes_supported; ++i) {
1961 		unsigned p = dsi->lanes[i].polarity;
1962 
1963 		if (mask_p & (1 << i))
1964 			l |= 1 << (i * 2 + (p ? 0 : 1));
1965 
1966 		if (mask_n & (1 << i))
1967 			l |= 1 << (i * 2 + (p ? 1 : 0));
1968 	}
1969 
1970 	/*
1971 	 * Bits in REGLPTXSCPDAT4TO0DXDY:
1972 	 * 17: DY0 18: DX0
1973 	 * 19: DY1 20: DX1
1974 	 * 21: DY2 22: DX2
1975 	 * 23: DY3 24: DX3
1976 	 * 25: DY4 26: DX4
1977 	 */
1978 
1979 	/* Set the lane override configuration */
1980 
1981 	/* REGLPTXSCPDAT4TO0DXDY */
1982 	REG_FLD_MOD(dsidev, DSI_DSIPHY_CFG10, l, lptxscp_start, 17);
1983 
1984 	/* Enable lane override */
1985 
1986 	/* ENLPTXSCPDAT */
1987 	REG_FLD_MOD(dsidev, DSI_DSIPHY_CFG10, 1, 27, 27);
1988 }
1989 
1990 static void dsi_cio_disable_lane_override(struct platform_device *dsidev)
1991 {
1992 	/* Disable lane override */
1993 	REG_FLD_MOD(dsidev, DSI_DSIPHY_CFG10, 0, 27, 27); /* ENLPTXSCPDAT */
1994 	/* Reset the lane override configuration */
1995 	/* REGLPTXSCPDAT4TO0DXDY */
1996 	REG_FLD_MOD(dsidev, DSI_DSIPHY_CFG10, 0, 22, 17);
1997 }
1998 
1999 static int dsi_cio_wait_tx_clk_esc_reset(struct platform_device *dsidev)
2000 {
2001 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2002 	int t, i;
2003 	bool in_use[DSI_MAX_NR_LANES];
2004 	static const u8 offsets_old[] = { 28, 27, 26 };
2005 	static const u8 offsets_new[] = { 24, 25, 26, 27, 28 };
2006 	const u8 *offsets;
2007 
2008 	if (dss_has_feature(FEAT_DSI_REVERSE_TXCLKESC))
2009 		offsets = offsets_old;
2010 	else
2011 		offsets = offsets_new;
2012 
2013 	for (i = 0; i < dsi->num_lanes_supported; ++i)
2014 		in_use[i] = dsi->lanes[i].function != DSI_LANE_UNUSED;
2015 
2016 	t = 100000;
2017 	while (true) {
2018 		u32 l;
2019 		int ok;
2020 
2021 		l = dsi_read_reg(dsidev, DSI_DSIPHY_CFG5);
2022 
2023 		ok = 0;
2024 		for (i = 0; i < dsi->num_lanes_supported; ++i) {
2025 			if (!in_use[i] || (l & (1 << offsets[i])))
2026 				ok++;
2027 		}
2028 
2029 		if (ok == dsi->num_lanes_supported)
2030 			break;
2031 
2032 		if (--t == 0) {
2033 			for (i = 0; i < dsi->num_lanes_supported; ++i) {
2034 				if (!in_use[i] || (l & (1 << offsets[i])))
2035 					continue;
2036 
2037 				DSSERR("CIO TXCLKESC%d domain not coming " \
2038 						"out of reset\n", i);
2039 			}
2040 			return -EIO;
2041 		}
2042 	}
2043 
2044 	return 0;
2045 }
2046 
2047 /* return bitmask of enabled lanes, lane0 being the lsb */
2048 static unsigned dsi_get_lane_mask(struct platform_device *dsidev)
2049 {
2050 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2051 	unsigned mask = 0;
2052 	int i;
2053 
2054 	for (i = 0; i < dsi->num_lanes_supported; ++i) {
2055 		if (dsi->lanes[i].function != DSI_LANE_UNUSED)
2056 			mask |= 1 << i;
2057 	}
2058 
2059 	return mask;
2060 }
2061 
2062 static int dsi_cio_init(struct platform_device *dsidev)
2063 {
2064 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2065 	int r;
2066 	u32 l;
2067 
2068 	DSSDBG("DSI CIO init starts");
2069 
2070 	r = dss_dsi_enable_pads(dsi->module_id, dsi_get_lane_mask(dsidev));
2071 	if (r)
2072 		return r;
2073 
2074 	dsi_enable_scp_clk(dsidev);
2075 
2076 	/* A dummy read using the SCP interface to any DSIPHY register is
2077 	 * required after DSIPHY reset to complete the reset of the DSI complex
2078 	 * I/O. */
2079 	dsi_read_reg(dsidev, DSI_DSIPHY_CFG5);
2080 
2081 	if (wait_for_bit_change(dsidev, DSI_DSIPHY_CFG5, 30, 1) != 1) {
2082 		DSSERR("CIO SCP Clock domain not coming out of reset.\n");
2083 		r = -EIO;
2084 		goto err_scp_clk_dom;
2085 	}
2086 
2087 	r = dsi_set_lane_config(dsidev);
2088 	if (r)
2089 		goto err_scp_clk_dom;
2090 
2091 	/* set TX STOP MODE timer to maximum for this operation */
2092 	l = dsi_read_reg(dsidev, DSI_TIMING1);
2093 	l = FLD_MOD(l, 1, 15, 15);	/* FORCE_TX_STOP_MODE_IO */
2094 	l = FLD_MOD(l, 1, 14, 14);	/* STOP_STATE_X16_IO */
2095 	l = FLD_MOD(l, 1, 13, 13);	/* STOP_STATE_X4_IO */
2096 	l = FLD_MOD(l, 0x1fff, 12, 0);	/* STOP_STATE_COUNTER_IO */
2097 	dsi_write_reg(dsidev, DSI_TIMING1, l);
2098 
2099 	if (dsi->ulps_enabled) {
2100 		unsigned mask_p;
2101 		int i;
2102 
2103 		DSSDBG("manual ulps exit\n");
2104 
2105 		/* ULPS is exited by Mark-1 state for 1ms, followed by
2106 		 * stop state. DSS HW cannot do this via the normal
2107 		 * ULPS exit sequence, as after reset the DSS HW thinks
2108 		 * that we are not in ULPS mode, and refuses to send the
2109 		 * sequence. So we need to send the ULPS exit sequence
2110 		 * manually by setting positive lines high and negative lines
2111 		 * low for 1ms.
2112 		 */
2113 
2114 		mask_p = 0;
2115 
2116 		for (i = 0; i < dsi->num_lanes_supported; ++i) {
2117 			if (dsi->lanes[i].function == DSI_LANE_UNUSED)
2118 				continue;
2119 			mask_p |= 1 << i;
2120 		}
2121 
2122 		dsi_cio_enable_lane_override(dsidev, mask_p, 0);
2123 	}
2124 
2125 	r = dsi_cio_power(dsidev, DSI_COMPLEXIO_POWER_ON);
2126 	if (r)
2127 		goto err_cio_pwr;
2128 
2129 	if (wait_for_bit_change(dsidev, DSI_COMPLEXIO_CFG1, 29, 1) != 1) {
2130 		DSSERR("CIO PWR clock domain not coming out of reset.\n");
2131 		r = -ENODEV;
2132 		goto err_cio_pwr_dom;
2133 	}
2134 
2135 	dsi_if_enable(dsidev, true);
2136 	dsi_if_enable(dsidev, false);
2137 	REG_FLD_MOD(dsidev, DSI_CLK_CTRL, 1, 20, 20); /* LP_CLK_ENABLE */
2138 
2139 	r = dsi_cio_wait_tx_clk_esc_reset(dsidev);
2140 	if (r)
2141 		goto err_tx_clk_esc_rst;
2142 
2143 	if (dsi->ulps_enabled) {
2144 		/* Keep Mark-1 state for 1ms (as per DSI spec) */
2145 		ktime_t wait = ns_to_ktime(1000 * 1000);
2146 		set_current_state(TASK_UNINTERRUPTIBLE);
2147 		schedule_hrtimeout(&wait, HRTIMER_MODE_REL);
2148 
2149 		/* Disable the override. The lanes should be set to Mark-11
2150 		 * state by the HW */
2151 		dsi_cio_disable_lane_override(dsidev);
2152 	}
2153 
2154 	/* FORCE_TX_STOP_MODE_IO */
2155 	REG_FLD_MOD(dsidev, DSI_TIMING1, 0, 15, 15);
2156 
2157 	dsi_cio_timings(dsidev);
2158 
2159 	if (dsi->mode == OMAP_DSS_DSI_VIDEO_MODE) {
2160 		/* DDR_CLK_ALWAYS_ON */
2161 		REG_FLD_MOD(dsidev, DSI_CLK_CTRL,
2162 			dsi->vm_timings.ddr_clk_always_on, 13, 13);
2163 	}
2164 
2165 	dsi->ulps_enabled = false;
2166 
2167 	DSSDBG("CIO init done\n");
2168 
2169 	return 0;
2170 
2171 err_tx_clk_esc_rst:
2172 	REG_FLD_MOD(dsidev, DSI_CLK_CTRL, 0, 20, 20); /* LP_CLK_ENABLE */
2173 err_cio_pwr_dom:
2174 	dsi_cio_power(dsidev, DSI_COMPLEXIO_POWER_OFF);
2175 err_cio_pwr:
2176 	if (dsi->ulps_enabled)
2177 		dsi_cio_disable_lane_override(dsidev);
2178 err_scp_clk_dom:
2179 	dsi_disable_scp_clk(dsidev);
2180 	dss_dsi_disable_pads(dsi->module_id, dsi_get_lane_mask(dsidev));
2181 	return r;
2182 }
2183 
2184 static void dsi_cio_uninit(struct platform_device *dsidev)
2185 {
2186 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2187 
2188 	/* DDR_CLK_ALWAYS_ON */
2189 	REG_FLD_MOD(dsidev, DSI_CLK_CTRL, 0, 13, 13);
2190 
2191 	dsi_cio_power(dsidev, DSI_COMPLEXIO_POWER_OFF);
2192 	dsi_disable_scp_clk(dsidev);
2193 	dss_dsi_disable_pads(dsi->module_id, dsi_get_lane_mask(dsidev));
2194 }
2195 
2196 static void dsi_config_tx_fifo(struct platform_device *dsidev,
2197 		enum fifo_size size1, enum fifo_size size2,
2198 		enum fifo_size size3, enum fifo_size size4)
2199 {
2200 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2201 	u32 r = 0;
2202 	int add = 0;
2203 	int i;
2204 
2205 	dsi->vc[0].tx_fifo_size = size1;
2206 	dsi->vc[1].tx_fifo_size = size2;
2207 	dsi->vc[2].tx_fifo_size = size3;
2208 	dsi->vc[3].tx_fifo_size = size4;
2209 
2210 	for (i = 0; i < 4; i++) {
2211 		u8 v;
2212 		int size = dsi->vc[i].tx_fifo_size;
2213 
2214 		if (add + size > 4) {
2215 			DSSERR("Illegal FIFO configuration\n");
2216 			BUG();
2217 			return;
2218 		}
2219 
2220 		v = FLD_VAL(add, 2, 0) | FLD_VAL(size, 7, 4);
2221 		r |= v << (8 * i);
2222 		/*DSSDBG("TX FIFO vc %d: size %d, add %d\n", i, size, add); */
2223 		add += size;
2224 	}
2225 
2226 	dsi_write_reg(dsidev, DSI_TX_FIFO_VC_SIZE, r);
2227 }
2228 
2229 static void dsi_config_rx_fifo(struct platform_device *dsidev,
2230 		enum fifo_size size1, enum fifo_size size2,
2231 		enum fifo_size size3, enum fifo_size size4)
2232 {
2233 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2234 	u32 r = 0;
2235 	int add = 0;
2236 	int i;
2237 
2238 	dsi->vc[0].rx_fifo_size = size1;
2239 	dsi->vc[1].rx_fifo_size = size2;
2240 	dsi->vc[2].rx_fifo_size = size3;
2241 	dsi->vc[3].rx_fifo_size = size4;
2242 
2243 	for (i = 0; i < 4; i++) {
2244 		u8 v;
2245 		int size = dsi->vc[i].rx_fifo_size;
2246 
2247 		if (add + size > 4) {
2248 			DSSERR("Illegal FIFO configuration\n");
2249 			BUG();
2250 			return;
2251 		}
2252 
2253 		v = FLD_VAL(add, 2, 0) | FLD_VAL(size, 7, 4);
2254 		r |= v << (8 * i);
2255 		/*DSSDBG("RX FIFO vc %d: size %d, add %d\n", i, size, add); */
2256 		add += size;
2257 	}
2258 
2259 	dsi_write_reg(dsidev, DSI_RX_FIFO_VC_SIZE, r);
2260 }
2261 
2262 static int dsi_force_tx_stop_mode_io(struct platform_device *dsidev)
2263 {
2264 	u32 r;
2265 
2266 	r = dsi_read_reg(dsidev, DSI_TIMING1);
2267 	r = FLD_MOD(r, 1, 15, 15);	/* FORCE_TX_STOP_MODE_IO */
2268 	dsi_write_reg(dsidev, DSI_TIMING1, r);
2269 
2270 	if (wait_for_bit_change(dsidev, DSI_TIMING1, 15, 0) != 0) {
2271 		DSSERR("TX_STOP bit not going down\n");
2272 		return -EIO;
2273 	}
2274 
2275 	return 0;
2276 }
2277 
2278 static bool dsi_vc_is_enabled(struct platform_device *dsidev, int channel)
2279 {
2280 	return REG_GET(dsidev, DSI_VC_CTRL(channel), 0, 0);
2281 }
2282 
2283 static void dsi_packet_sent_handler_vp(void *data, u32 mask)
2284 {
2285 	struct dsi_packet_sent_handler_data *vp_data =
2286 		(struct dsi_packet_sent_handler_data *) data;
2287 	struct dsi_data *dsi = dsi_get_dsidrv_data(vp_data->dsidev);
2288 	const int channel = dsi->update_channel;
2289 	u8 bit = dsi->te_enabled ? 30 : 31;
2290 
2291 	if (REG_GET(vp_data->dsidev, DSI_VC_TE(channel), bit, bit) == 0)
2292 		complete(vp_data->completion);
2293 }
2294 
2295 static int dsi_sync_vc_vp(struct platform_device *dsidev, int channel)
2296 {
2297 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2298 	DECLARE_COMPLETION_ONSTACK(completion);
2299 	struct dsi_packet_sent_handler_data vp_data = {
2300 		.dsidev = dsidev,
2301 		.completion = &completion
2302 	};
2303 	int r = 0;
2304 	u8 bit;
2305 
2306 	bit = dsi->te_enabled ? 30 : 31;
2307 
2308 	r = dsi_register_isr_vc(dsidev, channel, dsi_packet_sent_handler_vp,
2309 		&vp_data, DSI_VC_IRQ_PACKET_SENT);
2310 	if (r)
2311 		goto err0;
2312 
2313 	/* Wait for completion only if TE_EN/TE_START is still set */
2314 	if (REG_GET(dsidev, DSI_VC_TE(channel), bit, bit)) {
2315 		if (wait_for_completion_timeout(&completion,
2316 				msecs_to_jiffies(10)) == 0) {
2317 			DSSERR("Failed to complete previous frame transfer\n");
2318 			r = -EIO;
2319 			goto err1;
2320 		}
2321 	}
2322 
2323 	dsi_unregister_isr_vc(dsidev, channel, dsi_packet_sent_handler_vp,
2324 		&vp_data, DSI_VC_IRQ_PACKET_SENT);
2325 
2326 	return 0;
2327 err1:
2328 	dsi_unregister_isr_vc(dsidev, channel, dsi_packet_sent_handler_vp,
2329 		&vp_data, DSI_VC_IRQ_PACKET_SENT);
2330 err0:
2331 	return r;
2332 }
2333 
2334 static void dsi_packet_sent_handler_l4(void *data, u32 mask)
2335 {
2336 	struct dsi_packet_sent_handler_data *l4_data =
2337 		(struct dsi_packet_sent_handler_data *) data;
2338 	struct dsi_data *dsi = dsi_get_dsidrv_data(l4_data->dsidev);
2339 	const int channel = dsi->update_channel;
2340 
2341 	if (REG_GET(l4_data->dsidev, DSI_VC_CTRL(channel), 5, 5) == 0)
2342 		complete(l4_data->completion);
2343 }
2344 
2345 static int dsi_sync_vc_l4(struct platform_device *dsidev, int channel)
2346 {
2347 	DECLARE_COMPLETION_ONSTACK(completion);
2348 	struct dsi_packet_sent_handler_data l4_data = {
2349 		.dsidev = dsidev,
2350 		.completion = &completion
2351 	};
2352 	int r = 0;
2353 
2354 	r = dsi_register_isr_vc(dsidev, channel, dsi_packet_sent_handler_l4,
2355 		&l4_data, DSI_VC_IRQ_PACKET_SENT);
2356 	if (r)
2357 		goto err0;
2358 
2359 	/* Wait for completion only if TX_FIFO_NOT_EMPTY is still set */
2360 	if (REG_GET(dsidev, DSI_VC_CTRL(channel), 5, 5)) {
2361 		if (wait_for_completion_timeout(&completion,
2362 				msecs_to_jiffies(10)) == 0) {
2363 			DSSERR("Failed to complete previous l4 transfer\n");
2364 			r = -EIO;
2365 			goto err1;
2366 		}
2367 	}
2368 
2369 	dsi_unregister_isr_vc(dsidev, channel, dsi_packet_sent_handler_l4,
2370 		&l4_data, DSI_VC_IRQ_PACKET_SENT);
2371 
2372 	return 0;
2373 err1:
2374 	dsi_unregister_isr_vc(dsidev, channel, dsi_packet_sent_handler_l4,
2375 		&l4_data, DSI_VC_IRQ_PACKET_SENT);
2376 err0:
2377 	return r;
2378 }
2379 
2380 static int dsi_sync_vc(struct platform_device *dsidev, int channel)
2381 {
2382 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2383 
2384 	WARN_ON(!dsi_bus_is_locked(dsidev));
2385 
2386 	WARN_ON(in_interrupt());
2387 
2388 	if (!dsi_vc_is_enabled(dsidev, channel))
2389 		return 0;
2390 
2391 	switch (dsi->vc[channel].source) {
2392 	case DSI_VC_SOURCE_VP:
2393 		return dsi_sync_vc_vp(dsidev, channel);
2394 	case DSI_VC_SOURCE_L4:
2395 		return dsi_sync_vc_l4(dsidev, channel);
2396 	default:
2397 		BUG();
2398 		return -EINVAL;
2399 	}
2400 }
2401 
2402 static int dsi_vc_enable(struct platform_device *dsidev, int channel,
2403 		bool enable)
2404 {
2405 	DSSDBG("dsi_vc_enable channel %d, enable %d\n",
2406 			channel, enable);
2407 
2408 	enable = enable ? 1 : 0;
2409 
2410 	REG_FLD_MOD(dsidev, DSI_VC_CTRL(channel), enable, 0, 0);
2411 
2412 	if (wait_for_bit_change(dsidev, DSI_VC_CTRL(channel),
2413 		0, enable) != enable) {
2414 			DSSERR("Failed to set dsi_vc_enable to %d\n", enable);
2415 			return -EIO;
2416 	}
2417 
2418 	return 0;
2419 }
2420 
2421 static void dsi_vc_initial_config(struct platform_device *dsidev, int channel)
2422 {
2423 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2424 	u32 r;
2425 
2426 	DSSDBG("Initial config of virtual channel %d", channel);
2427 
2428 	r = dsi_read_reg(dsidev, DSI_VC_CTRL(channel));
2429 
2430 	if (FLD_GET(r, 15, 15)) /* VC_BUSY */
2431 		DSSERR("VC(%d) busy when trying to configure it!\n",
2432 				channel);
2433 
2434 	r = FLD_MOD(r, 0, 1, 1); /* SOURCE, 0 = L4 */
2435 	r = FLD_MOD(r, 0, 2, 2); /* BTA_SHORT_EN  */
2436 	r = FLD_MOD(r, 0, 3, 3); /* BTA_LONG_EN */
2437 	r = FLD_MOD(r, 0, 4, 4); /* MODE, 0 = command */
2438 	r = FLD_MOD(r, 1, 7, 7); /* CS_TX_EN */
2439 	r = FLD_MOD(r, 1, 8, 8); /* ECC_TX_EN */
2440 	r = FLD_MOD(r, 0, 9, 9); /* MODE_SPEED, high speed on/off */
2441 	if (dss_has_feature(FEAT_DSI_VC_OCP_WIDTH))
2442 		r = FLD_MOD(r, 3, 11, 10);	/* OCP_WIDTH = 32 bit */
2443 
2444 	r = FLD_MOD(r, 4, 29, 27); /* DMA_RX_REQ_NB = no dma */
2445 	r = FLD_MOD(r, 4, 23, 21); /* DMA_TX_REQ_NB = no dma */
2446 
2447 	dsi_write_reg(dsidev, DSI_VC_CTRL(channel), r);
2448 
2449 	dsi->vc[channel].source = DSI_VC_SOURCE_L4;
2450 }
2451 
2452 static int dsi_vc_config_source(struct platform_device *dsidev, int channel,
2453 		enum dsi_vc_source source)
2454 {
2455 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2456 
2457 	if (dsi->vc[channel].source == source)
2458 		return 0;
2459 
2460 	DSSDBG("Source config of virtual channel %d", channel);
2461 
2462 	dsi_sync_vc(dsidev, channel);
2463 
2464 	dsi_vc_enable(dsidev, channel, 0);
2465 
2466 	/* VC_BUSY */
2467 	if (wait_for_bit_change(dsidev, DSI_VC_CTRL(channel), 15, 0) != 0) {
2468 		DSSERR("vc(%d) busy when trying to config for VP\n", channel);
2469 		return -EIO;
2470 	}
2471 
2472 	/* SOURCE, 0 = L4, 1 = video port */
2473 	REG_FLD_MOD(dsidev, DSI_VC_CTRL(channel), source, 1, 1);
2474 
2475 	/* DCS_CMD_ENABLE */
2476 	if (dss_has_feature(FEAT_DSI_DCS_CMD_CONFIG_VC)) {
2477 		bool enable = source == DSI_VC_SOURCE_VP;
2478 		REG_FLD_MOD(dsidev, DSI_VC_CTRL(channel), enable, 30, 30);
2479 	}
2480 
2481 	dsi_vc_enable(dsidev, channel, 1);
2482 
2483 	dsi->vc[channel].source = source;
2484 
2485 	return 0;
2486 }
2487 
2488 static void dsi_vc_enable_hs(struct omap_dss_device *dssdev, int channel,
2489 		bool enable)
2490 {
2491 	struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
2492 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2493 
2494 	DSSDBG("dsi_vc_enable_hs(%d, %d)\n", channel, enable);
2495 
2496 	WARN_ON(!dsi_bus_is_locked(dsidev));
2497 
2498 	dsi_vc_enable(dsidev, channel, 0);
2499 	dsi_if_enable(dsidev, 0);
2500 
2501 	REG_FLD_MOD(dsidev, DSI_VC_CTRL(channel), enable, 9, 9);
2502 
2503 	dsi_vc_enable(dsidev, channel, 1);
2504 	dsi_if_enable(dsidev, 1);
2505 
2506 	dsi_force_tx_stop_mode_io(dsidev);
2507 
2508 	/* start the DDR clock by sending a NULL packet */
2509 	if (dsi->vm_timings.ddr_clk_always_on && enable)
2510 		dsi_vc_send_null(dssdev, channel);
2511 }
2512 
2513 static void dsi_vc_flush_long_data(struct platform_device *dsidev, int channel)
2514 {
2515 	while (REG_GET(dsidev, DSI_VC_CTRL(channel), 20, 20)) {
2516 		u32 val;
2517 		val = dsi_read_reg(dsidev, DSI_VC_SHORT_PACKET_HEADER(channel));
2518 		DSSDBG("\t\tb1 %#02x b2 %#02x b3 %#02x b4 %#02x\n",
2519 				(val >> 0) & 0xff,
2520 				(val >> 8) & 0xff,
2521 				(val >> 16) & 0xff,
2522 				(val >> 24) & 0xff);
2523 	}
2524 }
2525 
2526 static void dsi_show_rx_ack_with_err(u16 err)
2527 {
2528 	DSSERR("\tACK with ERROR (%#x):\n", err);
2529 	if (err & (1 << 0))
2530 		DSSERR("\t\tSoT Error\n");
2531 	if (err & (1 << 1))
2532 		DSSERR("\t\tSoT Sync Error\n");
2533 	if (err & (1 << 2))
2534 		DSSERR("\t\tEoT Sync Error\n");
2535 	if (err & (1 << 3))
2536 		DSSERR("\t\tEscape Mode Entry Command Error\n");
2537 	if (err & (1 << 4))
2538 		DSSERR("\t\tLP Transmit Sync Error\n");
2539 	if (err & (1 << 5))
2540 		DSSERR("\t\tHS Receive Timeout Error\n");
2541 	if (err & (1 << 6))
2542 		DSSERR("\t\tFalse Control Error\n");
2543 	if (err & (1 << 7))
2544 		DSSERR("\t\t(reserved7)\n");
2545 	if (err & (1 << 8))
2546 		DSSERR("\t\tECC Error, single-bit (corrected)\n");
2547 	if (err & (1 << 9))
2548 		DSSERR("\t\tECC Error, multi-bit (not corrected)\n");
2549 	if (err & (1 << 10))
2550 		DSSERR("\t\tChecksum Error\n");
2551 	if (err & (1 << 11))
2552 		DSSERR("\t\tData type not recognized\n");
2553 	if (err & (1 << 12))
2554 		DSSERR("\t\tInvalid VC ID\n");
2555 	if (err & (1 << 13))
2556 		DSSERR("\t\tInvalid Transmission Length\n");
2557 	if (err & (1 << 14))
2558 		DSSERR("\t\t(reserved14)\n");
2559 	if (err & (1 << 15))
2560 		DSSERR("\t\tDSI Protocol Violation\n");
2561 }
2562 
2563 static u16 dsi_vc_flush_receive_data(struct platform_device *dsidev,
2564 		int channel)
2565 {
2566 	/* RX_FIFO_NOT_EMPTY */
2567 	while (REG_GET(dsidev, DSI_VC_CTRL(channel), 20, 20)) {
2568 		u32 val;
2569 		u8 dt;
2570 		val = dsi_read_reg(dsidev, DSI_VC_SHORT_PACKET_HEADER(channel));
2571 		DSSERR("\trawval %#08x\n", val);
2572 		dt = FLD_GET(val, 5, 0);
2573 		if (dt == MIPI_DSI_RX_ACKNOWLEDGE_AND_ERROR_REPORT) {
2574 			u16 err = FLD_GET(val, 23, 8);
2575 			dsi_show_rx_ack_with_err(err);
2576 		} else if (dt == MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_1BYTE) {
2577 			DSSERR("\tDCS short response, 1 byte: %#x\n",
2578 					FLD_GET(val, 23, 8));
2579 		} else if (dt == MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_2BYTE) {
2580 			DSSERR("\tDCS short response, 2 byte: %#x\n",
2581 					FLD_GET(val, 23, 8));
2582 		} else if (dt == MIPI_DSI_RX_DCS_LONG_READ_RESPONSE) {
2583 			DSSERR("\tDCS long response, len %d\n",
2584 					FLD_GET(val, 23, 8));
2585 			dsi_vc_flush_long_data(dsidev, channel);
2586 		} else {
2587 			DSSERR("\tunknown datatype 0x%02x\n", dt);
2588 		}
2589 	}
2590 	return 0;
2591 }
2592 
2593 static int dsi_vc_send_bta(struct platform_device *dsidev, int channel)
2594 {
2595 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2596 
2597 	if (dsi->debug_write || dsi->debug_read)
2598 		DSSDBG("dsi_vc_send_bta %d\n", channel);
2599 
2600 	WARN_ON(!dsi_bus_is_locked(dsidev));
2601 
2602 	/* RX_FIFO_NOT_EMPTY */
2603 	if (REG_GET(dsidev, DSI_VC_CTRL(channel), 20, 20)) {
2604 		DSSERR("rx fifo not empty when sending BTA, dumping data:\n");
2605 		dsi_vc_flush_receive_data(dsidev, channel);
2606 	}
2607 
2608 	REG_FLD_MOD(dsidev, DSI_VC_CTRL(channel), 1, 6, 6); /* BTA_EN */
2609 
2610 	/* flush posted write */
2611 	dsi_read_reg(dsidev, DSI_VC_CTRL(channel));
2612 
2613 	return 0;
2614 }
2615 
2616 static int dsi_vc_send_bta_sync(struct omap_dss_device *dssdev, int channel)
2617 {
2618 	struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
2619 	DECLARE_COMPLETION_ONSTACK(completion);
2620 	int r = 0;
2621 	u32 err;
2622 
2623 	r = dsi_register_isr_vc(dsidev, channel, dsi_completion_handler,
2624 			&completion, DSI_VC_IRQ_BTA);
2625 	if (r)
2626 		goto err0;
2627 
2628 	r = dsi_register_isr(dsidev, dsi_completion_handler, &completion,
2629 			DSI_IRQ_ERROR_MASK);
2630 	if (r)
2631 		goto err1;
2632 
2633 	r = dsi_vc_send_bta(dsidev, channel);
2634 	if (r)
2635 		goto err2;
2636 
2637 	if (wait_for_completion_timeout(&completion,
2638 				msecs_to_jiffies(500)) == 0) {
2639 		DSSERR("Failed to receive BTA\n");
2640 		r = -EIO;
2641 		goto err2;
2642 	}
2643 
2644 	err = dsi_get_errors(dsidev);
2645 	if (err) {
2646 		DSSERR("Error while sending BTA: %x\n", err);
2647 		r = -EIO;
2648 		goto err2;
2649 	}
2650 err2:
2651 	dsi_unregister_isr(dsidev, dsi_completion_handler, &completion,
2652 			DSI_IRQ_ERROR_MASK);
2653 err1:
2654 	dsi_unregister_isr_vc(dsidev, channel, dsi_completion_handler,
2655 			&completion, DSI_VC_IRQ_BTA);
2656 err0:
2657 	return r;
2658 }
2659 
2660 static inline void dsi_vc_write_long_header(struct platform_device *dsidev,
2661 		int channel, u8 data_type, u16 len, u8 ecc)
2662 {
2663 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2664 	u32 val;
2665 	u8 data_id;
2666 
2667 	WARN_ON(!dsi_bus_is_locked(dsidev));
2668 
2669 	data_id = data_type | dsi->vc[channel].vc_id << 6;
2670 
2671 	val = FLD_VAL(data_id, 7, 0) | FLD_VAL(len, 23, 8) |
2672 		FLD_VAL(ecc, 31, 24);
2673 
2674 	dsi_write_reg(dsidev, DSI_VC_LONG_PACKET_HEADER(channel), val);
2675 }
2676 
2677 static inline void dsi_vc_write_long_payload(struct platform_device *dsidev,
2678 		int channel, u8 b1, u8 b2, u8 b3, u8 b4)
2679 {
2680 	u32 val;
2681 
2682 	val = b4 << 24 | b3 << 16 | b2 << 8  | b1 << 0;
2683 
2684 /*	DSSDBG("\twriting %02x, %02x, %02x, %02x (%#010x)\n",
2685 			b1, b2, b3, b4, val); */
2686 
2687 	dsi_write_reg(dsidev, DSI_VC_LONG_PACKET_PAYLOAD(channel), val);
2688 }
2689 
2690 static int dsi_vc_send_long(struct platform_device *dsidev, int channel,
2691 		u8 data_type, u8 *data, u16 len, u8 ecc)
2692 {
2693 	/*u32 val; */
2694 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2695 	int i;
2696 	u8 *p;
2697 	int r = 0;
2698 	u8 b1, b2, b3, b4;
2699 
2700 	if (dsi->debug_write)
2701 		DSSDBG("dsi_vc_send_long, %d bytes\n", len);
2702 
2703 	/* len + header */
2704 	if (dsi->vc[channel].tx_fifo_size * 32 * 4 < len + 4) {
2705 		DSSERR("unable to send long packet: packet too long.\n");
2706 		return -EINVAL;
2707 	}
2708 
2709 	dsi_vc_config_source(dsidev, channel, DSI_VC_SOURCE_L4);
2710 
2711 	dsi_vc_write_long_header(dsidev, channel, data_type, len, ecc);
2712 
2713 	p = data;
2714 	for (i = 0; i < len >> 2; i++) {
2715 		if (dsi->debug_write)
2716 			DSSDBG("\tsending full packet %d\n", i);
2717 
2718 		b1 = *p++;
2719 		b2 = *p++;
2720 		b3 = *p++;
2721 		b4 = *p++;
2722 
2723 		dsi_vc_write_long_payload(dsidev, channel, b1, b2, b3, b4);
2724 	}
2725 
2726 	i = len % 4;
2727 	if (i) {
2728 		b1 = 0; b2 = 0; b3 = 0;
2729 
2730 		if (dsi->debug_write)
2731 			DSSDBG("\tsending remainder bytes %d\n", i);
2732 
2733 		switch (i) {
2734 		case 3:
2735 			b1 = *p++;
2736 			b2 = *p++;
2737 			b3 = *p++;
2738 			break;
2739 		case 2:
2740 			b1 = *p++;
2741 			b2 = *p++;
2742 			break;
2743 		case 1:
2744 			b1 = *p++;
2745 			break;
2746 		}
2747 
2748 		dsi_vc_write_long_payload(dsidev, channel, b1, b2, b3, 0);
2749 	}
2750 
2751 	return r;
2752 }
2753 
2754 static int dsi_vc_send_short(struct platform_device *dsidev, int channel,
2755 		u8 data_type, u16 data, u8 ecc)
2756 {
2757 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2758 	u32 r;
2759 	u8 data_id;
2760 
2761 	WARN_ON(!dsi_bus_is_locked(dsidev));
2762 
2763 	if (dsi->debug_write)
2764 		DSSDBG("dsi_vc_send_short(ch%d, dt %#x, b1 %#x, b2 %#x)\n",
2765 				channel,
2766 				data_type, data & 0xff, (data >> 8) & 0xff);
2767 
2768 	dsi_vc_config_source(dsidev, channel, DSI_VC_SOURCE_L4);
2769 
2770 	if (FLD_GET(dsi_read_reg(dsidev, DSI_VC_CTRL(channel)), 16, 16)) {
2771 		DSSERR("ERROR FIFO FULL, aborting transfer\n");
2772 		return -EINVAL;
2773 	}
2774 
2775 	data_id = data_type | dsi->vc[channel].vc_id << 6;
2776 
2777 	r = (data_id << 0) | (data << 8) | (ecc << 24);
2778 
2779 	dsi_write_reg(dsidev, DSI_VC_SHORT_PACKET_HEADER(channel), r);
2780 
2781 	return 0;
2782 }
2783 
2784 static int dsi_vc_send_null(struct omap_dss_device *dssdev, int channel)
2785 {
2786 	struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
2787 
2788 	return dsi_vc_send_long(dsidev, channel, MIPI_DSI_NULL_PACKET, NULL,
2789 		0, 0);
2790 }
2791 
2792 static int dsi_vc_write_nosync_common(struct platform_device *dsidev,
2793 		int channel, u8 *data, int len, enum dss_dsi_content_type type)
2794 {
2795 	int r;
2796 
2797 	if (len == 0) {
2798 		BUG_ON(type == DSS_DSI_CONTENT_DCS);
2799 		r = dsi_vc_send_short(dsidev, channel,
2800 				MIPI_DSI_GENERIC_SHORT_WRITE_0_PARAM, 0, 0);
2801 	} else if (len == 1) {
2802 		r = dsi_vc_send_short(dsidev, channel,
2803 				type == DSS_DSI_CONTENT_GENERIC ?
2804 				MIPI_DSI_GENERIC_SHORT_WRITE_1_PARAM :
2805 				MIPI_DSI_DCS_SHORT_WRITE, data[0], 0);
2806 	} else if (len == 2) {
2807 		r = dsi_vc_send_short(dsidev, channel,
2808 				type == DSS_DSI_CONTENT_GENERIC ?
2809 				MIPI_DSI_GENERIC_SHORT_WRITE_2_PARAM :
2810 				MIPI_DSI_DCS_SHORT_WRITE_PARAM,
2811 				data[0] | (data[1] << 8), 0);
2812 	} else {
2813 		r = dsi_vc_send_long(dsidev, channel,
2814 				type == DSS_DSI_CONTENT_GENERIC ?
2815 				MIPI_DSI_GENERIC_LONG_WRITE :
2816 				MIPI_DSI_DCS_LONG_WRITE, data, len, 0);
2817 	}
2818 
2819 	return r;
2820 }
2821 
2822 static int dsi_vc_dcs_write_nosync(struct omap_dss_device *dssdev, int channel,
2823 		u8 *data, int len)
2824 {
2825 	struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
2826 
2827 	return dsi_vc_write_nosync_common(dsidev, channel, data, len,
2828 			DSS_DSI_CONTENT_DCS);
2829 }
2830 
2831 static int dsi_vc_generic_write_nosync(struct omap_dss_device *dssdev, int channel,
2832 		u8 *data, int len)
2833 {
2834 	struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
2835 
2836 	return dsi_vc_write_nosync_common(dsidev, channel, data, len,
2837 			DSS_DSI_CONTENT_GENERIC);
2838 }
2839 
2840 static int dsi_vc_write_common(struct omap_dss_device *dssdev, int channel,
2841 		u8 *data, int len, enum dss_dsi_content_type type)
2842 {
2843 	struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
2844 	int r;
2845 
2846 	r = dsi_vc_write_nosync_common(dsidev, channel, data, len, type);
2847 	if (r)
2848 		goto err;
2849 
2850 	r = dsi_vc_send_bta_sync(dssdev, channel);
2851 	if (r)
2852 		goto err;
2853 
2854 	/* RX_FIFO_NOT_EMPTY */
2855 	if (REG_GET(dsidev, DSI_VC_CTRL(channel), 20, 20)) {
2856 		DSSERR("rx fifo not empty after write, dumping data:\n");
2857 		dsi_vc_flush_receive_data(dsidev, channel);
2858 		r = -EIO;
2859 		goto err;
2860 	}
2861 
2862 	return 0;
2863 err:
2864 	DSSERR("dsi_vc_write_common(ch %d, cmd 0x%02x, len %d) failed\n",
2865 			channel, data[0], len);
2866 	return r;
2867 }
2868 
2869 static int dsi_vc_dcs_write(struct omap_dss_device *dssdev, int channel, u8 *data,
2870 		int len)
2871 {
2872 	return dsi_vc_write_common(dssdev, channel, data, len,
2873 			DSS_DSI_CONTENT_DCS);
2874 }
2875 
2876 static int dsi_vc_generic_write(struct omap_dss_device *dssdev, int channel, u8 *data,
2877 		int len)
2878 {
2879 	return dsi_vc_write_common(dssdev, channel, data, len,
2880 			DSS_DSI_CONTENT_GENERIC);
2881 }
2882 
2883 static int dsi_vc_dcs_send_read_request(struct platform_device *dsidev,
2884 		int channel, u8 dcs_cmd)
2885 {
2886 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2887 	int r;
2888 
2889 	if (dsi->debug_read)
2890 		DSSDBG("dsi_vc_dcs_send_read_request(ch%d, dcs_cmd %x)\n",
2891 			channel, dcs_cmd);
2892 
2893 	r = dsi_vc_send_short(dsidev, channel, MIPI_DSI_DCS_READ, dcs_cmd, 0);
2894 	if (r) {
2895 		DSSERR("dsi_vc_dcs_send_read_request(ch %d, cmd 0x%02x)"
2896 			" failed\n", channel, dcs_cmd);
2897 		return r;
2898 	}
2899 
2900 	return 0;
2901 }
2902 
2903 static int dsi_vc_generic_send_read_request(struct platform_device *dsidev,
2904 		int channel, u8 *reqdata, int reqlen)
2905 {
2906 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2907 	u16 data;
2908 	u8 data_type;
2909 	int r;
2910 
2911 	if (dsi->debug_read)
2912 		DSSDBG("dsi_vc_generic_send_read_request(ch %d, reqlen %d)\n",
2913 			channel, reqlen);
2914 
2915 	if (reqlen == 0) {
2916 		data_type = MIPI_DSI_GENERIC_READ_REQUEST_0_PARAM;
2917 		data = 0;
2918 	} else if (reqlen == 1) {
2919 		data_type = MIPI_DSI_GENERIC_READ_REQUEST_1_PARAM;
2920 		data = reqdata[0];
2921 	} else if (reqlen == 2) {
2922 		data_type = MIPI_DSI_GENERIC_READ_REQUEST_2_PARAM;
2923 		data = reqdata[0] | (reqdata[1] << 8);
2924 	} else {
2925 		BUG();
2926 		return -EINVAL;
2927 	}
2928 
2929 	r = dsi_vc_send_short(dsidev, channel, data_type, data, 0);
2930 	if (r) {
2931 		DSSERR("dsi_vc_generic_send_read_request(ch %d, reqlen %d)"
2932 			" failed\n", channel, reqlen);
2933 		return r;
2934 	}
2935 
2936 	return 0;
2937 }
2938 
2939 static int dsi_vc_read_rx_fifo(struct platform_device *dsidev, int channel,
2940 		u8 *buf, int buflen, enum dss_dsi_content_type type)
2941 {
2942 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2943 	u32 val;
2944 	u8 dt;
2945 	int r;
2946 
2947 	/* RX_FIFO_NOT_EMPTY */
2948 	if (REG_GET(dsidev, DSI_VC_CTRL(channel), 20, 20) == 0) {
2949 		DSSERR("RX fifo empty when trying to read.\n");
2950 		r = -EIO;
2951 		goto err;
2952 	}
2953 
2954 	val = dsi_read_reg(dsidev, DSI_VC_SHORT_PACKET_HEADER(channel));
2955 	if (dsi->debug_read)
2956 		DSSDBG("\theader: %08x\n", val);
2957 	dt = FLD_GET(val, 5, 0);
2958 	if (dt == MIPI_DSI_RX_ACKNOWLEDGE_AND_ERROR_REPORT) {
2959 		u16 err = FLD_GET(val, 23, 8);
2960 		dsi_show_rx_ack_with_err(err);
2961 		r = -EIO;
2962 		goto err;
2963 
2964 	} else if (dt == (type == DSS_DSI_CONTENT_GENERIC ?
2965 			MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_1BYTE :
2966 			MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_1BYTE)) {
2967 		u8 data = FLD_GET(val, 15, 8);
2968 		if (dsi->debug_read)
2969 			DSSDBG("\t%s short response, 1 byte: %02x\n",
2970 				type == DSS_DSI_CONTENT_GENERIC ? "GENERIC" :
2971 				"DCS", data);
2972 
2973 		if (buflen < 1) {
2974 			r = -EIO;
2975 			goto err;
2976 		}
2977 
2978 		buf[0] = data;
2979 
2980 		return 1;
2981 	} else if (dt == (type == DSS_DSI_CONTENT_GENERIC ?
2982 			MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_2BYTE :
2983 			MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_2BYTE)) {
2984 		u16 data = FLD_GET(val, 23, 8);
2985 		if (dsi->debug_read)
2986 			DSSDBG("\t%s short response, 2 byte: %04x\n",
2987 				type == DSS_DSI_CONTENT_GENERIC ? "GENERIC" :
2988 				"DCS", data);
2989 
2990 		if (buflen < 2) {
2991 			r = -EIO;
2992 			goto err;
2993 		}
2994 
2995 		buf[0] = data & 0xff;
2996 		buf[1] = (data >> 8) & 0xff;
2997 
2998 		return 2;
2999 	} else if (dt == (type == DSS_DSI_CONTENT_GENERIC ?
3000 			MIPI_DSI_RX_GENERIC_LONG_READ_RESPONSE :
3001 			MIPI_DSI_RX_DCS_LONG_READ_RESPONSE)) {
3002 		int w;
3003 		int len = FLD_GET(val, 23, 8);
3004 		if (dsi->debug_read)
3005 			DSSDBG("\t%s long response, len %d\n",
3006 				type == DSS_DSI_CONTENT_GENERIC ? "GENERIC" :
3007 				"DCS", len);
3008 
3009 		if (len > buflen) {
3010 			r = -EIO;
3011 			goto err;
3012 		}
3013 
3014 		/* two byte checksum ends the packet, not included in len */
3015 		for (w = 0; w < len + 2;) {
3016 			int b;
3017 			val = dsi_read_reg(dsidev,
3018 				DSI_VC_SHORT_PACKET_HEADER(channel));
3019 			if (dsi->debug_read)
3020 				DSSDBG("\t\t%02x %02x %02x %02x\n",
3021 						(val >> 0) & 0xff,
3022 						(val >> 8) & 0xff,
3023 						(val >> 16) & 0xff,
3024 						(val >> 24) & 0xff);
3025 
3026 			for (b = 0; b < 4; ++b) {
3027 				if (w < len)
3028 					buf[w] = (val >> (b * 8)) & 0xff;
3029 				/* we discard the 2 byte checksum */
3030 				++w;
3031 			}
3032 		}
3033 
3034 		return len;
3035 	} else {
3036 		DSSERR("\tunknown datatype 0x%02x\n", dt);
3037 		r = -EIO;
3038 		goto err;
3039 	}
3040 
3041 err:
3042 	DSSERR("dsi_vc_read_rx_fifo(ch %d type %s) failed\n", channel,
3043 		type == DSS_DSI_CONTENT_GENERIC ? "GENERIC" : "DCS");
3044 
3045 	return r;
3046 }
3047 
3048 static int dsi_vc_dcs_read(struct omap_dss_device *dssdev, int channel, u8 dcs_cmd,
3049 		u8 *buf, int buflen)
3050 {
3051 	struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
3052 	int r;
3053 
3054 	r = dsi_vc_dcs_send_read_request(dsidev, channel, dcs_cmd);
3055 	if (r)
3056 		goto err;
3057 
3058 	r = dsi_vc_send_bta_sync(dssdev, channel);
3059 	if (r)
3060 		goto err;
3061 
3062 	r = dsi_vc_read_rx_fifo(dsidev, channel, buf, buflen,
3063 		DSS_DSI_CONTENT_DCS);
3064 	if (r < 0)
3065 		goto err;
3066 
3067 	if (r != buflen) {
3068 		r = -EIO;
3069 		goto err;
3070 	}
3071 
3072 	return 0;
3073 err:
3074 	DSSERR("dsi_vc_dcs_read(ch %d, cmd 0x%02x) failed\n", channel, dcs_cmd);
3075 	return r;
3076 }
3077 
3078 static int dsi_vc_generic_read(struct omap_dss_device *dssdev, int channel,
3079 		u8 *reqdata, int reqlen, u8 *buf, int buflen)
3080 {
3081 	struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
3082 	int r;
3083 
3084 	r = dsi_vc_generic_send_read_request(dsidev, channel, reqdata, reqlen);
3085 	if (r)
3086 		return r;
3087 
3088 	r = dsi_vc_send_bta_sync(dssdev, channel);
3089 	if (r)
3090 		return r;
3091 
3092 	r = dsi_vc_read_rx_fifo(dsidev, channel, buf, buflen,
3093 		DSS_DSI_CONTENT_GENERIC);
3094 	if (r < 0)
3095 		return r;
3096 
3097 	if (r != buflen) {
3098 		r = -EIO;
3099 		return r;
3100 	}
3101 
3102 	return 0;
3103 }
3104 
3105 static int dsi_vc_set_max_rx_packet_size(struct omap_dss_device *dssdev, int channel,
3106 		u16 len)
3107 {
3108 	struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
3109 
3110 	return dsi_vc_send_short(dsidev, channel,
3111 			MIPI_DSI_SET_MAXIMUM_RETURN_PACKET_SIZE, len, 0);
3112 }
3113 
3114 static int dsi_enter_ulps(struct platform_device *dsidev)
3115 {
3116 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
3117 	DECLARE_COMPLETION_ONSTACK(completion);
3118 	int r, i;
3119 	unsigned mask;
3120 
3121 	DSSDBG("Entering ULPS");
3122 
3123 	WARN_ON(!dsi_bus_is_locked(dsidev));
3124 
3125 	WARN_ON(dsi->ulps_enabled);
3126 
3127 	if (dsi->ulps_enabled)
3128 		return 0;
3129 
3130 	/* DDR_CLK_ALWAYS_ON */
3131 	if (REG_GET(dsidev, DSI_CLK_CTRL, 13, 13)) {
3132 		dsi_if_enable(dsidev, 0);
3133 		REG_FLD_MOD(dsidev, DSI_CLK_CTRL, 0, 13, 13);
3134 		dsi_if_enable(dsidev, 1);
3135 	}
3136 
3137 	dsi_sync_vc(dsidev, 0);
3138 	dsi_sync_vc(dsidev, 1);
3139 	dsi_sync_vc(dsidev, 2);
3140 	dsi_sync_vc(dsidev, 3);
3141 
3142 	dsi_force_tx_stop_mode_io(dsidev);
3143 
3144 	dsi_vc_enable(dsidev, 0, false);
3145 	dsi_vc_enable(dsidev, 1, false);
3146 	dsi_vc_enable(dsidev, 2, false);
3147 	dsi_vc_enable(dsidev, 3, false);
3148 
3149 	if (REG_GET(dsidev, DSI_COMPLEXIO_CFG2, 16, 16)) {	/* HS_BUSY */
3150 		DSSERR("HS busy when enabling ULPS\n");
3151 		return -EIO;
3152 	}
3153 
3154 	if (REG_GET(dsidev, DSI_COMPLEXIO_CFG2, 17, 17)) {	/* LP_BUSY */
3155 		DSSERR("LP busy when enabling ULPS\n");
3156 		return -EIO;
3157 	}
3158 
3159 	r = dsi_register_isr_cio(dsidev, dsi_completion_handler, &completion,
3160 			DSI_CIO_IRQ_ULPSACTIVENOT_ALL0);
3161 	if (r)
3162 		return r;
3163 
3164 	mask = 0;
3165 
3166 	for (i = 0; i < dsi->num_lanes_supported; ++i) {
3167 		if (dsi->lanes[i].function == DSI_LANE_UNUSED)
3168 			continue;
3169 		mask |= 1 << i;
3170 	}
3171 	/* Assert TxRequestEsc for data lanes and TxUlpsClk for clk lane */
3172 	/* LANEx_ULPS_SIG2 */
3173 	REG_FLD_MOD(dsidev, DSI_COMPLEXIO_CFG2, mask, 9, 5);
3174 
3175 	/* flush posted write and wait for SCP interface to finish the write */
3176 	dsi_read_reg(dsidev, DSI_COMPLEXIO_CFG2);
3177 
3178 	if (wait_for_completion_timeout(&completion,
3179 				msecs_to_jiffies(1000)) == 0) {
3180 		DSSERR("ULPS enable timeout\n");
3181 		r = -EIO;
3182 		goto err;
3183 	}
3184 
3185 	dsi_unregister_isr_cio(dsidev, dsi_completion_handler, &completion,
3186 			DSI_CIO_IRQ_ULPSACTIVENOT_ALL0);
3187 
3188 	/* Reset LANEx_ULPS_SIG2 */
3189 	REG_FLD_MOD(dsidev, DSI_COMPLEXIO_CFG2, 0, 9, 5);
3190 
3191 	/* flush posted write and wait for SCP interface to finish the write */
3192 	dsi_read_reg(dsidev, DSI_COMPLEXIO_CFG2);
3193 
3194 	dsi_cio_power(dsidev, DSI_COMPLEXIO_POWER_ULPS);
3195 
3196 	dsi_if_enable(dsidev, false);
3197 
3198 	dsi->ulps_enabled = true;
3199 
3200 	return 0;
3201 
3202 err:
3203 	dsi_unregister_isr_cio(dsidev, dsi_completion_handler, &completion,
3204 			DSI_CIO_IRQ_ULPSACTIVENOT_ALL0);
3205 	return r;
3206 }
3207 
3208 static void dsi_set_lp_rx_timeout(struct platform_device *dsidev,
3209 		unsigned ticks, bool x4, bool x16)
3210 {
3211 	unsigned long fck;
3212 	unsigned long total_ticks;
3213 	u32 r;
3214 
3215 	BUG_ON(ticks > 0x1fff);
3216 
3217 	/* ticks in DSI_FCK */
3218 	fck = dsi_fclk_rate(dsidev);
3219 
3220 	r = dsi_read_reg(dsidev, DSI_TIMING2);
3221 	r = FLD_MOD(r, 1, 15, 15);	/* LP_RX_TO */
3222 	r = FLD_MOD(r, x16 ? 1 : 0, 14, 14);	/* LP_RX_TO_X16 */
3223 	r = FLD_MOD(r, x4 ? 1 : 0, 13, 13);	/* LP_RX_TO_X4 */
3224 	r = FLD_MOD(r, ticks, 12, 0);	/* LP_RX_COUNTER */
3225 	dsi_write_reg(dsidev, DSI_TIMING2, r);
3226 
3227 	total_ticks = ticks * (x16 ? 16 : 1) * (x4 ? 4 : 1);
3228 
3229 	DSSDBG("LP_RX_TO %lu ticks (%#x%s%s) = %lu ns\n",
3230 			total_ticks,
3231 			ticks, x4 ? " x4" : "", x16 ? " x16" : "",
3232 			(total_ticks * 1000) / (fck / 1000 / 1000));
3233 }
3234 
3235 static void dsi_set_ta_timeout(struct platform_device *dsidev, unsigned ticks,
3236 		bool x8, bool x16)
3237 {
3238 	unsigned long fck;
3239 	unsigned long total_ticks;
3240 	u32 r;
3241 
3242 	BUG_ON(ticks > 0x1fff);
3243 
3244 	/* ticks in DSI_FCK */
3245 	fck = dsi_fclk_rate(dsidev);
3246 
3247 	r = dsi_read_reg(dsidev, DSI_TIMING1);
3248 	r = FLD_MOD(r, 1, 31, 31);	/* TA_TO */
3249 	r = FLD_MOD(r, x16 ? 1 : 0, 30, 30);	/* TA_TO_X16 */
3250 	r = FLD_MOD(r, x8 ? 1 : 0, 29, 29);	/* TA_TO_X8 */
3251 	r = FLD_MOD(r, ticks, 28, 16);	/* TA_TO_COUNTER */
3252 	dsi_write_reg(dsidev, DSI_TIMING1, r);
3253 
3254 	total_ticks = ticks * (x16 ? 16 : 1) * (x8 ? 8 : 1);
3255 
3256 	DSSDBG("TA_TO %lu ticks (%#x%s%s) = %lu ns\n",
3257 			total_ticks,
3258 			ticks, x8 ? " x8" : "", x16 ? " x16" : "",
3259 			(total_ticks * 1000) / (fck / 1000 / 1000));
3260 }
3261 
3262 static void dsi_set_stop_state_counter(struct platform_device *dsidev,
3263 		unsigned ticks, bool x4, bool x16)
3264 {
3265 	unsigned long fck;
3266 	unsigned long total_ticks;
3267 	u32 r;
3268 
3269 	BUG_ON(ticks > 0x1fff);
3270 
3271 	/* ticks in DSI_FCK */
3272 	fck = dsi_fclk_rate(dsidev);
3273 
3274 	r = dsi_read_reg(dsidev, DSI_TIMING1);
3275 	r = FLD_MOD(r, 1, 15, 15);	/* FORCE_TX_STOP_MODE_IO */
3276 	r = FLD_MOD(r, x16 ? 1 : 0, 14, 14);	/* STOP_STATE_X16_IO */
3277 	r = FLD_MOD(r, x4 ? 1 : 0, 13, 13);	/* STOP_STATE_X4_IO */
3278 	r = FLD_MOD(r, ticks, 12, 0);	/* STOP_STATE_COUNTER_IO */
3279 	dsi_write_reg(dsidev, DSI_TIMING1, r);
3280 
3281 	total_ticks = ticks * (x16 ? 16 : 1) * (x4 ? 4 : 1);
3282 
3283 	DSSDBG("STOP_STATE_COUNTER %lu ticks (%#x%s%s) = %lu ns\n",
3284 			total_ticks,
3285 			ticks, x4 ? " x4" : "", x16 ? " x16" : "",
3286 			(total_ticks * 1000) / (fck / 1000 / 1000));
3287 }
3288 
3289 static void dsi_set_hs_tx_timeout(struct platform_device *dsidev,
3290 		unsigned ticks, bool x4, bool x16)
3291 {
3292 	unsigned long fck;
3293 	unsigned long total_ticks;
3294 	u32 r;
3295 
3296 	BUG_ON(ticks > 0x1fff);
3297 
3298 	/* ticks in TxByteClkHS */
3299 	fck = dsi_get_txbyteclkhs(dsidev);
3300 
3301 	r = dsi_read_reg(dsidev, DSI_TIMING2);
3302 	r = FLD_MOD(r, 1, 31, 31);	/* HS_TX_TO */
3303 	r = FLD_MOD(r, x16 ? 1 : 0, 30, 30);	/* HS_TX_TO_X16 */
3304 	r = FLD_MOD(r, x4 ? 1 : 0, 29, 29);	/* HS_TX_TO_X8 (4 really) */
3305 	r = FLD_MOD(r, ticks, 28, 16);	/* HS_TX_TO_COUNTER */
3306 	dsi_write_reg(dsidev, DSI_TIMING2, r);
3307 
3308 	total_ticks = ticks * (x16 ? 16 : 1) * (x4 ? 4 : 1);
3309 
3310 	DSSDBG("HS_TX_TO %lu ticks (%#x%s%s) = %lu ns\n",
3311 			total_ticks,
3312 			ticks, x4 ? " x4" : "", x16 ? " x16" : "",
3313 			(total_ticks * 1000) / (fck / 1000 / 1000));
3314 }
3315 
3316 static void dsi_config_vp_num_line_buffers(struct platform_device *dsidev)
3317 {
3318 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
3319 	int num_line_buffers;
3320 
3321 	if (dsi->mode == OMAP_DSS_DSI_VIDEO_MODE) {
3322 		int bpp = dsi_get_pixel_size(dsi->pix_fmt);
3323 		struct videomode *vm = &dsi->vm;
3324 		/*
3325 		 * Don't use line buffers if width is greater than the video
3326 		 * port's line buffer size
3327 		 */
3328 		if (dsi->line_buffer_size <= vm->hactive * bpp / 8)
3329 			num_line_buffers = 0;
3330 		else
3331 			num_line_buffers = 2;
3332 	} else {
3333 		/* Use maximum number of line buffers in command mode */
3334 		num_line_buffers = 2;
3335 	}
3336 
3337 	/* LINE_BUFFER */
3338 	REG_FLD_MOD(dsidev, DSI_CTRL, num_line_buffers, 13, 12);
3339 }
3340 
3341 static void dsi_config_vp_sync_events(struct platform_device *dsidev)
3342 {
3343 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
3344 	bool sync_end;
3345 	u32 r;
3346 
3347 	if (dsi->vm_timings.trans_mode == OMAP_DSS_DSI_PULSE_MODE)
3348 		sync_end = true;
3349 	else
3350 		sync_end = false;
3351 
3352 	r = dsi_read_reg(dsidev, DSI_CTRL);
3353 	r = FLD_MOD(r, 1, 9, 9);		/* VP_DE_POL */
3354 	r = FLD_MOD(r, 1, 10, 10);		/* VP_HSYNC_POL */
3355 	r = FLD_MOD(r, 1, 11, 11);		/* VP_VSYNC_POL */
3356 	r = FLD_MOD(r, 1, 15, 15);		/* VP_VSYNC_START */
3357 	r = FLD_MOD(r, sync_end, 16, 16);	/* VP_VSYNC_END */
3358 	r = FLD_MOD(r, 1, 17, 17);		/* VP_HSYNC_START */
3359 	r = FLD_MOD(r, sync_end, 18, 18);	/* VP_HSYNC_END */
3360 	dsi_write_reg(dsidev, DSI_CTRL, r);
3361 }
3362 
3363 static void dsi_config_blanking_modes(struct platform_device *dsidev)
3364 {
3365 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
3366 	int blanking_mode = dsi->vm_timings.blanking_mode;
3367 	int hfp_blanking_mode = dsi->vm_timings.hfp_blanking_mode;
3368 	int hbp_blanking_mode = dsi->vm_timings.hbp_blanking_mode;
3369 	int hsa_blanking_mode = dsi->vm_timings.hsa_blanking_mode;
3370 	u32 r;
3371 
3372 	/*
3373 	 * 0 = TX FIFO packets sent or LPS in corresponding blanking periods
3374 	 * 1 = Long blanking packets are sent in corresponding blanking periods
3375 	 */
3376 	r = dsi_read_reg(dsidev, DSI_CTRL);
3377 	r = FLD_MOD(r, blanking_mode, 20, 20);		/* BLANKING_MODE */
3378 	r = FLD_MOD(r, hfp_blanking_mode, 21, 21);	/* HFP_BLANKING */
3379 	r = FLD_MOD(r, hbp_blanking_mode, 22, 22);	/* HBP_BLANKING */
3380 	r = FLD_MOD(r, hsa_blanking_mode, 23, 23);	/* HSA_BLANKING */
3381 	dsi_write_reg(dsidev, DSI_CTRL, r);
3382 }
3383 
3384 /*
3385  * According to section 'HS Command Mode Interleaving' in OMAP TRM, Scenario 3
3386  * results in maximum transition time for data and clock lanes to enter and
3387  * exit HS mode. Hence, this is the scenario where the least amount of command
3388  * mode data can be interleaved. We program the minimum amount of TXBYTECLKHS
3389  * clock cycles that can be used to interleave command mode data in HS so that
3390  * all scenarios are satisfied.
3391  */
3392 static int dsi_compute_interleave_hs(int blank, bool ddr_alwon, int enter_hs,
3393 		int exit_hs, int exiths_clk, int ddr_pre, int ddr_post)
3394 {
3395 	int transition;
3396 
3397 	/*
3398 	 * If DDR_CLK_ALWAYS_ON is set, we need to consider HS mode transition
3399 	 * time of data lanes only, if it isn't set, we need to consider HS
3400 	 * transition time of both data and clock lanes. HS transition time
3401 	 * of Scenario 3 is considered.
3402 	 */
3403 	if (ddr_alwon) {
3404 		transition = enter_hs + exit_hs + max(enter_hs, 2) + 1;
3405 	} else {
3406 		int trans1, trans2;
3407 		trans1 = ddr_pre + enter_hs + exit_hs + max(enter_hs, 2) + 1;
3408 		trans2 = ddr_pre + enter_hs + exiths_clk + ddr_post + ddr_pre +
3409 				enter_hs + 1;
3410 		transition = max(trans1, trans2);
3411 	}
3412 
3413 	return blank > transition ? blank - transition : 0;
3414 }
3415 
3416 /*
3417  * According to section 'LP Command Mode Interleaving' in OMAP TRM, Scenario 1
3418  * results in maximum transition time for data lanes to enter and exit LP mode.
3419  * Hence, this is the scenario where the least amount of command mode data can
3420  * be interleaved. We program the minimum amount of bytes that can be
3421  * interleaved in LP so that all scenarios are satisfied.
3422  */
3423 static int dsi_compute_interleave_lp(int blank, int enter_hs, int exit_hs,
3424 		int lp_clk_div, int tdsi_fclk)
3425 {
3426 	int trans_lp;	/* time required for a LP transition, in TXBYTECLKHS */
3427 	int tlp_avail;	/* time left for interleaving commands, in CLKIN4DDR */
3428 	int ttxclkesc;	/* period of LP transmit escape clock, in CLKIN4DDR */
3429 	int thsbyte_clk = 16;	/* Period of TXBYTECLKHS clock, in CLKIN4DDR */
3430 	int lp_inter;	/* cmd mode data that can be interleaved, in bytes */
3431 
3432 	/* maximum LP transition time according to Scenario 1 */
3433 	trans_lp = exit_hs + max(enter_hs, 2) + 1;
3434 
3435 	/* CLKIN4DDR = 16 * TXBYTECLKHS */
3436 	tlp_avail = thsbyte_clk * (blank - trans_lp);
3437 
3438 	ttxclkesc = tdsi_fclk * lp_clk_div;
3439 
3440 	lp_inter = ((tlp_avail - 8 * thsbyte_clk - 5 * tdsi_fclk) / ttxclkesc -
3441 			26) / 16;
3442 
3443 	return max(lp_inter, 0);
3444 }
3445 
3446 static void dsi_config_cmd_mode_interleaving(struct platform_device *dsidev)
3447 {
3448 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
3449 	int blanking_mode;
3450 	int hfp_blanking_mode, hbp_blanking_mode, hsa_blanking_mode;
3451 	int hsa, hfp, hbp, width_bytes, bllp, lp_clk_div;
3452 	int ddr_clk_pre, ddr_clk_post, enter_hs_mode_lat, exit_hs_mode_lat;
3453 	int tclk_trail, ths_exit, exiths_clk;
3454 	bool ddr_alwon;
3455 	struct videomode *vm = &dsi->vm;
3456 	int bpp = dsi_get_pixel_size(dsi->pix_fmt);
3457 	int ndl = dsi->num_lanes_used - 1;
3458 	int dsi_fclk_hsdiv = dsi->user_dsi_cinfo.mX[HSDIV_DSI] + 1;
3459 	int hsa_interleave_hs = 0, hsa_interleave_lp = 0;
3460 	int hfp_interleave_hs = 0, hfp_interleave_lp = 0;
3461 	int hbp_interleave_hs = 0, hbp_interleave_lp = 0;
3462 	int bl_interleave_hs = 0, bl_interleave_lp = 0;
3463 	u32 r;
3464 
3465 	r = dsi_read_reg(dsidev, DSI_CTRL);
3466 	blanking_mode = FLD_GET(r, 20, 20);
3467 	hfp_blanking_mode = FLD_GET(r, 21, 21);
3468 	hbp_blanking_mode = FLD_GET(r, 22, 22);
3469 	hsa_blanking_mode = FLD_GET(r, 23, 23);
3470 
3471 	r = dsi_read_reg(dsidev, DSI_VM_TIMING1);
3472 	hbp = FLD_GET(r, 11, 0);
3473 	hfp = FLD_GET(r, 23, 12);
3474 	hsa = FLD_GET(r, 31, 24);
3475 
3476 	r = dsi_read_reg(dsidev, DSI_CLK_TIMING);
3477 	ddr_clk_post = FLD_GET(r, 7, 0);
3478 	ddr_clk_pre = FLD_GET(r, 15, 8);
3479 
3480 	r = dsi_read_reg(dsidev, DSI_VM_TIMING7);
3481 	exit_hs_mode_lat = FLD_GET(r, 15, 0);
3482 	enter_hs_mode_lat = FLD_GET(r, 31, 16);
3483 
3484 	r = dsi_read_reg(dsidev, DSI_CLK_CTRL);
3485 	lp_clk_div = FLD_GET(r, 12, 0);
3486 	ddr_alwon = FLD_GET(r, 13, 13);
3487 
3488 	r = dsi_read_reg(dsidev, DSI_DSIPHY_CFG0);
3489 	ths_exit = FLD_GET(r, 7, 0);
3490 
3491 	r = dsi_read_reg(dsidev, DSI_DSIPHY_CFG1);
3492 	tclk_trail = FLD_GET(r, 15, 8);
3493 
3494 	exiths_clk = ths_exit + tclk_trail;
3495 
3496 	width_bytes = DIV_ROUND_UP(vm->hactive * bpp, 8);
3497 	bllp = hbp + hfp + hsa + DIV_ROUND_UP(width_bytes + 6, ndl);
3498 
3499 	if (!hsa_blanking_mode) {
3500 		hsa_interleave_hs = dsi_compute_interleave_hs(hsa, ddr_alwon,
3501 					enter_hs_mode_lat, exit_hs_mode_lat,
3502 					exiths_clk, ddr_clk_pre, ddr_clk_post);
3503 		hsa_interleave_lp = dsi_compute_interleave_lp(hsa,
3504 					enter_hs_mode_lat, exit_hs_mode_lat,
3505 					lp_clk_div, dsi_fclk_hsdiv);
3506 	}
3507 
3508 	if (!hfp_blanking_mode) {
3509 		hfp_interleave_hs = dsi_compute_interleave_hs(hfp, ddr_alwon,
3510 					enter_hs_mode_lat, exit_hs_mode_lat,
3511 					exiths_clk, ddr_clk_pre, ddr_clk_post);
3512 		hfp_interleave_lp = dsi_compute_interleave_lp(hfp,
3513 					enter_hs_mode_lat, exit_hs_mode_lat,
3514 					lp_clk_div, dsi_fclk_hsdiv);
3515 	}
3516 
3517 	if (!hbp_blanking_mode) {
3518 		hbp_interleave_hs = dsi_compute_interleave_hs(hbp, ddr_alwon,
3519 					enter_hs_mode_lat, exit_hs_mode_lat,
3520 					exiths_clk, ddr_clk_pre, ddr_clk_post);
3521 
3522 		hbp_interleave_lp = dsi_compute_interleave_lp(hbp,
3523 					enter_hs_mode_lat, exit_hs_mode_lat,
3524 					lp_clk_div, dsi_fclk_hsdiv);
3525 	}
3526 
3527 	if (!blanking_mode) {
3528 		bl_interleave_hs = dsi_compute_interleave_hs(bllp, ddr_alwon,
3529 					enter_hs_mode_lat, exit_hs_mode_lat,
3530 					exiths_clk, ddr_clk_pre, ddr_clk_post);
3531 
3532 		bl_interleave_lp = dsi_compute_interleave_lp(bllp,
3533 					enter_hs_mode_lat, exit_hs_mode_lat,
3534 					lp_clk_div, dsi_fclk_hsdiv);
3535 	}
3536 
3537 	DSSDBG("DSI HS interleaving(TXBYTECLKHS) HSA %d, HFP %d, HBP %d, BLLP %d\n",
3538 		hsa_interleave_hs, hfp_interleave_hs, hbp_interleave_hs,
3539 		bl_interleave_hs);
3540 
3541 	DSSDBG("DSI LP interleaving(bytes) HSA %d, HFP %d, HBP %d, BLLP %d\n",
3542 		hsa_interleave_lp, hfp_interleave_lp, hbp_interleave_lp,
3543 		bl_interleave_lp);
3544 
3545 	r = dsi_read_reg(dsidev, DSI_VM_TIMING4);
3546 	r = FLD_MOD(r, hsa_interleave_hs, 23, 16);
3547 	r = FLD_MOD(r, hfp_interleave_hs, 15, 8);
3548 	r = FLD_MOD(r, hbp_interleave_hs, 7, 0);
3549 	dsi_write_reg(dsidev, DSI_VM_TIMING4, r);
3550 
3551 	r = dsi_read_reg(dsidev, DSI_VM_TIMING5);
3552 	r = FLD_MOD(r, hsa_interleave_lp, 23, 16);
3553 	r = FLD_MOD(r, hfp_interleave_lp, 15, 8);
3554 	r = FLD_MOD(r, hbp_interleave_lp, 7, 0);
3555 	dsi_write_reg(dsidev, DSI_VM_TIMING5, r);
3556 
3557 	r = dsi_read_reg(dsidev, DSI_VM_TIMING6);
3558 	r = FLD_MOD(r, bl_interleave_hs, 31, 15);
3559 	r = FLD_MOD(r, bl_interleave_lp, 16, 0);
3560 	dsi_write_reg(dsidev, DSI_VM_TIMING6, r);
3561 }
3562 
3563 static int dsi_proto_config(struct platform_device *dsidev)
3564 {
3565 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
3566 	u32 r;
3567 	int buswidth = 0;
3568 
3569 	dsi_config_tx_fifo(dsidev, DSI_FIFO_SIZE_32,
3570 			DSI_FIFO_SIZE_32,
3571 			DSI_FIFO_SIZE_32,
3572 			DSI_FIFO_SIZE_32);
3573 
3574 	dsi_config_rx_fifo(dsidev, DSI_FIFO_SIZE_32,
3575 			DSI_FIFO_SIZE_32,
3576 			DSI_FIFO_SIZE_32,
3577 			DSI_FIFO_SIZE_32);
3578 
3579 	/* XXX what values for the timeouts? */
3580 	dsi_set_stop_state_counter(dsidev, 0x1000, false, false);
3581 	dsi_set_ta_timeout(dsidev, 0x1fff, true, true);
3582 	dsi_set_lp_rx_timeout(dsidev, 0x1fff, true, true);
3583 	dsi_set_hs_tx_timeout(dsidev, 0x1fff, true, true);
3584 
3585 	switch (dsi_get_pixel_size(dsi->pix_fmt)) {
3586 	case 16:
3587 		buswidth = 0;
3588 		break;
3589 	case 18:
3590 		buswidth = 1;
3591 		break;
3592 	case 24:
3593 		buswidth = 2;
3594 		break;
3595 	default:
3596 		BUG();
3597 		return -EINVAL;
3598 	}
3599 
3600 	r = dsi_read_reg(dsidev, DSI_CTRL);
3601 	r = FLD_MOD(r, 1, 1, 1);	/* CS_RX_EN */
3602 	r = FLD_MOD(r, 1, 2, 2);	/* ECC_RX_EN */
3603 	r = FLD_MOD(r, 1, 3, 3);	/* TX_FIFO_ARBITRATION */
3604 	r = FLD_MOD(r, 1, 4, 4);	/* VP_CLK_RATIO, always 1, see errata*/
3605 	r = FLD_MOD(r, buswidth, 7, 6); /* VP_DATA_BUS_WIDTH */
3606 	r = FLD_MOD(r, 0, 8, 8);	/* VP_CLK_POL */
3607 	r = FLD_MOD(r, 1, 14, 14);	/* TRIGGER_RESET_MODE */
3608 	r = FLD_MOD(r, 1, 19, 19);	/* EOT_ENABLE */
3609 	if (!dss_has_feature(FEAT_DSI_DCS_CMD_CONFIG_VC)) {
3610 		r = FLD_MOD(r, 1, 24, 24);	/* DCS_CMD_ENABLE */
3611 		/* DCS_CMD_CODE, 1=start, 0=continue */
3612 		r = FLD_MOD(r, 0, 25, 25);
3613 	}
3614 
3615 	dsi_write_reg(dsidev, DSI_CTRL, r);
3616 
3617 	dsi_config_vp_num_line_buffers(dsidev);
3618 
3619 	if (dsi->mode == OMAP_DSS_DSI_VIDEO_MODE) {
3620 		dsi_config_vp_sync_events(dsidev);
3621 		dsi_config_blanking_modes(dsidev);
3622 		dsi_config_cmd_mode_interleaving(dsidev);
3623 	}
3624 
3625 	dsi_vc_initial_config(dsidev, 0);
3626 	dsi_vc_initial_config(dsidev, 1);
3627 	dsi_vc_initial_config(dsidev, 2);
3628 	dsi_vc_initial_config(dsidev, 3);
3629 
3630 	return 0;
3631 }
3632 
3633 static void dsi_proto_timings(struct platform_device *dsidev)
3634 {
3635 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
3636 	unsigned tlpx, tclk_zero, tclk_prepare, tclk_trail;
3637 	unsigned tclk_pre, tclk_post;
3638 	unsigned ths_prepare, ths_prepare_ths_zero, ths_zero;
3639 	unsigned ths_trail, ths_exit;
3640 	unsigned ddr_clk_pre, ddr_clk_post;
3641 	unsigned enter_hs_mode_lat, exit_hs_mode_lat;
3642 	unsigned ths_eot;
3643 	int ndl = dsi->num_lanes_used - 1;
3644 	u32 r;
3645 
3646 	r = dsi_read_reg(dsidev, DSI_DSIPHY_CFG0);
3647 	ths_prepare = FLD_GET(r, 31, 24);
3648 	ths_prepare_ths_zero = FLD_GET(r, 23, 16);
3649 	ths_zero = ths_prepare_ths_zero - ths_prepare;
3650 	ths_trail = FLD_GET(r, 15, 8);
3651 	ths_exit = FLD_GET(r, 7, 0);
3652 
3653 	r = dsi_read_reg(dsidev, DSI_DSIPHY_CFG1);
3654 	tlpx = FLD_GET(r, 20, 16) * 2;
3655 	tclk_trail = FLD_GET(r, 15, 8);
3656 	tclk_zero = FLD_GET(r, 7, 0);
3657 
3658 	r = dsi_read_reg(dsidev, DSI_DSIPHY_CFG2);
3659 	tclk_prepare = FLD_GET(r, 7, 0);
3660 
3661 	/* min 8*UI */
3662 	tclk_pre = 20;
3663 	/* min 60ns + 52*UI */
3664 	tclk_post = ns2ddr(dsidev, 60) + 26;
3665 
3666 	ths_eot = DIV_ROUND_UP(4, ndl);
3667 
3668 	ddr_clk_pre = DIV_ROUND_UP(tclk_pre + tlpx + tclk_zero + tclk_prepare,
3669 			4);
3670 	ddr_clk_post = DIV_ROUND_UP(tclk_post + ths_trail, 4) + ths_eot;
3671 
3672 	BUG_ON(ddr_clk_pre == 0 || ddr_clk_pre > 255);
3673 	BUG_ON(ddr_clk_post == 0 || ddr_clk_post > 255);
3674 
3675 	r = dsi_read_reg(dsidev, DSI_CLK_TIMING);
3676 	r = FLD_MOD(r, ddr_clk_pre, 15, 8);
3677 	r = FLD_MOD(r, ddr_clk_post, 7, 0);
3678 	dsi_write_reg(dsidev, DSI_CLK_TIMING, r);
3679 
3680 	DSSDBG("ddr_clk_pre %u, ddr_clk_post %u\n",
3681 			ddr_clk_pre,
3682 			ddr_clk_post);
3683 
3684 	enter_hs_mode_lat = 1 + DIV_ROUND_UP(tlpx, 4) +
3685 		DIV_ROUND_UP(ths_prepare, 4) +
3686 		DIV_ROUND_UP(ths_zero + 3, 4);
3687 
3688 	exit_hs_mode_lat = DIV_ROUND_UP(ths_trail + ths_exit, 4) + 1 + ths_eot;
3689 
3690 	r = FLD_VAL(enter_hs_mode_lat, 31, 16) |
3691 		FLD_VAL(exit_hs_mode_lat, 15, 0);
3692 	dsi_write_reg(dsidev, DSI_VM_TIMING7, r);
3693 
3694 	DSSDBG("enter_hs_mode_lat %u, exit_hs_mode_lat %u\n",
3695 			enter_hs_mode_lat, exit_hs_mode_lat);
3696 
3697 	 if (dsi->mode == OMAP_DSS_DSI_VIDEO_MODE) {
3698 		/* TODO: Implement a video mode check_timings function */
3699 		int hsa = dsi->vm_timings.hsa;
3700 		int hfp = dsi->vm_timings.hfp;
3701 		int hbp = dsi->vm_timings.hbp;
3702 		int vsa = dsi->vm_timings.vsa;
3703 		int vfp = dsi->vm_timings.vfp;
3704 		int vbp = dsi->vm_timings.vbp;
3705 		int window_sync = dsi->vm_timings.window_sync;
3706 		bool hsync_end;
3707 		struct videomode *vm = &dsi->vm;
3708 		int bpp = dsi_get_pixel_size(dsi->pix_fmt);
3709 		int tl, t_he, width_bytes;
3710 
3711 		hsync_end = dsi->vm_timings.trans_mode == OMAP_DSS_DSI_PULSE_MODE;
3712 		t_he = hsync_end ?
3713 			((hsa == 0 && ndl == 3) ? 1 : DIV_ROUND_UP(4, ndl)) : 0;
3714 
3715 		width_bytes = DIV_ROUND_UP(vm->hactive * bpp, 8);
3716 
3717 		/* TL = t_HS + HSA + t_HE + HFP + ceil((WC + 6) / NDL) + HBP */
3718 		tl = DIV_ROUND_UP(4, ndl) + (hsync_end ? hsa : 0) + t_he + hfp +
3719 			DIV_ROUND_UP(width_bytes + 6, ndl) + hbp;
3720 
3721 		DSSDBG("HBP: %d, HFP: %d, HSA: %d, TL: %d TXBYTECLKHS\n", hbp,
3722 			hfp, hsync_end ? hsa : 0, tl);
3723 		DSSDBG("VBP: %d, VFP: %d, VSA: %d, VACT: %d lines\n", vbp, vfp,
3724 			vsa, vm->vactive);
3725 
3726 		r = dsi_read_reg(dsidev, DSI_VM_TIMING1);
3727 		r = FLD_MOD(r, hbp, 11, 0);	/* HBP */
3728 		r = FLD_MOD(r, hfp, 23, 12);	/* HFP */
3729 		r = FLD_MOD(r, hsync_end ? hsa : 0, 31, 24);	/* HSA */
3730 		dsi_write_reg(dsidev, DSI_VM_TIMING1, r);
3731 
3732 		r = dsi_read_reg(dsidev, DSI_VM_TIMING2);
3733 		r = FLD_MOD(r, vbp, 7, 0);	/* VBP */
3734 		r = FLD_MOD(r, vfp, 15, 8);	/* VFP */
3735 		r = FLD_MOD(r, vsa, 23, 16);	/* VSA */
3736 		r = FLD_MOD(r, window_sync, 27, 24);	/* WINDOW_SYNC */
3737 		dsi_write_reg(dsidev, DSI_VM_TIMING2, r);
3738 
3739 		r = dsi_read_reg(dsidev, DSI_VM_TIMING3);
3740 		r = FLD_MOD(r, vm->vactive, 14, 0);	/* VACT */
3741 		r = FLD_MOD(r, tl, 31, 16);		/* TL */
3742 		dsi_write_reg(dsidev, DSI_VM_TIMING3, r);
3743 	}
3744 }
3745 
3746 static int dsi_configure_pins(struct omap_dss_device *dssdev,
3747 		const struct omap_dsi_pin_config *pin_cfg)
3748 {
3749 	struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
3750 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
3751 	int num_pins;
3752 	const int *pins;
3753 	struct dsi_lane_config lanes[DSI_MAX_NR_LANES];
3754 	int num_lanes;
3755 	int i;
3756 
3757 	static const enum dsi_lane_function functions[] = {
3758 		DSI_LANE_CLK,
3759 		DSI_LANE_DATA1,
3760 		DSI_LANE_DATA2,
3761 		DSI_LANE_DATA3,
3762 		DSI_LANE_DATA4,
3763 	};
3764 
3765 	num_pins = pin_cfg->num_pins;
3766 	pins = pin_cfg->pins;
3767 
3768 	if (num_pins < 4 || num_pins > dsi->num_lanes_supported * 2
3769 			|| num_pins % 2 != 0)
3770 		return -EINVAL;
3771 
3772 	for (i = 0; i < DSI_MAX_NR_LANES; ++i)
3773 		lanes[i].function = DSI_LANE_UNUSED;
3774 
3775 	num_lanes = 0;
3776 
3777 	for (i = 0; i < num_pins; i += 2) {
3778 		u8 lane, pol;
3779 		int dx, dy;
3780 
3781 		dx = pins[i];
3782 		dy = pins[i + 1];
3783 
3784 		if (dx < 0 || dx >= dsi->num_lanes_supported * 2)
3785 			return -EINVAL;
3786 
3787 		if (dy < 0 || dy >= dsi->num_lanes_supported * 2)
3788 			return -EINVAL;
3789 
3790 		if (dx & 1) {
3791 			if (dy != dx - 1)
3792 				return -EINVAL;
3793 			pol = 1;
3794 		} else {
3795 			if (dy != dx + 1)
3796 				return -EINVAL;
3797 			pol = 0;
3798 		}
3799 
3800 		lane = dx / 2;
3801 
3802 		lanes[lane].function = functions[i / 2];
3803 		lanes[lane].polarity = pol;
3804 		num_lanes++;
3805 	}
3806 
3807 	memcpy(dsi->lanes, lanes, sizeof(dsi->lanes));
3808 	dsi->num_lanes_used = num_lanes;
3809 
3810 	return 0;
3811 }
3812 
3813 static int dsi_enable_video_output(struct omap_dss_device *dssdev, int channel)
3814 {
3815 	struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
3816 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
3817 	enum omap_channel dispc_channel = dssdev->dispc_channel;
3818 	int bpp = dsi_get_pixel_size(dsi->pix_fmt);
3819 	struct omap_dss_device *out = &dsi->output;
3820 	u8 data_type;
3821 	u16 word_count;
3822 	int r;
3823 
3824 	if (!out->dispc_channel_connected) {
3825 		DSSERR("failed to enable display: no output/manager\n");
3826 		return -ENODEV;
3827 	}
3828 
3829 	r = dsi_display_init_dispc(dsidev, dispc_channel);
3830 	if (r)
3831 		goto err_init_dispc;
3832 
3833 	if (dsi->mode == OMAP_DSS_DSI_VIDEO_MODE) {
3834 		switch (dsi->pix_fmt) {
3835 		case OMAP_DSS_DSI_FMT_RGB888:
3836 			data_type = MIPI_DSI_PACKED_PIXEL_STREAM_24;
3837 			break;
3838 		case OMAP_DSS_DSI_FMT_RGB666:
3839 			data_type = MIPI_DSI_PIXEL_STREAM_3BYTE_18;
3840 			break;
3841 		case OMAP_DSS_DSI_FMT_RGB666_PACKED:
3842 			data_type = MIPI_DSI_PACKED_PIXEL_STREAM_18;
3843 			break;
3844 		case OMAP_DSS_DSI_FMT_RGB565:
3845 			data_type = MIPI_DSI_PACKED_PIXEL_STREAM_16;
3846 			break;
3847 		default:
3848 			r = -EINVAL;
3849 			goto err_pix_fmt;
3850 		}
3851 
3852 		dsi_if_enable(dsidev, false);
3853 		dsi_vc_enable(dsidev, channel, false);
3854 
3855 		/* MODE, 1 = video mode */
3856 		REG_FLD_MOD(dsidev, DSI_VC_CTRL(channel), 1, 4, 4);
3857 
3858 		word_count = DIV_ROUND_UP(dsi->vm.hactive * bpp, 8);
3859 
3860 		dsi_vc_write_long_header(dsidev, channel, data_type,
3861 				word_count, 0);
3862 
3863 		dsi_vc_enable(dsidev, channel, true);
3864 		dsi_if_enable(dsidev, true);
3865 	}
3866 
3867 	r = dss_mgr_enable(dispc_channel);
3868 	if (r)
3869 		goto err_mgr_enable;
3870 
3871 	return 0;
3872 
3873 err_mgr_enable:
3874 	if (dsi->mode == OMAP_DSS_DSI_VIDEO_MODE) {
3875 		dsi_if_enable(dsidev, false);
3876 		dsi_vc_enable(dsidev, channel, false);
3877 	}
3878 err_pix_fmt:
3879 	dsi_display_uninit_dispc(dsidev, dispc_channel);
3880 err_init_dispc:
3881 	return r;
3882 }
3883 
3884 static void dsi_disable_video_output(struct omap_dss_device *dssdev, int channel)
3885 {
3886 	struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
3887 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
3888 	enum omap_channel dispc_channel = dssdev->dispc_channel;
3889 
3890 	if (dsi->mode == OMAP_DSS_DSI_VIDEO_MODE) {
3891 		dsi_if_enable(dsidev, false);
3892 		dsi_vc_enable(dsidev, channel, false);
3893 
3894 		/* MODE, 0 = command mode */
3895 		REG_FLD_MOD(dsidev, DSI_VC_CTRL(channel), 0, 4, 4);
3896 
3897 		dsi_vc_enable(dsidev, channel, true);
3898 		dsi_if_enable(dsidev, true);
3899 	}
3900 
3901 	dss_mgr_disable(dispc_channel);
3902 
3903 	dsi_display_uninit_dispc(dsidev, dispc_channel);
3904 }
3905 
3906 static void dsi_update_screen_dispc(struct platform_device *dsidev)
3907 {
3908 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
3909 	enum omap_channel dispc_channel = dsi->output.dispc_channel;
3910 	unsigned bytespp;
3911 	unsigned bytespl;
3912 	unsigned bytespf;
3913 	unsigned total_len;
3914 	unsigned packet_payload;
3915 	unsigned packet_len;
3916 	u32 l;
3917 	int r;
3918 	const unsigned channel = dsi->update_channel;
3919 	const unsigned line_buf_size = dsi->line_buffer_size;
3920 	u16 w = dsi->vm.hactive;
3921 	u16 h = dsi->vm.vactive;
3922 
3923 	DSSDBG("dsi_update_screen_dispc(%dx%d)\n", w, h);
3924 
3925 	dsi_vc_config_source(dsidev, channel, DSI_VC_SOURCE_VP);
3926 
3927 	bytespp	= dsi_get_pixel_size(dsi->pix_fmt) / 8;
3928 	bytespl = w * bytespp;
3929 	bytespf = bytespl * h;
3930 
3931 	/* NOTE: packet_payload has to be equal to N * bytespl, where N is
3932 	 * number of lines in a packet.  See errata about VP_CLK_RATIO */
3933 
3934 	if (bytespf < line_buf_size)
3935 		packet_payload = bytespf;
3936 	else
3937 		packet_payload = (line_buf_size) / bytespl * bytespl;
3938 
3939 	packet_len = packet_payload + 1;	/* 1 byte for DCS cmd */
3940 	total_len = (bytespf / packet_payload) * packet_len;
3941 
3942 	if (bytespf % packet_payload)
3943 		total_len += (bytespf % packet_payload) + 1;
3944 
3945 	l = FLD_VAL(total_len, 23, 0); /* TE_SIZE */
3946 	dsi_write_reg(dsidev, DSI_VC_TE(channel), l);
3947 
3948 	dsi_vc_write_long_header(dsidev, channel, MIPI_DSI_DCS_LONG_WRITE,
3949 		packet_len, 0);
3950 
3951 	if (dsi->te_enabled)
3952 		l = FLD_MOD(l, 1, 30, 30); /* TE_EN */
3953 	else
3954 		l = FLD_MOD(l, 1, 31, 31); /* TE_START */
3955 	dsi_write_reg(dsidev, DSI_VC_TE(channel), l);
3956 
3957 	/* We put SIDLEMODE to no-idle for the duration of the transfer,
3958 	 * because DSS interrupts are not capable of waking up the CPU and the
3959 	 * framedone interrupt could be delayed for quite a long time. I think
3960 	 * the same goes for any DSS interrupts, but for some reason I have not
3961 	 * seen the problem anywhere else than here.
3962 	 */
3963 	dispc_disable_sidle();
3964 
3965 	dsi_perf_mark_start(dsidev);
3966 
3967 	r = schedule_delayed_work(&dsi->framedone_timeout_work,
3968 		msecs_to_jiffies(250));
3969 	BUG_ON(r == 0);
3970 
3971 	dss_mgr_set_timings(dispc_channel, &dsi->vm);
3972 
3973 	dss_mgr_start_update(dispc_channel);
3974 
3975 	if (dsi->te_enabled) {
3976 		/* disable LP_RX_TO, so that we can receive TE.  Time to wait
3977 		 * for TE is longer than the timer allows */
3978 		REG_FLD_MOD(dsidev, DSI_TIMING2, 0, 15, 15); /* LP_RX_TO */
3979 
3980 		dsi_vc_send_bta(dsidev, channel);
3981 
3982 #ifdef DSI_CATCH_MISSING_TE
3983 		mod_timer(&dsi->te_timer, jiffies + msecs_to_jiffies(250));
3984 #endif
3985 	}
3986 }
3987 
3988 #ifdef DSI_CATCH_MISSING_TE
3989 static void dsi_te_timeout(unsigned long arg)
3990 {
3991 	DSSERR("TE not received for 250ms!\n");
3992 }
3993 #endif
3994 
3995 static void dsi_handle_framedone(struct platform_device *dsidev, int error)
3996 {
3997 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
3998 
3999 	/* SIDLEMODE back to smart-idle */
4000 	dispc_enable_sidle();
4001 
4002 	if (dsi->te_enabled) {
4003 		/* enable LP_RX_TO again after the TE */
4004 		REG_FLD_MOD(dsidev, DSI_TIMING2, 1, 15, 15); /* LP_RX_TO */
4005 	}
4006 
4007 	dsi->framedone_callback(error, dsi->framedone_data);
4008 
4009 	if (!error)
4010 		dsi_perf_show(dsidev, "DISPC");
4011 }
4012 
4013 static void dsi_framedone_timeout_work_callback(struct work_struct *work)
4014 {
4015 	struct dsi_data *dsi = container_of(work, struct dsi_data,
4016 			framedone_timeout_work.work);
4017 	/* XXX While extremely unlikely, we could get FRAMEDONE interrupt after
4018 	 * 250ms which would conflict with this timeout work. What should be
4019 	 * done is first cancel the transfer on the HW, and then cancel the
4020 	 * possibly scheduled framedone work. However, cancelling the transfer
4021 	 * on the HW is buggy, and would probably require resetting the whole
4022 	 * DSI */
4023 
4024 	DSSERR("Framedone not received for 250ms!\n");
4025 
4026 	dsi_handle_framedone(dsi->pdev, -ETIMEDOUT);
4027 }
4028 
4029 static void dsi_framedone_irq_callback(void *data)
4030 {
4031 	struct platform_device *dsidev = (struct platform_device *) data;
4032 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4033 
4034 	/* Note: We get FRAMEDONE when DISPC has finished sending pixels and
4035 	 * turns itself off. However, DSI still has the pixels in its buffers,
4036 	 * and is sending the data.
4037 	 */
4038 
4039 	cancel_delayed_work(&dsi->framedone_timeout_work);
4040 
4041 	dsi_handle_framedone(dsidev, 0);
4042 }
4043 
4044 static int dsi_update(struct omap_dss_device *dssdev, int channel,
4045 		void (*callback)(int, void *), void *data)
4046 {
4047 	struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
4048 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4049 	u16 dw, dh;
4050 
4051 	dsi_perf_mark_setup(dsidev);
4052 
4053 	dsi->update_channel = channel;
4054 
4055 	dsi->framedone_callback = callback;
4056 	dsi->framedone_data = data;
4057 
4058 	dw = dsi->vm.hactive;
4059 	dh = dsi->vm.vactive;
4060 
4061 #ifdef DSI_PERF_MEASURE
4062 	dsi->update_bytes = dw * dh *
4063 		dsi_get_pixel_size(dsi->pix_fmt) / 8;
4064 #endif
4065 	dsi_update_screen_dispc(dsidev);
4066 
4067 	return 0;
4068 }
4069 
4070 /* Display funcs */
4071 
4072 static int dsi_configure_dispc_clocks(struct platform_device *dsidev)
4073 {
4074 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4075 	struct dispc_clock_info dispc_cinfo;
4076 	int r;
4077 	unsigned long fck;
4078 
4079 	fck = dsi_get_pll_hsdiv_dispc_rate(dsidev);
4080 
4081 	dispc_cinfo.lck_div = dsi->user_dispc_cinfo.lck_div;
4082 	dispc_cinfo.pck_div = dsi->user_dispc_cinfo.pck_div;
4083 
4084 	r = dispc_calc_clock_rates(fck, &dispc_cinfo);
4085 	if (r) {
4086 		DSSERR("Failed to calc dispc clocks\n");
4087 		return r;
4088 	}
4089 
4090 	dsi->mgr_config.clock_info = dispc_cinfo;
4091 
4092 	return 0;
4093 }
4094 
4095 static int dsi_display_init_dispc(struct platform_device *dsidev,
4096 		enum omap_channel channel)
4097 {
4098 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4099 	int r;
4100 
4101 	dss_select_lcd_clk_source(channel, dsi->module_id == 0 ?
4102 			DSS_CLK_SRC_PLL1_1 :
4103 			DSS_CLK_SRC_PLL2_1);
4104 
4105 	if (dsi->mode == OMAP_DSS_DSI_CMD_MODE) {
4106 		r = dss_mgr_register_framedone_handler(channel,
4107 				dsi_framedone_irq_callback, dsidev);
4108 		if (r) {
4109 			DSSERR("can't register FRAMEDONE handler\n");
4110 			goto err;
4111 		}
4112 
4113 		dsi->mgr_config.stallmode = true;
4114 		dsi->mgr_config.fifohandcheck = true;
4115 	} else {
4116 		dsi->mgr_config.stallmode = false;
4117 		dsi->mgr_config.fifohandcheck = false;
4118 	}
4119 
4120 	/*
4121 	 * override interlace, logic level and edge related parameters in
4122 	 * videomode with default values
4123 	 */
4124 	dsi->vm.flags &= ~DISPLAY_FLAGS_INTERLACED;
4125 	dsi->vm.flags &= ~DISPLAY_FLAGS_HSYNC_LOW;
4126 	dsi->vm.flags |= DISPLAY_FLAGS_HSYNC_HIGH;
4127 	dsi->vm.flags &= ~DISPLAY_FLAGS_VSYNC_LOW;
4128 	dsi->vm.flags |= DISPLAY_FLAGS_VSYNC_HIGH;
4129 	dsi->vm.flags &= ~DISPLAY_FLAGS_PIXDATA_NEGEDGE;
4130 	dsi->vm.flags |= DISPLAY_FLAGS_PIXDATA_POSEDGE;
4131 	dsi->vm.flags &= ~DISPLAY_FLAGS_DE_LOW;
4132 	dsi->vm.flags |= DISPLAY_FLAGS_DE_HIGH;
4133 	dsi->vm.flags &= ~DISPLAY_FLAGS_SYNC_POSEDGE;
4134 	dsi->vm.flags |= DISPLAY_FLAGS_SYNC_NEGEDGE;
4135 
4136 	dss_mgr_set_timings(channel, &dsi->vm);
4137 
4138 	r = dsi_configure_dispc_clocks(dsidev);
4139 	if (r)
4140 		goto err1;
4141 
4142 	dsi->mgr_config.io_pad_mode = DSS_IO_PAD_MODE_BYPASS;
4143 	dsi->mgr_config.video_port_width =
4144 			dsi_get_pixel_size(dsi->pix_fmt);
4145 	dsi->mgr_config.lcden_sig_polarity = 0;
4146 
4147 	dss_mgr_set_lcd_config(channel, &dsi->mgr_config);
4148 
4149 	return 0;
4150 err1:
4151 	if (dsi->mode == OMAP_DSS_DSI_CMD_MODE)
4152 		dss_mgr_unregister_framedone_handler(channel,
4153 				dsi_framedone_irq_callback, dsidev);
4154 err:
4155 	dss_select_lcd_clk_source(channel, DSS_CLK_SRC_FCK);
4156 	return r;
4157 }
4158 
4159 static void dsi_display_uninit_dispc(struct platform_device *dsidev,
4160 		enum omap_channel channel)
4161 {
4162 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4163 
4164 	if (dsi->mode == OMAP_DSS_DSI_CMD_MODE)
4165 		dss_mgr_unregister_framedone_handler(channel,
4166 				dsi_framedone_irq_callback, dsidev);
4167 
4168 	dss_select_lcd_clk_source(channel, DSS_CLK_SRC_FCK);
4169 }
4170 
4171 static int dsi_configure_dsi_clocks(struct platform_device *dsidev)
4172 {
4173 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4174 	struct dss_pll_clock_info cinfo;
4175 	int r;
4176 
4177 	cinfo = dsi->user_dsi_cinfo;
4178 
4179 	r = dss_pll_set_config(&dsi->pll, &cinfo);
4180 	if (r) {
4181 		DSSERR("Failed to set dsi clocks\n");
4182 		return r;
4183 	}
4184 
4185 	return 0;
4186 }
4187 
4188 static int dsi_display_init_dsi(struct platform_device *dsidev)
4189 {
4190 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4191 	int r;
4192 
4193 	r = dss_pll_enable(&dsi->pll);
4194 	if (r)
4195 		goto err0;
4196 
4197 	r = dsi_configure_dsi_clocks(dsidev);
4198 	if (r)
4199 		goto err1;
4200 
4201 	dss_select_dsi_clk_source(dsi->module_id, dsi->module_id == 0 ?
4202 			DSS_CLK_SRC_PLL1_2 :
4203 			DSS_CLK_SRC_PLL2_2);
4204 
4205 	DSSDBG("PLL OK\n");
4206 
4207 	r = dsi_cio_init(dsidev);
4208 	if (r)
4209 		goto err2;
4210 
4211 	_dsi_print_reset_status(dsidev);
4212 
4213 	dsi_proto_timings(dsidev);
4214 	dsi_set_lp_clk_divisor(dsidev);
4215 
4216 	if (1)
4217 		_dsi_print_reset_status(dsidev);
4218 
4219 	r = dsi_proto_config(dsidev);
4220 	if (r)
4221 		goto err3;
4222 
4223 	/* enable interface */
4224 	dsi_vc_enable(dsidev, 0, 1);
4225 	dsi_vc_enable(dsidev, 1, 1);
4226 	dsi_vc_enable(dsidev, 2, 1);
4227 	dsi_vc_enable(dsidev, 3, 1);
4228 	dsi_if_enable(dsidev, 1);
4229 	dsi_force_tx_stop_mode_io(dsidev);
4230 
4231 	return 0;
4232 err3:
4233 	dsi_cio_uninit(dsidev);
4234 err2:
4235 	dss_select_dsi_clk_source(dsi->module_id, DSS_CLK_SRC_FCK);
4236 err1:
4237 	dss_pll_disable(&dsi->pll);
4238 err0:
4239 	return r;
4240 }
4241 
4242 static void dsi_display_uninit_dsi(struct platform_device *dsidev,
4243 		bool disconnect_lanes, bool enter_ulps)
4244 {
4245 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4246 
4247 	if (enter_ulps && !dsi->ulps_enabled)
4248 		dsi_enter_ulps(dsidev);
4249 
4250 	/* disable interface */
4251 	dsi_if_enable(dsidev, 0);
4252 	dsi_vc_enable(dsidev, 0, 0);
4253 	dsi_vc_enable(dsidev, 1, 0);
4254 	dsi_vc_enable(dsidev, 2, 0);
4255 	dsi_vc_enable(dsidev, 3, 0);
4256 
4257 	dss_select_dsi_clk_source(dsi->module_id, DSS_CLK_SRC_FCK);
4258 	dsi_cio_uninit(dsidev);
4259 	dsi_pll_uninit(dsidev, disconnect_lanes);
4260 }
4261 
4262 static int dsi_display_enable(struct omap_dss_device *dssdev)
4263 {
4264 	struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
4265 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4266 	int r = 0;
4267 
4268 	DSSDBG("dsi_display_enable\n");
4269 
4270 	WARN_ON(!dsi_bus_is_locked(dsidev));
4271 
4272 	mutex_lock(&dsi->lock);
4273 
4274 	r = dsi_runtime_get(dsidev);
4275 	if (r)
4276 		goto err_get_dsi;
4277 
4278 	_dsi_initialize_irq(dsidev);
4279 
4280 	r = dsi_display_init_dsi(dsidev);
4281 	if (r)
4282 		goto err_init_dsi;
4283 
4284 	mutex_unlock(&dsi->lock);
4285 
4286 	return 0;
4287 
4288 err_init_dsi:
4289 	dsi_runtime_put(dsidev);
4290 err_get_dsi:
4291 	mutex_unlock(&dsi->lock);
4292 	DSSDBG("dsi_display_enable FAILED\n");
4293 	return r;
4294 }
4295 
4296 static void dsi_display_disable(struct omap_dss_device *dssdev,
4297 		bool disconnect_lanes, bool enter_ulps)
4298 {
4299 	struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
4300 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4301 
4302 	DSSDBG("dsi_display_disable\n");
4303 
4304 	WARN_ON(!dsi_bus_is_locked(dsidev));
4305 
4306 	mutex_lock(&dsi->lock);
4307 
4308 	dsi_sync_vc(dsidev, 0);
4309 	dsi_sync_vc(dsidev, 1);
4310 	dsi_sync_vc(dsidev, 2);
4311 	dsi_sync_vc(dsidev, 3);
4312 
4313 	dsi_display_uninit_dsi(dsidev, disconnect_lanes, enter_ulps);
4314 
4315 	dsi_runtime_put(dsidev);
4316 
4317 	mutex_unlock(&dsi->lock);
4318 }
4319 
4320 static int dsi_enable_te(struct omap_dss_device *dssdev, bool enable)
4321 {
4322 	struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
4323 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4324 
4325 	dsi->te_enabled = enable;
4326 	return 0;
4327 }
4328 
4329 #ifdef PRINT_VERBOSE_VM_TIMINGS
4330 static void print_dsi_vm(const char *str,
4331 		const struct omap_dss_dsi_videomode_timings *t)
4332 {
4333 	unsigned long byteclk = t->hsclk / 4;
4334 	int bl, wc, pps, tot;
4335 
4336 	wc = DIV_ROUND_UP(t->hact * t->bitspp, 8);
4337 	pps = DIV_ROUND_UP(wc + 6, t->ndl); /* pixel packet size */
4338 	bl = t->hss + t->hsa + t->hse + t->hbp + t->hfp;
4339 	tot = bl + pps;
4340 
4341 #define TO_DSI_T(x) ((u32)div64_u64((u64)x * 1000000000llu, byteclk))
4342 
4343 	pr_debug("%s bck %lu, %u/%u/%u/%u/%u/%u = %u+%u = %u, "
4344 			"%u/%u/%u/%u/%u/%u = %u + %u = %u\n",
4345 			str,
4346 			byteclk,
4347 			t->hss, t->hsa, t->hse, t->hbp, pps, t->hfp,
4348 			bl, pps, tot,
4349 			TO_DSI_T(t->hss),
4350 			TO_DSI_T(t->hsa),
4351 			TO_DSI_T(t->hse),
4352 			TO_DSI_T(t->hbp),
4353 			TO_DSI_T(pps),
4354 			TO_DSI_T(t->hfp),
4355 
4356 			TO_DSI_T(bl),
4357 			TO_DSI_T(pps),
4358 
4359 			TO_DSI_T(tot));
4360 #undef TO_DSI_T
4361 }
4362 
4363 static void print_dispc_vm(const char *str, const struct videomode *vm)
4364 {
4365 	unsigned long pck = vm->pixelclock;
4366 	int hact, bl, tot;
4367 
4368 	hact = vm->hactive;
4369 	bl = vm->hsync_len + vm->hback_porch + vm->hfront_porch;
4370 	tot = hact + bl;
4371 
4372 #define TO_DISPC_T(x) ((u32)div64_u64((u64)x * 1000000000llu, pck))
4373 
4374 	pr_debug("%s pck %lu, %u/%u/%u/%u = %u+%u = %u, "
4375 			"%u/%u/%u/%u = %u + %u = %u\n",
4376 			str,
4377 			pck,
4378 			vm->hsync_len, vm->hback_porch, hact, vm->hfront_porch,
4379 			bl, hact, tot,
4380 			TO_DISPC_T(vm->hsync_len),
4381 			TO_DISPC_T(vm->hback_porch),
4382 			TO_DISPC_T(hact),
4383 			TO_DISPC_T(vm->hfront_porch),
4384 			TO_DISPC_T(bl),
4385 			TO_DISPC_T(hact),
4386 			TO_DISPC_T(tot));
4387 #undef TO_DISPC_T
4388 }
4389 
4390 /* note: this is not quite accurate */
4391 static void print_dsi_dispc_vm(const char *str,
4392 		const struct omap_dss_dsi_videomode_timings *t)
4393 {
4394 	struct videomode vm = { 0 };
4395 	unsigned long byteclk = t->hsclk / 4;
4396 	unsigned long pck;
4397 	u64 dsi_tput;
4398 	int dsi_hact, dsi_htot;
4399 
4400 	dsi_tput = (u64)byteclk * t->ndl * 8;
4401 	pck = (u32)div64_u64(dsi_tput, t->bitspp);
4402 	dsi_hact = DIV_ROUND_UP(DIV_ROUND_UP(t->hact * t->bitspp, 8) + 6, t->ndl);
4403 	dsi_htot = t->hss + t->hsa + t->hse + t->hbp + dsi_hact + t->hfp;
4404 
4405 	vm.pixelclock = pck;
4406 	vm.hsync_len = div64_u64((u64)(t->hsa + t->hse) * pck, byteclk);
4407 	vm.hback_porch = div64_u64((u64)t->hbp * pck, byteclk);
4408 	vm.hfront_porch = div64_u64((u64)t->hfp * pck, byteclk);
4409 	vm.hactive = t->hact;
4410 
4411 	print_dispc_vm(str, &vm);
4412 }
4413 #endif /* PRINT_VERBOSE_VM_TIMINGS */
4414 
4415 static bool dsi_cm_calc_dispc_cb(int lckd, int pckd, unsigned long lck,
4416 		unsigned long pck, void *data)
4417 {
4418 	struct dsi_clk_calc_ctx *ctx = data;
4419 	struct videomode *vm = &ctx->vm;
4420 
4421 	ctx->dispc_cinfo.lck_div = lckd;
4422 	ctx->dispc_cinfo.pck_div = pckd;
4423 	ctx->dispc_cinfo.lck = lck;
4424 	ctx->dispc_cinfo.pck = pck;
4425 
4426 	*vm = *ctx->config->vm;
4427 	vm->pixelclock = pck;
4428 	vm->hactive = ctx->config->vm->hactive;
4429 	vm->vactive = ctx->config->vm->vactive;
4430 	vm->hsync_len = vm->hfront_porch = vm->hback_porch = vm->vsync_len = 1;
4431 	vm->vfront_porch = vm->vback_porch = 0;
4432 
4433 	return true;
4434 }
4435 
4436 static bool dsi_cm_calc_hsdiv_cb(int m_dispc, unsigned long dispc,
4437 		void *data)
4438 {
4439 	struct dsi_clk_calc_ctx *ctx = data;
4440 
4441 	ctx->dsi_cinfo.mX[HSDIV_DISPC] = m_dispc;
4442 	ctx->dsi_cinfo.clkout[HSDIV_DISPC] = dispc;
4443 
4444 	return dispc_div_calc(dispc, ctx->req_pck_min, ctx->req_pck_max,
4445 			dsi_cm_calc_dispc_cb, ctx);
4446 }
4447 
4448 static bool dsi_cm_calc_pll_cb(int n, int m, unsigned long fint,
4449 		unsigned long clkdco, void *data)
4450 {
4451 	struct dsi_clk_calc_ctx *ctx = data;
4452 
4453 	ctx->dsi_cinfo.n = n;
4454 	ctx->dsi_cinfo.m = m;
4455 	ctx->dsi_cinfo.fint = fint;
4456 	ctx->dsi_cinfo.clkdco = clkdco;
4457 
4458 	return dss_pll_hsdiv_calc_a(ctx->pll, clkdco, ctx->req_pck_min,
4459 			dss_feat_get_param_max(FEAT_PARAM_DSS_FCK),
4460 			dsi_cm_calc_hsdiv_cb, ctx);
4461 }
4462 
4463 static bool dsi_cm_calc(struct dsi_data *dsi,
4464 		const struct omap_dss_dsi_config *cfg,
4465 		struct dsi_clk_calc_ctx *ctx)
4466 {
4467 	unsigned long clkin;
4468 	int bitspp, ndl;
4469 	unsigned long pll_min, pll_max;
4470 	unsigned long pck, txbyteclk;
4471 
4472 	clkin = clk_get_rate(dsi->pll.clkin);
4473 	bitspp = dsi_get_pixel_size(cfg->pixel_format);
4474 	ndl = dsi->num_lanes_used - 1;
4475 
4476 	/*
4477 	 * Here we should calculate minimum txbyteclk to be able to send the
4478 	 * frame in time, and also to handle TE. That's not very simple, though,
4479 	 * especially as we go to LP between each pixel packet due to HW
4480 	 * "feature". So let's just estimate very roughly and multiply by 1.5.
4481 	 */
4482 	pck = cfg->vm->pixelclock;
4483 	pck = pck * 3 / 2;
4484 	txbyteclk = pck * bitspp / 8 / ndl;
4485 
4486 	memset(ctx, 0, sizeof(*ctx));
4487 	ctx->dsidev = dsi->pdev;
4488 	ctx->pll = &dsi->pll;
4489 	ctx->config = cfg;
4490 	ctx->req_pck_min = pck;
4491 	ctx->req_pck_nom = pck;
4492 	ctx->req_pck_max = pck * 3 / 2;
4493 
4494 	pll_min = max(cfg->hs_clk_min * 4, txbyteclk * 4 * 4);
4495 	pll_max = cfg->hs_clk_max * 4;
4496 
4497 	return dss_pll_calc_a(ctx->pll, clkin,
4498 			pll_min, pll_max,
4499 			dsi_cm_calc_pll_cb, ctx);
4500 }
4501 
4502 static bool dsi_vm_calc_blanking(struct dsi_clk_calc_ctx *ctx)
4503 {
4504 	struct dsi_data *dsi = dsi_get_dsidrv_data(ctx->dsidev);
4505 	const struct omap_dss_dsi_config *cfg = ctx->config;
4506 	int bitspp = dsi_get_pixel_size(cfg->pixel_format);
4507 	int ndl = dsi->num_lanes_used - 1;
4508 	unsigned long hsclk = ctx->dsi_cinfo.clkdco / 4;
4509 	unsigned long byteclk = hsclk / 4;
4510 
4511 	unsigned long dispc_pck, req_pck_min, req_pck_nom, req_pck_max;
4512 	int xres;
4513 	int panel_htot, panel_hbl; /* pixels */
4514 	int dispc_htot, dispc_hbl; /* pixels */
4515 	int dsi_htot, dsi_hact, dsi_hbl, hss, hse; /* byteclks */
4516 	int hfp, hsa, hbp;
4517 	const struct videomode *req_vm;
4518 	struct videomode *dispc_vm;
4519 	struct omap_dss_dsi_videomode_timings *dsi_vm;
4520 	u64 dsi_tput, dispc_tput;
4521 
4522 	dsi_tput = (u64)byteclk * ndl * 8;
4523 
4524 	req_vm = cfg->vm;
4525 	req_pck_min = ctx->req_pck_min;
4526 	req_pck_max = ctx->req_pck_max;
4527 	req_pck_nom = ctx->req_pck_nom;
4528 
4529 	dispc_pck = ctx->dispc_cinfo.pck;
4530 	dispc_tput = (u64)dispc_pck * bitspp;
4531 
4532 	xres = req_vm->hactive;
4533 
4534 	panel_hbl = req_vm->hfront_porch + req_vm->hback_porch +
4535 		    req_vm->hsync_len;
4536 	panel_htot = xres + panel_hbl;
4537 
4538 	dsi_hact = DIV_ROUND_UP(DIV_ROUND_UP(xres * bitspp, 8) + 6, ndl);
4539 
4540 	/*
4541 	 * When there are no line buffers, DISPC and DSI must have the
4542 	 * same tput. Otherwise DISPC tput needs to be higher than DSI's.
4543 	 */
4544 	if (dsi->line_buffer_size < xres * bitspp / 8) {
4545 		if (dispc_tput != dsi_tput)
4546 			return false;
4547 	} else {
4548 		if (dispc_tput < dsi_tput)
4549 			return false;
4550 	}
4551 
4552 	/* DSI tput must be over the min requirement */
4553 	if (dsi_tput < (u64)bitspp * req_pck_min)
4554 		return false;
4555 
4556 	/* When non-burst mode, DSI tput must be below max requirement. */
4557 	if (cfg->trans_mode != OMAP_DSS_DSI_BURST_MODE) {
4558 		if (dsi_tput > (u64)bitspp * req_pck_max)
4559 			return false;
4560 	}
4561 
4562 	hss = DIV_ROUND_UP(4, ndl);
4563 
4564 	if (cfg->trans_mode == OMAP_DSS_DSI_PULSE_MODE) {
4565 		if (ndl == 3 && req_vm->hsync_len == 0)
4566 			hse = 1;
4567 		else
4568 			hse = DIV_ROUND_UP(4, ndl);
4569 	} else {
4570 		hse = 0;
4571 	}
4572 
4573 	/* DSI htot to match the panel's nominal pck */
4574 	dsi_htot = div64_u64((u64)panel_htot * byteclk, req_pck_nom);
4575 
4576 	/* fail if there would be no time for blanking */
4577 	if (dsi_htot < hss + hse + dsi_hact)
4578 		return false;
4579 
4580 	/* total DSI blanking needed to achieve panel's TL */
4581 	dsi_hbl = dsi_htot - dsi_hact;
4582 
4583 	/* DISPC htot to match the DSI TL */
4584 	dispc_htot = div64_u64((u64)dsi_htot * dispc_pck, byteclk);
4585 
4586 	/* verify that the DSI and DISPC TLs are the same */
4587 	if ((u64)dsi_htot * dispc_pck != (u64)dispc_htot * byteclk)
4588 		return false;
4589 
4590 	dispc_hbl = dispc_htot - xres;
4591 
4592 	/* setup DSI videomode */
4593 
4594 	dsi_vm = &ctx->dsi_vm;
4595 	memset(dsi_vm, 0, sizeof(*dsi_vm));
4596 
4597 	dsi_vm->hsclk = hsclk;
4598 
4599 	dsi_vm->ndl = ndl;
4600 	dsi_vm->bitspp = bitspp;
4601 
4602 	if (cfg->trans_mode != OMAP_DSS_DSI_PULSE_MODE) {
4603 		hsa = 0;
4604 	} else if (ndl == 3 && req_vm->hsync_len == 0) {
4605 		hsa = 0;
4606 	} else {
4607 		hsa = div64_u64((u64)req_vm->hsync_len * byteclk, req_pck_nom);
4608 		hsa = max(hsa - hse, 1);
4609 	}
4610 
4611 	hbp = div64_u64((u64)req_vm->hback_porch * byteclk, req_pck_nom);
4612 	hbp = max(hbp, 1);
4613 
4614 	hfp = dsi_hbl - (hss + hsa + hse + hbp);
4615 	if (hfp < 1) {
4616 		int t;
4617 		/* we need to take cycles from hbp */
4618 
4619 		t = 1 - hfp;
4620 		hbp = max(hbp - t, 1);
4621 		hfp = dsi_hbl - (hss + hsa + hse + hbp);
4622 
4623 		if (hfp < 1 && hsa > 0) {
4624 			/* we need to take cycles from hsa */
4625 			t = 1 - hfp;
4626 			hsa = max(hsa - t, 1);
4627 			hfp = dsi_hbl - (hss + hsa + hse + hbp);
4628 		}
4629 	}
4630 
4631 	if (hfp < 1)
4632 		return false;
4633 
4634 	dsi_vm->hss = hss;
4635 	dsi_vm->hsa = hsa;
4636 	dsi_vm->hse = hse;
4637 	dsi_vm->hbp = hbp;
4638 	dsi_vm->hact = xres;
4639 	dsi_vm->hfp = hfp;
4640 
4641 	dsi_vm->vsa = req_vm->vsync_len;
4642 	dsi_vm->vbp = req_vm->vback_porch;
4643 	dsi_vm->vact = req_vm->vactive;
4644 	dsi_vm->vfp = req_vm->vfront_porch;
4645 
4646 	dsi_vm->trans_mode = cfg->trans_mode;
4647 
4648 	dsi_vm->blanking_mode = 0;
4649 	dsi_vm->hsa_blanking_mode = 1;
4650 	dsi_vm->hfp_blanking_mode = 1;
4651 	dsi_vm->hbp_blanking_mode = 1;
4652 
4653 	dsi_vm->ddr_clk_always_on = cfg->ddr_clk_always_on;
4654 	dsi_vm->window_sync = 4;
4655 
4656 	/* setup DISPC videomode */
4657 
4658 	dispc_vm = &ctx->vm;
4659 	*dispc_vm = *req_vm;
4660 	dispc_vm->pixelclock = dispc_pck;
4661 
4662 	if (cfg->trans_mode == OMAP_DSS_DSI_PULSE_MODE) {
4663 		hsa = div64_u64((u64)req_vm->hsync_len * dispc_pck,
4664 				req_pck_nom);
4665 		hsa = max(hsa, 1);
4666 	} else {
4667 		hsa = 1;
4668 	}
4669 
4670 	hbp = div64_u64((u64)req_vm->hback_porch * dispc_pck, req_pck_nom);
4671 	hbp = max(hbp, 1);
4672 
4673 	hfp = dispc_hbl - hsa - hbp;
4674 	if (hfp < 1) {
4675 		int t;
4676 		/* we need to take cycles from hbp */
4677 
4678 		t = 1 - hfp;
4679 		hbp = max(hbp - t, 1);
4680 		hfp = dispc_hbl - hsa - hbp;
4681 
4682 		if (hfp < 1) {
4683 			/* we need to take cycles from hsa */
4684 			t = 1 - hfp;
4685 			hsa = max(hsa - t, 1);
4686 			hfp = dispc_hbl - hsa - hbp;
4687 		}
4688 	}
4689 
4690 	if (hfp < 1)
4691 		return false;
4692 
4693 	dispc_vm->hfront_porch = hfp;
4694 	dispc_vm->hsync_len = hsa;
4695 	dispc_vm->hback_porch = hbp;
4696 
4697 	return true;
4698 }
4699 
4700 
4701 static bool dsi_vm_calc_dispc_cb(int lckd, int pckd, unsigned long lck,
4702 		unsigned long pck, void *data)
4703 {
4704 	struct dsi_clk_calc_ctx *ctx = data;
4705 
4706 	ctx->dispc_cinfo.lck_div = lckd;
4707 	ctx->dispc_cinfo.pck_div = pckd;
4708 	ctx->dispc_cinfo.lck = lck;
4709 	ctx->dispc_cinfo.pck = pck;
4710 
4711 	if (dsi_vm_calc_blanking(ctx) == false)
4712 		return false;
4713 
4714 #ifdef PRINT_VERBOSE_VM_TIMINGS
4715 	print_dispc_vm("dispc", &ctx->vm);
4716 	print_dsi_vm("dsi  ", &ctx->dsi_vm);
4717 	print_dispc_vm("req  ", ctx->config->vm);
4718 	print_dsi_dispc_vm("act  ", &ctx->dsi_vm);
4719 #endif
4720 
4721 	return true;
4722 }
4723 
4724 static bool dsi_vm_calc_hsdiv_cb(int m_dispc, unsigned long dispc,
4725 		void *data)
4726 {
4727 	struct dsi_clk_calc_ctx *ctx = data;
4728 	unsigned long pck_max;
4729 
4730 	ctx->dsi_cinfo.mX[HSDIV_DISPC] = m_dispc;
4731 	ctx->dsi_cinfo.clkout[HSDIV_DISPC] = dispc;
4732 
4733 	/*
4734 	 * In burst mode we can let the dispc pck be arbitrarily high, but it
4735 	 * limits our scaling abilities. So for now, don't aim too high.
4736 	 */
4737 
4738 	if (ctx->config->trans_mode == OMAP_DSS_DSI_BURST_MODE)
4739 		pck_max = ctx->req_pck_max + 10000000;
4740 	else
4741 		pck_max = ctx->req_pck_max;
4742 
4743 	return dispc_div_calc(dispc, ctx->req_pck_min, pck_max,
4744 			dsi_vm_calc_dispc_cb, ctx);
4745 }
4746 
4747 static bool dsi_vm_calc_pll_cb(int n, int m, unsigned long fint,
4748 		unsigned long clkdco, void *data)
4749 {
4750 	struct dsi_clk_calc_ctx *ctx = data;
4751 
4752 	ctx->dsi_cinfo.n = n;
4753 	ctx->dsi_cinfo.m = m;
4754 	ctx->dsi_cinfo.fint = fint;
4755 	ctx->dsi_cinfo.clkdco = clkdco;
4756 
4757 	return dss_pll_hsdiv_calc_a(ctx->pll, clkdco, ctx->req_pck_min,
4758 			dss_feat_get_param_max(FEAT_PARAM_DSS_FCK),
4759 			dsi_vm_calc_hsdiv_cb, ctx);
4760 }
4761 
4762 static bool dsi_vm_calc(struct dsi_data *dsi,
4763 		const struct omap_dss_dsi_config *cfg,
4764 		struct dsi_clk_calc_ctx *ctx)
4765 {
4766 	const struct videomode *vm = cfg->vm;
4767 	unsigned long clkin;
4768 	unsigned long pll_min;
4769 	unsigned long pll_max;
4770 	int ndl = dsi->num_lanes_used - 1;
4771 	int bitspp = dsi_get_pixel_size(cfg->pixel_format);
4772 	unsigned long byteclk_min;
4773 
4774 	clkin = clk_get_rate(dsi->pll.clkin);
4775 
4776 	memset(ctx, 0, sizeof(*ctx));
4777 	ctx->dsidev = dsi->pdev;
4778 	ctx->pll = &dsi->pll;
4779 	ctx->config = cfg;
4780 
4781 	/* these limits should come from the panel driver */
4782 	ctx->req_pck_min = vm->pixelclock - 1000;
4783 	ctx->req_pck_nom = vm->pixelclock;
4784 	ctx->req_pck_max = vm->pixelclock + 1000;
4785 
4786 	byteclk_min = div64_u64((u64)ctx->req_pck_min * bitspp, ndl * 8);
4787 	pll_min = max(cfg->hs_clk_min * 4, byteclk_min * 4 * 4);
4788 
4789 	if (cfg->trans_mode == OMAP_DSS_DSI_BURST_MODE) {
4790 		pll_max = cfg->hs_clk_max * 4;
4791 	} else {
4792 		unsigned long byteclk_max;
4793 		byteclk_max = div64_u64((u64)ctx->req_pck_max * bitspp,
4794 				ndl * 8);
4795 
4796 		pll_max = byteclk_max * 4 * 4;
4797 	}
4798 
4799 	return dss_pll_calc_a(ctx->pll, clkin,
4800 			pll_min, pll_max,
4801 			dsi_vm_calc_pll_cb, ctx);
4802 }
4803 
4804 static int dsi_set_config(struct omap_dss_device *dssdev,
4805 		const struct omap_dss_dsi_config *config)
4806 {
4807 	struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
4808 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4809 	struct dsi_clk_calc_ctx ctx;
4810 	bool ok;
4811 	int r;
4812 
4813 	mutex_lock(&dsi->lock);
4814 
4815 	dsi->pix_fmt = config->pixel_format;
4816 	dsi->mode = config->mode;
4817 
4818 	if (config->mode == OMAP_DSS_DSI_VIDEO_MODE)
4819 		ok = dsi_vm_calc(dsi, config, &ctx);
4820 	else
4821 		ok = dsi_cm_calc(dsi, config, &ctx);
4822 
4823 	if (!ok) {
4824 		DSSERR("failed to find suitable DSI clock settings\n");
4825 		r = -EINVAL;
4826 		goto err;
4827 	}
4828 
4829 	dsi_pll_calc_dsi_fck(&ctx.dsi_cinfo);
4830 
4831 	r = dsi_lp_clock_calc(ctx.dsi_cinfo.clkout[HSDIV_DSI],
4832 		config->lp_clk_min, config->lp_clk_max, &dsi->user_lp_cinfo);
4833 	if (r) {
4834 		DSSERR("failed to find suitable DSI LP clock settings\n");
4835 		goto err;
4836 	}
4837 
4838 	dsi->user_dsi_cinfo = ctx.dsi_cinfo;
4839 	dsi->user_dispc_cinfo = ctx.dispc_cinfo;
4840 
4841 	dsi->vm = ctx.vm;
4842 	dsi->vm_timings = ctx.dsi_vm;
4843 
4844 	mutex_unlock(&dsi->lock);
4845 
4846 	return 0;
4847 err:
4848 	mutex_unlock(&dsi->lock);
4849 
4850 	return r;
4851 }
4852 
4853 /*
4854  * Return a hardcoded channel for the DSI output. This should work for
4855  * current use cases, but this can be later expanded to either resolve
4856  * the channel in some more dynamic manner, or get the channel as a user
4857  * parameter.
4858  */
4859 static enum omap_channel dsi_get_channel(int module_id)
4860 {
4861 	switch (omapdss_get_version()) {
4862 	case OMAPDSS_VER_OMAP24xx:
4863 	case OMAPDSS_VER_AM43xx:
4864 		DSSWARN("DSI not supported\n");
4865 		return OMAP_DSS_CHANNEL_LCD;
4866 
4867 	case OMAPDSS_VER_OMAP34xx_ES1:
4868 	case OMAPDSS_VER_OMAP34xx_ES3:
4869 	case OMAPDSS_VER_OMAP3630:
4870 	case OMAPDSS_VER_AM35xx:
4871 		return OMAP_DSS_CHANNEL_LCD;
4872 
4873 	case OMAPDSS_VER_OMAP4430_ES1:
4874 	case OMAPDSS_VER_OMAP4430_ES2:
4875 	case OMAPDSS_VER_OMAP4:
4876 		switch (module_id) {
4877 		case 0:
4878 			return OMAP_DSS_CHANNEL_LCD;
4879 		case 1:
4880 			return OMAP_DSS_CHANNEL_LCD2;
4881 		default:
4882 			DSSWARN("unsupported module id\n");
4883 			return OMAP_DSS_CHANNEL_LCD;
4884 		}
4885 
4886 	case OMAPDSS_VER_OMAP5:
4887 		switch (module_id) {
4888 		case 0:
4889 			return OMAP_DSS_CHANNEL_LCD;
4890 		case 1:
4891 			return OMAP_DSS_CHANNEL_LCD3;
4892 		default:
4893 			DSSWARN("unsupported module id\n");
4894 			return OMAP_DSS_CHANNEL_LCD;
4895 		}
4896 
4897 	default:
4898 		DSSWARN("unsupported DSS version\n");
4899 		return OMAP_DSS_CHANNEL_LCD;
4900 	}
4901 }
4902 
4903 static int dsi_request_vc(struct omap_dss_device *dssdev, int *channel)
4904 {
4905 	struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
4906 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4907 	int i;
4908 
4909 	for (i = 0; i < ARRAY_SIZE(dsi->vc); i++) {
4910 		if (!dsi->vc[i].dssdev) {
4911 			dsi->vc[i].dssdev = dssdev;
4912 			*channel = i;
4913 			return 0;
4914 		}
4915 	}
4916 
4917 	DSSERR("cannot get VC for display %s", dssdev->name);
4918 	return -ENOSPC;
4919 }
4920 
4921 static int dsi_set_vc_id(struct omap_dss_device *dssdev, int channel, int vc_id)
4922 {
4923 	struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
4924 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4925 
4926 	if (vc_id < 0 || vc_id > 3) {
4927 		DSSERR("VC ID out of range\n");
4928 		return -EINVAL;
4929 	}
4930 
4931 	if (channel < 0 || channel > 3) {
4932 		DSSERR("Virtual Channel out of range\n");
4933 		return -EINVAL;
4934 	}
4935 
4936 	if (dsi->vc[channel].dssdev != dssdev) {
4937 		DSSERR("Virtual Channel not allocated to display %s\n",
4938 			dssdev->name);
4939 		return -EINVAL;
4940 	}
4941 
4942 	dsi->vc[channel].vc_id = vc_id;
4943 
4944 	return 0;
4945 }
4946 
4947 static void dsi_release_vc(struct omap_dss_device *dssdev, int channel)
4948 {
4949 	struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
4950 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4951 
4952 	if ((channel >= 0 && channel <= 3) &&
4953 		dsi->vc[channel].dssdev == dssdev) {
4954 		dsi->vc[channel].dssdev = NULL;
4955 		dsi->vc[channel].vc_id = 0;
4956 	}
4957 }
4958 
4959 
4960 static int dsi_get_clocks(struct platform_device *dsidev)
4961 {
4962 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4963 	struct clk *clk;
4964 
4965 	clk = devm_clk_get(&dsidev->dev, "fck");
4966 	if (IS_ERR(clk)) {
4967 		DSSERR("can't get fck\n");
4968 		return PTR_ERR(clk);
4969 	}
4970 
4971 	dsi->dss_clk = clk;
4972 
4973 	return 0;
4974 }
4975 
4976 static int dsi_connect(struct omap_dss_device *dssdev,
4977 		struct omap_dss_device *dst)
4978 {
4979 	struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
4980 	enum omap_channel dispc_channel = dssdev->dispc_channel;
4981 	int r;
4982 
4983 	r = dsi_regulator_init(dsidev);
4984 	if (r)
4985 		return r;
4986 
4987 	r = dss_mgr_connect(dispc_channel, dssdev);
4988 	if (r)
4989 		return r;
4990 
4991 	r = omapdss_output_set_device(dssdev, dst);
4992 	if (r) {
4993 		DSSERR("failed to connect output to new device: %s\n",
4994 				dssdev->name);
4995 		dss_mgr_disconnect(dispc_channel, dssdev);
4996 		return r;
4997 	}
4998 
4999 	return 0;
5000 }
5001 
5002 static void dsi_disconnect(struct omap_dss_device *dssdev,
5003 		struct omap_dss_device *dst)
5004 {
5005 	enum omap_channel dispc_channel = dssdev->dispc_channel;
5006 
5007 	WARN_ON(dst != dssdev->dst);
5008 
5009 	if (dst != dssdev->dst)
5010 		return;
5011 
5012 	omapdss_output_unset_device(dssdev);
5013 
5014 	dss_mgr_disconnect(dispc_channel, dssdev);
5015 }
5016 
5017 static const struct omapdss_dsi_ops dsi_ops = {
5018 	.connect = dsi_connect,
5019 	.disconnect = dsi_disconnect,
5020 
5021 	.bus_lock = dsi_bus_lock,
5022 	.bus_unlock = dsi_bus_unlock,
5023 
5024 	.enable = dsi_display_enable,
5025 	.disable = dsi_display_disable,
5026 
5027 	.enable_hs = dsi_vc_enable_hs,
5028 
5029 	.configure_pins = dsi_configure_pins,
5030 	.set_config = dsi_set_config,
5031 
5032 	.enable_video_output = dsi_enable_video_output,
5033 	.disable_video_output = dsi_disable_video_output,
5034 
5035 	.update = dsi_update,
5036 
5037 	.enable_te = dsi_enable_te,
5038 
5039 	.request_vc = dsi_request_vc,
5040 	.set_vc_id = dsi_set_vc_id,
5041 	.release_vc = dsi_release_vc,
5042 
5043 	.dcs_write = dsi_vc_dcs_write,
5044 	.dcs_write_nosync = dsi_vc_dcs_write_nosync,
5045 	.dcs_read = dsi_vc_dcs_read,
5046 
5047 	.gen_write = dsi_vc_generic_write,
5048 	.gen_write_nosync = dsi_vc_generic_write_nosync,
5049 	.gen_read = dsi_vc_generic_read,
5050 
5051 	.bta_sync = dsi_vc_send_bta_sync,
5052 
5053 	.set_max_rx_packet_size = dsi_vc_set_max_rx_packet_size,
5054 };
5055 
5056 static void dsi_init_output(struct platform_device *dsidev)
5057 {
5058 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
5059 	struct omap_dss_device *out = &dsi->output;
5060 
5061 	out->dev = &dsidev->dev;
5062 	out->id = dsi->module_id == 0 ?
5063 			OMAP_DSS_OUTPUT_DSI1 : OMAP_DSS_OUTPUT_DSI2;
5064 
5065 	out->output_type = OMAP_DISPLAY_TYPE_DSI;
5066 	out->name = dsi->module_id == 0 ? "dsi.0" : "dsi.1";
5067 	out->dispc_channel = dsi_get_channel(dsi->module_id);
5068 	out->ops.dsi = &dsi_ops;
5069 	out->owner = THIS_MODULE;
5070 
5071 	omapdss_register_output(out);
5072 }
5073 
5074 static void dsi_uninit_output(struct platform_device *dsidev)
5075 {
5076 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
5077 	struct omap_dss_device *out = &dsi->output;
5078 
5079 	omapdss_unregister_output(out);
5080 }
5081 
5082 static int dsi_probe_of(struct platform_device *pdev)
5083 {
5084 	struct device_node *node = pdev->dev.of_node;
5085 	struct dsi_data *dsi = dsi_get_dsidrv_data(pdev);
5086 	struct property *prop;
5087 	u32 lane_arr[10];
5088 	int len, num_pins;
5089 	int r, i;
5090 	struct device_node *ep;
5091 	struct omap_dsi_pin_config pin_cfg;
5092 
5093 	ep = omapdss_of_get_first_endpoint(node);
5094 	if (!ep)
5095 		return 0;
5096 
5097 	prop = of_find_property(ep, "lanes", &len);
5098 	if (prop == NULL) {
5099 		dev_err(&pdev->dev, "failed to find lane data\n");
5100 		r = -EINVAL;
5101 		goto err;
5102 	}
5103 
5104 	num_pins = len / sizeof(u32);
5105 
5106 	if (num_pins < 4 || num_pins % 2 != 0 ||
5107 		num_pins > dsi->num_lanes_supported * 2) {
5108 		dev_err(&pdev->dev, "bad number of lanes\n");
5109 		r = -EINVAL;
5110 		goto err;
5111 	}
5112 
5113 	r = of_property_read_u32_array(ep, "lanes", lane_arr, num_pins);
5114 	if (r) {
5115 		dev_err(&pdev->dev, "failed to read lane data\n");
5116 		goto err;
5117 	}
5118 
5119 	pin_cfg.num_pins = num_pins;
5120 	for (i = 0; i < num_pins; ++i)
5121 		pin_cfg.pins[i] = (int)lane_arr[i];
5122 
5123 	r = dsi_configure_pins(&dsi->output, &pin_cfg);
5124 	if (r) {
5125 		dev_err(&pdev->dev, "failed to configure pins");
5126 		goto err;
5127 	}
5128 
5129 	of_node_put(ep);
5130 
5131 	return 0;
5132 
5133 err:
5134 	of_node_put(ep);
5135 	return r;
5136 }
5137 
5138 static const struct dss_pll_ops dsi_pll_ops = {
5139 	.enable = dsi_pll_enable,
5140 	.disable = dsi_pll_disable,
5141 	.set_config = dss_pll_write_config_type_a,
5142 };
5143 
5144 static const struct dss_pll_hw dss_omap3_dsi_pll_hw = {
5145 	.type = DSS_PLL_TYPE_A,
5146 
5147 	.n_max = (1 << 7) - 1,
5148 	.m_max = (1 << 11) - 1,
5149 	.mX_max = (1 << 4) - 1,
5150 	.fint_min = 750000,
5151 	.fint_max = 2100000,
5152 	.clkdco_low = 1000000000,
5153 	.clkdco_max = 1800000000,
5154 
5155 	.n_msb = 7,
5156 	.n_lsb = 1,
5157 	.m_msb = 18,
5158 	.m_lsb = 8,
5159 
5160 	.mX_msb[0] = 22,
5161 	.mX_lsb[0] = 19,
5162 	.mX_msb[1] = 26,
5163 	.mX_lsb[1] = 23,
5164 
5165 	.has_stopmode = true,
5166 	.has_freqsel = true,
5167 	.has_selfreqdco = false,
5168 	.has_refsel = false,
5169 };
5170 
5171 static const struct dss_pll_hw dss_omap4_dsi_pll_hw = {
5172 	.type = DSS_PLL_TYPE_A,
5173 
5174 	.n_max = (1 << 8) - 1,
5175 	.m_max = (1 << 12) - 1,
5176 	.mX_max = (1 << 5) - 1,
5177 	.fint_min = 500000,
5178 	.fint_max = 2500000,
5179 	.clkdco_low = 1000000000,
5180 	.clkdco_max = 1800000000,
5181 
5182 	.n_msb = 8,
5183 	.n_lsb = 1,
5184 	.m_msb = 20,
5185 	.m_lsb = 9,
5186 
5187 	.mX_msb[0] = 25,
5188 	.mX_lsb[0] = 21,
5189 	.mX_msb[1] = 30,
5190 	.mX_lsb[1] = 26,
5191 
5192 	.has_stopmode = true,
5193 	.has_freqsel = false,
5194 	.has_selfreqdco = false,
5195 	.has_refsel = false,
5196 };
5197 
5198 static const struct dss_pll_hw dss_omap5_dsi_pll_hw = {
5199 	.type = DSS_PLL_TYPE_A,
5200 
5201 	.n_max = (1 << 8) - 1,
5202 	.m_max = (1 << 12) - 1,
5203 	.mX_max = (1 << 5) - 1,
5204 	.fint_min = 150000,
5205 	.fint_max = 52000000,
5206 	.clkdco_low = 1000000000,
5207 	.clkdco_max = 1800000000,
5208 
5209 	.n_msb = 8,
5210 	.n_lsb = 1,
5211 	.m_msb = 20,
5212 	.m_lsb = 9,
5213 
5214 	.mX_msb[0] = 25,
5215 	.mX_lsb[0] = 21,
5216 	.mX_msb[1] = 30,
5217 	.mX_lsb[1] = 26,
5218 
5219 	.has_stopmode = true,
5220 	.has_freqsel = false,
5221 	.has_selfreqdco = true,
5222 	.has_refsel = true,
5223 };
5224 
5225 static int dsi_init_pll_data(struct platform_device *dsidev)
5226 {
5227 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
5228 	struct dss_pll *pll = &dsi->pll;
5229 	struct clk *clk;
5230 	int r;
5231 
5232 	clk = devm_clk_get(&dsidev->dev, "sys_clk");
5233 	if (IS_ERR(clk)) {
5234 		DSSERR("can't get sys_clk\n");
5235 		return PTR_ERR(clk);
5236 	}
5237 
5238 	pll->name = dsi->module_id == 0 ? "dsi0" : "dsi1";
5239 	pll->id = dsi->module_id == 0 ? DSS_PLL_DSI1 : DSS_PLL_DSI2;
5240 	pll->clkin = clk;
5241 	pll->base = dsi->pll_base;
5242 
5243 	switch (omapdss_get_version()) {
5244 	case OMAPDSS_VER_OMAP34xx_ES1:
5245 	case OMAPDSS_VER_OMAP34xx_ES3:
5246 	case OMAPDSS_VER_OMAP3630:
5247 	case OMAPDSS_VER_AM35xx:
5248 		pll->hw = &dss_omap3_dsi_pll_hw;
5249 		break;
5250 
5251 	case OMAPDSS_VER_OMAP4430_ES1:
5252 	case OMAPDSS_VER_OMAP4430_ES2:
5253 	case OMAPDSS_VER_OMAP4:
5254 		pll->hw = &dss_omap4_dsi_pll_hw;
5255 		break;
5256 
5257 	case OMAPDSS_VER_OMAP5:
5258 		pll->hw = &dss_omap5_dsi_pll_hw;
5259 		break;
5260 
5261 	default:
5262 		return -ENODEV;
5263 	}
5264 
5265 	pll->ops = &dsi_pll_ops;
5266 
5267 	r = dss_pll_register(pll);
5268 	if (r)
5269 		return r;
5270 
5271 	return 0;
5272 }
5273 
5274 /* DSI1 HW IP initialisation */
5275 static int dsi_bind(struct device *dev, struct device *master, void *data)
5276 {
5277 	struct platform_device *dsidev = to_platform_device(dev);
5278 	u32 rev;
5279 	int r, i;
5280 	struct dsi_data *dsi;
5281 	struct resource *dsi_mem;
5282 	struct resource *res;
5283 	struct resource temp_res;
5284 
5285 	dsi = devm_kzalloc(&dsidev->dev, sizeof(*dsi), GFP_KERNEL);
5286 	if (!dsi)
5287 		return -ENOMEM;
5288 
5289 	dsi->pdev = dsidev;
5290 	dev_set_drvdata(&dsidev->dev, dsi);
5291 
5292 	spin_lock_init(&dsi->irq_lock);
5293 	spin_lock_init(&dsi->errors_lock);
5294 	dsi->errors = 0;
5295 
5296 #ifdef CONFIG_OMAP2_DSS_COLLECT_IRQ_STATS
5297 	spin_lock_init(&dsi->irq_stats_lock);
5298 	dsi->irq_stats.last_reset = jiffies;
5299 #endif
5300 
5301 	mutex_init(&dsi->lock);
5302 	sema_init(&dsi->bus_lock, 1);
5303 
5304 	INIT_DEFERRABLE_WORK(&dsi->framedone_timeout_work,
5305 			     dsi_framedone_timeout_work_callback);
5306 
5307 #ifdef DSI_CATCH_MISSING_TE
5308 	init_timer(&dsi->te_timer);
5309 	dsi->te_timer.function = dsi_te_timeout;
5310 	dsi->te_timer.data = 0;
5311 #endif
5312 
5313 	res = platform_get_resource_byname(dsidev, IORESOURCE_MEM, "proto");
5314 	if (!res) {
5315 		res = platform_get_resource(dsidev, IORESOURCE_MEM, 0);
5316 		if (!res) {
5317 			DSSERR("can't get IORESOURCE_MEM DSI\n");
5318 			return -EINVAL;
5319 		}
5320 
5321 		temp_res.start = res->start;
5322 		temp_res.end = temp_res.start + DSI_PROTO_SZ - 1;
5323 		res = &temp_res;
5324 	}
5325 
5326 	dsi_mem = res;
5327 
5328 	dsi->proto_base = devm_ioremap(&dsidev->dev, res->start,
5329 		resource_size(res));
5330 	if (!dsi->proto_base) {
5331 		DSSERR("can't ioremap DSI protocol engine\n");
5332 		return -ENOMEM;
5333 	}
5334 
5335 	res = platform_get_resource_byname(dsidev, IORESOURCE_MEM, "phy");
5336 	if (!res) {
5337 		res = platform_get_resource(dsidev, IORESOURCE_MEM, 0);
5338 		if (!res) {
5339 			DSSERR("can't get IORESOURCE_MEM DSI\n");
5340 			return -EINVAL;
5341 		}
5342 
5343 		temp_res.start = res->start + DSI_PHY_OFFSET;
5344 		temp_res.end = temp_res.start + DSI_PHY_SZ - 1;
5345 		res = &temp_res;
5346 	}
5347 
5348 	dsi->phy_base = devm_ioremap(&dsidev->dev, res->start,
5349 		resource_size(res));
5350 	if (!dsi->phy_base) {
5351 		DSSERR("can't ioremap DSI PHY\n");
5352 		return -ENOMEM;
5353 	}
5354 
5355 	res = platform_get_resource_byname(dsidev, IORESOURCE_MEM, "pll");
5356 	if (!res) {
5357 		res = platform_get_resource(dsidev, IORESOURCE_MEM, 0);
5358 		if (!res) {
5359 			DSSERR("can't get IORESOURCE_MEM DSI\n");
5360 			return -EINVAL;
5361 		}
5362 
5363 		temp_res.start = res->start + DSI_PLL_OFFSET;
5364 		temp_res.end = temp_res.start + DSI_PLL_SZ - 1;
5365 		res = &temp_res;
5366 	}
5367 
5368 	dsi->pll_base = devm_ioremap(&dsidev->dev, res->start,
5369 		resource_size(res));
5370 	if (!dsi->pll_base) {
5371 		DSSERR("can't ioremap DSI PLL\n");
5372 		return -ENOMEM;
5373 	}
5374 
5375 	dsi->irq = platform_get_irq(dsi->pdev, 0);
5376 	if (dsi->irq < 0) {
5377 		DSSERR("platform_get_irq failed\n");
5378 		return -ENODEV;
5379 	}
5380 
5381 	r = devm_request_irq(&dsidev->dev, dsi->irq, omap_dsi_irq_handler,
5382 			     IRQF_SHARED, dev_name(&dsidev->dev), dsi->pdev);
5383 	if (r < 0) {
5384 		DSSERR("request_irq failed\n");
5385 		return r;
5386 	}
5387 
5388 	if (dsidev->dev.of_node) {
5389 		const struct of_device_id *match;
5390 		const struct dsi_module_id_data *d;
5391 
5392 		match = of_match_node(dsi_of_match, dsidev->dev.of_node);
5393 		if (!match) {
5394 			DSSERR("unsupported DSI module\n");
5395 			return -ENODEV;
5396 		}
5397 
5398 		d = match->data;
5399 
5400 		while (d->address != 0 && d->address != dsi_mem->start)
5401 			d++;
5402 
5403 		if (d->address == 0) {
5404 			DSSERR("unsupported DSI module\n");
5405 			return -ENODEV;
5406 		}
5407 
5408 		dsi->module_id = d->id;
5409 	} else {
5410 		dsi->module_id = dsidev->id;
5411 	}
5412 
5413 	/* DSI VCs initialization */
5414 	for (i = 0; i < ARRAY_SIZE(dsi->vc); i++) {
5415 		dsi->vc[i].source = DSI_VC_SOURCE_L4;
5416 		dsi->vc[i].dssdev = NULL;
5417 		dsi->vc[i].vc_id = 0;
5418 	}
5419 
5420 	r = dsi_get_clocks(dsidev);
5421 	if (r)
5422 		return r;
5423 
5424 	dsi_init_pll_data(dsidev);
5425 
5426 	pm_runtime_enable(&dsidev->dev);
5427 
5428 	r = dsi_runtime_get(dsidev);
5429 	if (r)
5430 		goto err_runtime_get;
5431 
5432 	rev = dsi_read_reg(dsidev, DSI_REVISION);
5433 	dev_dbg(&dsidev->dev, "OMAP DSI rev %d.%d\n",
5434 	       FLD_GET(rev, 7, 4), FLD_GET(rev, 3, 0));
5435 
5436 	/* DSI on OMAP3 doesn't have register DSI_GNQ, set number
5437 	 * of data to 3 by default */
5438 	if (dss_has_feature(FEAT_DSI_GNQ))
5439 		/* NB_DATA_LANES */
5440 		dsi->num_lanes_supported = 1 + REG_GET(dsidev, DSI_GNQ, 11, 9);
5441 	else
5442 		dsi->num_lanes_supported = 3;
5443 
5444 	dsi->line_buffer_size = dsi_get_line_buf_size(dsidev);
5445 
5446 	dsi_init_output(dsidev);
5447 
5448 	if (dsidev->dev.of_node) {
5449 		r = dsi_probe_of(dsidev);
5450 		if (r) {
5451 			DSSERR("Invalid DSI DT data\n");
5452 			goto err_probe_of;
5453 		}
5454 
5455 		r = of_platform_populate(dsidev->dev.of_node, NULL, NULL,
5456 			&dsidev->dev);
5457 		if (r)
5458 			DSSERR("Failed to populate DSI child devices: %d\n", r);
5459 	}
5460 
5461 	dsi_runtime_put(dsidev);
5462 
5463 	if (dsi->module_id == 0)
5464 		dss_debugfs_create_file("dsi1_regs", dsi1_dump_regs);
5465 	else if (dsi->module_id == 1)
5466 		dss_debugfs_create_file("dsi2_regs", dsi2_dump_regs);
5467 
5468 #ifdef CONFIG_OMAP2_DSS_COLLECT_IRQ_STATS
5469 	if (dsi->module_id == 0)
5470 		dss_debugfs_create_file("dsi1_irqs", dsi1_dump_irqs);
5471 	else if (dsi->module_id == 1)
5472 		dss_debugfs_create_file("dsi2_irqs", dsi2_dump_irqs);
5473 #endif
5474 
5475 	return 0;
5476 
5477 err_probe_of:
5478 	dsi_uninit_output(dsidev);
5479 	dsi_runtime_put(dsidev);
5480 
5481 err_runtime_get:
5482 	pm_runtime_disable(&dsidev->dev);
5483 	return r;
5484 }
5485 
5486 static void dsi_unbind(struct device *dev, struct device *master, void *data)
5487 {
5488 	struct platform_device *dsidev = to_platform_device(dev);
5489 	struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
5490 
5491 	of_platform_depopulate(&dsidev->dev);
5492 
5493 	WARN_ON(dsi->scp_clk_refcount > 0);
5494 
5495 	dss_pll_unregister(&dsi->pll);
5496 
5497 	dsi_uninit_output(dsidev);
5498 
5499 	pm_runtime_disable(&dsidev->dev);
5500 
5501 	if (dsi->vdds_dsi_reg != NULL && dsi->vdds_dsi_enabled) {
5502 		regulator_disable(dsi->vdds_dsi_reg);
5503 		dsi->vdds_dsi_enabled = false;
5504 	}
5505 }
5506 
5507 static const struct component_ops dsi_component_ops = {
5508 	.bind	= dsi_bind,
5509 	.unbind	= dsi_unbind,
5510 };
5511 
5512 static int dsi_probe(struct platform_device *pdev)
5513 {
5514 	return component_add(&pdev->dev, &dsi_component_ops);
5515 }
5516 
5517 static int dsi_remove(struct platform_device *pdev)
5518 {
5519 	component_del(&pdev->dev, &dsi_component_ops);
5520 	return 0;
5521 }
5522 
5523 static int dsi_runtime_suspend(struct device *dev)
5524 {
5525 	struct platform_device *pdev = to_platform_device(dev);
5526 	struct dsi_data *dsi = dsi_get_dsidrv_data(pdev);
5527 
5528 	dsi->is_enabled = false;
5529 	/* ensure the irq handler sees the is_enabled value */
5530 	smp_wmb();
5531 	/* wait for current handler to finish before turning the DSI off */
5532 	synchronize_irq(dsi->irq);
5533 
5534 	dispc_runtime_put();
5535 
5536 	return 0;
5537 }
5538 
5539 static int dsi_runtime_resume(struct device *dev)
5540 {
5541 	struct platform_device *pdev = to_platform_device(dev);
5542 	struct dsi_data *dsi = dsi_get_dsidrv_data(pdev);
5543 	int r;
5544 
5545 	r = dispc_runtime_get();
5546 	if (r)
5547 		return r;
5548 
5549 	dsi->is_enabled = true;
5550 	/* ensure the irq handler sees the is_enabled value */
5551 	smp_wmb();
5552 
5553 	return 0;
5554 }
5555 
5556 static const struct dev_pm_ops dsi_pm_ops = {
5557 	.runtime_suspend = dsi_runtime_suspend,
5558 	.runtime_resume = dsi_runtime_resume,
5559 };
5560 
5561 static const struct dsi_module_id_data dsi_of_data_omap3[] = {
5562 	{ .address = 0x4804fc00, .id = 0, },
5563 	{ },
5564 };
5565 
5566 static const struct dsi_module_id_data dsi_of_data_omap4[] = {
5567 	{ .address = 0x58004000, .id = 0, },
5568 	{ .address = 0x58005000, .id = 1, },
5569 	{ },
5570 };
5571 
5572 static const struct dsi_module_id_data dsi_of_data_omap5[] = {
5573 	{ .address = 0x58004000, .id = 0, },
5574 	{ .address = 0x58009000, .id = 1, },
5575 	{ },
5576 };
5577 
5578 static const struct of_device_id dsi_of_match[] = {
5579 	{ .compatible = "ti,omap3-dsi", .data = dsi_of_data_omap3, },
5580 	{ .compatible = "ti,omap4-dsi", .data = dsi_of_data_omap4, },
5581 	{ .compatible = "ti,omap5-dsi", .data = dsi_of_data_omap5, },
5582 	{},
5583 };
5584 
5585 static struct platform_driver omap_dsihw_driver = {
5586 	.probe		= dsi_probe,
5587 	.remove		= dsi_remove,
5588 	.driver         = {
5589 		.name   = "omapdss_dsi",
5590 		.pm	= &dsi_pm_ops,
5591 		.of_match_table = dsi_of_match,
5592 		.suppress_bind_attrs = true,
5593 	},
5594 };
5595 
5596 int __init dsi_init_platform_driver(void)
5597 {
5598 	return platform_driver_register(&omap_dsihw_driver);
5599 }
5600 
5601 void dsi_uninit_platform_driver(void)
5602 {
5603 	platform_driver_unregister(&omap_dsihw_driver);
5604 }
5605