xref: /openbmc/linux/drivers/gpu/drm/omapdrm/dss/dispc.c (revision b240b419db5d624ce7a5a397d6f62a1a686009ec)
1 /*
2  * Copyright (C) 2009 Nokia Corporation
3  * Author: Tomi Valkeinen <tomi.valkeinen@nokia.com>
4  *
5  * Some code and ideas taken from drivers/video/omap/ driver
6  * by Imre Deak.
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms of the GNU General Public License version 2 as published by
10  * the Free Software Foundation.
11  *
12  * This program is distributed in the hope that it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  * more details.
16  *
17  * You should have received a copy of the GNU General Public License along with
18  * this program.  If not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 #define DSS_SUBSYS_NAME "DISPC"
22 
23 #include <linux/kernel.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/vmalloc.h>
26 #include <linux/export.h>
27 #include <linux/clk.h>
28 #include <linux/io.h>
29 #include <linux/jiffies.h>
30 #include <linux/seq_file.h>
31 #include <linux/delay.h>
32 #include <linux/workqueue.h>
33 #include <linux/hardirq.h>
34 #include <linux/platform_device.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/sizes.h>
37 #include <linux/mfd/syscon.h>
38 #include <linux/regmap.h>
39 #include <linux/of.h>
40 #include <linux/of_device.h>
41 #include <linux/component.h>
42 #include <linux/sys_soc.h>
43 #include <drm/drm_fourcc.h>
44 #include <drm/drm_blend.h>
45 
46 #include "omapdss.h"
47 #include "dss.h"
48 #include "dispc.h"
49 
50 struct dispc_device;
51 
52 /* DISPC */
53 #define DISPC_SZ_REGS			SZ_4K
54 
55 enum omap_burst_size {
56 	BURST_SIZE_X2 = 0,
57 	BURST_SIZE_X4 = 1,
58 	BURST_SIZE_X8 = 2,
59 };
60 
61 #define REG_GET(dispc, idx, start, end) \
62 	FLD_GET(dispc_read_reg(dispc, idx), start, end)
63 
64 #define REG_FLD_MOD(dispc, idx, val, start, end)			\
65 	dispc_write_reg(dispc, idx, \
66 			FLD_MOD(dispc_read_reg(dispc, idx), val, start, end))
67 
68 /* DISPC has feature id */
69 enum dispc_feature_id {
70 	FEAT_LCDENABLEPOL,
71 	FEAT_LCDENABLESIGNAL,
72 	FEAT_PCKFREEENABLE,
73 	FEAT_FUNCGATED,
74 	FEAT_MGR_LCD2,
75 	FEAT_MGR_LCD3,
76 	FEAT_LINEBUFFERSPLIT,
77 	FEAT_ROWREPEATENABLE,
78 	FEAT_RESIZECONF,
79 	/* Independent core clk divider */
80 	FEAT_CORE_CLK_DIV,
81 	FEAT_HANDLE_UV_SEPARATE,
82 	FEAT_ATTR2,
83 	FEAT_CPR,
84 	FEAT_PRELOAD,
85 	FEAT_FIR_COEF_V,
86 	FEAT_ALPHA_FIXED_ZORDER,
87 	FEAT_ALPHA_FREE_ZORDER,
88 	FEAT_FIFO_MERGE,
89 	/* An unknown HW bug causing the normal FIFO thresholds not to work */
90 	FEAT_OMAP3_DSI_FIFO_BUG,
91 	FEAT_BURST_2D,
92 	FEAT_MFLAG,
93 };
94 
95 struct dispc_features {
96 	u8 sw_start;
97 	u8 fp_start;
98 	u8 bp_start;
99 	u16 sw_max;
100 	u16 vp_max;
101 	u16 hp_max;
102 	u8 mgr_width_start;
103 	u8 mgr_height_start;
104 	u16 mgr_width_max;
105 	u16 mgr_height_max;
106 	unsigned long max_lcd_pclk;
107 	unsigned long max_tv_pclk;
108 	unsigned int max_downscale;
109 	unsigned int max_line_width;
110 	unsigned int min_pcd;
111 	int (*calc_scaling)(struct dispc_device *dispc,
112 		unsigned long pclk, unsigned long lclk,
113 		const struct videomode *vm,
114 		u16 width, u16 height, u16 out_width, u16 out_height,
115 		u32 fourcc, bool *five_taps,
116 		int *x_predecim, int *y_predecim, int *decim_x, int *decim_y,
117 		u16 pos_x, unsigned long *core_clk, bool mem_to_mem);
118 	unsigned long (*calc_core_clk) (unsigned long pclk,
119 		u16 width, u16 height, u16 out_width, u16 out_height,
120 		bool mem_to_mem);
121 	u8 num_fifos;
122 	const enum dispc_feature_id *features;
123 	unsigned int num_features;
124 	const struct dss_reg_field *reg_fields;
125 	const unsigned int num_reg_fields;
126 	const enum omap_overlay_caps *overlay_caps;
127 	const u32 **supported_color_modes;
128 	unsigned int num_mgrs;
129 	unsigned int num_ovls;
130 	unsigned int buffer_size_unit;
131 	unsigned int burst_size_unit;
132 
133 	/* swap GFX & WB fifos */
134 	bool gfx_fifo_workaround:1;
135 
136 	/* no DISPC_IRQ_FRAMEDONETV on this SoC */
137 	bool no_framedone_tv:1;
138 
139 	/* revert to the OMAP4 mechanism of DISPC Smart Standby operation */
140 	bool mstandby_workaround:1;
141 
142 	bool set_max_preload:1;
143 
144 	/* PIXEL_INC is not added to the last pixel of a line */
145 	bool last_pixel_inc_missing:1;
146 
147 	/* POL_FREQ has ALIGN bit */
148 	bool supports_sync_align:1;
149 
150 	bool has_writeback:1;
151 
152 	bool supports_double_pixel:1;
153 
154 	/*
155 	 * Field order for VENC is different than HDMI. We should handle this in
156 	 * some intelligent manner, but as the SoCs have either HDMI or VENC,
157 	 * never both, we can just use this flag for now.
158 	 */
159 	bool reverse_ilace_field_order:1;
160 
161 	bool has_gamma_table:1;
162 
163 	bool has_gamma_i734_bug:1;
164 };
165 
166 #define DISPC_MAX_NR_FIFOS 5
167 #define DISPC_MAX_CHANNEL_GAMMA 4
168 
169 struct dispc_device {
170 	struct platform_device *pdev;
171 	void __iomem    *base;
172 	struct dss_device *dss;
173 
174 	struct dss_debugfs_entry *debugfs;
175 
176 	int irq;
177 	irq_handler_t user_handler;
178 	void *user_data;
179 
180 	unsigned long core_clk_rate;
181 	unsigned long tv_pclk_rate;
182 
183 	u32 fifo_size[DISPC_MAX_NR_FIFOS];
184 	/* maps which plane is using a fifo. fifo-id -> plane-id */
185 	int fifo_assignment[DISPC_MAX_NR_FIFOS];
186 
187 	bool		ctx_valid;
188 	u32		ctx[DISPC_SZ_REGS / sizeof(u32)];
189 
190 	u32 *gamma_table[DISPC_MAX_CHANNEL_GAMMA];
191 
192 	const struct dispc_features *feat;
193 
194 	bool is_enabled;
195 
196 	struct regmap *syscon_pol;
197 	u32 syscon_pol_offset;
198 
199 	/* DISPC_CONTROL & DISPC_CONFIG lock*/
200 	spinlock_t control_lock;
201 };
202 
203 enum omap_color_component {
204 	/* used for all color formats for OMAP3 and earlier
205 	 * and for RGB and Y color component on OMAP4
206 	 */
207 	DISPC_COLOR_COMPONENT_RGB_Y		= 1 << 0,
208 	/* used for UV component for
209 	 * DRM_FORMAT_YUYV, DRM_FORMAT_UYVY, DRM_FORMAT_NV12
210 	 * color formats on OMAP4
211 	 */
212 	DISPC_COLOR_COMPONENT_UV		= 1 << 1,
213 };
214 
215 enum mgr_reg_fields {
216 	DISPC_MGR_FLD_ENABLE,
217 	DISPC_MGR_FLD_STNTFT,
218 	DISPC_MGR_FLD_GO,
219 	DISPC_MGR_FLD_TFTDATALINES,
220 	DISPC_MGR_FLD_STALLMODE,
221 	DISPC_MGR_FLD_TCKENABLE,
222 	DISPC_MGR_FLD_TCKSELECTION,
223 	DISPC_MGR_FLD_CPR,
224 	DISPC_MGR_FLD_FIFOHANDCHECK,
225 	/* used to maintain a count of the above fields */
226 	DISPC_MGR_FLD_NUM,
227 };
228 
229 /* DISPC register field id */
230 enum dispc_feat_reg_field {
231 	FEAT_REG_FIRHINC,
232 	FEAT_REG_FIRVINC,
233 	FEAT_REG_FIFOHIGHTHRESHOLD,
234 	FEAT_REG_FIFOLOWTHRESHOLD,
235 	FEAT_REG_FIFOSIZE,
236 	FEAT_REG_HORIZONTALACCU,
237 	FEAT_REG_VERTICALACCU,
238 };
239 
240 struct dispc_reg_field {
241 	u16 reg;
242 	u8 high;
243 	u8 low;
244 };
245 
246 struct dispc_gamma_desc {
247 	u32 len;
248 	u32 bits;
249 	u16 reg;
250 	bool has_index;
251 };
252 
253 static const struct {
254 	const char *name;
255 	u32 vsync_irq;
256 	u32 framedone_irq;
257 	u32 sync_lost_irq;
258 	struct dispc_gamma_desc gamma;
259 	struct dispc_reg_field reg_desc[DISPC_MGR_FLD_NUM];
260 } mgr_desc[] = {
261 	[OMAP_DSS_CHANNEL_LCD] = {
262 		.name		= "LCD",
263 		.vsync_irq	= DISPC_IRQ_VSYNC,
264 		.framedone_irq	= DISPC_IRQ_FRAMEDONE,
265 		.sync_lost_irq	= DISPC_IRQ_SYNC_LOST,
266 		.gamma		= {
267 			.len	= 256,
268 			.bits	= 8,
269 			.reg	= DISPC_GAMMA_TABLE0,
270 			.has_index = true,
271 		},
272 		.reg_desc	= {
273 			[DISPC_MGR_FLD_ENABLE]		= { DISPC_CONTROL,  0,  0 },
274 			[DISPC_MGR_FLD_STNTFT]		= { DISPC_CONTROL,  3,  3 },
275 			[DISPC_MGR_FLD_GO]		= { DISPC_CONTROL,  5,  5 },
276 			[DISPC_MGR_FLD_TFTDATALINES]	= { DISPC_CONTROL,  9,  8 },
277 			[DISPC_MGR_FLD_STALLMODE]	= { DISPC_CONTROL, 11, 11 },
278 			[DISPC_MGR_FLD_TCKENABLE]	= { DISPC_CONFIG,  10, 10 },
279 			[DISPC_MGR_FLD_TCKSELECTION]	= { DISPC_CONFIG,  11, 11 },
280 			[DISPC_MGR_FLD_CPR]		= { DISPC_CONFIG,  15, 15 },
281 			[DISPC_MGR_FLD_FIFOHANDCHECK]	= { DISPC_CONFIG,  16, 16 },
282 		},
283 	},
284 	[OMAP_DSS_CHANNEL_DIGIT] = {
285 		.name		= "DIGIT",
286 		.vsync_irq	= DISPC_IRQ_EVSYNC_ODD | DISPC_IRQ_EVSYNC_EVEN,
287 		.framedone_irq	= DISPC_IRQ_FRAMEDONETV,
288 		.sync_lost_irq	= DISPC_IRQ_SYNC_LOST_DIGIT,
289 		.gamma		= {
290 			.len	= 1024,
291 			.bits	= 10,
292 			.reg	= DISPC_GAMMA_TABLE2,
293 			.has_index = false,
294 		},
295 		.reg_desc	= {
296 			[DISPC_MGR_FLD_ENABLE]		= { DISPC_CONTROL,  1,  1 },
297 			[DISPC_MGR_FLD_STNTFT]		= { },
298 			[DISPC_MGR_FLD_GO]		= { DISPC_CONTROL,  6,  6 },
299 			[DISPC_MGR_FLD_TFTDATALINES]	= { },
300 			[DISPC_MGR_FLD_STALLMODE]	= { },
301 			[DISPC_MGR_FLD_TCKENABLE]	= { DISPC_CONFIG,  12, 12 },
302 			[DISPC_MGR_FLD_TCKSELECTION]	= { DISPC_CONFIG,  13, 13 },
303 			[DISPC_MGR_FLD_CPR]		= { },
304 			[DISPC_MGR_FLD_FIFOHANDCHECK]	= { DISPC_CONFIG,  16, 16 },
305 		},
306 	},
307 	[OMAP_DSS_CHANNEL_LCD2] = {
308 		.name		= "LCD2",
309 		.vsync_irq	= DISPC_IRQ_VSYNC2,
310 		.framedone_irq	= DISPC_IRQ_FRAMEDONE2,
311 		.sync_lost_irq	= DISPC_IRQ_SYNC_LOST2,
312 		.gamma		= {
313 			.len	= 256,
314 			.bits	= 8,
315 			.reg	= DISPC_GAMMA_TABLE1,
316 			.has_index = true,
317 		},
318 		.reg_desc	= {
319 			[DISPC_MGR_FLD_ENABLE]		= { DISPC_CONTROL2,  0,  0 },
320 			[DISPC_MGR_FLD_STNTFT]		= { DISPC_CONTROL2,  3,  3 },
321 			[DISPC_MGR_FLD_GO]		= { DISPC_CONTROL2,  5,  5 },
322 			[DISPC_MGR_FLD_TFTDATALINES]	= { DISPC_CONTROL2,  9,  8 },
323 			[DISPC_MGR_FLD_STALLMODE]	= { DISPC_CONTROL2, 11, 11 },
324 			[DISPC_MGR_FLD_TCKENABLE]	= { DISPC_CONFIG2,  10, 10 },
325 			[DISPC_MGR_FLD_TCKSELECTION]	= { DISPC_CONFIG2,  11, 11 },
326 			[DISPC_MGR_FLD_CPR]		= { DISPC_CONFIG2,  15, 15 },
327 			[DISPC_MGR_FLD_FIFOHANDCHECK]	= { DISPC_CONFIG2,  16, 16 },
328 		},
329 	},
330 	[OMAP_DSS_CHANNEL_LCD3] = {
331 		.name		= "LCD3",
332 		.vsync_irq	= DISPC_IRQ_VSYNC3,
333 		.framedone_irq	= DISPC_IRQ_FRAMEDONE3,
334 		.sync_lost_irq	= DISPC_IRQ_SYNC_LOST3,
335 		.gamma		= {
336 			.len	= 256,
337 			.bits	= 8,
338 			.reg	= DISPC_GAMMA_TABLE3,
339 			.has_index = true,
340 		},
341 		.reg_desc	= {
342 			[DISPC_MGR_FLD_ENABLE]		= { DISPC_CONTROL3,  0,  0 },
343 			[DISPC_MGR_FLD_STNTFT]		= { DISPC_CONTROL3,  3,  3 },
344 			[DISPC_MGR_FLD_GO]		= { DISPC_CONTROL3,  5,  5 },
345 			[DISPC_MGR_FLD_TFTDATALINES]	= { DISPC_CONTROL3,  9,  8 },
346 			[DISPC_MGR_FLD_STALLMODE]	= { DISPC_CONTROL3, 11, 11 },
347 			[DISPC_MGR_FLD_TCKENABLE]	= { DISPC_CONFIG3,  10, 10 },
348 			[DISPC_MGR_FLD_TCKSELECTION]	= { DISPC_CONFIG3,  11, 11 },
349 			[DISPC_MGR_FLD_CPR]		= { DISPC_CONFIG3,  15, 15 },
350 			[DISPC_MGR_FLD_FIFOHANDCHECK]	= { DISPC_CONFIG3,  16, 16 },
351 		},
352 	},
353 };
354 
355 static unsigned long dispc_fclk_rate(struct dispc_device *dispc);
356 static unsigned long dispc_core_clk_rate(struct dispc_device *dispc);
357 static unsigned long dispc_mgr_lclk_rate(struct dispc_device *dispc,
358 					 enum omap_channel channel);
359 static unsigned long dispc_mgr_pclk_rate(struct dispc_device *dispc,
360 					 enum omap_channel channel);
361 
362 static unsigned long dispc_plane_pclk_rate(struct dispc_device *dispc,
363 					   enum omap_plane_id plane);
364 static unsigned long dispc_plane_lclk_rate(struct dispc_device *dispc,
365 					   enum omap_plane_id plane);
366 
367 static void dispc_clear_irqstatus(struct dispc_device *dispc, u32 mask);
368 
369 static inline void dispc_write_reg(struct dispc_device *dispc, u16 idx, u32 val)
370 {
371 	__raw_writel(val, dispc->base + idx);
372 }
373 
374 static inline u32 dispc_read_reg(struct dispc_device *dispc, u16 idx)
375 {
376 	return __raw_readl(dispc->base + idx);
377 }
378 
379 static u32 mgr_fld_read(struct dispc_device *dispc, enum omap_channel channel,
380 			enum mgr_reg_fields regfld)
381 {
382 	const struct dispc_reg_field rfld = mgr_desc[channel].reg_desc[regfld];
383 
384 	return REG_GET(dispc, rfld.reg, rfld.high, rfld.low);
385 }
386 
387 static void mgr_fld_write(struct dispc_device *dispc, enum omap_channel channel,
388 			  enum mgr_reg_fields regfld, int val)
389 {
390 	const struct dispc_reg_field rfld = mgr_desc[channel].reg_desc[regfld];
391 	const bool need_lock = rfld.reg == DISPC_CONTROL || rfld.reg == DISPC_CONFIG;
392 	unsigned long flags;
393 
394 	if (need_lock) {
395 		spin_lock_irqsave(&dispc->control_lock, flags);
396 		REG_FLD_MOD(dispc, rfld.reg, val, rfld.high, rfld.low);
397 		spin_unlock_irqrestore(&dispc->control_lock, flags);
398 	} else {
399 		REG_FLD_MOD(dispc, rfld.reg, val, rfld.high, rfld.low);
400 	}
401 }
402 
403 static int dispc_get_num_ovls(struct dispc_device *dispc)
404 {
405 	return dispc->feat->num_ovls;
406 }
407 
408 static int dispc_get_num_mgrs(struct dispc_device *dispc)
409 {
410 	return dispc->feat->num_mgrs;
411 }
412 
413 static void dispc_get_reg_field(struct dispc_device *dispc,
414 				enum dispc_feat_reg_field id,
415 				u8 *start, u8 *end)
416 {
417 	if (id >= dispc->feat->num_reg_fields)
418 		BUG();
419 
420 	*start = dispc->feat->reg_fields[id].start;
421 	*end = dispc->feat->reg_fields[id].end;
422 }
423 
424 static bool dispc_has_feature(struct dispc_device *dispc,
425 			      enum dispc_feature_id id)
426 {
427 	unsigned int i;
428 
429 	for (i = 0; i < dispc->feat->num_features; i++) {
430 		if (dispc->feat->features[i] == id)
431 			return true;
432 	}
433 
434 	return false;
435 }
436 
437 #define SR(dispc, reg) \
438 	dispc->ctx[DISPC_##reg / sizeof(u32)] = dispc_read_reg(dispc, DISPC_##reg)
439 #define RR(dispc, reg) \
440 	dispc_write_reg(dispc, DISPC_##reg, dispc->ctx[DISPC_##reg / sizeof(u32)])
441 
442 static void dispc_save_context(struct dispc_device *dispc)
443 {
444 	int i, j;
445 
446 	DSSDBG("dispc_save_context\n");
447 
448 	SR(dispc, IRQENABLE);
449 	SR(dispc, CONTROL);
450 	SR(dispc, CONFIG);
451 	SR(dispc, LINE_NUMBER);
452 	if (dispc_has_feature(dispc, FEAT_ALPHA_FIXED_ZORDER) ||
453 			dispc_has_feature(dispc, FEAT_ALPHA_FREE_ZORDER))
454 		SR(dispc, GLOBAL_ALPHA);
455 	if (dispc_has_feature(dispc, FEAT_MGR_LCD2)) {
456 		SR(dispc, CONTROL2);
457 		SR(dispc, CONFIG2);
458 	}
459 	if (dispc_has_feature(dispc, FEAT_MGR_LCD3)) {
460 		SR(dispc, CONTROL3);
461 		SR(dispc, CONFIG3);
462 	}
463 
464 	for (i = 0; i < dispc_get_num_mgrs(dispc); i++) {
465 		SR(dispc, DEFAULT_COLOR(i));
466 		SR(dispc, TRANS_COLOR(i));
467 		SR(dispc, SIZE_MGR(i));
468 		if (i == OMAP_DSS_CHANNEL_DIGIT)
469 			continue;
470 		SR(dispc, TIMING_H(i));
471 		SR(dispc, TIMING_V(i));
472 		SR(dispc, POL_FREQ(i));
473 		SR(dispc, DIVISORo(i));
474 
475 		SR(dispc, DATA_CYCLE1(i));
476 		SR(dispc, DATA_CYCLE2(i));
477 		SR(dispc, DATA_CYCLE3(i));
478 
479 		if (dispc_has_feature(dispc, FEAT_CPR)) {
480 			SR(dispc, CPR_COEF_R(i));
481 			SR(dispc, CPR_COEF_G(i));
482 			SR(dispc, CPR_COEF_B(i));
483 		}
484 	}
485 
486 	for (i = 0; i < dispc_get_num_ovls(dispc); i++) {
487 		SR(dispc, OVL_BA0(i));
488 		SR(dispc, OVL_BA1(i));
489 		SR(dispc, OVL_POSITION(i));
490 		SR(dispc, OVL_SIZE(i));
491 		SR(dispc, OVL_ATTRIBUTES(i));
492 		SR(dispc, OVL_FIFO_THRESHOLD(i));
493 		SR(dispc, OVL_ROW_INC(i));
494 		SR(dispc, OVL_PIXEL_INC(i));
495 		if (dispc_has_feature(dispc, FEAT_PRELOAD))
496 			SR(dispc, OVL_PRELOAD(i));
497 		if (i == OMAP_DSS_GFX) {
498 			SR(dispc, OVL_WINDOW_SKIP(i));
499 			SR(dispc, OVL_TABLE_BA(i));
500 			continue;
501 		}
502 		SR(dispc, OVL_FIR(i));
503 		SR(dispc, OVL_PICTURE_SIZE(i));
504 		SR(dispc, OVL_ACCU0(i));
505 		SR(dispc, OVL_ACCU1(i));
506 
507 		for (j = 0; j < 8; j++)
508 			SR(dispc, OVL_FIR_COEF_H(i, j));
509 
510 		for (j = 0; j < 8; j++)
511 			SR(dispc, OVL_FIR_COEF_HV(i, j));
512 
513 		for (j = 0; j < 5; j++)
514 			SR(dispc, OVL_CONV_COEF(i, j));
515 
516 		if (dispc_has_feature(dispc, FEAT_FIR_COEF_V)) {
517 			for (j = 0; j < 8; j++)
518 				SR(dispc, OVL_FIR_COEF_V(i, j));
519 		}
520 
521 		if (dispc_has_feature(dispc, FEAT_HANDLE_UV_SEPARATE)) {
522 			SR(dispc, OVL_BA0_UV(i));
523 			SR(dispc, OVL_BA1_UV(i));
524 			SR(dispc, OVL_FIR2(i));
525 			SR(dispc, OVL_ACCU2_0(i));
526 			SR(dispc, OVL_ACCU2_1(i));
527 
528 			for (j = 0; j < 8; j++)
529 				SR(dispc, OVL_FIR_COEF_H2(i, j));
530 
531 			for (j = 0; j < 8; j++)
532 				SR(dispc, OVL_FIR_COEF_HV2(i, j));
533 
534 			for (j = 0; j < 8; j++)
535 				SR(dispc, OVL_FIR_COEF_V2(i, j));
536 		}
537 		if (dispc_has_feature(dispc, FEAT_ATTR2))
538 			SR(dispc, OVL_ATTRIBUTES2(i));
539 	}
540 
541 	if (dispc_has_feature(dispc, FEAT_CORE_CLK_DIV))
542 		SR(dispc, DIVISOR);
543 
544 	dispc->ctx_valid = true;
545 
546 	DSSDBG("context saved\n");
547 }
548 
549 static void dispc_restore_context(struct dispc_device *dispc)
550 {
551 	int i, j;
552 
553 	DSSDBG("dispc_restore_context\n");
554 
555 	if (!dispc->ctx_valid)
556 		return;
557 
558 	/*RR(dispc, IRQENABLE);*/
559 	/*RR(dispc, CONTROL);*/
560 	RR(dispc, CONFIG);
561 	RR(dispc, LINE_NUMBER);
562 	if (dispc_has_feature(dispc, FEAT_ALPHA_FIXED_ZORDER) ||
563 			dispc_has_feature(dispc, FEAT_ALPHA_FREE_ZORDER))
564 		RR(dispc, GLOBAL_ALPHA);
565 	if (dispc_has_feature(dispc, FEAT_MGR_LCD2))
566 		RR(dispc, CONFIG2);
567 	if (dispc_has_feature(dispc, FEAT_MGR_LCD3))
568 		RR(dispc, CONFIG3);
569 
570 	for (i = 0; i < dispc_get_num_mgrs(dispc); i++) {
571 		RR(dispc, DEFAULT_COLOR(i));
572 		RR(dispc, TRANS_COLOR(i));
573 		RR(dispc, SIZE_MGR(i));
574 		if (i == OMAP_DSS_CHANNEL_DIGIT)
575 			continue;
576 		RR(dispc, TIMING_H(i));
577 		RR(dispc, TIMING_V(i));
578 		RR(dispc, POL_FREQ(i));
579 		RR(dispc, DIVISORo(i));
580 
581 		RR(dispc, DATA_CYCLE1(i));
582 		RR(dispc, DATA_CYCLE2(i));
583 		RR(dispc, DATA_CYCLE3(i));
584 
585 		if (dispc_has_feature(dispc, FEAT_CPR)) {
586 			RR(dispc, CPR_COEF_R(i));
587 			RR(dispc, CPR_COEF_G(i));
588 			RR(dispc, CPR_COEF_B(i));
589 		}
590 	}
591 
592 	for (i = 0; i < dispc_get_num_ovls(dispc); i++) {
593 		RR(dispc, OVL_BA0(i));
594 		RR(dispc, OVL_BA1(i));
595 		RR(dispc, OVL_POSITION(i));
596 		RR(dispc, OVL_SIZE(i));
597 		RR(dispc, OVL_ATTRIBUTES(i));
598 		RR(dispc, OVL_FIFO_THRESHOLD(i));
599 		RR(dispc, OVL_ROW_INC(i));
600 		RR(dispc, OVL_PIXEL_INC(i));
601 		if (dispc_has_feature(dispc, FEAT_PRELOAD))
602 			RR(dispc, OVL_PRELOAD(i));
603 		if (i == OMAP_DSS_GFX) {
604 			RR(dispc, OVL_WINDOW_SKIP(i));
605 			RR(dispc, OVL_TABLE_BA(i));
606 			continue;
607 		}
608 		RR(dispc, OVL_FIR(i));
609 		RR(dispc, OVL_PICTURE_SIZE(i));
610 		RR(dispc, OVL_ACCU0(i));
611 		RR(dispc, OVL_ACCU1(i));
612 
613 		for (j = 0; j < 8; j++)
614 			RR(dispc, OVL_FIR_COEF_H(i, j));
615 
616 		for (j = 0; j < 8; j++)
617 			RR(dispc, OVL_FIR_COEF_HV(i, j));
618 
619 		for (j = 0; j < 5; j++)
620 			RR(dispc, OVL_CONV_COEF(i, j));
621 
622 		if (dispc_has_feature(dispc, FEAT_FIR_COEF_V)) {
623 			for (j = 0; j < 8; j++)
624 				RR(dispc, OVL_FIR_COEF_V(i, j));
625 		}
626 
627 		if (dispc_has_feature(dispc, FEAT_HANDLE_UV_SEPARATE)) {
628 			RR(dispc, OVL_BA0_UV(i));
629 			RR(dispc, OVL_BA1_UV(i));
630 			RR(dispc, OVL_FIR2(i));
631 			RR(dispc, OVL_ACCU2_0(i));
632 			RR(dispc, OVL_ACCU2_1(i));
633 
634 			for (j = 0; j < 8; j++)
635 				RR(dispc, OVL_FIR_COEF_H2(i, j));
636 
637 			for (j = 0; j < 8; j++)
638 				RR(dispc, OVL_FIR_COEF_HV2(i, j));
639 
640 			for (j = 0; j < 8; j++)
641 				RR(dispc, OVL_FIR_COEF_V2(i, j));
642 		}
643 		if (dispc_has_feature(dispc, FEAT_ATTR2))
644 			RR(dispc, OVL_ATTRIBUTES2(i));
645 	}
646 
647 	if (dispc_has_feature(dispc, FEAT_CORE_CLK_DIV))
648 		RR(dispc, DIVISOR);
649 
650 	/* enable last, because LCD & DIGIT enable are here */
651 	RR(dispc, CONTROL);
652 	if (dispc_has_feature(dispc, FEAT_MGR_LCD2))
653 		RR(dispc, CONTROL2);
654 	if (dispc_has_feature(dispc, FEAT_MGR_LCD3))
655 		RR(dispc, CONTROL3);
656 	/* clear spurious SYNC_LOST_DIGIT interrupts */
657 	dispc_clear_irqstatus(dispc, DISPC_IRQ_SYNC_LOST_DIGIT);
658 
659 	/*
660 	 * enable last so IRQs won't trigger before
661 	 * the context is fully restored
662 	 */
663 	RR(dispc, IRQENABLE);
664 
665 	DSSDBG("context restored\n");
666 }
667 
668 #undef SR
669 #undef RR
670 
671 int dispc_runtime_get(struct dispc_device *dispc)
672 {
673 	int r;
674 
675 	DSSDBG("dispc_runtime_get\n");
676 
677 	r = pm_runtime_get_sync(&dispc->pdev->dev);
678 	WARN_ON(r < 0);
679 	return r < 0 ? r : 0;
680 }
681 
682 void dispc_runtime_put(struct dispc_device *dispc)
683 {
684 	int r;
685 
686 	DSSDBG("dispc_runtime_put\n");
687 
688 	r = pm_runtime_put_sync(&dispc->pdev->dev);
689 	WARN_ON(r < 0 && r != -ENOSYS);
690 }
691 
692 static u32 dispc_mgr_get_vsync_irq(struct dispc_device *dispc,
693 				   enum omap_channel channel)
694 {
695 	return mgr_desc[channel].vsync_irq;
696 }
697 
698 static u32 dispc_mgr_get_framedone_irq(struct dispc_device *dispc,
699 				       enum omap_channel channel)
700 {
701 	if (channel == OMAP_DSS_CHANNEL_DIGIT && dispc->feat->no_framedone_tv)
702 		return 0;
703 
704 	return mgr_desc[channel].framedone_irq;
705 }
706 
707 static u32 dispc_mgr_get_sync_lost_irq(struct dispc_device *dispc,
708 				       enum omap_channel channel)
709 {
710 	return mgr_desc[channel].sync_lost_irq;
711 }
712 
713 static u32 dispc_wb_get_framedone_irq(struct dispc_device *dispc)
714 {
715 	return DISPC_IRQ_FRAMEDONEWB;
716 }
717 
718 static void dispc_mgr_enable(struct dispc_device *dispc,
719 			     enum omap_channel channel, bool enable)
720 {
721 	mgr_fld_write(dispc, channel, DISPC_MGR_FLD_ENABLE, enable);
722 	/* flush posted write */
723 	mgr_fld_read(dispc, channel, DISPC_MGR_FLD_ENABLE);
724 }
725 
726 static bool dispc_mgr_is_enabled(struct dispc_device *dispc,
727 				 enum omap_channel channel)
728 {
729 	return !!mgr_fld_read(dispc, channel, DISPC_MGR_FLD_ENABLE);
730 }
731 
732 static bool dispc_mgr_go_busy(struct dispc_device *dispc,
733 			      enum omap_channel channel)
734 {
735 	return mgr_fld_read(dispc, channel, DISPC_MGR_FLD_GO) == 1;
736 }
737 
738 static void dispc_mgr_go(struct dispc_device *dispc, enum omap_channel channel)
739 {
740 	WARN_ON(!dispc_mgr_is_enabled(dispc, channel));
741 	WARN_ON(dispc_mgr_go_busy(dispc, channel));
742 
743 	DSSDBG("GO %s\n", mgr_desc[channel].name);
744 
745 	mgr_fld_write(dispc, channel, DISPC_MGR_FLD_GO, 1);
746 }
747 
748 static bool dispc_wb_go_busy(struct dispc_device *dispc)
749 {
750 	return REG_GET(dispc, DISPC_CONTROL2, 6, 6) == 1;
751 }
752 
753 static void dispc_wb_go(struct dispc_device *dispc)
754 {
755 	enum omap_plane_id plane = OMAP_DSS_WB;
756 	bool enable, go;
757 
758 	enable = REG_GET(dispc, DISPC_OVL_ATTRIBUTES(plane), 0, 0) == 1;
759 
760 	if (!enable)
761 		return;
762 
763 	go = REG_GET(dispc, DISPC_CONTROL2, 6, 6) == 1;
764 	if (go) {
765 		DSSERR("GO bit not down for WB\n");
766 		return;
767 	}
768 
769 	REG_FLD_MOD(dispc, DISPC_CONTROL2, 1, 6, 6);
770 }
771 
772 static void dispc_ovl_write_firh_reg(struct dispc_device *dispc,
773 				     enum omap_plane_id plane, int reg,
774 				     u32 value)
775 {
776 	dispc_write_reg(dispc, DISPC_OVL_FIR_COEF_H(plane, reg), value);
777 }
778 
779 static void dispc_ovl_write_firhv_reg(struct dispc_device *dispc,
780 				      enum omap_plane_id plane, int reg,
781 				      u32 value)
782 {
783 	dispc_write_reg(dispc, DISPC_OVL_FIR_COEF_HV(plane, reg), value);
784 }
785 
786 static void dispc_ovl_write_firv_reg(struct dispc_device *dispc,
787 				     enum omap_plane_id plane, int reg,
788 				     u32 value)
789 {
790 	dispc_write_reg(dispc, DISPC_OVL_FIR_COEF_V(plane, reg), value);
791 }
792 
793 static void dispc_ovl_write_firh2_reg(struct dispc_device *dispc,
794 				      enum omap_plane_id plane, int reg,
795 				      u32 value)
796 {
797 	BUG_ON(plane == OMAP_DSS_GFX);
798 
799 	dispc_write_reg(dispc, DISPC_OVL_FIR_COEF_H2(plane, reg), value);
800 }
801 
802 static void dispc_ovl_write_firhv2_reg(struct dispc_device *dispc,
803 				       enum omap_plane_id plane, int reg,
804 				       u32 value)
805 {
806 	BUG_ON(plane == OMAP_DSS_GFX);
807 
808 	dispc_write_reg(dispc, DISPC_OVL_FIR_COEF_HV2(plane, reg), value);
809 }
810 
811 static void dispc_ovl_write_firv2_reg(struct dispc_device *dispc,
812 				      enum omap_plane_id plane, int reg,
813 				      u32 value)
814 {
815 	BUG_ON(plane == OMAP_DSS_GFX);
816 
817 	dispc_write_reg(dispc, DISPC_OVL_FIR_COEF_V2(plane, reg), value);
818 }
819 
820 static void dispc_ovl_set_scale_coef(struct dispc_device *dispc,
821 				     enum omap_plane_id plane, int fir_hinc,
822 				     int fir_vinc, int five_taps,
823 				     enum omap_color_component color_comp)
824 {
825 	const struct dispc_coef *h_coef, *v_coef;
826 	int i;
827 
828 	h_coef = dispc_ovl_get_scale_coef(fir_hinc, true);
829 	v_coef = dispc_ovl_get_scale_coef(fir_vinc, five_taps);
830 
831 	for (i = 0; i < 8; i++) {
832 		u32 h, hv;
833 
834 		h = FLD_VAL(h_coef[i].hc0_vc00, 7, 0)
835 			| FLD_VAL(h_coef[i].hc1_vc0, 15, 8)
836 			| FLD_VAL(h_coef[i].hc2_vc1, 23, 16)
837 			| FLD_VAL(h_coef[i].hc3_vc2, 31, 24);
838 		hv = FLD_VAL(h_coef[i].hc4_vc22, 7, 0)
839 			| FLD_VAL(v_coef[i].hc1_vc0, 15, 8)
840 			| FLD_VAL(v_coef[i].hc2_vc1, 23, 16)
841 			| FLD_VAL(v_coef[i].hc3_vc2, 31, 24);
842 
843 		if (color_comp == DISPC_COLOR_COMPONENT_RGB_Y) {
844 			dispc_ovl_write_firh_reg(dispc, plane, i, h);
845 			dispc_ovl_write_firhv_reg(dispc, plane, i, hv);
846 		} else {
847 			dispc_ovl_write_firh2_reg(dispc, plane, i, h);
848 			dispc_ovl_write_firhv2_reg(dispc, plane, i, hv);
849 		}
850 
851 	}
852 
853 	if (five_taps) {
854 		for (i = 0; i < 8; i++) {
855 			u32 v;
856 			v = FLD_VAL(v_coef[i].hc0_vc00, 7, 0)
857 				| FLD_VAL(v_coef[i].hc4_vc22, 15, 8);
858 			if (color_comp == DISPC_COLOR_COMPONENT_RGB_Y)
859 				dispc_ovl_write_firv_reg(dispc, plane, i, v);
860 			else
861 				dispc_ovl_write_firv2_reg(dispc, plane, i, v);
862 		}
863 	}
864 }
865 
866 struct csc_coef_yuv2rgb {
867 	int ry, rcb, rcr, gy, gcb, gcr, by, bcb, bcr;
868 	bool full_range;
869 };
870 
871 struct csc_coef_rgb2yuv {
872 	int yr, yg, yb, cbr, cbg, cbb, crr, crg, crb;
873 	bool full_range;
874 };
875 
876 static void dispc_ovl_write_color_conv_coef(struct dispc_device *dispc,
877 					    enum omap_plane_id plane,
878 					    const struct csc_coef_yuv2rgb *ct)
879 {
880 #define CVAL(x, y) (FLD_VAL(x, 26, 16) | FLD_VAL(y, 10, 0))
881 
882 	dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 0), CVAL(ct->rcr, ct->ry));
883 	dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 1), CVAL(ct->gy,  ct->rcb));
884 	dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 2), CVAL(ct->gcb, ct->gcr));
885 	dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 3), CVAL(ct->bcr, ct->by));
886 	dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 4), CVAL(0, ct->bcb));
887 
888 	REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), ct->full_range, 11, 11);
889 
890 #undef CVAL
891 }
892 
893 static void dispc_wb_write_color_conv_coef(struct dispc_device *dispc,
894 					   const struct csc_coef_rgb2yuv *ct)
895 {
896 	const enum omap_plane_id plane = OMAP_DSS_WB;
897 
898 #define CVAL(x, y) (FLD_VAL(x, 26, 16) | FLD_VAL(y, 10, 0))
899 
900 	dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 0), CVAL(ct->yg,  ct->yr));
901 	dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 1), CVAL(ct->crr, ct->yb));
902 	dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 2), CVAL(ct->crb, ct->crg));
903 	dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 3), CVAL(ct->cbg, ct->cbr));
904 	dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 4), CVAL(0, ct->cbb));
905 
906 	REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), ct->full_range, 11, 11);
907 
908 #undef CVAL
909 }
910 
911 static void dispc_setup_color_conv_coef(struct dispc_device *dispc)
912 {
913 	int i;
914 	int num_ovl = dispc_get_num_ovls(dispc);
915 
916 	/* YUV -> RGB, ITU-R BT.601, limited range */
917 	const struct csc_coef_yuv2rgb coefs_yuv2rgb_bt601_lim = {
918 		298,    0,  409,	/* ry, rcb, rcr */
919 		298, -100, -208,	/* gy, gcb, gcr */
920 		298,  516,    0,	/* by, bcb, bcr */
921 		false,			/* limited range */
922 	};
923 
924 	/* RGB -> YUV, ITU-R BT.601, limited range */
925 	const struct csc_coef_rgb2yuv coefs_rgb2yuv_bt601_lim = {
926 		 66, 129,  25,		/* yr,   yg,  yb */
927 		-38, -74, 112,		/* cbr, cbg, cbb */
928 		112, -94, -18,		/* crr, crg, crb */
929 		false,			/* limited range */
930 	};
931 
932 	for (i = 1; i < num_ovl; i++)
933 		dispc_ovl_write_color_conv_coef(dispc, i, &coefs_yuv2rgb_bt601_lim);
934 
935 	if (dispc->feat->has_writeback)
936 		dispc_wb_write_color_conv_coef(dispc, &coefs_rgb2yuv_bt601_lim);
937 }
938 
939 static void dispc_ovl_set_ba0(struct dispc_device *dispc,
940 			      enum omap_plane_id plane, u32 paddr)
941 {
942 	dispc_write_reg(dispc, DISPC_OVL_BA0(plane), paddr);
943 }
944 
945 static void dispc_ovl_set_ba1(struct dispc_device *dispc,
946 			      enum omap_plane_id plane, u32 paddr)
947 {
948 	dispc_write_reg(dispc, DISPC_OVL_BA1(plane), paddr);
949 }
950 
951 static void dispc_ovl_set_ba0_uv(struct dispc_device *dispc,
952 				 enum omap_plane_id plane, u32 paddr)
953 {
954 	dispc_write_reg(dispc, DISPC_OVL_BA0_UV(plane), paddr);
955 }
956 
957 static void dispc_ovl_set_ba1_uv(struct dispc_device *dispc,
958 				 enum omap_plane_id plane, u32 paddr)
959 {
960 	dispc_write_reg(dispc, DISPC_OVL_BA1_UV(plane), paddr);
961 }
962 
963 static void dispc_ovl_set_pos(struct dispc_device *dispc,
964 			      enum omap_plane_id plane,
965 			      enum omap_overlay_caps caps, int x, int y)
966 {
967 	u32 val;
968 
969 	if ((caps & OMAP_DSS_OVL_CAP_POS) == 0)
970 		return;
971 
972 	val = FLD_VAL(y, 26, 16) | FLD_VAL(x, 10, 0);
973 
974 	dispc_write_reg(dispc, DISPC_OVL_POSITION(plane), val);
975 }
976 
977 static void dispc_ovl_set_input_size(struct dispc_device *dispc,
978 				     enum omap_plane_id plane, int width,
979 				     int height)
980 {
981 	u32 val = FLD_VAL(height - 1, 26, 16) | FLD_VAL(width - 1, 10, 0);
982 
983 	if (plane == OMAP_DSS_GFX || plane == OMAP_DSS_WB)
984 		dispc_write_reg(dispc, DISPC_OVL_SIZE(plane), val);
985 	else
986 		dispc_write_reg(dispc, DISPC_OVL_PICTURE_SIZE(plane), val);
987 }
988 
989 static void dispc_ovl_set_output_size(struct dispc_device *dispc,
990 				      enum omap_plane_id plane, int width,
991 				      int height)
992 {
993 	u32 val;
994 
995 	BUG_ON(plane == OMAP_DSS_GFX);
996 
997 	val = FLD_VAL(height - 1, 26, 16) | FLD_VAL(width - 1, 10, 0);
998 
999 	if (plane == OMAP_DSS_WB)
1000 		dispc_write_reg(dispc, DISPC_OVL_PICTURE_SIZE(plane), val);
1001 	else
1002 		dispc_write_reg(dispc, DISPC_OVL_SIZE(plane), val);
1003 }
1004 
1005 static void dispc_ovl_set_zorder(struct dispc_device *dispc,
1006 				 enum omap_plane_id plane,
1007 				 enum omap_overlay_caps caps, u8 zorder)
1008 {
1009 	if ((caps & OMAP_DSS_OVL_CAP_ZORDER) == 0)
1010 		return;
1011 
1012 	REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), zorder, 27, 26);
1013 }
1014 
1015 static void dispc_ovl_enable_zorder_planes(struct dispc_device *dispc)
1016 {
1017 	int i;
1018 
1019 	if (!dispc_has_feature(dispc, FEAT_ALPHA_FREE_ZORDER))
1020 		return;
1021 
1022 	for (i = 0; i < dispc_get_num_ovls(dispc); i++)
1023 		REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(i), 1, 25, 25);
1024 }
1025 
1026 static void dispc_ovl_set_pre_mult_alpha(struct dispc_device *dispc,
1027 					 enum omap_plane_id plane,
1028 					 enum omap_overlay_caps caps,
1029 					 bool enable)
1030 {
1031 	if ((caps & OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA) == 0)
1032 		return;
1033 
1034 	REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), enable ? 1 : 0, 28, 28);
1035 }
1036 
1037 static void dispc_ovl_setup_global_alpha(struct dispc_device *dispc,
1038 					 enum omap_plane_id plane,
1039 					 enum omap_overlay_caps caps,
1040 					 u8 global_alpha)
1041 {
1042 	static const unsigned int shifts[] = { 0, 8, 16, 24, };
1043 	int shift;
1044 
1045 	if ((caps & OMAP_DSS_OVL_CAP_GLOBAL_ALPHA) == 0)
1046 		return;
1047 
1048 	shift = shifts[plane];
1049 	REG_FLD_MOD(dispc, DISPC_GLOBAL_ALPHA, global_alpha, shift + 7, shift);
1050 }
1051 
1052 static void dispc_ovl_set_pix_inc(struct dispc_device *dispc,
1053 				  enum omap_plane_id plane, s32 inc)
1054 {
1055 	dispc_write_reg(dispc, DISPC_OVL_PIXEL_INC(plane), inc);
1056 }
1057 
1058 static void dispc_ovl_set_row_inc(struct dispc_device *dispc,
1059 				  enum omap_plane_id plane, s32 inc)
1060 {
1061 	dispc_write_reg(dispc, DISPC_OVL_ROW_INC(plane), inc);
1062 }
1063 
1064 static void dispc_ovl_set_color_mode(struct dispc_device *dispc,
1065 				     enum omap_plane_id plane, u32 fourcc)
1066 {
1067 	u32 m = 0;
1068 	if (plane != OMAP_DSS_GFX) {
1069 		switch (fourcc) {
1070 		case DRM_FORMAT_NV12:
1071 			m = 0x0; break;
1072 		case DRM_FORMAT_XRGB4444:
1073 			m = 0x1; break;
1074 		case DRM_FORMAT_RGBA4444:
1075 			m = 0x2; break;
1076 		case DRM_FORMAT_RGBX4444:
1077 			m = 0x4; break;
1078 		case DRM_FORMAT_ARGB4444:
1079 			m = 0x5; break;
1080 		case DRM_FORMAT_RGB565:
1081 			m = 0x6; break;
1082 		case DRM_FORMAT_ARGB1555:
1083 			m = 0x7; break;
1084 		case DRM_FORMAT_XRGB8888:
1085 			m = 0x8; break;
1086 		case DRM_FORMAT_RGB888:
1087 			m = 0x9; break;
1088 		case DRM_FORMAT_YUYV:
1089 			m = 0xa; break;
1090 		case DRM_FORMAT_UYVY:
1091 			m = 0xb; break;
1092 		case DRM_FORMAT_ARGB8888:
1093 			m = 0xc; break;
1094 		case DRM_FORMAT_RGBA8888:
1095 			m = 0xd; break;
1096 		case DRM_FORMAT_RGBX8888:
1097 			m = 0xe; break;
1098 		case DRM_FORMAT_XRGB1555:
1099 			m = 0xf; break;
1100 		default:
1101 			BUG(); return;
1102 		}
1103 	} else {
1104 		switch (fourcc) {
1105 		case DRM_FORMAT_RGBX4444:
1106 			m = 0x4; break;
1107 		case DRM_FORMAT_ARGB4444:
1108 			m = 0x5; break;
1109 		case DRM_FORMAT_RGB565:
1110 			m = 0x6; break;
1111 		case DRM_FORMAT_ARGB1555:
1112 			m = 0x7; break;
1113 		case DRM_FORMAT_XRGB8888:
1114 			m = 0x8; break;
1115 		case DRM_FORMAT_RGB888:
1116 			m = 0x9; break;
1117 		case DRM_FORMAT_XRGB4444:
1118 			m = 0xa; break;
1119 		case DRM_FORMAT_RGBA4444:
1120 			m = 0xb; break;
1121 		case DRM_FORMAT_ARGB8888:
1122 			m = 0xc; break;
1123 		case DRM_FORMAT_RGBA8888:
1124 			m = 0xd; break;
1125 		case DRM_FORMAT_RGBX8888:
1126 			m = 0xe; break;
1127 		case DRM_FORMAT_XRGB1555:
1128 			m = 0xf; break;
1129 		default:
1130 			BUG(); return;
1131 		}
1132 	}
1133 
1134 	REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), m, 4, 1);
1135 }
1136 
1137 static bool format_is_yuv(u32 fourcc)
1138 {
1139 	switch (fourcc) {
1140 	case DRM_FORMAT_YUYV:
1141 	case DRM_FORMAT_UYVY:
1142 	case DRM_FORMAT_NV12:
1143 		return true;
1144 	default:
1145 		return false;
1146 	}
1147 }
1148 
1149 static void dispc_ovl_configure_burst_type(struct dispc_device *dispc,
1150 					   enum omap_plane_id plane,
1151 					   enum omap_dss_rotation_type rotation)
1152 {
1153 	if (dispc_has_feature(dispc, FEAT_BURST_2D) == 0)
1154 		return;
1155 
1156 	if (rotation == OMAP_DSS_ROT_TILER)
1157 		REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), 1, 29, 29);
1158 	else
1159 		REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), 0, 29, 29);
1160 }
1161 
1162 static void dispc_ovl_set_channel_out(struct dispc_device *dispc,
1163 				      enum omap_plane_id plane,
1164 				      enum omap_channel channel)
1165 {
1166 	int shift;
1167 	u32 val;
1168 	int chan = 0, chan2 = 0;
1169 
1170 	switch (plane) {
1171 	case OMAP_DSS_GFX:
1172 		shift = 8;
1173 		break;
1174 	case OMAP_DSS_VIDEO1:
1175 	case OMAP_DSS_VIDEO2:
1176 	case OMAP_DSS_VIDEO3:
1177 		shift = 16;
1178 		break;
1179 	default:
1180 		BUG();
1181 		return;
1182 	}
1183 
1184 	val = dispc_read_reg(dispc, DISPC_OVL_ATTRIBUTES(plane));
1185 	if (dispc_has_feature(dispc, FEAT_MGR_LCD2)) {
1186 		switch (channel) {
1187 		case OMAP_DSS_CHANNEL_LCD:
1188 			chan = 0;
1189 			chan2 = 0;
1190 			break;
1191 		case OMAP_DSS_CHANNEL_DIGIT:
1192 			chan = 1;
1193 			chan2 = 0;
1194 			break;
1195 		case OMAP_DSS_CHANNEL_LCD2:
1196 			chan = 0;
1197 			chan2 = 1;
1198 			break;
1199 		case OMAP_DSS_CHANNEL_LCD3:
1200 			if (dispc_has_feature(dispc, FEAT_MGR_LCD3)) {
1201 				chan = 0;
1202 				chan2 = 2;
1203 			} else {
1204 				BUG();
1205 				return;
1206 			}
1207 			break;
1208 		case OMAP_DSS_CHANNEL_WB:
1209 			chan = 0;
1210 			chan2 = 3;
1211 			break;
1212 		default:
1213 			BUG();
1214 			return;
1215 		}
1216 
1217 		val = FLD_MOD(val, chan, shift, shift);
1218 		val = FLD_MOD(val, chan2, 31, 30);
1219 	} else {
1220 		val = FLD_MOD(val, channel, shift, shift);
1221 	}
1222 	dispc_write_reg(dispc, DISPC_OVL_ATTRIBUTES(plane), val);
1223 }
1224 
1225 static enum omap_channel dispc_ovl_get_channel_out(struct dispc_device *dispc,
1226 						   enum omap_plane_id plane)
1227 {
1228 	int shift;
1229 	u32 val;
1230 
1231 	switch (plane) {
1232 	case OMAP_DSS_GFX:
1233 		shift = 8;
1234 		break;
1235 	case OMAP_DSS_VIDEO1:
1236 	case OMAP_DSS_VIDEO2:
1237 	case OMAP_DSS_VIDEO3:
1238 		shift = 16;
1239 		break;
1240 	default:
1241 		BUG();
1242 		return 0;
1243 	}
1244 
1245 	val = dispc_read_reg(dispc, DISPC_OVL_ATTRIBUTES(plane));
1246 
1247 	if (FLD_GET(val, shift, shift) == 1)
1248 		return OMAP_DSS_CHANNEL_DIGIT;
1249 
1250 	if (!dispc_has_feature(dispc, FEAT_MGR_LCD2))
1251 		return OMAP_DSS_CHANNEL_LCD;
1252 
1253 	switch (FLD_GET(val, 31, 30)) {
1254 	case 0:
1255 	default:
1256 		return OMAP_DSS_CHANNEL_LCD;
1257 	case 1:
1258 		return OMAP_DSS_CHANNEL_LCD2;
1259 	case 2:
1260 		return OMAP_DSS_CHANNEL_LCD3;
1261 	case 3:
1262 		return OMAP_DSS_CHANNEL_WB;
1263 	}
1264 }
1265 
1266 static void dispc_ovl_set_burst_size(struct dispc_device *dispc,
1267 				     enum omap_plane_id plane,
1268 				     enum omap_burst_size burst_size)
1269 {
1270 	static const unsigned int shifts[] = { 6, 14, 14, 14, 14, };
1271 	int shift;
1272 
1273 	shift = shifts[plane];
1274 	REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), burst_size,
1275 		    shift + 1, shift);
1276 }
1277 
1278 static void dispc_configure_burst_sizes(struct dispc_device *dispc)
1279 {
1280 	int i;
1281 	const int burst_size = BURST_SIZE_X8;
1282 
1283 	/* Configure burst size always to maximum size */
1284 	for (i = 0; i < dispc_get_num_ovls(dispc); ++i)
1285 		dispc_ovl_set_burst_size(dispc, i, burst_size);
1286 	if (dispc->feat->has_writeback)
1287 		dispc_ovl_set_burst_size(dispc, OMAP_DSS_WB, burst_size);
1288 }
1289 
1290 static u32 dispc_ovl_get_burst_size(struct dispc_device *dispc,
1291 				    enum omap_plane_id plane)
1292 {
1293 	/* burst multiplier is always x8 (see dispc_configure_burst_sizes()) */
1294 	return dispc->feat->burst_size_unit * 8;
1295 }
1296 
1297 static bool dispc_ovl_color_mode_supported(struct dispc_device *dispc,
1298 					   enum omap_plane_id plane, u32 fourcc)
1299 {
1300 	const u32 *modes;
1301 	unsigned int i;
1302 
1303 	modes = dispc->feat->supported_color_modes[plane];
1304 
1305 	for (i = 0; modes[i]; ++i) {
1306 		if (modes[i] == fourcc)
1307 			return true;
1308 	}
1309 
1310 	return false;
1311 }
1312 
1313 static const u32 *dispc_ovl_get_color_modes(struct dispc_device *dispc,
1314 					    enum omap_plane_id plane)
1315 {
1316 	return dispc->feat->supported_color_modes[plane];
1317 }
1318 
1319 static void dispc_mgr_enable_cpr(struct dispc_device *dispc,
1320 				 enum omap_channel channel, bool enable)
1321 {
1322 	if (channel == OMAP_DSS_CHANNEL_DIGIT)
1323 		return;
1324 
1325 	mgr_fld_write(dispc, channel, DISPC_MGR_FLD_CPR, enable);
1326 }
1327 
1328 static void dispc_mgr_set_cpr_coef(struct dispc_device *dispc,
1329 				   enum omap_channel channel,
1330 				   const struct omap_dss_cpr_coefs *coefs)
1331 {
1332 	u32 coef_r, coef_g, coef_b;
1333 
1334 	if (!dss_mgr_is_lcd(channel))
1335 		return;
1336 
1337 	coef_r = FLD_VAL(coefs->rr, 31, 22) | FLD_VAL(coefs->rg, 20, 11) |
1338 		FLD_VAL(coefs->rb, 9, 0);
1339 	coef_g = FLD_VAL(coefs->gr, 31, 22) | FLD_VAL(coefs->gg, 20, 11) |
1340 		FLD_VAL(coefs->gb, 9, 0);
1341 	coef_b = FLD_VAL(coefs->br, 31, 22) | FLD_VAL(coefs->bg, 20, 11) |
1342 		FLD_VAL(coefs->bb, 9, 0);
1343 
1344 	dispc_write_reg(dispc, DISPC_CPR_COEF_R(channel), coef_r);
1345 	dispc_write_reg(dispc, DISPC_CPR_COEF_G(channel), coef_g);
1346 	dispc_write_reg(dispc, DISPC_CPR_COEF_B(channel), coef_b);
1347 }
1348 
1349 static void dispc_ovl_set_vid_color_conv(struct dispc_device *dispc,
1350 					 enum omap_plane_id plane, bool enable)
1351 {
1352 	u32 val;
1353 
1354 	BUG_ON(plane == OMAP_DSS_GFX);
1355 
1356 	val = dispc_read_reg(dispc, DISPC_OVL_ATTRIBUTES(plane));
1357 	val = FLD_MOD(val, enable, 9, 9);
1358 	dispc_write_reg(dispc, DISPC_OVL_ATTRIBUTES(plane), val);
1359 }
1360 
1361 static void dispc_ovl_enable_replication(struct dispc_device *dispc,
1362 					 enum omap_plane_id plane,
1363 					 enum omap_overlay_caps caps,
1364 					 bool enable)
1365 {
1366 	static const unsigned int shifts[] = { 5, 10, 10, 10 };
1367 	int shift;
1368 
1369 	if ((caps & OMAP_DSS_OVL_CAP_REPLICATION) == 0)
1370 		return;
1371 
1372 	shift = shifts[plane];
1373 	REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), enable, shift, shift);
1374 }
1375 
1376 static void dispc_mgr_set_size(struct dispc_device *dispc,
1377 			       enum omap_channel channel, u16 width, u16 height)
1378 {
1379 	u32 val;
1380 
1381 	val = FLD_VAL(height - 1, dispc->feat->mgr_height_start, 16) |
1382 		FLD_VAL(width - 1, dispc->feat->mgr_width_start, 0);
1383 
1384 	dispc_write_reg(dispc, DISPC_SIZE_MGR(channel), val);
1385 }
1386 
1387 static void dispc_init_fifos(struct dispc_device *dispc)
1388 {
1389 	u32 size;
1390 	int fifo;
1391 	u8 start, end;
1392 	u32 unit;
1393 	int i;
1394 
1395 	unit = dispc->feat->buffer_size_unit;
1396 
1397 	dispc_get_reg_field(dispc, FEAT_REG_FIFOSIZE, &start, &end);
1398 
1399 	for (fifo = 0; fifo < dispc->feat->num_fifos; ++fifo) {
1400 		size = REG_GET(dispc, DISPC_OVL_FIFO_SIZE_STATUS(fifo),
1401 			       start, end);
1402 		size *= unit;
1403 		dispc->fifo_size[fifo] = size;
1404 
1405 		/*
1406 		 * By default fifos are mapped directly to overlays, fifo 0 to
1407 		 * ovl 0, fifo 1 to ovl 1, etc.
1408 		 */
1409 		dispc->fifo_assignment[fifo] = fifo;
1410 	}
1411 
1412 	/*
1413 	 * The GFX fifo on OMAP4 is smaller than the other fifos. The small fifo
1414 	 * causes problems with certain use cases, like using the tiler in 2D
1415 	 * mode. The below hack swaps the fifos of GFX and WB planes, thus
1416 	 * giving GFX plane a larger fifo. WB but should work fine with a
1417 	 * smaller fifo.
1418 	 */
1419 	if (dispc->feat->gfx_fifo_workaround) {
1420 		u32 v;
1421 
1422 		v = dispc_read_reg(dispc, DISPC_GLOBAL_BUFFER);
1423 
1424 		v = FLD_MOD(v, 4, 2, 0); /* GFX BUF top to WB */
1425 		v = FLD_MOD(v, 4, 5, 3); /* GFX BUF bottom to WB */
1426 		v = FLD_MOD(v, 0, 26, 24); /* WB BUF top to GFX */
1427 		v = FLD_MOD(v, 0, 29, 27); /* WB BUF bottom to GFX */
1428 
1429 		dispc_write_reg(dispc, DISPC_GLOBAL_BUFFER, v);
1430 
1431 		dispc->fifo_assignment[OMAP_DSS_GFX] = OMAP_DSS_WB;
1432 		dispc->fifo_assignment[OMAP_DSS_WB] = OMAP_DSS_GFX;
1433 	}
1434 
1435 	/*
1436 	 * Setup default fifo thresholds.
1437 	 */
1438 	for (i = 0; i < dispc_get_num_ovls(dispc); ++i) {
1439 		u32 low, high;
1440 		const bool use_fifomerge = false;
1441 		const bool manual_update = false;
1442 
1443 		dispc_ovl_compute_fifo_thresholds(dispc, i, &low, &high,
1444 						  use_fifomerge, manual_update);
1445 
1446 		dispc_ovl_set_fifo_threshold(dispc, i, low, high);
1447 	}
1448 
1449 	if (dispc->feat->has_writeback) {
1450 		u32 low, high;
1451 		const bool use_fifomerge = false;
1452 		const bool manual_update = false;
1453 
1454 		dispc_ovl_compute_fifo_thresholds(dispc, OMAP_DSS_WB,
1455 						  &low, &high, use_fifomerge,
1456 						  manual_update);
1457 
1458 		dispc_ovl_set_fifo_threshold(dispc, OMAP_DSS_WB, low, high);
1459 	}
1460 }
1461 
1462 static u32 dispc_ovl_get_fifo_size(struct dispc_device *dispc,
1463 				   enum omap_plane_id plane)
1464 {
1465 	int fifo;
1466 	u32 size = 0;
1467 
1468 	for (fifo = 0; fifo < dispc->feat->num_fifos; ++fifo) {
1469 		if (dispc->fifo_assignment[fifo] == plane)
1470 			size += dispc->fifo_size[fifo];
1471 	}
1472 
1473 	return size;
1474 }
1475 
1476 void dispc_ovl_set_fifo_threshold(struct dispc_device *dispc,
1477 				  enum omap_plane_id plane,
1478 				  u32 low, u32 high)
1479 {
1480 	u8 hi_start, hi_end, lo_start, lo_end;
1481 	u32 unit;
1482 
1483 	unit = dispc->feat->buffer_size_unit;
1484 
1485 	WARN_ON(low % unit != 0);
1486 	WARN_ON(high % unit != 0);
1487 
1488 	low /= unit;
1489 	high /= unit;
1490 
1491 	dispc_get_reg_field(dispc, FEAT_REG_FIFOHIGHTHRESHOLD,
1492 			    &hi_start, &hi_end);
1493 	dispc_get_reg_field(dispc, FEAT_REG_FIFOLOWTHRESHOLD,
1494 			    &lo_start, &lo_end);
1495 
1496 	DSSDBG("fifo(%d) threshold (bytes), old %u/%u, new %u/%u\n",
1497 			plane,
1498 			REG_GET(dispc, DISPC_OVL_FIFO_THRESHOLD(plane),
1499 				lo_start, lo_end) * unit,
1500 			REG_GET(dispc, DISPC_OVL_FIFO_THRESHOLD(plane),
1501 				hi_start, hi_end) * unit,
1502 			low * unit, high * unit);
1503 
1504 	dispc_write_reg(dispc, DISPC_OVL_FIFO_THRESHOLD(plane),
1505 			FLD_VAL(high, hi_start, hi_end) |
1506 			FLD_VAL(low, lo_start, lo_end));
1507 
1508 	/*
1509 	 * configure the preload to the pipeline's high threhold, if HT it's too
1510 	 * large for the preload field, set the threshold to the maximum value
1511 	 * that can be held by the preload register
1512 	 */
1513 	if (dispc_has_feature(dispc, FEAT_PRELOAD) &&
1514 	    dispc->feat->set_max_preload && plane != OMAP_DSS_WB)
1515 		dispc_write_reg(dispc, DISPC_OVL_PRELOAD(plane),
1516 				min(high, 0xfffu));
1517 }
1518 
1519 void dispc_enable_fifomerge(struct dispc_device *dispc, bool enable)
1520 {
1521 	if (!dispc_has_feature(dispc, FEAT_FIFO_MERGE)) {
1522 		WARN_ON(enable);
1523 		return;
1524 	}
1525 
1526 	DSSDBG("FIFO merge %s\n", enable ? "enabled" : "disabled");
1527 	REG_FLD_MOD(dispc, DISPC_CONFIG, enable ? 1 : 0, 14, 14);
1528 }
1529 
1530 void dispc_ovl_compute_fifo_thresholds(struct dispc_device *dispc,
1531 				       enum omap_plane_id plane,
1532 				       u32 *fifo_low, u32 *fifo_high,
1533 				       bool use_fifomerge, bool manual_update)
1534 {
1535 	/*
1536 	 * All sizes are in bytes. Both the buffer and burst are made of
1537 	 * buffer_units, and the fifo thresholds must be buffer_unit aligned.
1538 	 */
1539 	unsigned int buf_unit = dispc->feat->buffer_size_unit;
1540 	unsigned int ovl_fifo_size, total_fifo_size, burst_size;
1541 	int i;
1542 
1543 	burst_size = dispc_ovl_get_burst_size(dispc, plane);
1544 	ovl_fifo_size = dispc_ovl_get_fifo_size(dispc, plane);
1545 
1546 	if (use_fifomerge) {
1547 		total_fifo_size = 0;
1548 		for (i = 0; i < dispc_get_num_ovls(dispc); ++i)
1549 			total_fifo_size += dispc_ovl_get_fifo_size(dispc, i);
1550 	} else {
1551 		total_fifo_size = ovl_fifo_size;
1552 	}
1553 
1554 	/*
1555 	 * We use the same low threshold for both fifomerge and non-fifomerge
1556 	 * cases, but for fifomerge we calculate the high threshold using the
1557 	 * combined fifo size
1558 	 */
1559 
1560 	if (manual_update && dispc_has_feature(dispc, FEAT_OMAP3_DSI_FIFO_BUG)) {
1561 		*fifo_low = ovl_fifo_size - burst_size * 2;
1562 		*fifo_high = total_fifo_size - burst_size;
1563 	} else if (plane == OMAP_DSS_WB) {
1564 		/*
1565 		 * Most optimal configuration for writeback is to push out data
1566 		 * to the interconnect the moment writeback pushes enough pixels
1567 		 * in the FIFO to form a burst
1568 		 */
1569 		*fifo_low = 0;
1570 		*fifo_high = burst_size;
1571 	} else {
1572 		*fifo_low = ovl_fifo_size - burst_size;
1573 		*fifo_high = total_fifo_size - buf_unit;
1574 	}
1575 }
1576 
1577 static void dispc_ovl_set_mflag(struct dispc_device *dispc,
1578 				enum omap_plane_id plane, bool enable)
1579 {
1580 	int bit;
1581 
1582 	if (plane == OMAP_DSS_GFX)
1583 		bit = 14;
1584 	else
1585 		bit = 23;
1586 
1587 	REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), enable, bit, bit);
1588 }
1589 
1590 static void dispc_ovl_set_mflag_threshold(struct dispc_device *dispc,
1591 					  enum omap_plane_id plane,
1592 					  int low, int high)
1593 {
1594 	dispc_write_reg(dispc, DISPC_OVL_MFLAG_THRESHOLD(plane),
1595 		FLD_VAL(high, 31, 16) |	FLD_VAL(low, 15, 0));
1596 }
1597 
1598 static void dispc_init_mflag(struct dispc_device *dispc)
1599 {
1600 	int i;
1601 
1602 	/*
1603 	 * HACK: NV12 color format and MFLAG seem to have problems working
1604 	 * together: using two displays, and having an NV12 overlay on one of
1605 	 * the displays will cause underflows/synclosts when MFLAG_CTRL=2.
1606 	 * Changing MFLAG thresholds and PRELOAD to certain values seem to
1607 	 * remove the errors, but there doesn't seem to be a clear logic on
1608 	 * which values work and which not.
1609 	 *
1610 	 * As a work-around, set force MFLAG to always on.
1611 	 */
1612 	dispc_write_reg(dispc, DISPC_GLOBAL_MFLAG_ATTRIBUTE,
1613 		(1 << 0) |	/* MFLAG_CTRL = force always on */
1614 		(0 << 2));	/* MFLAG_START = disable */
1615 
1616 	for (i = 0; i < dispc_get_num_ovls(dispc); ++i) {
1617 		u32 size = dispc_ovl_get_fifo_size(dispc, i);
1618 		u32 unit = dispc->feat->buffer_size_unit;
1619 		u32 low, high;
1620 
1621 		dispc_ovl_set_mflag(dispc, i, true);
1622 
1623 		/*
1624 		 * Simulation team suggests below thesholds:
1625 		 * HT = fifosize * 5 / 8;
1626 		 * LT = fifosize * 4 / 8;
1627 		 */
1628 
1629 		low = size * 4 / 8 / unit;
1630 		high = size * 5 / 8 / unit;
1631 
1632 		dispc_ovl_set_mflag_threshold(dispc, i, low, high);
1633 	}
1634 
1635 	if (dispc->feat->has_writeback) {
1636 		u32 size = dispc_ovl_get_fifo_size(dispc, OMAP_DSS_WB);
1637 		u32 unit = dispc->feat->buffer_size_unit;
1638 		u32 low, high;
1639 
1640 		dispc_ovl_set_mflag(dispc, OMAP_DSS_WB, true);
1641 
1642 		/*
1643 		 * Simulation team suggests below thesholds:
1644 		 * HT = fifosize * 5 / 8;
1645 		 * LT = fifosize * 4 / 8;
1646 		 */
1647 
1648 		low = size * 4 / 8 / unit;
1649 		high = size * 5 / 8 / unit;
1650 
1651 		dispc_ovl_set_mflag_threshold(dispc, OMAP_DSS_WB, low, high);
1652 	}
1653 }
1654 
1655 static void dispc_ovl_set_fir(struct dispc_device *dispc,
1656 			      enum omap_plane_id plane,
1657 			      int hinc, int vinc,
1658 			      enum omap_color_component color_comp)
1659 {
1660 	u32 val;
1661 
1662 	if (color_comp == DISPC_COLOR_COMPONENT_RGB_Y) {
1663 		u8 hinc_start, hinc_end, vinc_start, vinc_end;
1664 
1665 		dispc_get_reg_field(dispc, FEAT_REG_FIRHINC,
1666 				    &hinc_start, &hinc_end);
1667 		dispc_get_reg_field(dispc, FEAT_REG_FIRVINC,
1668 				    &vinc_start, &vinc_end);
1669 		val = FLD_VAL(vinc, vinc_start, vinc_end) |
1670 				FLD_VAL(hinc, hinc_start, hinc_end);
1671 
1672 		dispc_write_reg(dispc, DISPC_OVL_FIR(plane), val);
1673 	} else {
1674 		val = FLD_VAL(vinc, 28, 16) | FLD_VAL(hinc, 12, 0);
1675 		dispc_write_reg(dispc, DISPC_OVL_FIR2(plane), val);
1676 	}
1677 }
1678 
1679 static void dispc_ovl_set_vid_accu0(struct dispc_device *dispc,
1680 				    enum omap_plane_id plane, int haccu,
1681 				    int vaccu)
1682 {
1683 	u32 val;
1684 	u8 hor_start, hor_end, vert_start, vert_end;
1685 
1686 	dispc_get_reg_field(dispc, FEAT_REG_HORIZONTALACCU,
1687 			    &hor_start, &hor_end);
1688 	dispc_get_reg_field(dispc, FEAT_REG_VERTICALACCU,
1689 			    &vert_start, &vert_end);
1690 
1691 	val = FLD_VAL(vaccu, vert_start, vert_end) |
1692 			FLD_VAL(haccu, hor_start, hor_end);
1693 
1694 	dispc_write_reg(dispc, DISPC_OVL_ACCU0(plane), val);
1695 }
1696 
1697 static void dispc_ovl_set_vid_accu1(struct dispc_device *dispc,
1698 				    enum omap_plane_id plane, int haccu,
1699 				    int vaccu)
1700 {
1701 	u32 val;
1702 	u8 hor_start, hor_end, vert_start, vert_end;
1703 
1704 	dispc_get_reg_field(dispc, FEAT_REG_HORIZONTALACCU,
1705 			    &hor_start, &hor_end);
1706 	dispc_get_reg_field(dispc, FEAT_REG_VERTICALACCU,
1707 			    &vert_start, &vert_end);
1708 
1709 	val = FLD_VAL(vaccu, vert_start, vert_end) |
1710 			FLD_VAL(haccu, hor_start, hor_end);
1711 
1712 	dispc_write_reg(dispc, DISPC_OVL_ACCU1(plane), val);
1713 }
1714 
1715 static void dispc_ovl_set_vid_accu2_0(struct dispc_device *dispc,
1716 				      enum omap_plane_id plane, int haccu,
1717 				      int vaccu)
1718 {
1719 	u32 val;
1720 
1721 	val = FLD_VAL(vaccu, 26, 16) | FLD_VAL(haccu, 10, 0);
1722 	dispc_write_reg(dispc, DISPC_OVL_ACCU2_0(plane), val);
1723 }
1724 
1725 static void dispc_ovl_set_vid_accu2_1(struct dispc_device *dispc,
1726 				      enum omap_plane_id plane, int haccu,
1727 				      int vaccu)
1728 {
1729 	u32 val;
1730 
1731 	val = FLD_VAL(vaccu, 26, 16) | FLD_VAL(haccu, 10, 0);
1732 	dispc_write_reg(dispc, DISPC_OVL_ACCU2_1(plane), val);
1733 }
1734 
1735 static void dispc_ovl_set_scale_param(struct dispc_device *dispc,
1736 				      enum omap_plane_id plane,
1737 				      u16 orig_width, u16 orig_height,
1738 				      u16 out_width, u16 out_height,
1739 				      bool five_taps, u8 rotation,
1740 				      enum omap_color_component color_comp)
1741 {
1742 	int fir_hinc, fir_vinc;
1743 
1744 	fir_hinc = 1024 * orig_width / out_width;
1745 	fir_vinc = 1024 * orig_height / out_height;
1746 
1747 	dispc_ovl_set_scale_coef(dispc, plane, fir_hinc, fir_vinc, five_taps,
1748 				 color_comp);
1749 	dispc_ovl_set_fir(dispc, plane, fir_hinc, fir_vinc, color_comp);
1750 }
1751 
1752 static void dispc_ovl_set_accu_uv(struct dispc_device *dispc,
1753 				  enum omap_plane_id plane,
1754 				  u16 orig_width, u16 orig_height,
1755 				  u16 out_width, u16 out_height,
1756 				  bool ilace, u32 fourcc, u8 rotation)
1757 {
1758 	int h_accu2_0, h_accu2_1;
1759 	int v_accu2_0, v_accu2_1;
1760 	int chroma_hinc, chroma_vinc;
1761 	int idx;
1762 
1763 	struct accu {
1764 		s8 h0_m, h0_n;
1765 		s8 h1_m, h1_n;
1766 		s8 v0_m, v0_n;
1767 		s8 v1_m, v1_n;
1768 	};
1769 
1770 	const struct accu *accu_table;
1771 	const struct accu *accu_val;
1772 
1773 	static const struct accu accu_nv12[4] = {
1774 		{  0, 1,  0, 1 , -1, 2, 0, 1 },
1775 		{  1, 2, -3, 4 ,  0, 1, 0, 1 },
1776 		{ -1, 1,  0, 1 , -1, 2, 0, 1 },
1777 		{ -1, 2, -1, 2 , -1, 1, 0, 1 },
1778 	};
1779 
1780 	static const struct accu accu_nv12_ilace[4] = {
1781 		{  0, 1,  0, 1 , -3, 4, -1, 4 },
1782 		{ -1, 4, -3, 4 ,  0, 1,  0, 1 },
1783 		{ -1, 1,  0, 1 , -1, 4, -3, 4 },
1784 		{ -3, 4, -3, 4 , -1, 1,  0, 1 },
1785 	};
1786 
1787 	static const struct accu accu_yuv[4] = {
1788 		{  0, 1, 0, 1,  0, 1, 0, 1 },
1789 		{  0, 1, 0, 1,  0, 1, 0, 1 },
1790 		{ -1, 1, 0, 1,  0, 1, 0, 1 },
1791 		{  0, 1, 0, 1, -1, 1, 0, 1 },
1792 	};
1793 
1794 	/* Note: DSS HW rotates clockwise, DRM_MODE_ROTATE_* counter-clockwise */
1795 	switch (rotation & DRM_MODE_ROTATE_MASK) {
1796 	default:
1797 	case DRM_MODE_ROTATE_0:
1798 		idx = 0;
1799 		break;
1800 	case DRM_MODE_ROTATE_90:
1801 		idx = 3;
1802 		break;
1803 	case DRM_MODE_ROTATE_180:
1804 		idx = 2;
1805 		break;
1806 	case DRM_MODE_ROTATE_270:
1807 		idx = 1;
1808 		break;
1809 	}
1810 
1811 	switch (fourcc) {
1812 	case DRM_FORMAT_NV12:
1813 		if (ilace)
1814 			accu_table = accu_nv12_ilace;
1815 		else
1816 			accu_table = accu_nv12;
1817 		break;
1818 	case DRM_FORMAT_YUYV:
1819 	case DRM_FORMAT_UYVY:
1820 		accu_table = accu_yuv;
1821 		break;
1822 	default:
1823 		BUG();
1824 		return;
1825 	}
1826 
1827 	accu_val = &accu_table[idx];
1828 
1829 	chroma_hinc = 1024 * orig_width / out_width;
1830 	chroma_vinc = 1024 * orig_height / out_height;
1831 
1832 	h_accu2_0 = (accu_val->h0_m * chroma_hinc / accu_val->h0_n) % 1024;
1833 	h_accu2_1 = (accu_val->h1_m * chroma_hinc / accu_val->h1_n) % 1024;
1834 	v_accu2_0 = (accu_val->v0_m * chroma_vinc / accu_val->v0_n) % 1024;
1835 	v_accu2_1 = (accu_val->v1_m * chroma_vinc / accu_val->v1_n) % 1024;
1836 
1837 	dispc_ovl_set_vid_accu2_0(dispc, plane, h_accu2_0, v_accu2_0);
1838 	dispc_ovl_set_vid_accu2_1(dispc, plane, h_accu2_1, v_accu2_1);
1839 }
1840 
1841 static void dispc_ovl_set_scaling_common(struct dispc_device *dispc,
1842 					 enum omap_plane_id plane,
1843 					 u16 orig_width, u16 orig_height,
1844 					 u16 out_width, u16 out_height,
1845 					 bool ilace, bool five_taps,
1846 					 bool fieldmode, u32 fourcc,
1847 					 u8 rotation)
1848 {
1849 	int accu0 = 0;
1850 	int accu1 = 0;
1851 	u32 l;
1852 
1853 	dispc_ovl_set_scale_param(dispc, plane, orig_width, orig_height,
1854 				  out_width, out_height, five_taps,
1855 				  rotation, DISPC_COLOR_COMPONENT_RGB_Y);
1856 	l = dispc_read_reg(dispc, DISPC_OVL_ATTRIBUTES(plane));
1857 
1858 	/* RESIZEENABLE and VERTICALTAPS */
1859 	l &= ~((0x3 << 5) | (0x1 << 21));
1860 	l |= (orig_width != out_width) ? (1 << 5) : 0;
1861 	l |= (orig_height != out_height) ? (1 << 6) : 0;
1862 	l |= five_taps ? (1 << 21) : 0;
1863 
1864 	/* VRESIZECONF and HRESIZECONF */
1865 	if (dispc_has_feature(dispc, FEAT_RESIZECONF)) {
1866 		l &= ~(0x3 << 7);
1867 		l |= (orig_width <= out_width) ? 0 : (1 << 7);
1868 		l |= (orig_height <= out_height) ? 0 : (1 << 8);
1869 	}
1870 
1871 	/* LINEBUFFERSPLIT */
1872 	if (dispc_has_feature(dispc, FEAT_LINEBUFFERSPLIT)) {
1873 		l &= ~(0x1 << 22);
1874 		l |= five_taps ? (1 << 22) : 0;
1875 	}
1876 
1877 	dispc_write_reg(dispc, DISPC_OVL_ATTRIBUTES(plane), l);
1878 
1879 	/*
1880 	 * field 0 = even field = bottom field
1881 	 * field 1 = odd field = top field
1882 	 */
1883 	if (ilace && !fieldmode) {
1884 		accu1 = 0;
1885 		accu0 = ((1024 * orig_height / out_height) / 2) & 0x3ff;
1886 		if (accu0 >= 1024/2) {
1887 			accu1 = 1024/2;
1888 			accu0 -= accu1;
1889 		}
1890 	}
1891 
1892 	dispc_ovl_set_vid_accu0(dispc, plane, 0, accu0);
1893 	dispc_ovl_set_vid_accu1(dispc, plane, 0, accu1);
1894 }
1895 
1896 static void dispc_ovl_set_scaling_uv(struct dispc_device *dispc,
1897 				     enum omap_plane_id plane,
1898 				     u16 orig_width, u16 orig_height,
1899 				     u16 out_width, u16 out_height,
1900 				     bool ilace, bool five_taps,
1901 				     bool fieldmode, u32 fourcc,
1902 				     u8 rotation)
1903 {
1904 	int scale_x = out_width != orig_width;
1905 	int scale_y = out_height != orig_height;
1906 	bool chroma_upscale = plane != OMAP_DSS_WB;
1907 
1908 	if (!dispc_has_feature(dispc, FEAT_HANDLE_UV_SEPARATE))
1909 		return;
1910 
1911 	if (!format_is_yuv(fourcc)) {
1912 		/* reset chroma resampling for RGB formats  */
1913 		if (plane != OMAP_DSS_WB)
1914 			REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES2(plane),
1915 				    0, 8, 8);
1916 		return;
1917 	}
1918 
1919 	dispc_ovl_set_accu_uv(dispc, plane, orig_width, orig_height, out_width,
1920 			      out_height, ilace, fourcc, rotation);
1921 
1922 	switch (fourcc) {
1923 	case DRM_FORMAT_NV12:
1924 		if (chroma_upscale) {
1925 			/* UV is subsampled by 2 horizontally and vertically */
1926 			orig_height >>= 1;
1927 			orig_width >>= 1;
1928 		} else {
1929 			/* UV is downsampled by 2 horizontally and vertically */
1930 			orig_height <<= 1;
1931 			orig_width <<= 1;
1932 		}
1933 
1934 		break;
1935 	case DRM_FORMAT_YUYV:
1936 	case DRM_FORMAT_UYVY:
1937 		/* For YUV422 with 90/270 rotation, we don't upsample chroma */
1938 		if (!drm_rotation_90_or_270(rotation)) {
1939 			if (chroma_upscale)
1940 				/* UV is subsampled by 2 horizontally */
1941 				orig_width >>= 1;
1942 			else
1943 				/* UV is downsampled by 2 horizontally */
1944 				orig_width <<= 1;
1945 		}
1946 
1947 		/* must use FIR for YUV422 if rotated */
1948 		if ((rotation & DRM_MODE_ROTATE_MASK) != DRM_MODE_ROTATE_0)
1949 			scale_x = scale_y = true;
1950 
1951 		break;
1952 	default:
1953 		BUG();
1954 		return;
1955 	}
1956 
1957 	if (out_width != orig_width)
1958 		scale_x = true;
1959 	if (out_height != orig_height)
1960 		scale_y = true;
1961 
1962 	dispc_ovl_set_scale_param(dispc, plane, orig_width, orig_height,
1963 				  out_width, out_height, five_taps,
1964 				  rotation, DISPC_COLOR_COMPONENT_UV);
1965 
1966 	if (plane != OMAP_DSS_WB)
1967 		REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES2(plane),
1968 			(scale_x || scale_y) ? 1 : 0, 8, 8);
1969 
1970 	/* set H scaling */
1971 	REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), scale_x ? 1 : 0, 5, 5);
1972 	/* set V scaling */
1973 	REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), scale_y ? 1 : 0, 6, 6);
1974 }
1975 
1976 static void dispc_ovl_set_scaling(struct dispc_device *dispc,
1977 				  enum omap_plane_id plane,
1978 				  u16 orig_width, u16 orig_height,
1979 				  u16 out_width, u16 out_height,
1980 				  bool ilace, bool five_taps,
1981 				  bool fieldmode, u32 fourcc,
1982 				  u8 rotation)
1983 {
1984 	BUG_ON(plane == OMAP_DSS_GFX);
1985 
1986 	dispc_ovl_set_scaling_common(dispc, plane, orig_width, orig_height,
1987 				     out_width, out_height, ilace, five_taps,
1988 				     fieldmode, fourcc, rotation);
1989 
1990 	dispc_ovl_set_scaling_uv(dispc, plane, orig_width, orig_height,
1991 				 out_width, out_height, ilace, five_taps,
1992 				 fieldmode, fourcc, rotation);
1993 }
1994 
1995 static void dispc_ovl_set_rotation_attrs(struct dispc_device *dispc,
1996 					 enum omap_plane_id plane, u8 rotation,
1997 					 enum omap_dss_rotation_type rotation_type,
1998 					 u32 fourcc)
1999 {
2000 	bool row_repeat = false;
2001 	int vidrot = 0;
2002 
2003 	/* Note: DSS HW rotates clockwise, DRM_MODE_ROTATE_* counter-clockwise */
2004 	if (fourcc == DRM_FORMAT_YUYV || fourcc == DRM_FORMAT_UYVY) {
2005 
2006 		if (rotation & DRM_MODE_REFLECT_X) {
2007 			switch (rotation & DRM_MODE_ROTATE_MASK) {
2008 			case DRM_MODE_ROTATE_0:
2009 				vidrot = 2;
2010 				break;
2011 			case DRM_MODE_ROTATE_90:
2012 				vidrot = 1;
2013 				break;
2014 			case DRM_MODE_ROTATE_180:
2015 				vidrot = 0;
2016 				break;
2017 			case DRM_MODE_ROTATE_270:
2018 				vidrot = 3;
2019 				break;
2020 			}
2021 		} else {
2022 			switch (rotation & DRM_MODE_ROTATE_MASK) {
2023 			case DRM_MODE_ROTATE_0:
2024 				vidrot = 0;
2025 				break;
2026 			case DRM_MODE_ROTATE_90:
2027 				vidrot = 3;
2028 				break;
2029 			case DRM_MODE_ROTATE_180:
2030 				vidrot = 2;
2031 				break;
2032 			case DRM_MODE_ROTATE_270:
2033 				vidrot = 1;
2034 				break;
2035 			}
2036 		}
2037 
2038 		if (drm_rotation_90_or_270(rotation))
2039 			row_repeat = true;
2040 		else
2041 			row_repeat = false;
2042 	}
2043 
2044 	/*
2045 	 * OMAP4/5 Errata i631:
2046 	 * NV12 in 1D mode must use ROTATION=1. Otherwise DSS will fetch extra
2047 	 * rows beyond the framebuffer, which may cause OCP error.
2048 	 */
2049 	if (fourcc == DRM_FORMAT_NV12 && rotation_type != OMAP_DSS_ROT_TILER)
2050 		vidrot = 1;
2051 
2052 	REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), vidrot, 13, 12);
2053 	if (dispc_has_feature(dispc, FEAT_ROWREPEATENABLE))
2054 		REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane),
2055 			row_repeat ? 1 : 0, 18, 18);
2056 
2057 	if (dispc_ovl_color_mode_supported(dispc, plane, DRM_FORMAT_NV12)) {
2058 		bool doublestride =
2059 			fourcc == DRM_FORMAT_NV12 &&
2060 			rotation_type == OMAP_DSS_ROT_TILER &&
2061 			!drm_rotation_90_or_270(rotation);
2062 
2063 		/* DOUBLESTRIDE */
2064 		REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane),
2065 			    doublestride, 22, 22);
2066 	}
2067 }
2068 
2069 static int color_mode_to_bpp(u32 fourcc)
2070 {
2071 	switch (fourcc) {
2072 	case DRM_FORMAT_NV12:
2073 		return 8;
2074 	case DRM_FORMAT_RGBX4444:
2075 	case DRM_FORMAT_RGB565:
2076 	case DRM_FORMAT_ARGB4444:
2077 	case DRM_FORMAT_YUYV:
2078 	case DRM_FORMAT_UYVY:
2079 	case DRM_FORMAT_RGBA4444:
2080 	case DRM_FORMAT_XRGB4444:
2081 	case DRM_FORMAT_ARGB1555:
2082 	case DRM_FORMAT_XRGB1555:
2083 		return 16;
2084 	case DRM_FORMAT_RGB888:
2085 		return 24;
2086 	case DRM_FORMAT_XRGB8888:
2087 	case DRM_FORMAT_ARGB8888:
2088 	case DRM_FORMAT_RGBA8888:
2089 	case DRM_FORMAT_RGBX8888:
2090 		return 32;
2091 	default:
2092 		BUG();
2093 		return 0;
2094 	}
2095 }
2096 
2097 static s32 pixinc(int pixels, u8 ps)
2098 {
2099 	if (pixels == 1)
2100 		return 1;
2101 	else if (pixels > 1)
2102 		return 1 + (pixels - 1) * ps;
2103 	else if (pixels < 0)
2104 		return 1 - (-pixels + 1) * ps;
2105 	else
2106 		BUG();
2107 		return 0;
2108 }
2109 
2110 static void calc_offset(u16 screen_width, u16 width,
2111 		u32 fourcc, bool fieldmode, unsigned int field_offset,
2112 		unsigned int *offset0, unsigned int *offset1,
2113 		s32 *row_inc, s32 *pix_inc, int x_predecim, int y_predecim,
2114 		enum omap_dss_rotation_type rotation_type, u8 rotation)
2115 {
2116 	u8 ps;
2117 
2118 	ps = color_mode_to_bpp(fourcc) / 8;
2119 
2120 	DSSDBG("scrw %d, width %d\n", screen_width, width);
2121 
2122 	if (rotation_type == OMAP_DSS_ROT_TILER &&
2123 	    (fourcc == DRM_FORMAT_UYVY || fourcc == DRM_FORMAT_YUYV) &&
2124 	    drm_rotation_90_or_270(rotation)) {
2125 		/*
2126 		 * HACK: ROW_INC needs to be calculated with TILER units.
2127 		 * We get such 'screen_width' that multiplying it with the
2128 		 * YUV422 pixel size gives the correct TILER container width.
2129 		 * However, 'width' is in pixels and multiplying it with YUV422
2130 		 * pixel size gives incorrect result. We thus multiply it here
2131 		 * with 2 to match the 32 bit TILER unit size.
2132 		 */
2133 		width *= 2;
2134 	}
2135 
2136 	/*
2137 	 * field 0 = even field = bottom field
2138 	 * field 1 = odd field = top field
2139 	 */
2140 	*offset0 = field_offset * screen_width * ps;
2141 	*offset1 = 0;
2142 
2143 	*row_inc = pixinc(1 + (y_predecim * screen_width - width * x_predecim) +
2144 			(fieldmode ? screen_width : 0), ps);
2145 	if (fourcc == DRM_FORMAT_YUYV || fourcc == DRM_FORMAT_UYVY)
2146 		*pix_inc = pixinc(x_predecim, 2 * ps);
2147 	else
2148 		*pix_inc = pixinc(x_predecim, ps);
2149 }
2150 
2151 /*
2152  * This function is used to avoid synclosts in OMAP3, because of some
2153  * undocumented horizontal position and timing related limitations.
2154  */
2155 static int check_horiz_timing_omap3(unsigned long pclk, unsigned long lclk,
2156 		const struct videomode *vm, u16 pos_x,
2157 		u16 width, u16 height, u16 out_width, u16 out_height,
2158 		bool five_taps)
2159 {
2160 	const int ds = DIV_ROUND_UP(height, out_height);
2161 	unsigned long nonactive;
2162 	static const u8 limits[3] = { 8, 10, 20 };
2163 	u64 val, blank;
2164 	int i;
2165 
2166 	nonactive = vm->hactive + vm->hfront_porch + vm->hsync_len +
2167 		    vm->hback_porch - out_width;
2168 
2169 	i = 0;
2170 	if (out_height < height)
2171 		i++;
2172 	if (out_width < width)
2173 		i++;
2174 	blank = div_u64((u64)(vm->hback_porch + vm->hsync_len + vm->hfront_porch) *
2175 			lclk, pclk);
2176 	DSSDBG("blanking period + ppl = %llu (limit = %u)\n", blank, limits[i]);
2177 	if (blank <= limits[i])
2178 		return -EINVAL;
2179 
2180 	/* FIXME add checks for 3-tap filter once the limitations are known */
2181 	if (!five_taps)
2182 		return 0;
2183 
2184 	/*
2185 	 * Pixel data should be prepared before visible display point starts.
2186 	 * So, atleast DS-2 lines must have already been fetched by DISPC
2187 	 * during nonactive - pos_x period.
2188 	 */
2189 	val = div_u64((u64)(nonactive - pos_x) * lclk, pclk);
2190 	DSSDBG("(nonactive - pos_x) * pcd = %llu max(0, DS - 2) * width = %d\n",
2191 		val, max(0, ds - 2) * width);
2192 	if (val < max(0, ds - 2) * width)
2193 		return -EINVAL;
2194 
2195 	/*
2196 	 * All lines need to be refilled during the nonactive period of which
2197 	 * only one line can be loaded during the active period. So, atleast
2198 	 * DS - 1 lines should be loaded during nonactive period.
2199 	 */
2200 	val =  div_u64((u64)nonactive * lclk, pclk);
2201 	DSSDBG("nonactive * pcd  = %llu, max(0, DS - 1) * width = %d\n",
2202 		val, max(0, ds - 1) * width);
2203 	if (val < max(0, ds - 1) * width)
2204 		return -EINVAL;
2205 
2206 	return 0;
2207 }
2208 
2209 static unsigned long calc_core_clk_five_taps(unsigned long pclk,
2210 		const struct videomode *vm, u16 width,
2211 		u16 height, u16 out_width, u16 out_height,
2212 		u32 fourcc)
2213 {
2214 	u32 core_clk = 0;
2215 	u64 tmp;
2216 
2217 	if (height <= out_height && width <= out_width)
2218 		return (unsigned long) pclk;
2219 
2220 	if (height > out_height) {
2221 		unsigned int ppl = vm->hactive;
2222 
2223 		tmp = (u64)pclk * height * out_width;
2224 		do_div(tmp, 2 * out_height * ppl);
2225 		core_clk = tmp;
2226 
2227 		if (height > 2 * out_height) {
2228 			if (ppl == out_width)
2229 				return 0;
2230 
2231 			tmp = (u64)pclk * (height - 2 * out_height) * out_width;
2232 			do_div(tmp, 2 * out_height * (ppl - out_width));
2233 			core_clk = max_t(u32, core_clk, tmp);
2234 		}
2235 	}
2236 
2237 	if (width > out_width) {
2238 		tmp = (u64)pclk * width;
2239 		do_div(tmp, out_width);
2240 		core_clk = max_t(u32, core_clk, tmp);
2241 
2242 		if (fourcc == DRM_FORMAT_XRGB8888)
2243 			core_clk <<= 1;
2244 	}
2245 
2246 	return core_clk;
2247 }
2248 
2249 static unsigned long calc_core_clk_24xx(unsigned long pclk, u16 width,
2250 		u16 height, u16 out_width, u16 out_height, bool mem_to_mem)
2251 {
2252 	if (height > out_height && width > out_width)
2253 		return pclk * 4;
2254 	else
2255 		return pclk * 2;
2256 }
2257 
2258 static unsigned long calc_core_clk_34xx(unsigned long pclk, u16 width,
2259 		u16 height, u16 out_width, u16 out_height, bool mem_to_mem)
2260 {
2261 	unsigned int hf, vf;
2262 
2263 	/*
2264 	 * FIXME how to determine the 'A' factor
2265 	 * for the no downscaling case ?
2266 	 */
2267 
2268 	if (width > 3 * out_width)
2269 		hf = 4;
2270 	else if (width > 2 * out_width)
2271 		hf = 3;
2272 	else if (width > out_width)
2273 		hf = 2;
2274 	else
2275 		hf = 1;
2276 	if (height > out_height)
2277 		vf = 2;
2278 	else
2279 		vf = 1;
2280 
2281 	return pclk * vf * hf;
2282 }
2283 
2284 static unsigned long calc_core_clk_44xx(unsigned long pclk, u16 width,
2285 		u16 height, u16 out_width, u16 out_height, bool mem_to_mem)
2286 {
2287 	/*
2288 	 * If the overlay/writeback is in mem to mem mode, there are no
2289 	 * downscaling limitations with respect to pixel clock, return 1 as
2290 	 * required core clock to represent that we have sufficient enough
2291 	 * core clock to do maximum downscaling
2292 	 */
2293 	if (mem_to_mem)
2294 		return 1;
2295 
2296 	if (width > out_width)
2297 		return DIV_ROUND_UP(pclk, out_width) * width;
2298 	else
2299 		return pclk;
2300 }
2301 
2302 static int dispc_ovl_calc_scaling_24xx(struct dispc_device *dispc,
2303 				       unsigned long pclk, unsigned long lclk,
2304 				       const struct videomode *vm,
2305 				       u16 width, u16 height,
2306 				       u16 out_width, u16 out_height,
2307 				       u32 fourcc, bool *five_taps,
2308 				       int *x_predecim, int *y_predecim,
2309 				       int *decim_x, int *decim_y,
2310 				       u16 pos_x, unsigned long *core_clk,
2311 				       bool mem_to_mem)
2312 {
2313 	int error;
2314 	u16 in_width, in_height;
2315 	int min_factor = min(*decim_x, *decim_y);
2316 	const int maxsinglelinewidth = dispc->feat->max_line_width;
2317 
2318 	*five_taps = false;
2319 
2320 	do {
2321 		in_height = height / *decim_y;
2322 		in_width = width / *decim_x;
2323 		*core_clk = dispc->feat->calc_core_clk(pclk, in_width,
2324 				in_height, out_width, out_height, mem_to_mem);
2325 		error = (in_width > maxsinglelinewidth || !*core_clk ||
2326 			*core_clk > dispc_core_clk_rate(dispc));
2327 		if (error) {
2328 			if (*decim_x == *decim_y) {
2329 				*decim_x = min_factor;
2330 				++*decim_y;
2331 			} else {
2332 				swap(*decim_x, *decim_y);
2333 				if (*decim_x < *decim_y)
2334 					++*decim_x;
2335 			}
2336 		}
2337 	} while (*decim_x <= *x_predecim && *decim_y <= *y_predecim && error);
2338 
2339 	if (error) {
2340 		DSSERR("failed to find scaling settings\n");
2341 		return -EINVAL;
2342 	}
2343 
2344 	if (in_width > maxsinglelinewidth) {
2345 		DSSERR("Cannot scale max input width exceeded");
2346 		return -EINVAL;
2347 	}
2348 	return 0;
2349 }
2350 
2351 static int dispc_ovl_calc_scaling_34xx(struct dispc_device *dispc,
2352 				       unsigned long pclk, unsigned long lclk,
2353 				       const struct videomode *vm,
2354 				       u16 width, u16 height,
2355 				       u16 out_width, u16 out_height,
2356 				       u32 fourcc, bool *five_taps,
2357 				       int *x_predecim, int *y_predecim,
2358 				       int *decim_x, int *decim_y,
2359 				       u16 pos_x, unsigned long *core_clk,
2360 				       bool mem_to_mem)
2361 {
2362 	int error;
2363 	u16 in_width, in_height;
2364 	const int maxsinglelinewidth = dispc->feat->max_line_width;
2365 
2366 	do {
2367 		in_height = height / *decim_y;
2368 		in_width = width / *decim_x;
2369 		*five_taps = in_height > out_height;
2370 
2371 		if (in_width > maxsinglelinewidth)
2372 			if (in_height > out_height &&
2373 						in_height < out_height * 2)
2374 				*five_taps = false;
2375 again:
2376 		if (*five_taps)
2377 			*core_clk = calc_core_clk_five_taps(pclk, vm,
2378 						in_width, in_height, out_width,
2379 						out_height, fourcc);
2380 		else
2381 			*core_clk = dispc->feat->calc_core_clk(pclk, in_width,
2382 					in_height, out_width, out_height,
2383 					mem_to_mem);
2384 
2385 		error = check_horiz_timing_omap3(pclk, lclk, vm,
2386 				pos_x, in_width, in_height, out_width,
2387 				out_height, *five_taps);
2388 		if (error && *five_taps) {
2389 			*five_taps = false;
2390 			goto again;
2391 		}
2392 
2393 		error = (error || in_width > maxsinglelinewidth * 2 ||
2394 			(in_width > maxsinglelinewidth && *five_taps) ||
2395 			!*core_clk || *core_clk > dispc_core_clk_rate(dispc));
2396 
2397 		if (!error) {
2398 			/* verify that we're inside the limits of scaler */
2399 			if (in_width / 4 > out_width)
2400 					error = 1;
2401 
2402 			if (*five_taps) {
2403 				if (in_height / 4 > out_height)
2404 					error = 1;
2405 			} else {
2406 				if (in_height / 2 > out_height)
2407 					error = 1;
2408 			}
2409 		}
2410 
2411 		if (error)
2412 			++*decim_y;
2413 	} while (*decim_x <= *x_predecim && *decim_y <= *y_predecim && error);
2414 
2415 	if (error) {
2416 		DSSERR("failed to find scaling settings\n");
2417 		return -EINVAL;
2418 	}
2419 
2420 	if (check_horiz_timing_omap3(pclk, lclk, vm, pos_x, in_width,
2421 				in_height, out_width, out_height, *five_taps)) {
2422 			DSSERR("horizontal timing too tight\n");
2423 			return -EINVAL;
2424 	}
2425 
2426 	if (in_width > (maxsinglelinewidth * 2)) {
2427 		DSSERR("Cannot setup scaling");
2428 		DSSERR("width exceeds maximum width possible");
2429 		return -EINVAL;
2430 	}
2431 
2432 	if (in_width > maxsinglelinewidth && *five_taps) {
2433 		DSSERR("cannot setup scaling with five taps");
2434 		return -EINVAL;
2435 	}
2436 	return 0;
2437 }
2438 
2439 static int dispc_ovl_calc_scaling_44xx(struct dispc_device *dispc,
2440 				       unsigned long pclk, unsigned long lclk,
2441 				       const struct videomode *vm,
2442 				       u16 width, u16 height,
2443 				       u16 out_width, u16 out_height,
2444 				       u32 fourcc, bool *five_taps,
2445 				       int *x_predecim, int *y_predecim,
2446 				       int *decim_x, int *decim_y,
2447 				       u16 pos_x, unsigned long *core_clk,
2448 				       bool mem_to_mem)
2449 {
2450 	u16 in_width, in_width_max;
2451 	int decim_x_min = *decim_x;
2452 	u16 in_height = height / *decim_y;
2453 	const int maxsinglelinewidth = dispc->feat->max_line_width;
2454 	const int maxdownscale = dispc->feat->max_downscale;
2455 
2456 	if (mem_to_mem) {
2457 		in_width_max = out_width * maxdownscale;
2458 	} else {
2459 		in_width_max = dispc_core_clk_rate(dispc)
2460 			     / DIV_ROUND_UP(pclk, out_width);
2461 	}
2462 
2463 	*decim_x = DIV_ROUND_UP(width, in_width_max);
2464 
2465 	*decim_x = *decim_x > decim_x_min ? *decim_x : decim_x_min;
2466 	if (*decim_x > *x_predecim)
2467 		return -EINVAL;
2468 
2469 	do {
2470 		in_width = width / *decim_x;
2471 	} while (*decim_x <= *x_predecim &&
2472 			in_width > maxsinglelinewidth && ++*decim_x);
2473 
2474 	if (in_width > maxsinglelinewidth) {
2475 		DSSERR("Cannot scale width exceeds max line width");
2476 		return -EINVAL;
2477 	}
2478 
2479 	if (*decim_x > 4 && fourcc != DRM_FORMAT_NV12) {
2480 		/*
2481 		 * Let's disable all scaling that requires horizontal
2482 		 * decimation with higher factor than 4, until we have
2483 		 * better estimates of what we can and can not
2484 		 * do. However, NV12 color format appears to work Ok
2485 		 * with all decimation factors.
2486 		 *
2487 		 * When decimating horizontally by more that 4 the dss
2488 		 * is not able to fetch the data in burst mode. When
2489 		 * this happens it is hard to tell if there enough
2490 		 * bandwidth. Despite what theory says this appears to
2491 		 * be true also for 16-bit color formats.
2492 		 */
2493 		DSSERR("Not enough bandwidth, too much downscaling (x-decimation factor %d > 4)", *decim_x);
2494 
2495 		return -EINVAL;
2496 	}
2497 
2498 	*core_clk = dispc->feat->calc_core_clk(pclk, in_width, in_height,
2499 				out_width, out_height, mem_to_mem);
2500 	return 0;
2501 }
2502 
2503 #define DIV_FRAC(dividend, divisor) \
2504 	((dividend) * 100 / (divisor) - ((dividend) / (divisor) * 100))
2505 
2506 static int dispc_ovl_calc_scaling(struct dispc_device *dispc,
2507 				  enum omap_plane_id plane,
2508 				  unsigned long pclk, unsigned long lclk,
2509 				  enum omap_overlay_caps caps,
2510 				  const struct videomode *vm,
2511 				  u16 width, u16 height,
2512 				  u16 out_width, u16 out_height,
2513 				  u32 fourcc, bool *five_taps,
2514 				  int *x_predecim, int *y_predecim, u16 pos_x,
2515 				  enum omap_dss_rotation_type rotation_type,
2516 				  bool mem_to_mem)
2517 {
2518 	int maxhdownscale = dispc->feat->max_downscale;
2519 	int maxvdownscale = dispc->feat->max_downscale;
2520 	const int max_decim_limit = 16;
2521 	unsigned long core_clk = 0;
2522 	int decim_x, decim_y, ret;
2523 
2524 	if (width == out_width && height == out_height)
2525 		return 0;
2526 
2527 	if (plane == OMAP_DSS_WB) {
2528 		switch (fourcc) {
2529 		case DRM_FORMAT_NV12:
2530 			maxhdownscale = maxvdownscale = 2;
2531 			break;
2532 		case DRM_FORMAT_YUYV:
2533 		case DRM_FORMAT_UYVY:
2534 			maxhdownscale = 2;
2535 			maxvdownscale = 4;
2536 			break;
2537 		default:
2538 			break;
2539 		}
2540 	}
2541 	if (!mem_to_mem && (pclk == 0 || vm->pixelclock == 0)) {
2542 		DSSERR("cannot calculate scaling settings: pclk is zero\n");
2543 		return -EINVAL;
2544 	}
2545 
2546 	if ((caps & OMAP_DSS_OVL_CAP_SCALE) == 0)
2547 		return -EINVAL;
2548 
2549 	if (mem_to_mem) {
2550 		*x_predecim = *y_predecim = 1;
2551 	} else {
2552 		*x_predecim = max_decim_limit;
2553 		*y_predecim = (rotation_type == OMAP_DSS_ROT_TILER &&
2554 				dispc_has_feature(dispc, FEAT_BURST_2D)) ?
2555 				2 : max_decim_limit;
2556 	}
2557 
2558 	decim_x = DIV_ROUND_UP(DIV_ROUND_UP(width, out_width), maxhdownscale);
2559 	decim_y = DIV_ROUND_UP(DIV_ROUND_UP(height, out_height), maxvdownscale);
2560 
2561 	if (decim_x > *x_predecim || out_width > width * 8)
2562 		return -EINVAL;
2563 
2564 	if (decim_y > *y_predecim || out_height > height * 8)
2565 		return -EINVAL;
2566 
2567 	ret = dispc->feat->calc_scaling(dispc, pclk, lclk, vm, width, height,
2568 					out_width, out_height, fourcc,
2569 					five_taps, x_predecim, y_predecim,
2570 					&decim_x, &decim_y, pos_x, &core_clk,
2571 					mem_to_mem);
2572 	if (ret)
2573 		return ret;
2574 
2575 	DSSDBG("%dx%d -> %dx%d (%d.%02d x %d.%02d), decim %dx%d %dx%d (%d.%02d x %d.%02d), taps %d, req clk %lu, cur clk %lu\n",
2576 		width, height,
2577 		out_width, out_height,
2578 		out_width / width, DIV_FRAC(out_width, width),
2579 		out_height / height, DIV_FRAC(out_height, height),
2580 
2581 		decim_x, decim_y,
2582 		width / decim_x, height / decim_y,
2583 		out_width / (width / decim_x), DIV_FRAC(out_width, width / decim_x),
2584 		out_height / (height / decim_y), DIV_FRAC(out_height, height / decim_y),
2585 
2586 		*five_taps ? 5 : 3,
2587 		core_clk, dispc_core_clk_rate(dispc));
2588 
2589 	if (!core_clk || core_clk > dispc_core_clk_rate(dispc)) {
2590 		DSSERR("failed to set up scaling, "
2591 			"required core clk rate = %lu Hz, "
2592 			"current core clk rate = %lu Hz\n",
2593 			core_clk, dispc_core_clk_rate(dispc));
2594 		return -EINVAL;
2595 	}
2596 
2597 	*x_predecim = decim_x;
2598 	*y_predecim = decim_y;
2599 	return 0;
2600 }
2601 
2602 static int dispc_ovl_setup_common(struct dispc_device *dispc,
2603 				  enum omap_plane_id plane,
2604 				  enum omap_overlay_caps caps,
2605 				  u32 paddr, u32 p_uv_addr,
2606 				  u16 screen_width, int pos_x, int pos_y,
2607 				  u16 width, u16 height,
2608 				  u16 out_width, u16 out_height,
2609 				  u32 fourcc, u8 rotation, u8 zorder,
2610 				  u8 pre_mult_alpha, u8 global_alpha,
2611 				  enum omap_dss_rotation_type rotation_type,
2612 				  bool replication, const struct videomode *vm,
2613 				  bool mem_to_mem)
2614 {
2615 	bool five_taps = true;
2616 	bool fieldmode = false;
2617 	int r, cconv = 0;
2618 	unsigned int offset0, offset1;
2619 	s32 row_inc;
2620 	s32 pix_inc;
2621 	u16 frame_width, frame_height;
2622 	unsigned int field_offset = 0;
2623 	u16 in_height = height;
2624 	u16 in_width = width;
2625 	int x_predecim = 1, y_predecim = 1;
2626 	bool ilace = !!(vm->flags & DISPLAY_FLAGS_INTERLACED);
2627 	unsigned long pclk = dispc_plane_pclk_rate(dispc, plane);
2628 	unsigned long lclk = dispc_plane_lclk_rate(dispc, plane);
2629 
2630 	/* when setting up WB, dispc_plane_pclk_rate() returns 0 */
2631 	if (plane == OMAP_DSS_WB)
2632 		pclk = vm->pixelclock;
2633 
2634 	if (paddr == 0 && rotation_type != OMAP_DSS_ROT_TILER)
2635 		return -EINVAL;
2636 
2637 	if (format_is_yuv(fourcc) && (in_width & 1)) {
2638 		DSSERR("input width %d is not even for YUV format\n", in_width);
2639 		return -EINVAL;
2640 	}
2641 
2642 	out_width = out_width == 0 ? width : out_width;
2643 	out_height = out_height == 0 ? height : out_height;
2644 
2645 	if (plane != OMAP_DSS_WB) {
2646 		if (ilace && height == out_height)
2647 			fieldmode = true;
2648 
2649 		if (ilace) {
2650 			if (fieldmode)
2651 				in_height /= 2;
2652 			pos_y /= 2;
2653 			out_height /= 2;
2654 
2655 			DSSDBG("adjusting for ilace: height %d, pos_y %d, out_height %d\n",
2656 				in_height, pos_y, out_height);
2657 		}
2658 	}
2659 
2660 	if (!dispc_ovl_color_mode_supported(dispc, plane, fourcc))
2661 		return -EINVAL;
2662 
2663 	r = dispc_ovl_calc_scaling(dispc, plane, pclk, lclk, caps, vm, in_width,
2664 				   in_height, out_width, out_height, fourcc,
2665 				   &five_taps, &x_predecim, &y_predecim, pos_x,
2666 				   rotation_type, mem_to_mem);
2667 	if (r)
2668 		return r;
2669 
2670 	in_width = in_width / x_predecim;
2671 	in_height = in_height / y_predecim;
2672 
2673 	if (x_predecim > 1 || y_predecim > 1)
2674 		DSSDBG("predecimation %d x %x, new input size %d x %d\n",
2675 			x_predecim, y_predecim, in_width, in_height);
2676 
2677 	if (format_is_yuv(fourcc) && (in_width & 1)) {
2678 		DSSDBG("predecimated input width is not even for YUV format\n");
2679 		DSSDBG("adjusting input width %d -> %d\n",
2680 			in_width, in_width & ~1);
2681 
2682 		in_width &= ~1;
2683 	}
2684 
2685 	if (format_is_yuv(fourcc))
2686 		cconv = 1;
2687 
2688 	if (ilace && !fieldmode) {
2689 		/*
2690 		 * when downscaling the bottom field may have to start several
2691 		 * source lines below the top field. Unfortunately ACCUI
2692 		 * registers will only hold the fractional part of the offset
2693 		 * so the integer part must be added to the base address of the
2694 		 * bottom field.
2695 		 */
2696 		if (!in_height || in_height == out_height)
2697 			field_offset = 0;
2698 		else
2699 			field_offset = in_height / out_height / 2;
2700 	}
2701 
2702 	/* Fields are independent but interleaved in memory. */
2703 	if (fieldmode)
2704 		field_offset = 1;
2705 
2706 	offset0 = 0;
2707 	offset1 = 0;
2708 	row_inc = 0;
2709 	pix_inc = 0;
2710 
2711 	if (plane == OMAP_DSS_WB) {
2712 		frame_width = out_width;
2713 		frame_height = out_height;
2714 	} else {
2715 		frame_width = in_width;
2716 		frame_height = height;
2717 	}
2718 
2719 	calc_offset(screen_width, frame_width,
2720 			fourcc, fieldmode, field_offset,
2721 			&offset0, &offset1, &row_inc, &pix_inc,
2722 			x_predecim, y_predecim,
2723 			rotation_type, rotation);
2724 
2725 	DSSDBG("offset0 %u, offset1 %u, row_inc %d, pix_inc %d\n",
2726 			offset0, offset1, row_inc, pix_inc);
2727 
2728 	dispc_ovl_set_color_mode(dispc, plane, fourcc);
2729 
2730 	dispc_ovl_configure_burst_type(dispc, plane, rotation_type);
2731 
2732 	if (dispc->feat->reverse_ilace_field_order)
2733 		swap(offset0, offset1);
2734 
2735 	dispc_ovl_set_ba0(dispc, plane, paddr + offset0);
2736 	dispc_ovl_set_ba1(dispc, plane, paddr + offset1);
2737 
2738 	if (fourcc == DRM_FORMAT_NV12) {
2739 		dispc_ovl_set_ba0_uv(dispc, plane, p_uv_addr + offset0);
2740 		dispc_ovl_set_ba1_uv(dispc, plane, p_uv_addr + offset1);
2741 	}
2742 
2743 	if (dispc->feat->last_pixel_inc_missing)
2744 		row_inc += pix_inc - 1;
2745 
2746 	dispc_ovl_set_row_inc(dispc, plane, row_inc);
2747 	dispc_ovl_set_pix_inc(dispc, plane, pix_inc);
2748 
2749 	DSSDBG("%d,%d %dx%d -> %dx%d\n", pos_x, pos_y, in_width,
2750 			in_height, out_width, out_height);
2751 
2752 	dispc_ovl_set_pos(dispc, plane, caps, pos_x, pos_y);
2753 
2754 	dispc_ovl_set_input_size(dispc, plane, in_width, in_height);
2755 
2756 	if (caps & OMAP_DSS_OVL_CAP_SCALE) {
2757 		dispc_ovl_set_scaling(dispc, plane, in_width, in_height,
2758 				      out_width, out_height, ilace, five_taps,
2759 				      fieldmode, fourcc, rotation);
2760 		dispc_ovl_set_output_size(dispc, plane, out_width, out_height);
2761 		dispc_ovl_set_vid_color_conv(dispc, plane, cconv);
2762 	}
2763 
2764 	dispc_ovl_set_rotation_attrs(dispc, plane, rotation, rotation_type,
2765 				     fourcc);
2766 
2767 	dispc_ovl_set_zorder(dispc, plane, caps, zorder);
2768 	dispc_ovl_set_pre_mult_alpha(dispc, plane, caps, pre_mult_alpha);
2769 	dispc_ovl_setup_global_alpha(dispc, plane, caps, global_alpha);
2770 
2771 	dispc_ovl_enable_replication(dispc, plane, caps, replication);
2772 
2773 	return 0;
2774 }
2775 
2776 static int dispc_ovl_setup(struct dispc_device *dispc,
2777 			   enum omap_plane_id plane,
2778 			   const struct omap_overlay_info *oi,
2779 			   const struct videomode *vm, bool mem_to_mem,
2780 			   enum omap_channel channel)
2781 {
2782 	int r;
2783 	enum omap_overlay_caps caps = dispc->feat->overlay_caps[plane];
2784 	const bool replication = true;
2785 
2786 	DSSDBG("dispc_ovl_setup %d, pa %pad, pa_uv %pad, sw %d, %d,%d, %dx%d ->"
2787 		" %dx%d, cmode %x, rot %d, chan %d repl %d\n",
2788 		plane, &oi->paddr, &oi->p_uv_addr, oi->screen_width, oi->pos_x,
2789 		oi->pos_y, oi->width, oi->height, oi->out_width, oi->out_height,
2790 		oi->fourcc, oi->rotation, channel, replication);
2791 
2792 	dispc_ovl_set_channel_out(dispc, plane, channel);
2793 
2794 	r = dispc_ovl_setup_common(dispc, plane, caps, oi->paddr, oi->p_uv_addr,
2795 		oi->screen_width, oi->pos_x, oi->pos_y, oi->width, oi->height,
2796 		oi->out_width, oi->out_height, oi->fourcc, oi->rotation,
2797 		oi->zorder, oi->pre_mult_alpha, oi->global_alpha,
2798 		oi->rotation_type, replication, vm, mem_to_mem);
2799 
2800 	return r;
2801 }
2802 
2803 static int dispc_wb_setup(struct dispc_device *dispc,
2804 		   const struct omap_dss_writeback_info *wi,
2805 		   bool mem_to_mem, const struct videomode *vm,
2806 		   enum dss_writeback_channel channel_in)
2807 {
2808 	int r;
2809 	u32 l;
2810 	enum omap_plane_id plane = OMAP_DSS_WB;
2811 	const int pos_x = 0, pos_y = 0;
2812 	const u8 zorder = 0, global_alpha = 0;
2813 	const bool replication = true;
2814 	bool truncation;
2815 	int in_width = vm->hactive;
2816 	int in_height = vm->vactive;
2817 	enum omap_overlay_caps caps =
2818 		OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA;
2819 
2820 	if (vm->flags & DISPLAY_FLAGS_INTERLACED)
2821 		in_height /= 2;
2822 
2823 	DSSDBG("dispc_wb_setup, pa %x, pa_uv %x, %d,%d -> %dx%d, cmode %x, "
2824 		"rot %d\n", wi->paddr, wi->p_uv_addr, in_width,
2825 		in_height, wi->width, wi->height, wi->fourcc, wi->rotation);
2826 
2827 	r = dispc_ovl_setup_common(dispc, plane, caps, wi->paddr, wi->p_uv_addr,
2828 		wi->buf_width, pos_x, pos_y, in_width, in_height, wi->width,
2829 		wi->height, wi->fourcc, wi->rotation, zorder,
2830 		wi->pre_mult_alpha, global_alpha, wi->rotation_type,
2831 		replication, vm, mem_to_mem);
2832 	if (r)
2833 		return r;
2834 
2835 	switch (wi->fourcc) {
2836 	case DRM_FORMAT_RGB565:
2837 	case DRM_FORMAT_RGB888:
2838 	case DRM_FORMAT_ARGB4444:
2839 	case DRM_FORMAT_RGBA4444:
2840 	case DRM_FORMAT_RGBX4444:
2841 	case DRM_FORMAT_ARGB1555:
2842 	case DRM_FORMAT_XRGB1555:
2843 	case DRM_FORMAT_XRGB4444:
2844 		truncation = true;
2845 		break;
2846 	default:
2847 		truncation = false;
2848 		break;
2849 	}
2850 
2851 	/* setup extra DISPC_WB_ATTRIBUTES */
2852 	l = dispc_read_reg(dispc, DISPC_OVL_ATTRIBUTES(plane));
2853 	l = FLD_MOD(l, truncation, 10, 10);	/* TRUNCATIONENABLE */
2854 	l = FLD_MOD(l, channel_in, 18, 16);	/* CHANNELIN */
2855 	l = FLD_MOD(l, mem_to_mem, 19, 19);	/* WRITEBACKMODE */
2856 	if (mem_to_mem)
2857 		l = FLD_MOD(l, 1, 26, 24);	/* CAPTUREMODE */
2858 	else
2859 		l = FLD_MOD(l, 0, 26, 24);	/* CAPTUREMODE */
2860 	dispc_write_reg(dispc, DISPC_OVL_ATTRIBUTES(plane), l);
2861 
2862 	if (mem_to_mem) {
2863 		/* WBDELAYCOUNT */
2864 		REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES2(plane), 0, 7, 0);
2865 	} else {
2866 		u32 wbdelay;
2867 
2868 		if (channel_in == DSS_WB_TV_MGR)
2869 			wbdelay = vm->vsync_len + vm->vback_porch;
2870 		else
2871 			wbdelay = vm->vfront_porch + vm->vsync_len +
2872 				vm->vback_porch;
2873 
2874 		if (vm->flags & DISPLAY_FLAGS_INTERLACED)
2875 			wbdelay /= 2;
2876 
2877 		wbdelay = min(wbdelay, 255u);
2878 
2879 		/* WBDELAYCOUNT */
2880 		REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES2(plane), wbdelay, 7, 0);
2881 	}
2882 
2883 	return 0;
2884 }
2885 
2886 static bool dispc_has_writeback(struct dispc_device *dispc)
2887 {
2888 	return dispc->feat->has_writeback;
2889 }
2890 
2891 static int dispc_ovl_enable(struct dispc_device *dispc,
2892 			    enum omap_plane_id plane, bool enable)
2893 {
2894 	DSSDBG("dispc_enable_plane %d, %d\n", plane, enable);
2895 
2896 	REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), enable ? 1 : 0, 0, 0);
2897 
2898 	return 0;
2899 }
2900 
2901 static enum omap_dss_output_id
2902 dispc_mgr_get_supported_outputs(struct dispc_device *dispc,
2903 				enum omap_channel channel)
2904 {
2905 	return dss_get_supported_outputs(dispc->dss, channel);
2906 }
2907 
2908 static void dispc_lcd_enable_signal_polarity(struct dispc_device *dispc,
2909 					     bool act_high)
2910 {
2911 	if (!dispc_has_feature(dispc, FEAT_LCDENABLEPOL))
2912 		return;
2913 
2914 	REG_FLD_MOD(dispc, DISPC_CONTROL, act_high ? 1 : 0, 29, 29);
2915 }
2916 
2917 void dispc_lcd_enable_signal(struct dispc_device *dispc, bool enable)
2918 {
2919 	if (!dispc_has_feature(dispc, FEAT_LCDENABLESIGNAL))
2920 		return;
2921 
2922 	REG_FLD_MOD(dispc, DISPC_CONTROL, enable ? 1 : 0, 28, 28);
2923 }
2924 
2925 void dispc_pck_free_enable(struct dispc_device *dispc, bool enable)
2926 {
2927 	if (!dispc_has_feature(dispc, FEAT_PCKFREEENABLE))
2928 		return;
2929 
2930 	REG_FLD_MOD(dispc, DISPC_CONTROL, enable ? 1 : 0, 27, 27);
2931 }
2932 
2933 static void dispc_mgr_enable_fifohandcheck(struct dispc_device *dispc,
2934 					   enum omap_channel channel,
2935 					   bool enable)
2936 {
2937 	mgr_fld_write(dispc, channel, DISPC_MGR_FLD_FIFOHANDCHECK, enable);
2938 }
2939 
2940 
2941 static void dispc_mgr_set_lcd_type_tft(struct dispc_device *dispc,
2942 				       enum omap_channel channel)
2943 {
2944 	mgr_fld_write(dispc, channel, DISPC_MGR_FLD_STNTFT, 1);
2945 }
2946 
2947 static void dispc_set_loadmode(struct dispc_device *dispc,
2948 			       enum omap_dss_load_mode mode)
2949 {
2950 	REG_FLD_MOD(dispc, DISPC_CONFIG, mode, 2, 1);
2951 }
2952 
2953 
2954 static void dispc_mgr_set_default_color(struct dispc_device *dispc,
2955 					enum omap_channel channel, u32 color)
2956 {
2957 	dispc_write_reg(dispc, DISPC_DEFAULT_COLOR(channel), color);
2958 }
2959 
2960 static void dispc_mgr_set_trans_key(struct dispc_device *dispc,
2961 				    enum omap_channel ch,
2962 				    enum omap_dss_trans_key_type type,
2963 				    u32 trans_key)
2964 {
2965 	mgr_fld_write(dispc, ch, DISPC_MGR_FLD_TCKSELECTION, type);
2966 
2967 	dispc_write_reg(dispc, DISPC_TRANS_COLOR(ch), trans_key);
2968 }
2969 
2970 static void dispc_mgr_enable_trans_key(struct dispc_device *dispc,
2971 				       enum omap_channel ch, bool enable)
2972 {
2973 	mgr_fld_write(dispc, ch, DISPC_MGR_FLD_TCKENABLE, enable);
2974 }
2975 
2976 static void dispc_mgr_enable_alpha_fixed_zorder(struct dispc_device *dispc,
2977 						enum omap_channel ch,
2978 						bool enable)
2979 {
2980 	if (!dispc_has_feature(dispc, FEAT_ALPHA_FIXED_ZORDER))
2981 		return;
2982 
2983 	if (ch == OMAP_DSS_CHANNEL_LCD)
2984 		REG_FLD_MOD(dispc, DISPC_CONFIG, enable, 18, 18);
2985 	else if (ch == OMAP_DSS_CHANNEL_DIGIT)
2986 		REG_FLD_MOD(dispc, DISPC_CONFIG, enable, 19, 19);
2987 }
2988 
2989 static void dispc_mgr_setup(struct dispc_device *dispc,
2990 			    enum omap_channel channel,
2991 			    const struct omap_overlay_manager_info *info)
2992 {
2993 	dispc_mgr_set_default_color(dispc, channel, info->default_color);
2994 	dispc_mgr_set_trans_key(dispc, channel, info->trans_key_type,
2995 				info->trans_key);
2996 	dispc_mgr_enable_trans_key(dispc, channel, info->trans_enabled);
2997 	dispc_mgr_enable_alpha_fixed_zorder(dispc, channel,
2998 			info->partial_alpha_enabled);
2999 	if (dispc_has_feature(dispc, FEAT_CPR)) {
3000 		dispc_mgr_enable_cpr(dispc, channel, info->cpr_enable);
3001 		dispc_mgr_set_cpr_coef(dispc, channel, &info->cpr_coefs);
3002 	}
3003 }
3004 
3005 static void dispc_mgr_set_tft_data_lines(struct dispc_device *dispc,
3006 					 enum omap_channel channel,
3007 					 u8 data_lines)
3008 {
3009 	int code;
3010 
3011 	switch (data_lines) {
3012 	case 12:
3013 		code = 0;
3014 		break;
3015 	case 16:
3016 		code = 1;
3017 		break;
3018 	case 18:
3019 		code = 2;
3020 		break;
3021 	case 24:
3022 		code = 3;
3023 		break;
3024 	default:
3025 		BUG();
3026 		return;
3027 	}
3028 
3029 	mgr_fld_write(dispc, channel, DISPC_MGR_FLD_TFTDATALINES, code);
3030 }
3031 
3032 static void dispc_mgr_set_io_pad_mode(struct dispc_device *dispc,
3033 				      enum dss_io_pad_mode mode)
3034 {
3035 	u32 l;
3036 	int gpout0, gpout1;
3037 
3038 	switch (mode) {
3039 	case DSS_IO_PAD_MODE_RESET:
3040 		gpout0 = 0;
3041 		gpout1 = 0;
3042 		break;
3043 	case DSS_IO_PAD_MODE_RFBI:
3044 		gpout0 = 1;
3045 		gpout1 = 0;
3046 		break;
3047 	case DSS_IO_PAD_MODE_BYPASS:
3048 		gpout0 = 1;
3049 		gpout1 = 1;
3050 		break;
3051 	default:
3052 		BUG();
3053 		return;
3054 	}
3055 
3056 	l = dispc_read_reg(dispc, DISPC_CONTROL);
3057 	l = FLD_MOD(l, gpout0, 15, 15);
3058 	l = FLD_MOD(l, gpout1, 16, 16);
3059 	dispc_write_reg(dispc, DISPC_CONTROL, l);
3060 }
3061 
3062 static void dispc_mgr_enable_stallmode(struct dispc_device *dispc,
3063 				       enum omap_channel channel, bool enable)
3064 {
3065 	mgr_fld_write(dispc, channel, DISPC_MGR_FLD_STALLMODE, enable);
3066 }
3067 
3068 static void dispc_mgr_set_lcd_config(struct dispc_device *dispc,
3069 				     enum omap_channel channel,
3070 				     const struct dss_lcd_mgr_config *config)
3071 {
3072 	dispc_mgr_set_io_pad_mode(dispc, config->io_pad_mode);
3073 
3074 	dispc_mgr_enable_stallmode(dispc, channel, config->stallmode);
3075 	dispc_mgr_enable_fifohandcheck(dispc, channel, config->fifohandcheck);
3076 
3077 	dispc_mgr_set_clock_div(dispc, channel, &config->clock_info);
3078 
3079 	dispc_mgr_set_tft_data_lines(dispc, channel, config->video_port_width);
3080 
3081 	dispc_lcd_enable_signal_polarity(dispc, config->lcden_sig_polarity);
3082 
3083 	dispc_mgr_set_lcd_type_tft(dispc, channel);
3084 }
3085 
3086 static bool _dispc_mgr_size_ok(struct dispc_device *dispc,
3087 			       u16 width, u16 height)
3088 {
3089 	return width <= dispc->feat->mgr_width_max &&
3090 		height <= dispc->feat->mgr_height_max;
3091 }
3092 
3093 static bool _dispc_lcd_timings_ok(struct dispc_device *dispc,
3094 				  int hsync_len, int hfp, int hbp,
3095 				  int vsw, int vfp, int vbp)
3096 {
3097 	if (hsync_len < 1 || hsync_len > dispc->feat->sw_max ||
3098 	    hfp < 1 || hfp > dispc->feat->hp_max ||
3099 	    hbp < 1 || hbp > dispc->feat->hp_max ||
3100 	    vsw < 1 || vsw > dispc->feat->sw_max ||
3101 	    vfp < 0 || vfp > dispc->feat->vp_max ||
3102 	    vbp < 0 || vbp > dispc->feat->vp_max)
3103 		return false;
3104 	return true;
3105 }
3106 
3107 static bool _dispc_mgr_pclk_ok(struct dispc_device *dispc,
3108 			       enum omap_channel channel,
3109 			       unsigned long pclk)
3110 {
3111 	if (dss_mgr_is_lcd(channel))
3112 		return pclk <= dispc->feat->max_lcd_pclk;
3113 	else
3114 		return pclk <= dispc->feat->max_tv_pclk;
3115 }
3116 
3117 bool dispc_mgr_timings_ok(struct dispc_device *dispc, enum omap_channel channel,
3118 			  const struct videomode *vm)
3119 {
3120 	if (!_dispc_mgr_size_ok(dispc, vm->hactive, vm->vactive))
3121 		return false;
3122 
3123 	if (!_dispc_mgr_pclk_ok(dispc, channel, vm->pixelclock))
3124 		return false;
3125 
3126 	if (dss_mgr_is_lcd(channel)) {
3127 		/* TODO: OMAP4+ supports interlace for LCD outputs */
3128 		if (vm->flags & DISPLAY_FLAGS_INTERLACED)
3129 			return false;
3130 
3131 		if (!_dispc_lcd_timings_ok(dispc, vm->hsync_len,
3132 				vm->hfront_porch, vm->hback_porch,
3133 				vm->vsync_len, vm->vfront_porch,
3134 				vm->vback_porch))
3135 			return false;
3136 	}
3137 
3138 	return true;
3139 }
3140 
3141 static void _dispc_mgr_set_lcd_timings(struct dispc_device *dispc,
3142 				       enum omap_channel channel,
3143 				       const struct videomode *vm)
3144 {
3145 	u32 timing_h, timing_v, l;
3146 	bool onoff, rf, ipc, vs, hs, de;
3147 
3148 	timing_h = FLD_VAL(vm->hsync_len - 1, dispc->feat->sw_start, 0) |
3149 		   FLD_VAL(vm->hfront_porch - 1, dispc->feat->fp_start, 8) |
3150 		   FLD_VAL(vm->hback_porch - 1, dispc->feat->bp_start, 20);
3151 	timing_v = FLD_VAL(vm->vsync_len - 1, dispc->feat->sw_start, 0) |
3152 		   FLD_VAL(vm->vfront_porch, dispc->feat->fp_start, 8) |
3153 		   FLD_VAL(vm->vback_porch, dispc->feat->bp_start, 20);
3154 
3155 	dispc_write_reg(dispc, DISPC_TIMING_H(channel), timing_h);
3156 	dispc_write_reg(dispc, DISPC_TIMING_V(channel), timing_v);
3157 
3158 	if (vm->flags & DISPLAY_FLAGS_VSYNC_HIGH)
3159 		vs = false;
3160 	else
3161 		vs = true;
3162 
3163 	if (vm->flags & DISPLAY_FLAGS_HSYNC_HIGH)
3164 		hs = false;
3165 	else
3166 		hs = true;
3167 
3168 	if (vm->flags & DISPLAY_FLAGS_DE_HIGH)
3169 		de = false;
3170 	else
3171 		de = true;
3172 
3173 	if (vm->flags & DISPLAY_FLAGS_PIXDATA_POSEDGE)
3174 		ipc = false;
3175 	else
3176 		ipc = true;
3177 
3178 	/* always use the 'rf' setting */
3179 	onoff = true;
3180 
3181 	if (vm->flags & DISPLAY_FLAGS_SYNC_POSEDGE)
3182 		rf = true;
3183 	else
3184 		rf = false;
3185 
3186 	l = FLD_VAL(onoff, 17, 17) |
3187 		FLD_VAL(rf, 16, 16) |
3188 		FLD_VAL(de, 15, 15) |
3189 		FLD_VAL(ipc, 14, 14) |
3190 		FLD_VAL(hs, 13, 13) |
3191 		FLD_VAL(vs, 12, 12);
3192 
3193 	/* always set ALIGN bit when available */
3194 	if (dispc->feat->supports_sync_align)
3195 		l |= (1 << 18);
3196 
3197 	dispc_write_reg(dispc, DISPC_POL_FREQ(channel), l);
3198 
3199 	if (dispc->syscon_pol) {
3200 		const int shifts[] = {
3201 			[OMAP_DSS_CHANNEL_LCD] = 0,
3202 			[OMAP_DSS_CHANNEL_LCD2] = 1,
3203 			[OMAP_DSS_CHANNEL_LCD3] = 2,
3204 		};
3205 
3206 		u32 mask, val;
3207 
3208 		mask = (1 << 0) | (1 << 3) | (1 << 6);
3209 		val = (rf << 0) | (ipc << 3) | (onoff << 6);
3210 
3211 		mask <<= 16 + shifts[channel];
3212 		val <<= 16 + shifts[channel];
3213 
3214 		regmap_update_bits(dispc->syscon_pol, dispc->syscon_pol_offset,
3215 				   mask, val);
3216 	}
3217 }
3218 
3219 static int vm_flag_to_int(enum display_flags flags, enum display_flags high,
3220 	enum display_flags low)
3221 {
3222 	if (flags & high)
3223 		return 1;
3224 	if (flags & low)
3225 		return -1;
3226 	return 0;
3227 }
3228 
3229 /* change name to mode? */
3230 static void dispc_mgr_set_timings(struct dispc_device *dispc,
3231 				  enum omap_channel channel,
3232 				  const struct videomode *vm)
3233 {
3234 	unsigned int xtot, ytot;
3235 	unsigned long ht, vt;
3236 	struct videomode t = *vm;
3237 
3238 	DSSDBG("channel %d xres %u yres %u\n", channel, t.hactive, t.vactive);
3239 
3240 	if (!dispc_mgr_timings_ok(dispc, channel, &t)) {
3241 		BUG();
3242 		return;
3243 	}
3244 
3245 	if (dss_mgr_is_lcd(channel)) {
3246 		_dispc_mgr_set_lcd_timings(dispc, channel, &t);
3247 
3248 		xtot = t.hactive + t.hfront_porch + t.hsync_len + t.hback_porch;
3249 		ytot = t.vactive + t.vfront_porch + t.vsync_len + t.vback_porch;
3250 
3251 		ht = vm->pixelclock / xtot;
3252 		vt = vm->pixelclock / xtot / ytot;
3253 
3254 		DSSDBG("pck %lu\n", vm->pixelclock);
3255 		DSSDBG("hsync_len %d hfp %d hbp %d vsw %d vfp %d vbp %d\n",
3256 			t.hsync_len, t.hfront_porch, t.hback_porch,
3257 			t.vsync_len, t.vfront_porch, t.vback_porch);
3258 		DSSDBG("vsync_level %d hsync_level %d data_pclk_edge %d de_level %d sync_pclk_edge %d\n",
3259 			vm_flag_to_int(t.flags, DISPLAY_FLAGS_VSYNC_HIGH, DISPLAY_FLAGS_VSYNC_LOW),
3260 			vm_flag_to_int(t.flags, DISPLAY_FLAGS_HSYNC_HIGH, DISPLAY_FLAGS_HSYNC_LOW),
3261 			vm_flag_to_int(t.flags, DISPLAY_FLAGS_PIXDATA_POSEDGE, DISPLAY_FLAGS_PIXDATA_NEGEDGE),
3262 			vm_flag_to_int(t.flags, DISPLAY_FLAGS_DE_HIGH, DISPLAY_FLAGS_DE_LOW),
3263 			vm_flag_to_int(t.flags, DISPLAY_FLAGS_SYNC_POSEDGE, DISPLAY_FLAGS_SYNC_NEGEDGE));
3264 
3265 		DSSDBG("hsync %luHz, vsync %luHz\n", ht, vt);
3266 	} else {
3267 		if (t.flags & DISPLAY_FLAGS_INTERLACED)
3268 			t.vactive /= 2;
3269 
3270 		if (dispc->feat->supports_double_pixel)
3271 			REG_FLD_MOD(dispc, DISPC_CONTROL,
3272 				    !!(t.flags & DISPLAY_FLAGS_DOUBLECLK),
3273 				    19, 17);
3274 	}
3275 
3276 	dispc_mgr_set_size(dispc, channel, t.hactive, t.vactive);
3277 }
3278 
3279 static void dispc_mgr_set_lcd_divisor(struct dispc_device *dispc,
3280 				      enum omap_channel channel, u16 lck_div,
3281 				      u16 pck_div)
3282 {
3283 	BUG_ON(lck_div < 1);
3284 	BUG_ON(pck_div < 1);
3285 
3286 	dispc_write_reg(dispc, DISPC_DIVISORo(channel),
3287 			FLD_VAL(lck_div, 23, 16) | FLD_VAL(pck_div, 7, 0));
3288 
3289 	if (!dispc_has_feature(dispc, FEAT_CORE_CLK_DIV) &&
3290 			channel == OMAP_DSS_CHANNEL_LCD)
3291 		dispc->core_clk_rate = dispc_fclk_rate(dispc) / lck_div;
3292 }
3293 
3294 static void dispc_mgr_get_lcd_divisor(struct dispc_device *dispc,
3295 				      enum omap_channel channel, int *lck_div,
3296 				      int *pck_div)
3297 {
3298 	u32 l;
3299 	l = dispc_read_reg(dispc, DISPC_DIVISORo(channel));
3300 	*lck_div = FLD_GET(l, 23, 16);
3301 	*pck_div = FLD_GET(l, 7, 0);
3302 }
3303 
3304 static unsigned long dispc_fclk_rate(struct dispc_device *dispc)
3305 {
3306 	unsigned long r;
3307 	enum dss_clk_source src;
3308 
3309 	src = dss_get_dispc_clk_source(dispc->dss);
3310 
3311 	if (src == DSS_CLK_SRC_FCK) {
3312 		r = dss_get_dispc_clk_rate(dispc->dss);
3313 	} else {
3314 		struct dss_pll *pll;
3315 		unsigned int clkout_idx;
3316 
3317 		pll = dss_pll_find_by_src(dispc->dss, src);
3318 		clkout_idx = dss_pll_get_clkout_idx_for_src(src);
3319 
3320 		r = pll->cinfo.clkout[clkout_idx];
3321 	}
3322 
3323 	return r;
3324 }
3325 
3326 static unsigned long dispc_mgr_lclk_rate(struct dispc_device *dispc,
3327 					 enum omap_channel channel)
3328 {
3329 	int lcd;
3330 	unsigned long r;
3331 	enum dss_clk_source src;
3332 
3333 	/* for TV, LCLK rate is the FCLK rate */
3334 	if (!dss_mgr_is_lcd(channel))
3335 		return dispc_fclk_rate(dispc);
3336 
3337 	src = dss_get_lcd_clk_source(dispc->dss, channel);
3338 
3339 	if (src == DSS_CLK_SRC_FCK) {
3340 		r = dss_get_dispc_clk_rate(dispc->dss);
3341 	} else {
3342 		struct dss_pll *pll;
3343 		unsigned int clkout_idx;
3344 
3345 		pll = dss_pll_find_by_src(dispc->dss, src);
3346 		clkout_idx = dss_pll_get_clkout_idx_for_src(src);
3347 
3348 		r = pll->cinfo.clkout[clkout_idx];
3349 	}
3350 
3351 	lcd = REG_GET(dispc, DISPC_DIVISORo(channel), 23, 16);
3352 
3353 	return r / lcd;
3354 }
3355 
3356 static unsigned long dispc_mgr_pclk_rate(struct dispc_device *dispc,
3357 					 enum omap_channel channel)
3358 {
3359 	unsigned long r;
3360 
3361 	if (dss_mgr_is_lcd(channel)) {
3362 		int pcd;
3363 		u32 l;
3364 
3365 		l = dispc_read_reg(dispc, DISPC_DIVISORo(channel));
3366 
3367 		pcd = FLD_GET(l, 7, 0);
3368 
3369 		r = dispc_mgr_lclk_rate(dispc, channel);
3370 
3371 		return r / pcd;
3372 	} else {
3373 		return dispc->tv_pclk_rate;
3374 	}
3375 }
3376 
3377 void dispc_set_tv_pclk(struct dispc_device *dispc, unsigned long pclk)
3378 {
3379 	dispc->tv_pclk_rate = pclk;
3380 }
3381 
3382 static unsigned long dispc_core_clk_rate(struct dispc_device *dispc)
3383 {
3384 	return dispc->core_clk_rate;
3385 }
3386 
3387 static unsigned long dispc_plane_pclk_rate(struct dispc_device *dispc,
3388 					   enum omap_plane_id plane)
3389 {
3390 	enum omap_channel channel;
3391 
3392 	if (plane == OMAP_DSS_WB)
3393 		return 0;
3394 
3395 	channel = dispc_ovl_get_channel_out(dispc, plane);
3396 
3397 	return dispc_mgr_pclk_rate(dispc, channel);
3398 }
3399 
3400 static unsigned long dispc_plane_lclk_rate(struct dispc_device *dispc,
3401 					   enum omap_plane_id plane)
3402 {
3403 	enum omap_channel channel;
3404 
3405 	if (plane == OMAP_DSS_WB)
3406 		return 0;
3407 
3408 	channel	= dispc_ovl_get_channel_out(dispc, plane);
3409 
3410 	return dispc_mgr_lclk_rate(dispc, channel);
3411 }
3412 
3413 static void dispc_dump_clocks_channel(struct dispc_device *dispc,
3414 				      struct seq_file *s,
3415 				      enum omap_channel channel)
3416 {
3417 	int lcd, pcd;
3418 	enum dss_clk_source lcd_clk_src;
3419 
3420 	seq_printf(s, "- %s -\n", mgr_desc[channel].name);
3421 
3422 	lcd_clk_src = dss_get_lcd_clk_source(dispc->dss, channel);
3423 
3424 	seq_printf(s, "%s clk source = %s\n", mgr_desc[channel].name,
3425 		dss_get_clk_source_name(lcd_clk_src));
3426 
3427 	dispc_mgr_get_lcd_divisor(dispc, channel, &lcd, &pcd);
3428 
3429 	seq_printf(s, "lck\t\t%-16lulck div\t%u\n",
3430 		dispc_mgr_lclk_rate(dispc, channel), lcd);
3431 	seq_printf(s, "pck\t\t%-16lupck div\t%u\n",
3432 		dispc_mgr_pclk_rate(dispc, channel), pcd);
3433 }
3434 
3435 void dispc_dump_clocks(struct dispc_device *dispc, struct seq_file *s)
3436 {
3437 	enum dss_clk_source dispc_clk_src;
3438 	int lcd;
3439 	u32 l;
3440 
3441 	if (dispc_runtime_get(dispc))
3442 		return;
3443 
3444 	seq_printf(s, "- DISPC -\n");
3445 
3446 	dispc_clk_src = dss_get_dispc_clk_source(dispc->dss);
3447 	seq_printf(s, "dispc fclk source = %s\n",
3448 			dss_get_clk_source_name(dispc_clk_src));
3449 
3450 	seq_printf(s, "fck\t\t%-16lu\n", dispc_fclk_rate(dispc));
3451 
3452 	if (dispc_has_feature(dispc, FEAT_CORE_CLK_DIV)) {
3453 		seq_printf(s, "- DISPC-CORE-CLK -\n");
3454 		l = dispc_read_reg(dispc, DISPC_DIVISOR);
3455 		lcd = FLD_GET(l, 23, 16);
3456 
3457 		seq_printf(s, "lck\t\t%-16lulck div\t%u\n",
3458 				(dispc_fclk_rate(dispc)/lcd), lcd);
3459 	}
3460 
3461 	dispc_dump_clocks_channel(dispc, s, OMAP_DSS_CHANNEL_LCD);
3462 
3463 	if (dispc_has_feature(dispc, FEAT_MGR_LCD2))
3464 		dispc_dump_clocks_channel(dispc, s, OMAP_DSS_CHANNEL_LCD2);
3465 	if (dispc_has_feature(dispc, FEAT_MGR_LCD3))
3466 		dispc_dump_clocks_channel(dispc, s, OMAP_DSS_CHANNEL_LCD3);
3467 
3468 	dispc_runtime_put(dispc);
3469 }
3470 
3471 static int dispc_dump_regs(struct seq_file *s, void *p)
3472 {
3473 	struct dispc_device *dispc = s->private;
3474 	int i, j;
3475 	const char *mgr_names[] = {
3476 		[OMAP_DSS_CHANNEL_LCD]		= "LCD",
3477 		[OMAP_DSS_CHANNEL_DIGIT]	= "TV",
3478 		[OMAP_DSS_CHANNEL_LCD2]		= "LCD2",
3479 		[OMAP_DSS_CHANNEL_LCD3]		= "LCD3",
3480 	};
3481 	const char *ovl_names[] = {
3482 		[OMAP_DSS_GFX]		= "GFX",
3483 		[OMAP_DSS_VIDEO1]	= "VID1",
3484 		[OMAP_DSS_VIDEO2]	= "VID2",
3485 		[OMAP_DSS_VIDEO3]	= "VID3",
3486 		[OMAP_DSS_WB]		= "WB",
3487 	};
3488 	const char **p_names;
3489 
3490 #define DUMPREG(dispc, r) \
3491 	seq_printf(s, "%-50s %08x\n", #r, dispc_read_reg(dispc, r))
3492 
3493 	if (dispc_runtime_get(dispc))
3494 		return 0;
3495 
3496 	/* DISPC common registers */
3497 	DUMPREG(dispc, DISPC_REVISION);
3498 	DUMPREG(dispc, DISPC_SYSCONFIG);
3499 	DUMPREG(dispc, DISPC_SYSSTATUS);
3500 	DUMPREG(dispc, DISPC_IRQSTATUS);
3501 	DUMPREG(dispc, DISPC_IRQENABLE);
3502 	DUMPREG(dispc, DISPC_CONTROL);
3503 	DUMPREG(dispc, DISPC_CONFIG);
3504 	DUMPREG(dispc, DISPC_CAPABLE);
3505 	DUMPREG(dispc, DISPC_LINE_STATUS);
3506 	DUMPREG(dispc, DISPC_LINE_NUMBER);
3507 	if (dispc_has_feature(dispc, FEAT_ALPHA_FIXED_ZORDER) ||
3508 			dispc_has_feature(dispc, FEAT_ALPHA_FREE_ZORDER))
3509 		DUMPREG(dispc, DISPC_GLOBAL_ALPHA);
3510 	if (dispc_has_feature(dispc, FEAT_MGR_LCD2)) {
3511 		DUMPREG(dispc, DISPC_CONTROL2);
3512 		DUMPREG(dispc, DISPC_CONFIG2);
3513 	}
3514 	if (dispc_has_feature(dispc, FEAT_MGR_LCD3)) {
3515 		DUMPREG(dispc, DISPC_CONTROL3);
3516 		DUMPREG(dispc, DISPC_CONFIG3);
3517 	}
3518 	if (dispc_has_feature(dispc, FEAT_MFLAG))
3519 		DUMPREG(dispc, DISPC_GLOBAL_MFLAG_ATTRIBUTE);
3520 
3521 #undef DUMPREG
3522 
3523 #define DISPC_REG(i, name) name(i)
3524 #define DUMPREG(dispc, i, r) seq_printf(s, "%s(%s)%*s %08x\n", #r, p_names[i], \
3525 	(int)(48 - strlen(#r) - strlen(p_names[i])), " ", \
3526 	dispc_read_reg(dispc, DISPC_REG(i, r)))
3527 
3528 	p_names = mgr_names;
3529 
3530 	/* DISPC channel specific registers */
3531 	for (i = 0; i < dispc_get_num_mgrs(dispc); i++) {
3532 		DUMPREG(dispc, i, DISPC_DEFAULT_COLOR);
3533 		DUMPREG(dispc, i, DISPC_TRANS_COLOR);
3534 		DUMPREG(dispc, i, DISPC_SIZE_MGR);
3535 
3536 		if (i == OMAP_DSS_CHANNEL_DIGIT)
3537 			continue;
3538 
3539 		DUMPREG(dispc, i, DISPC_TIMING_H);
3540 		DUMPREG(dispc, i, DISPC_TIMING_V);
3541 		DUMPREG(dispc, i, DISPC_POL_FREQ);
3542 		DUMPREG(dispc, i, DISPC_DIVISORo);
3543 
3544 		DUMPREG(dispc, i, DISPC_DATA_CYCLE1);
3545 		DUMPREG(dispc, i, DISPC_DATA_CYCLE2);
3546 		DUMPREG(dispc, i, DISPC_DATA_CYCLE3);
3547 
3548 		if (dispc_has_feature(dispc, FEAT_CPR)) {
3549 			DUMPREG(dispc, i, DISPC_CPR_COEF_R);
3550 			DUMPREG(dispc, i, DISPC_CPR_COEF_G);
3551 			DUMPREG(dispc, i, DISPC_CPR_COEF_B);
3552 		}
3553 	}
3554 
3555 	p_names = ovl_names;
3556 
3557 	for (i = 0; i < dispc_get_num_ovls(dispc); i++) {
3558 		DUMPREG(dispc, i, DISPC_OVL_BA0);
3559 		DUMPREG(dispc, i, DISPC_OVL_BA1);
3560 		DUMPREG(dispc, i, DISPC_OVL_POSITION);
3561 		DUMPREG(dispc, i, DISPC_OVL_SIZE);
3562 		DUMPREG(dispc, i, DISPC_OVL_ATTRIBUTES);
3563 		DUMPREG(dispc, i, DISPC_OVL_FIFO_THRESHOLD);
3564 		DUMPREG(dispc, i, DISPC_OVL_FIFO_SIZE_STATUS);
3565 		DUMPREG(dispc, i, DISPC_OVL_ROW_INC);
3566 		DUMPREG(dispc, i, DISPC_OVL_PIXEL_INC);
3567 
3568 		if (dispc_has_feature(dispc, FEAT_PRELOAD))
3569 			DUMPREG(dispc, i, DISPC_OVL_PRELOAD);
3570 		if (dispc_has_feature(dispc, FEAT_MFLAG))
3571 			DUMPREG(dispc, i, DISPC_OVL_MFLAG_THRESHOLD);
3572 
3573 		if (i == OMAP_DSS_GFX) {
3574 			DUMPREG(dispc, i, DISPC_OVL_WINDOW_SKIP);
3575 			DUMPREG(dispc, i, DISPC_OVL_TABLE_BA);
3576 			continue;
3577 		}
3578 
3579 		DUMPREG(dispc, i, DISPC_OVL_FIR);
3580 		DUMPREG(dispc, i, DISPC_OVL_PICTURE_SIZE);
3581 		DUMPREG(dispc, i, DISPC_OVL_ACCU0);
3582 		DUMPREG(dispc, i, DISPC_OVL_ACCU1);
3583 		if (dispc_has_feature(dispc, FEAT_HANDLE_UV_SEPARATE)) {
3584 			DUMPREG(dispc, i, DISPC_OVL_BA0_UV);
3585 			DUMPREG(dispc, i, DISPC_OVL_BA1_UV);
3586 			DUMPREG(dispc, i, DISPC_OVL_FIR2);
3587 			DUMPREG(dispc, i, DISPC_OVL_ACCU2_0);
3588 			DUMPREG(dispc, i, DISPC_OVL_ACCU2_1);
3589 		}
3590 		if (dispc_has_feature(dispc, FEAT_ATTR2))
3591 			DUMPREG(dispc, i, DISPC_OVL_ATTRIBUTES2);
3592 	}
3593 
3594 	if (dispc->feat->has_writeback) {
3595 		i = OMAP_DSS_WB;
3596 		DUMPREG(dispc, i, DISPC_OVL_BA0);
3597 		DUMPREG(dispc, i, DISPC_OVL_BA1);
3598 		DUMPREG(dispc, i, DISPC_OVL_SIZE);
3599 		DUMPREG(dispc, i, DISPC_OVL_ATTRIBUTES);
3600 		DUMPREG(dispc, i, DISPC_OVL_FIFO_THRESHOLD);
3601 		DUMPREG(dispc, i, DISPC_OVL_FIFO_SIZE_STATUS);
3602 		DUMPREG(dispc, i, DISPC_OVL_ROW_INC);
3603 		DUMPREG(dispc, i, DISPC_OVL_PIXEL_INC);
3604 
3605 		if (dispc_has_feature(dispc, FEAT_MFLAG))
3606 			DUMPREG(dispc, i, DISPC_OVL_MFLAG_THRESHOLD);
3607 
3608 		DUMPREG(dispc, i, DISPC_OVL_FIR);
3609 		DUMPREG(dispc, i, DISPC_OVL_PICTURE_SIZE);
3610 		DUMPREG(dispc, i, DISPC_OVL_ACCU0);
3611 		DUMPREG(dispc, i, DISPC_OVL_ACCU1);
3612 		if (dispc_has_feature(dispc, FEAT_HANDLE_UV_SEPARATE)) {
3613 			DUMPREG(dispc, i, DISPC_OVL_BA0_UV);
3614 			DUMPREG(dispc, i, DISPC_OVL_BA1_UV);
3615 			DUMPREG(dispc, i, DISPC_OVL_FIR2);
3616 			DUMPREG(dispc, i, DISPC_OVL_ACCU2_0);
3617 			DUMPREG(dispc, i, DISPC_OVL_ACCU2_1);
3618 		}
3619 		if (dispc_has_feature(dispc, FEAT_ATTR2))
3620 			DUMPREG(dispc, i, DISPC_OVL_ATTRIBUTES2);
3621 	}
3622 
3623 #undef DISPC_REG
3624 #undef DUMPREG
3625 
3626 #define DISPC_REG(plane, name, i) name(plane, i)
3627 #define DUMPREG(dispc, plane, name, i) \
3628 	seq_printf(s, "%s_%d(%s)%*s %08x\n", #name, i, p_names[plane], \
3629 	(int)(46 - strlen(#name) - strlen(p_names[plane])), " ", \
3630 	dispc_read_reg(dispc, DISPC_REG(plane, name, i)))
3631 
3632 	/* Video pipeline coefficient registers */
3633 
3634 	/* start from OMAP_DSS_VIDEO1 */
3635 	for (i = 1; i < dispc_get_num_ovls(dispc); i++) {
3636 		for (j = 0; j < 8; j++)
3637 			DUMPREG(dispc, i, DISPC_OVL_FIR_COEF_H, j);
3638 
3639 		for (j = 0; j < 8; j++)
3640 			DUMPREG(dispc, i, DISPC_OVL_FIR_COEF_HV, j);
3641 
3642 		for (j = 0; j < 5; j++)
3643 			DUMPREG(dispc, i, DISPC_OVL_CONV_COEF, j);
3644 
3645 		if (dispc_has_feature(dispc, FEAT_FIR_COEF_V)) {
3646 			for (j = 0; j < 8; j++)
3647 				DUMPREG(dispc, i, DISPC_OVL_FIR_COEF_V, j);
3648 		}
3649 
3650 		if (dispc_has_feature(dispc, FEAT_HANDLE_UV_SEPARATE)) {
3651 			for (j = 0; j < 8; j++)
3652 				DUMPREG(dispc, i, DISPC_OVL_FIR_COEF_H2, j);
3653 
3654 			for (j = 0; j < 8; j++)
3655 				DUMPREG(dispc, i, DISPC_OVL_FIR_COEF_HV2, j);
3656 
3657 			for (j = 0; j < 8; j++)
3658 				DUMPREG(dispc, i, DISPC_OVL_FIR_COEF_V2, j);
3659 		}
3660 	}
3661 
3662 	dispc_runtime_put(dispc);
3663 
3664 #undef DISPC_REG
3665 #undef DUMPREG
3666 
3667 	return 0;
3668 }
3669 
3670 /* calculate clock rates using dividers in cinfo */
3671 int dispc_calc_clock_rates(struct dispc_device *dispc,
3672 			   unsigned long dispc_fclk_rate,
3673 			   struct dispc_clock_info *cinfo)
3674 {
3675 	if (cinfo->lck_div > 255 || cinfo->lck_div == 0)
3676 		return -EINVAL;
3677 	if (cinfo->pck_div < 1 || cinfo->pck_div > 255)
3678 		return -EINVAL;
3679 
3680 	cinfo->lck = dispc_fclk_rate / cinfo->lck_div;
3681 	cinfo->pck = cinfo->lck / cinfo->pck_div;
3682 
3683 	return 0;
3684 }
3685 
3686 bool dispc_div_calc(struct dispc_device *dispc, unsigned long dispc_freq,
3687 		    unsigned long pck_min, unsigned long pck_max,
3688 		    dispc_div_calc_func func, void *data)
3689 {
3690 	int lckd, lckd_start, lckd_stop;
3691 	int pckd, pckd_start, pckd_stop;
3692 	unsigned long pck, lck;
3693 	unsigned long lck_max;
3694 	unsigned long pckd_hw_min, pckd_hw_max;
3695 	unsigned int min_fck_per_pck;
3696 	unsigned long fck;
3697 
3698 #ifdef CONFIG_OMAP2_DSS_MIN_FCK_PER_PCK
3699 	min_fck_per_pck = CONFIG_OMAP2_DSS_MIN_FCK_PER_PCK;
3700 #else
3701 	min_fck_per_pck = 0;
3702 #endif
3703 
3704 	pckd_hw_min = dispc->feat->min_pcd;
3705 	pckd_hw_max = 255;
3706 
3707 	lck_max = dss_get_max_fck_rate(dispc->dss);
3708 
3709 	pck_min = pck_min ? pck_min : 1;
3710 	pck_max = pck_max ? pck_max : ULONG_MAX;
3711 
3712 	lckd_start = max(DIV_ROUND_UP(dispc_freq, lck_max), 1ul);
3713 	lckd_stop = min(dispc_freq / pck_min, 255ul);
3714 
3715 	for (lckd = lckd_start; lckd <= lckd_stop; ++lckd) {
3716 		lck = dispc_freq / lckd;
3717 
3718 		pckd_start = max(DIV_ROUND_UP(lck, pck_max), pckd_hw_min);
3719 		pckd_stop = min(lck / pck_min, pckd_hw_max);
3720 
3721 		for (pckd = pckd_start; pckd <= pckd_stop; ++pckd) {
3722 			pck = lck / pckd;
3723 
3724 			/*
3725 			 * For OMAP2/3 the DISPC fclk is the same as LCD's logic
3726 			 * clock, which means we're configuring DISPC fclk here
3727 			 * also. Thus we need to use the calculated lck. For
3728 			 * OMAP4+ the DISPC fclk is a separate clock.
3729 			 */
3730 			if (dispc_has_feature(dispc, FEAT_CORE_CLK_DIV))
3731 				fck = dispc_core_clk_rate(dispc);
3732 			else
3733 				fck = lck;
3734 
3735 			if (fck < pck * min_fck_per_pck)
3736 				continue;
3737 
3738 			if (func(lckd, pckd, lck, pck, data))
3739 				return true;
3740 		}
3741 	}
3742 
3743 	return false;
3744 }
3745 
3746 void dispc_mgr_set_clock_div(struct dispc_device *dispc,
3747 			     enum omap_channel channel,
3748 			     const struct dispc_clock_info *cinfo)
3749 {
3750 	DSSDBG("lck = %lu (%u)\n", cinfo->lck, cinfo->lck_div);
3751 	DSSDBG("pck = %lu (%u)\n", cinfo->pck, cinfo->pck_div);
3752 
3753 	dispc_mgr_set_lcd_divisor(dispc, channel, cinfo->lck_div,
3754 				  cinfo->pck_div);
3755 }
3756 
3757 int dispc_mgr_get_clock_div(struct dispc_device *dispc,
3758 			    enum omap_channel channel,
3759 			    struct dispc_clock_info *cinfo)
3760 {
3761 	unsigned long fck;
3762 
3763 	fck = dispc_fclk_rate(dispc);
3764 
3765 	cinfo->lck_div = REG_GET(dispc, DISPC_DIVISORo(channel), 23, 16);
3766 	cinfo->pck_div = REG_GET(dispc, DISPC_DIVISORo(channel), 7, 0);
3767 
3768 	cinfo->lck = fck / cinfo->lck_div;
3769 	cinfo->pck = cinfo->lck / cinfo->pck_div;
3770 
3771 	return 0;
3772 }
3773 
3774 static u32 dispc_read_irqstatus(struct dispc_device *dispc)
3775 {
3776 	return dispc_read_reg(dispc, DISPC_IRQSTATUS);
3777 }
3778 
3779 static void dispc_clear_irqstatus(struct dispc_device *dispc, u32 mask)
3780 {
3781 	dispc_write_reg(dispc, DISPC_IRQSTATUS, mask);
3782 }
3783 
3784 static void dispc_write_irqenable(struct dispc_device *dispc, u32 mask)
3785 {
3786 	u32 old_mask = dispc_read_reg(dispc, DISPC_IRQENABLE);
3787 
3788 	/* clear the irqstatus for newly enabled irqs */
3789 	dispc_clear_irqstatus(dispc, (mask ^ old_mask) & mask);
3790 
3791 	dispc_write_reg(dispc, DISPC_IRQENABLE, mask);
3792 
3793 	/* flush posted write */
3794 	dispc_read_reg(dispc, DISPC_IRQENABLE);
3795 }
3796 
3797 void dispc_enable_sidle(struct dispc_device *dispc)
3798 {
3799 	/* SIDLEMODE: smart idle */
3800 	REG_FLD_MOD(dispc, DISPC_SYSCONFIG, 2, 4, 3);
3801 }
3802 
3803 void dispc_disable_sidle(struct dispc_device *dispc)
3804 {
3805 	REG_FLD_MOD(dispc, DISPC_SYSCONFIG, 1, 4, 3);	/* SIDLEMODE: no idle */
3806 }
3807 
3808 static u32 dispc_mgr_gamma_size(struct dispc_device *dispc,
3809 				enum omap_channel channel)
3810 {
3811 	const struct dispc_gamma_desc *gdesc = &mgr_desc[channel].gamma;
3812 
3813 	if (!dispc->feat->has_gamma_table)
3814 		return 0;
3815 
3816 	return gdesc->len;
3817 }
3818 
3819 static void dispc_mgr_write_gamma_table(struct dispc_device *dispc,
3820 					enum omap_channel channel)
3821 {
3822 	const struct dispc_gamma_desc *gdesc = &mgr_desc[channel].gamma;
3823 	u32 *table = dispc->gamma_table[channel];
3824 	unsigned int i;
3825 
3826 	DSSDBG("%s: channel %d\n", __func__, channel);
3827 
3828 	for (i = 0; i < gdesc->len; ++i) {
3829 		u32 v = table[i];
3830 
3831 		if (gdesc->has_index)
3832 			v |= i << 24;
3833 		else if (i == 0)
3834 			v |= 1 << 31;
3835 
3836 		dispc_write_reg(dispc, gdesc->reg, v);
3837 	}
3838 }
3839 
3840 static void dispc_restore_gamma_tables(struct dispc_device *dispc)
3841 {
3842 	DSSDBG("%s()\n", __func__);
3843 
3844 	if (!dispc->feat->has_gamma_table)
3845 		return;
3846 
3847 	dispc_mgr_write_gamma_table(dispc, OMAP_DSS_CHANNEL_LCD);
3848 
3849 	dispc_mgr_write_gamma_table(dispc, OMAP_DSS_CHANNEL_DIGIT);
3850 
3851 	if (dispc_has_feature(dispc, FEAT_MGR_LCD2))
3852 		dispc_mgr_write_gamma_table(dispc, OMAP_DSS_CHANNEL_LCD2);
3853 
3854 	if (dispc_has_feature(dispc, FEAT_MGR_LCD3))
3855 		dispc_mgr_write_gamma_table(dispc, OMAP_DSS_CHANNEL_LCD3);
3856 }
3857 
3858 static const struct drm_color_lut dispc_mgr_gamma_default_lut[] = {
3859 	{ .red = 0, .green = 0, .blue = 0, },
3860 	{ .red = U16_MAX, .green = U16_MAX, .blue = U16_MAX, },
3861 };
3862 
3863 static void dispc_mgr_set_gamma(struct dispc_device *dispc,
3864 				enum omap_channel channel,
3865 				const struct drm_color_lut *lut,
3866 				unsigned int length)
3867 {
3868 	const struct dispc_gamma_desc *gdesc = &mgr_desc[channel].gamma;
3869 	u32 *table = dispc->gamma_table[channel];
3870 	uint i;
3871 
3872 	DSSDBG("%s: channel %d, lut len %u, hw len %u\n", __func__,
3873 	       channel, length, gdesc->len);
3874 
3875 	if (!dispc->feat->has_gamma_table)
3876 		return;
3877 
3878 	if (lut == NULL || length < 2) {
3879 		lut = dispc_mgr_gamma_default_lut;
3880 		length = ARRAY_SIZE(dispc_mgr_gamma_default_lut);
3881 	}
3882 
3883 	for (i = 0; i < length - 1; ++i) {
3884 		uint first = i * (gdesc->len - 1) / (length - 1);
3885 		uint last = (i + 1) * (gdesc->len - 1) / (length - 1);
3886 		uint w = last - first;
3887 		u16 r, g, b;
3888 		uint j;
3889 
3890 		if (w == 0)
3891 			continue;
3892 
3893 		for (j = 0; j <= w; j++) {
3894 			r = (lut[i].red * (w - j) + lut[i+1].red * j) / w;
3895 			g = (lut[i].green * (w - j) + lut[i+1].green * j) / w;
3896 			b = (lut[i].blue * (w - j) + lut[i+1].blue * j) / w;
3897 
3898 			r >>= 16 - gdesc->bits;
3899 			g >>= 16 - gdesc->bits;
3900 			b >>= 16 - gdesc->bits;
3901 
3902 			table[first + j] = (r << (gdesc->bits * 2)) |
3903 				(g << gdesc->bits) | b;
3904 		}
3905 	}
3906 
3907 	if (dispc->is_enabled)
3908 		dispc_mgr_write_gamma_table(dispc, channel);
3909 }
3910 
3911 static int dispc_init_gamma_tables(struct dispc_device *dispc)
3912 {
3913 	int channel;
3914 
3915 	if (!dispc->feat->has_gamma_table)
3916 		return 0;
3917 
3918 	for (channel = 0; channel < ARRAY_SIZE(dispc->gamma_table); channel++) {
3919 		const struct dispc_gamma_desc *gdesc = &mgr_desc[channel].gamma;
3920 		u32 *gt;
3921 
3922 		if (channel == OMAP_DSS_CHANNEL_LCD2 &&
3923 		    !dispc_has_feature(dispc, FEAT_MGR_LCD2))
3924 			continue;
3925 
3926 		if (channel == OMAP_DSS_CHANNEL_LCD3 &&
3927 		    !dispc_has_feature(dispc, FEAT_MGR_LCD3))
3928 			continue;
3929 
3930 		gt = devm_kmalloc_array(&dispc->pdev->dev, gdesc->len,
3931 					sizeof(u32), GFP_KERNEL);
3932 		if (!gt)
3933 			return -ENOMEM;
3934 
3935 		dispc->gamma_table[channel] = gt;
3936 
3937 		dispc_mgr_set_gamma(dispc, channel, NULL, 0);
3938 	}
3939 	return 0;
3940 }
3941 
3942 static void _omap_dispc_initial_config(struct dispc_device *dispc)
3943 {
3944 	u32 l;
3945 
3946 	/* Exclusively enable DISPC_CORE_CLK and set divider to 1 */
3947 	if (dispc_has_feature(dispc, FEAT_CORE_CLK_DIV)) {
3948 		l = dispc_read_reg(dispc, DISPC_DIVISOR);
3949 		/* Use DISPC_DIVISOR.LCD, instead of DISPC_DIVISOR1.LCD */
3950 		l = FLD_MOD(l, 1, 0, 0);
3951 		l = FLD_MOD(l, 1, 23, 16);
3952 		dispc_write_reg(dispc, DISPC_DIVISOR, l);
3953 
3954 		dispc->core_clk_rate = dispc_fclk_rate(dispc);
3955 	}
3956 
3957 	/* Use gamma table mode, instead of palette mode */
3958 	if (dispc->feat->has_gamma_table)
3959 		REG_FLD_MOD(dispc, DISPC_CONFIG, 1, 3, 3);
3960 
3961 	/* For older DSS versions (FEAT_FUNCGATED) this enables
3962 	 * func-clock auto-gating. For newer versions
3963 	 * (dispc->feat->has_gamma_table) this enables tv-out gamma tables.
3964 	 */
3965 	if (dispc_has_feature(dispc, FEAT_FUNCGATED) ||
3966 	    dispc->feat->has_gamma_table)
3967 		REG_FLD_MOD(dispc, DISPC_CONFIG, 1, 9, 9);
3968 
3969 	dispc_setup_color_conv_coef(dispc);
3970 
3971 	dispc_set_loadmode(dispc, OMAP_DSS_LOAD_FRAME_ONLY);
3972 
3973 	dispc_init_fifos(dispc);
3974 
3975 	dispc_configure_burst_sizes(dispc);
3976 
3977 	dispc_ovl_enable_zorder_planes(dispc);
3978 
3979 	if (dispc->feat->mstandby_workaround)
3980 		REG_FLD_MOD(dispc, DISPC_MSTANDBY_CTRL, 1, 0, 0);
3981 
3982 	if (dispc_has_feature(dispc, FEAT_MFLAG))
3983 		dispc_init_mflag(dispc);
3984 }
3985 
3986 static const enum dispc_feature_id omap2_dispc_features_list[] = {
3987 	FEAT_LCDENABLEPOL,
3988 	FEAT_LCDENABLESIGNAL,
3989 	FEAT_PCKFREEENABLE,
3990 	FEAT_FUNCGATED,
3991 	FEAT_ROWREPEATENABLE,
3992 	FEAT_RESIZECONF,
3993 };
3994 
3995 static const enum dispc_feature_id omap3_dispc_features_list[] = {
3996 	FEAT_LCDENABLEPOL,
3997 	FEAT_LCDENABLESIGNAL,
3998 	FEAT_PCKFREEENABLE,
3999 	FEAT_FUNCGATED,
4000 	FEAT_LINEBUFFERSPLIT,
4001 	FEAT_ROWREPEATENABLE,
4002 	FEAT_RESIZECONF,
4003 	FEAT_CPR,
4004 	FEAT_PRELOAD,
4005 	FEAT_FIR_COEF_V,
4006 	FEAT_ALPHA_FIXED_ZORDER,
4007 	FEAT_FIFO_MERGE,
4008 	FEAT_OMAP3_DSI_FIFO_BUG,
4009 };
4010 
4011 static const enum dispc_feature_id am43xx_dispc_features_list[] = {
4012 	FEAT_LCDENABLEPOL,
4013 	FEAT_LCDENABLESIGNAL,
4014 	FEAT_PCKFREEENABLE,
4015 	FEAT_FUNCGATED,
4016 	FEAT_LINEBUFFERSPLIT,
4017 	FEAT_ROWREPEATENABLE,
4018 	FEAT_RESIZECONF,
4019 	FEAT_CPR,
4020 	FEAT_PRELOAD,
4021 	FEAT_FIR_COEF_V,
4022 	FEAT_ALPHA_FIXED_ZORDER,
4023 	FEAT_FIFO_MERGE,
4024 };
4025 
4026 static const enum dispc_feature_id omap4_dispc_features_list[] = {
4027 	FEAT_MGR_LCD2,
4028 	FEAT_CORE_CLK_DIV,
4029 	FEAT_HANDLE_UV_SEPARATE,
4030 	FEAT_ATTR2,
4031 	FEAT_CPR,
4032 	FEAT_PRELOAD,
4033 	FEAT_FIR_COEF_V,
4034 	FEAT_ALPHA_FREE_ZORDER,
4035 	FEAT_FIFO_MERGE,
4036 	FEAT_BURST_2D,
4037 };
4038 
4039 static const enum dispc_feature_id omap5_dispc_features_list[] = {
4040 	FEAT_MGR_LCD2,
4041 	FEAT_MGR_LCD3,
4042 	FEAT_CORE_CLK_DIV,
4043 	FEAT_HANDLE_UV_SEPARATE,
4044 	FEAT_ATTR2,
4045 	FEAT_CPR,
4046 	FEAT_PRELOAD,
4047 	FEAT_FIR_COEF_V,
4048 	FEAT_ALPHA_FREE_ZORDER,
4049 	FEAT_FIFO_MERGE,
4050 	FEAT_BURST_2D,
4051 	FEAT_MFLAG,
4052 };
4053 
4054 static const struct dss_reg_field omap2_dispc_reg_fields[] = {
4055 	[FEAT_REG_FIRHINC]			= { 11, 0 },
4056 	[FEAT_REG_FIRVINC]			= { 27, 16 },
4057 	[FEAT_REG_FIFOLOWTHRESHOLD]		= { 8, 0 },
4058 	[FEAT_REG_FIFOHIGHTHRESHOLD]		= { 24, 16 },
4059 	[FEAT_REG_FIFOSIZE]			= { 8, 0 },
4060 	[FEAT_REG_HORIZONTALACCU]		= { 9, 0 },
4061 	[FEAT_REG_VERTICALACCU]			= { 25, 16 },
4062 };
4063 
4064 static const struct dss_reg_field omap3_dispc_reg_fields[] = {
4065 	[FEAT_REG_FIRHINC]			= { 12, 0 },
4066 	[FEAT_REG_FIRVINC]			= { 28, 16 },
4067 	[FEAT_REG_FIFOLOWTHRESHOLD]		= { 11, 0 },
4068 	[FEAT_REG_FIFOHIGHTHRESHOLD]		= { 27, 16 },
4069 	[FEAT_REG_FIFOSIZE]			= { 10, 0 },
4070 	[FEAT_REG_HORIZONTALACCU]		= { 9, 0 },
4071 	[FEAT_REG_VERTICALACCU]			= { 25, 16 },
4072 };
4073 
4074 static const struct dss_reg_field omap4_dispc_reg_fields[] = {
4075 	[FEAT_REG_FIRHINC]			= { 12, 0 },
4076 	[FEAT_REG_FIRVINC]			= { 28, 16 },
4077 	[FEAT_REG_FIFOLOWTHRESHOLD]		= { 15, 0 },
4078 	[FEAT_REG_FIFOHIGHTHRESHOLD]		= { 31, 16 },
4079 	[FEAT_REG_FIFOSIZE]			= { 15, 0 },
4080 	[FEAT_REG_HORIZONTALACCU]		= { 10, 0 },
4081 	[FEAT_REG_VERTICALACCU]			= { 26, 16 },
4082 };
4083 
4084 static const enum omap_overlay_caps omap2_dispc_overlay_caps[] = {
4085 	/* OMAP_DSS_GFX */
4086 	OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION,
4087 
4088 	/* OMAP_DSS_VIDEO1 */
4089 	OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_POS |
4090 		OMAP_DSS_OVL_CAP_REPLICATION,
4091 
4092 	/* OMAP_DSS_VIDEO2 */
4093 	OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_POS |
4094 		OMAP_DSS_OVL_CAP_REPLICATION,
4095 };
4096 
4097 static const enum omap_overlay_caps omap3430_dispc_overlay_caps[] = {
4098 	/* OMAP_DSS_GFX */
4099 	OMAP_DSS_OVL_CAP_GLOBAL_ALPHA | OMAP_DSS_OVL_CAP_POS |
4100 		OMAP_DSS_OVL_CAP_REPLICATION,
4101 
4102 	/* OMAP_DSS_VIDEO1 */
4103 	OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_POS |
4104 		OMAP_DSS_OVL_CAP_REPLICATION,
4105 
4106 	/* OMAP_DSS_VIDEO2 */
4107 	OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_GLOBAL_ALPHA |
4108 		OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION,
4109 };
4110 
4111 static const enum omap_overlay_caps omap3630_dispc_overlay_caps[] = {
4112 	/* OMAP_DSS_GFX */
4113 	OMAP_DSS_OVL_CAP_GLOBAL_ALPHA | OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA |
4114 		OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION,
4115 
4116 	/* OMAP_DSS_VIDEO1 */
4117 	OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_POS |
4118 		OMAP_DSS_OVL_CAP_REPLICATION,
4119 
4120 	/* OMAP_DSS_VIDEO2 */
4121 	OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_GLOBAL_ALPHA |
4122 		OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA | OMAP_DSS_OVL_CAP_POS |
4123 		OMAP_DSS_OVL_CAP_REPLICATION,
4124 };
4125 
4126 static const enum omap_overlay_caps omap4_dispc_overlay_caps[] = {
4127 	/* OMAP_DSS_GFX */
4128 	OMAP_DSS_OVL_CAP_GLOBAL_ALPHA | OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA |
4129 		OMAP_DSS_OVL_CAP_ZORDER | OMAP_DSS_OVL_CAP_POS |
4130 		OMAP_DSS_OVL_CAP_REPLICATION,
4131 
4132 	/* OMAP_DSS_VIDEO1 */
4133 	OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_GLOBAL_ALPHA |
4134 		OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA | OMAP_DSS_OVL_CAP_ZORDER |
4135 		OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION,
4136 
4137 	/* OMAP_DSS_VIDEO2 */
4138 	OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_GLOBAL_ALPHA |
4139 		OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA | OMAP_DSS_OVL_CAP_ZORDER |
4140 		OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION,
4141 
4142 	/* OMAP_DSS_VIDEO3 */
4143 	OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_GLOBAL_ALPHA |
4144 		OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA | OMAP_DSS_OVL_CAP_ZORDER |
4145 		OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION,
4146 };
4147 
4148 #define COLOR_ARRAY(arr...) (const u32[]) { arr, 0 }
4149 
4150 static const u32 *omap2_dispc_supported_color_modes[] = {
4151 
4152 	/* OMAP_DSS_GFX */
4153 	COLOR_ARRAY(
4154 	DRM_FORMAT_RGBX4444, DRM_FORMAT_RGB565,
4155 	DRM_FORMAT_XRGB8888, DRM_FORMAT_RGB888),
4156 
4157 	/* OMAP_DSS_VIDEO1 */
4158 	COLOR_ARRAY(
4159 	DRM_FORMAT_RGB565, DRM_FORMAT_XRGB8888,
4160 	DRM_FORMAT_RGB888, DRM_FORMAT_YUYV,
4161 	DRM_FORMAT_UYVY),
4162 
4163 	/* OMAP_DSS_VIDEO2 */
4164 	COLOR_ARRAY(
4165 	DRM_FORMAT_RGB565, DRM_FORMAT_XRGB8888,
4166 	DRM_FORMAT_RGB888, DRM_FORMAT_YUYV,
4167 	DRM_FORMAT_UYVY),
4168 };
4169 
4170 static const u32 *omap3_dispc_supported_color_modes[] = {
4171 	/* OMAP_DSS_GFX */
4172 	COLOR_ARRAY(
4173 	DRM_FORMAT_RGBX4444, DRM_FORMAT_ARGB4444,
4174 	DRM_FORMAT_RGB565, DRM_FORMAT_XRGB8888,
4175 	DRM_FORMAT_RGB888, DRM_FORMAT_ARGB8888,
4176 	DRM_FORMAT_RGBA8888, DRM_FORMAT_RGBX8888),
4177 
4178 	/* OMAP_DSS_VIDEO1 */
4179 	COLOR_ARRAY(
4180 	DRM_FORMAT_XRGB8888, DRM_FORMAT_RGB888,
4181 	DRM_FORMAT_RGBX4444, DRM_FORMAT_RGB565,
4182 	DRM_FORMAT_YUYV, DRM_FORMAT_UYVY),
4183 
4184 	/* OMAP_DSS_VIDEO2 */
4185 	COLOR_ARRAY(
4186 	DRM_FORMAT_RGBX4444, DRM_FORMAT_ARGB4444,
4187 	DRM_FORMAT_RGB565, DRM_FORMAT_XRGB8888,
4188 	DRM_FORMAT_RGB888, DRM_FORMAT_YUYV,
4189 	DRM_FORMAT_UYVY, DRM_FORMAT_ARGB8888,
4190 	DRM_FORMAT_RGBA8888, DRM_FORMAT_RGBX8888),
4191 };
4192 
4193 static const u32 *omap4_dispc_supported_color_modes[] = {
4194 	/* OMAP_DSS_GFX */
4195 	COLOR_ARRAY(
4196 	DRM_FORMAT_RGBX4444, DRM_FORMAT_ARGB4444,
4197 	DRM_FORMAT_RGB565, DRM_FORMAT_XRGB8888,
4198 	DRM_FORMAT_RGB888, DRM_FORMAT_ARGB8888,
4199 	DRM_FORMAT_RGBA8888, DRM_FORMAT_RGBX8888,
4200 	DRM_FORMAT_ARGB1555, DRM_FORMAT_XRGB4444,
4201 	DRM_FORMAT_RGBA4444, DRM_FORMAT_XRGB1555),
4202 
4203 	/* OMAP_DSS_VIDEO1 */
4204 	COLOR_ARRAY(
4205 	DRM_FORMAT_RGB565, DRM_FORMAT_RGBX4444,
4206 	DRM_FORMAT_YUYV, DRM_FORMAT_ARGB1555,
4207 	DRM_FORMAT_RGBA8888, DRM_FORMAT_NV12,
4208 	DRM_FORMAT_RGBA4444, DRM_FORMAT_XRGB8888,
4209 	DRM_FORMAT_RGB888, DRM_FORMAT_UYVY,
4210 	DRM_FORMAT_ARGB4444, DRM_FORMAT_XRGB1555,
4211 	DRM_FORMAT_ARGB8888, DRM_FORMAT_XRGB4444,
4212 	DRM_FORMAT_RGBX8888),
4213 
4214        /* OMAP_DSS_VIDEO2 */
4215 	COLOR_ARRAY(
4216 	DRM_FORMAT_RGB565, DRM_FORMAT_RGBX4444,
4217 	DRM_FORMAT_YUYV, DRM_FORMAT_ARGB1555,
4218 	DRM_FORMAT_RGBA8888, DRM_FORMAT_NV12,
4219 	DRM_FORMAT_RGBA4444, DRM_FORMAT_XRGB8888,
4220 	DRM_FORMAT_RGB888, DRM_FORMAT_UYVY,
4221 	DRM_FORMAT_ARGB4444, DRM_FORMAT_XRGB1555,
4222 	DRM_FORMAT_ARGB8888, DRM_FORMAT_XRGB4444,
4223 	DRM_FORMAT_RGBX8888),
4224 
4225 	/* OMAP_DSS_VIDEO3 */
4226 	COLOR_ARRAY(
4227 	DRM_FORMAT_RGB565, DRM_FORMAT_RGBX4444,
4228 	DRM_FORMAT_YUYV, DRM_FORMAT_ARGB1555,
4229 	DRM_FORMAT_RGBA8888, DRM_FORMAT_NV12,
4230 	DRM_FORMAT_RGBA4444, DRM_FORMAT_XRGB8888,
4231 	DRM_FORMAT_RGB888, DRM_FORMAT_UYVY,
4232 	DRM_FORMAT_ARGB4444, DRM_FORMAT_XRGB1555,
4233 	DRM_FORMAT_ARGB8888, DRM_FORMAT_XRGB4444,
4234 	DRM_FORMAT_RGBX8888),
4235 
4236 	/* OMAP_DSS_WB */
4237 	COLOR_ARRAY(
4238 	DRM_FORMAT_RGB565, DRM_FORMAT_RGBX4444,
4239 	DRM_FORMAT_YUYV, DRM_FORMAT_ARGB1555,
4240 	DRM_FORMAT_RGBA8888, DRM_FORMAT_NV12,
4241 	DRM_FORMAT_RGBA4444, DRM_FORMAT_XRGB8888,
4242 	DRM_FORMAT_RGB888, DRM_FORMAT_UYVY,
4243 	DRM_FORMAT_ARGB4444, DRM_FORMAT_XRGB1555,
4244 	DRM_FORMAT_ARGB8888, DRM_FORMAT_XRGB4444,
4245 	DRM_FORMAT_RGBX8888),
4246 };
4247 
4248 static const struct dispc_features omap24xx_dispc_feats = {
4249 	.sw_start		=	5,
4250 	.fp_start		=	15,
4251 	.bp_start		=	27,
4252 	.sw_max			=	64,
4253 	.vp_max			=	255,
4254 	.hp_max			=	256,
4255 	.mgr_width_start	=	10,
4256 	.mgr_height_start	=	26,
4257 	.mgr_width_max		=	2048,
4258 	.mgr_height_max		=	2048,
4259 	.max_lcd_pclk		=	66500000,
4260 	.max_downscale		=	2,
4261 	/*
4262 	 * Assume the line width buffer to be 768 pixels as OMAP2 DISPC scaler
4263 	 * cannot scale an image width larger than 768.
4264 	 */
4265 	.max_line_width		=	768,
4266 	.min_pcd		=	2,
4267 	.calc_scaling		=	dispc_ovl_calc_scaling_24xx,
4268 	.calc_core_clk		=	calc_core_clk_24xx,
4269 	.num_fifos		=	3,
4270 	.features		=	omap2_dispc_features_list,
4271 	.num_features		=	ARRAY_SIZE(omap2_dispc_features_list),
4272 	.reg_fields		=	omap2_dispc_reg_fields,
4273 	.num_reg_fields		=	ARRAY_SIZE(omap2_dispc_reg_fields),
4274 	.overlay_caps		=	omap2_dispc_overlay_caps,
4275 	.supported_color_modes	=	omap2_dispc_supported_color_modes,
4276 	.num_mgrs		=	2,
4277 	.num_ovls		=	3,
4278 	.buffer_size_unit	=	1,
4279 	.burst_size_unit	=	8,
4280 	.no_framedone_tv	=	true,
4281 	.set_max_preload	=	false,
4282 	.last_pixel_inc_missing	=	true,
4283 };
4284 
4285 static const struct dispc_features omap34xx_rev1_0_dispc_feats = {
4286 	.sw_start		=	5,
4287 	.fp_start		=	15,
4288 	.bp_start		=	27,
4289 	.sw_max			=	64,
4290 	.vp_max			=	255,
4291 	.hp_max			=	256,
4292 	.mgr_width_start	=	10,
4293 	.mgr_height_start	=	26,
4294 	.mgr_width_max		=	2048,
4295 	.mgr_height_max		=	2048,
4296 	.max_lcd_pclk		=	173000000,
4297 	.max_tv_pclk		=	59000000,
4298 	.max_downscale		=	4,
4299 	.max_line_width		=	1024,
4300 	.min_pcd		=	1,
4301 	.calc_scaling		=	dispc_ovl_calc_scaling_34xx,
4302 	.calc_core_clk		=	calc_core_clk_34xx,
4303 	.num_fifos		=	3,
4304 	.features		=	omap3_dispc_features_list,
4305 	.num_features		=	ARRAY_SIZE(omap3_dispc_features_list),
4306 	.reg_fields		=	omap3_dispc_reg_fields,
4307 	.num_reg_fields		=	ARRAY_SIZE(omap3_dispc_reg_fields),
4308 	.overlay_caps		=	omap3430_dispc_overlay_caps,
4309 	.supported_color_modes	=	omap3_dispc_supported_color_modes,
4310 	.num_mgrs		=	2,
4311 	.num_ovls		=	3,
4312 	.buffer_size_unit	=	1,
4313 	.burst_size_unit	=	8,
4314 	.no_framedone_tv	=	true,
4315 	.set_max_preload	=	false,
4316 	.last_pixel_inc_missing	=	true,
4317 };
4318 
4319 static const struct dispc_features omap34xx_rev3_0_dispc_feats = {
4320 	.sw_start		=	7,
4321 	.fp_start		=	19,
4322 	.bp_start		=	31,
4323 	.sw_max			=	256,
4324 	.vp_max			=	4095,
4325 	.hp_max			=	4096,
4326 	.mgr_width_start	=	10,
4327 	.mgr_height_start	=	26,
4328 	.mgr_width_max		=	2048,
4329 	.mgr_height_max		=	2048,
4330 	.max_lcd_pclk		=	173000000,
4331 	.max_tv_pclk		=	59000000,
4332 	.max_downscale		=	4,
4333 	.max_line_width		=	1024,
4334 	.min_pcd		=	1,
4335 	.calc_scaling		=	dispc_ovl_calc_scaling_34xx,
4336 	.calc_core_clk		=	calc_core_clk_34xx,
4337 	.num_fifos		=	3,
4338 	.features		=	omap3_dispc_features_list,
4339 	.num_features		=	ARRAY_SIZE(omap3_dispc_features_list),
4340 	.reg_fields		=	omap3_dispc_reg_fields,
4341 	.num_reg_fields		=	ARRAY_SIZE(omap3_dispc_reg_fields),
4342 	.overlay_caps		=	omap3430_dispc_overlay_caps,
4343 	.supported_color_modes	=	omap3_dispc_supported_color_modes,
4344 	.num_mgrs		=	2,
4345 	.num_ovls		=	3,
4346 	.buffer_size_unit	=	1,
4347 	.burst_size_unit	=	8,
4348 	.no_framedone_tv	=	true,
4349 	.set_max_preload	=	false,
4350 	.last_pixel_inc_missing	=	true,
4351 };
4352 
4353 static const struct dispc_features omap36xx_dispc_feats = {
4354 	.sw_start		=	7,
4355 	.fp_start		=	19,
4356 	.bp_start		=	31,
4357 	.sw_max			=	256,
4358 	.vp_max			=	4095,
4359 	.hp_max			=	4096,
4360 	.mgr_width_start	=	10,
4361 	.mgr_height_start	=	26,
4362 	.mgr_width_max		=	2048,
4363 	.mgr_height_max		=	2048,
4364 	.max_lcd_pclk		=	173000000,
4365 	.max_tv_pclk		=	59000000,
4366 	.max_downscale		=	4,
4367 	.max_line_width		=	1024,
4368 	.min_pcd		=	1,
4369 	.calc_scaling		=	dispc_ovl_calc_scaling_34xx,
4370 	.calc_core_clk		=	calc_core_clk_34xx,
4371 	.num_fifos		=	3,
4372 	.features		=	omap3_dispc_features_list,
4373 	.num_features		=	ARRAY_SIZE(omap3_dispc_features_list),
4374 	.reg_fields		=	omap3_dispc_reg_fields,
4375 	.num_reg_fields		=	ARRAY_SIZE(omap3_dispc_reg_fields),
4376 	.overlay_caps		=	omap3630_dispc_overlay_caps,
4377 	.supported_color_modes	=	omap3_dispc_supported_color_modes,
4378 	.num_mgrs		=	2,
4379 	.num_ovls		=	3,
4380 	.buffer_size_unit	=	1,
4381 	.burst_size_unit	=	8,
4382 	.no_framedone_tv	=	true,
4383 	.set_max_preload	=	false,
4384 	.last_pixel_inc_missing	=	true,
4385 };
4386 
4387 static const struct dispc_features am43xx_dispc_feats = {
4388 	.sw_start		=	7,
4389 	.fp_start		=	19,
4390 	.bp_start		=	31,
4391 	.sw_max			=	256,
4392 	.vp_max			=	4095,
4393 	.hp_max			=	4096,
4394 	.mgr_width_start	=	10,
4395 	.mgr_height_start	=	26,
4396 	.mgr_width_max		=	2048,
4397 	.mgr_height_max		=	2048,
4398 	.max_lcd_pclk		=	173000000,
4399 	.max_tv_pclk		=	59000000,
4400 	.max_downscale		=	4,
4401 	.max_line_width		=	1024,
4402 	.min_pcd		=	1,
4403 	.calc_scaling		=	dispc_ovl_calc_scaling_34xx,
4404 	.calc_core_clk		=	calc_core_clk_34xx,
4405 	.num_fifos		=	3,
4406 	.features		=	am43xx_dispc_features_list,
4407 	.num_features		=	ARRAY_SIZE(am43xx_dispc_features_list),
4408 	.reg_fields		=	omap3_dispc_reg_fields,
4409 	.num_reg_fields		=	ARRAY_SIZE(omap3_dispc_reg_fields),
4410 	.overlay_caps		=	omap3430_dispc_overlay_caps,
4411 	.supported_color_modes	=	omap3_dispc_supported_color_modes,
4412 	.num_mgrs		=	1,
4413 	.num_ovls		=	3,
4414 	.buffer_size_unit	=	1,
4415 	.burst_size_unit	=	8,
4416 	.no_framedone_tv	=	true,
4417 	.set_max_preload	=	false,
4418 	.last_pixel_inc_missing	=	true,
4419 };
4420 
4421 static const struct dispc_features omap44xx_dispc_feats = {
4422 	.sw_start		=	7,
4423 	.fp_start		=	19,
4424 	.bp_start		=	31,
4425 	.sw_max			=	256,
4426 	.vp_max			=	4095,
4427 	.hp_max			=	4096,
4428 	.mgr_width_start	=	10,
4429 	.mgr_height_start	=	26,
4430 	.mgr_width_max		=	2048,
4431 	.mgr_height_max		=	2048,
4432 	.max_lcd_pclk		=	170000000,
4433 	.max_tv_pclk		=	185625000,
4434 	.max_downscale		=	4,
4435 	.max_line_width		=	2048,
4436 	.min_pcd		=	1,
4437 	.calc_scaling		=	dispc_ovl_calc_scaling_44xx,
4438 	.calc_core_clk		=	calc_core_clk_44xx,
4439 	.num_fifos		=	5,
4440 	.features		=	omap4_dispc_features_list,
4441 	.num_features		=	ARRAY_SIZE(omap4_dispc_features_list),
4442 	.reg_fields		=	omap4_dispc_reg_fields,
4443 	.num_reg_fields		=	ARRAY_SIZE(omap4_dispc_reg_fields),
4444 	.overlay_caps		=	omap4_dispc_overlay_caps,
4445 	.supported_color_modes	=	omap4_dispc_supported_color_modes,
4446 	.num_mgrs		=	3,
4447 	.num_ovls		=	4,
4448 	.buffer_size_unit	=	16,
4449 	.burst_size_unit	=	16,
4450 	.gfx_fifo_workaround	=	true,
4451 	.set_max_preload	=	true,
4452 	.supports_sync_align	=	true,
4453 	.has_writeback		=	true,
4454 	.supports_double_pixel	=	true,
4455 	.reverse_ilace_field_order =	true,
4456 	.has_gamma_table	=	true,
4457 	.has_gamma_i734_bug	=	true,
4458 };
4459 
4460 static const struct dispc_features omap54xx_dispc_feats = {
4461 	.sw_start		=	7,
4462 	.fp_start		=	19,
4463 	.bp_start		=	31,
4464 	.sw_max			=	256,
4465 	.vp_max			=	4095,
4466 	.hp_max			=	4096,
4467 	.mgr_width_start	=	11,
4468 	.mgr_height_start	=	27,
4469 	.mgr_width_max		=	4096,
4470 	.mgr_height_max		=	4096,
4471 	.max_lcd_pclk		=	170000000,
4472 	.max_tv_pclk		=	186000000,
4473 	.max_downscale		=	4,
4474 	.max_line_width		=	2048,
4475 	.min_pcd		=	1,
4476 	.calc_scaling		=	dispc_ovl_calc_scaling_44xx,
4477 	.calc_core_clk		=	calc_core_clk_44xx,
4478 	.num_fifos		=	5,
4479 	.features		=	omap5_dispc_features_list,
4480 	.num_features		=	ARRAY_SIZE(omap5_dispc_features_list),
4481 	.reg_fields		=	omap4_dispc_reg_fields,
4482 	.num_reg_fields		=	ARRAY_SIZE(omap4_dispc_reg_fields),
4483 	.overlay_caps		=	omap4_dispc_overlay_caps,
4484 	.supported_color_modes	=	omap4_dispc_supported_color_modes,
4485 	.num_mgrs		=	4,
4486 	.num_ovls		=	4,
4487 	.buffer_size_unit	=	16,
4488 	.burst_size_unit	=	16,
4489 	.gfx_fifo_workaround	=	true,
4490 	.mstandby_workaround	=	true,
4491 	.set_max_preload	=	true,
4492 	.supports_sync_align	=	true,
4493 	.has_writeback		=	true,
4494 	.supports_double_pixel	=	true,
4495 	.reverse_ilace_field_order =	true,
4496 	.has_gamma_table	=	true,
4497 	.has_gamma_i734_bug	=	true,
4498 };
4499 
4500 static irqreturn_t dispc_irq_handler(int irq, void *arg)
4501 {
4502 	struct dispc_device *dispc = arg;
4503 
4504 	if (!dispc->is_enabled)
4505 		return IRQ_NONE;
4506 
4507 	return dispc->user_handler(irq, dispc->user_data);
4508 }
4509 
4510 static int dispc_request_irq(struct dispc_device *dispc, irq_handler_t handler,
4511 			     void *dev_id)
4512 {
4513 	int r;
4514 
4515 	if (dispc->user_handler != NULL)
4516 		return -EBUSY;
4517 
4518 	dispc->user_handler = handler;
4519 	dispc->user_data = dev_id;
4520 
4521 	/* ensure the dispc_irq_handler sees the values above */
4522 	smp_wmb();
4523 
4524 	r = devm_request_irq(&dispc->pdev->dev, dispc->irq, dispc_irq_handler,
4525 			     IRQF_SHARED, "OMAP DISPC", dispc);
4526 	if (r) {
4527 		dispc->user_handler = NULL;
4528 		dispc->user_data = NULL;
4529 	}
4530 
4531 	return r;
4532 }
4533 
4534 static void dispc_free_irq(struct dispc_device *dispc, void *dev_id)
4535 {
4536 	devm_free_irq(&dispc->pdev->dev, dispc->irq, dispc);
4537 
4538 	dispc->user_handler = NULL;
4539 	dispc->user_data = NULL;
4540 }
4541 
4542 static u32 dispc_get_memory_bandwidth_limit(struct dispc_device *dispc)
4543 {
4544 	u32 limit = 0;
4545 
4546 	/* Optional maximum memory bandwidth */
4547 	of_property_read_u32(dispc->pdev->dev.of_node, "max-memory-bandwidth",
4548 			     &limit);
4549 
4550 	return limit;
4551 }
4552 
4553 /*
4554  * Workaround for errata i734 in DSS dispc
4555  *  - LCD1 Gamma Correction Is Not Working When GFX Pipe Is Disabled
4556  *
4557  * For gamma tables to work on LCD1 the GFX plane has to be used at
4558  * least once after DSS HW has come out of reset. The workaround
4559  * sets up a minimal LCD setup with GFX plane and waits for one
4560  * vertical sync irq before disabling the setup and continuing with
4561  * the context restore. The physical outputs are gated during the
4562  * operation. This workaround requires that gamma table's LOADMODE
4563  * is set to 0x2 in DISPC_CONTROL1 register.
4564  *
4565  * For details see:
4566  * OMAP543x Multimedia Device Silicon Revision 2.0 Silicon Errata
4567  * Literature Number: SWPZ037E
4568  * Or some other relevant errata document for the DSS IP version.
4569  */
4570 
4571 static const struct dispc_errata_i734_data {
4572 	struct videomode vm;
4573 	struct omap_overlay_info ovli;
4574 	struct omap_overlay_manager_info mgri;
4575 	struct dss_lcd_mgr_config lcd_conf;
4576 } i734 = {
4577 	.vm = {
4578 		.hactive = 8, .vactive = 1,
4579 		.pixelclock = 16000000,
4580 		.hsync_len = 8, .hfront_porch = 4, .hback_porch = 4,
4581 		.vsync_len = 1, .vfront_porch = 1, .vback_porch = 1,
4582 
4583 		.flags = DISPLAY_FLAGS_HSYNC_LOW | DISPLAY_FLAGS_VSYNC_LOW |
4584 			 DISPLAY_FLAGS_DE_HIGH | DISPLAY_FLAGS_SYNC_POSEDGE |
4585 			 DISPLAY_FLAGS_PIXDATA_POSEDGE,
4586 	},
4587 	.ovli = {
4588 		.screen_width = 1,
4589 		.width = 1, .height = 1,
4590 		.fourcc = DRM_FORMAT_XRGB8888,
4591 		.rotation = DRM_MODE_ROTATE_0,
4592 		.rotation_type = OMAP_DSS_ROT_NONE,
4593 		.pos_x = 0, .pos_y = 0,
4594 		.out_width = 0, .out_height = 0,
4595 		.global_alpha = 0xff,
4596 		.pre_mult_alpha = 0,
4597 		.zorder = 0,
4598 	},
4599 	.mgri = {
4600 		.default_color = 0,
4601 		.trans_enabled = false,
4602 		.partial_alpha_enabled = false,
4603 		.cpr_enable = false,
4604 	},
4605 	.lcd_conf = {
4606 		.io_pad_mode = DSS_IO_PAD_MODE_BYPASS,
4607 		.stallmode = false,
4608 		.fifohandcheck = false,
4609 		.clock_info = {
4610 			.lck_div = 1,
4611 			.pck_div = 2,
4612 		},
4613 		.video_port_width = 24,
4614 		.lcden_sig_polarity = 0,
4615 	},
4616 };
4617 
4618 static struct i734_buf {
4619 	size_t size;
4620 	dma_addr_t paddr;
4621 	void *vaddr;
4622 } i734_buf;
4623 
4624 static int dispc_errata_i734_wa_init(struct dispc_device *dispc)
4625 {
4626 	if (!dispc->feat->has_gamma_i734_bug)
4627 		return 0;
4628 
4629 	i734_buf.size = i734.ovli.width * i734.ovli.height *
4630 		color_mode_to_bpp(i734.ovli.fourcc) / 8;
4631 
4632 	i734_buf.vaddr = dma_alloc_writecombine(&dispc->pdev->dev,
4633 						i734_buf.size, &i734_buf.paddr,
4634 						GFP_KERNEL);
4635 	if (!i734_buf.vaddr) {
4636 		dev_err(&dispc->pdev->dev, "%s: dma_alloc_writecombine failed",
4637 			__func__);
4638 		return -ENOMEM;
4639 	}
4640 
4641 	return 0;
4642 }
4643 
4644 static void dispc_errata_i734_wa_fini(struct dispc_device *dispc)
4645 {
4646 	if (!dispc->feat->has_gamma_i734_bug)
4647 		return;
4648 
4649 	dma_free_writecombine(&dispc->pdev->dev, i734_buf.size, i734_buf.vaddr,
4650 			      i734_buf.paddr);
4651 }
4652 
4653 static void dispc_errata_i734_wa(struct dispc_device *dispc)
4654 {
4655 	u32 framedone_irq = dispc_mgr_get_framedone_irq(dispc,
4656 							OMAP_DSS_CHANNEL_LCD);
4657 	struct omap_overlay_info ovli;
4658 	struct dss_lcd_mgr_config lcd_conf;
4659 	u32 gatestate;
4660 	unsigned int count;
4661 
4662 	if (!dispc->feat->has_gamma_i734_bug)
4663 		return;
4664 
4665 	gatestate = REG_GET(dispc, DISPC_CONFIG, 8, 4);
4666 
4667 	ovli = i734.ovli;
4668 	ovli.paddr = i734_buf.paddr;
4669 	lcd_conf = i734.lcd_conf;
4670 
4671 	/* Gate all LCD1 outputs */
4672 	REG_FLD_MOD(dispc, DISPC_CONFIG, 0x1f, 8, 4);
4673 
4674 	/* Setup and enable GFX plane */
4675 	dispc_ovl_setup(dispc, OMAP_DSS_GFX, &ovli, &i734.vm, false,
4676 			OMAP_DSS_CHANNEL_LCD);
4677 	dispc_ovl_enable(dispc, OMAP_DSS_GFX, true);
4678 
4679 	/* Set up and enable display manager for LCD1 */
4680 	dispc_mgr_setup(dispc, OMAP_DSS_CHANNEL_LCD, &i734.mgri);
4681 	dispc_calc_clock_rates(dispc, dss_get_dispc_clk_rate(dispc->dss),
4682 			       &lcd_conf.clock_info);
4683 	dispc_mgr_set_lcd_config(dispc, OMAP_DSS_CHANNEL_LCD, &lcd_conf);
4684 	dispc_mgr_set_timings(dispc, OMAP_DSS_CHANNEL_LCD, &i734.vm);
4685 
4686 	dispc_clear_irqstatus(dispc, framedone_irq);
4687 
4688 	/* Enable and shut the channel to produce just one frame */
4689 	dispc_mgr_enable(dispc, OMAP_DSS_CHANNEL_LCD, true);
4690 	dispc_mgr_enable(dispc, OMAP_DSS_CHANNEL_LCD, false);
4691 
4692 	/* Busy wait for framedone. We can't fiddle with irq handlers
4693 	 * in PM resume. Typically the loop runs less than 5 times and
4694 	 * waits less than a micro second.
4695 	 */
4696 	count = 0;
4697 	while (!(dispc_read_irqstatus(dispc) & framedone_irq)) {
4698 		if (count++ > 10000) {
4699 			dev_err(&dispc->pdev->dev, "%s: framedone timeout\n",
4700 				__func__);
4701 			break;
4702 		}
4703 	}
4704 	dispc_ovl_enable(dispc, OMAP_DSS_GFX, false);
4705 
4706 	/* Clear all irq bits before continuing */
4707 	dispc_clear_irqstatus(dispc, 0xffffffff);
4708 
4709 	/* Restore the original state to LCD1 output gates */
4710 	REG_FLD_MOD(dispc, DISPC_CONFIG, gatestate, 8, 4);
4711 }
4712 
4713 static const struct dispc_ops dispc_ops = {
4714 	.read_irqstatus = dispc_read_irqstatus,
4715 	.clear_irqstatus = dispc_clear_irqstatus,
4716 	.write_irqenable = dispc_write_irqenable,
4717 
4718 	.request_irq = dispc_request_irq,
4719 	.free_irq = dispc_free_irq,
4720 
4721 	.runtime_get = dispc_runtime_get,
4722 	.runtime_put = dispc_runtime_put,
4723 
4724 	.get_num_ovls = dispc_get_num_ovls,
4725 	.get_num_mgrs = dispc_get_num_mgrs,
4726 
4727 	.get_memory_bandwidth_limit = dispc_get_memory_bandwidth_limit,
4728 
4729 	.mgr_enable = dispc_mgr_enable,
4730 	.mgr_is_enabled = dispc_mgr_is_enabled,
4731 	.mgr_get_vsync_irq = dispc_mgr_get_vsync_irq,
4732 	.mgr_get_framedone_irq = dispc_mgr_get_framedone_irq,
4733 	.mgr_get_sync_lost_irq = dispc_mgr_get_sync_lost_irq,
4734 	.mgr_go_busy = dispc_mgr_go_busy,
4735 	.mgr_go = dispc_mgr_go,
4736 	.mgr_set_lcd_config = dispc_mgr_set_lcd_config,
4737 	.mgr_set_timings = dispc_mgr_set_timings,
4738 	.mgr_setup = dispc_mgr_setup,
4739 	.mgr_get_supported_outputs = dispc_mgr_get_supported_outputs,
4740 	.mgr_gamma_size = dispc_mgr_gamma_size,
4741 	.mgr_set_gamma = dispc_mgr_set_gamma,
4742 
4743 	.ovl_enable = dispc_ovl_enable,
4744 	.ovl_setup = dispc_ovl_setup,
4745 	.ovl_get_color_modes = dispc_ovl_get_color_modes,
4746 
4747 	.wb_get_framedone_irq = dispc_wb_get_framedone_irq,
4748 	.wb_setup = dispc_wb_setup,
4749 	.has_writeback = dispc_has_writeback,
4750 	.wb_go_busy = dispc_wb_go_busy,
4751 	.wb_go = dispc_wb_go,
4752 };
4753 
4754 /* DISPC HW IP initialisation */
4755 static const struct of_device_id dispc_of_match[] = {
4756 	{ .compatible = "ti,omap2-dispc", .data = &omap24xx_dispc_feats },
4757 	{ .compatible = "ti,omap3-dispc", .data = &omap36xx_dispc_feats },
4758 	{ .compatible = "ti,omap4-dispc", .data = &omap44xx_dispc_feats },
4759 	{ .compatible = "ti,omap5-dispc", .data = &omap54xx_dispc_feats },
4760 	{ .compatible = "ti,dra7-dispc",  .data = &omap54xx_dispc_feats },
4761 	{},
4762 };
4763 
4764 static const struct soc_device_attribute dispc_soc_devices[] = {
4765 	{ .machine = "OMAP3[45]*",
4766 	  .revision = "ES[12].?",	.data = &omap34xx_rev1_0_dispc_feats },
4767 	{ .machine = "OMAP3[45]*",	.data = &omap34xx_rev3_0_dispc_feats },
4768 	{ .machine = "AM35*",		.data = &omap34xx_rev3_0_dispc_feats },
4769 	{ .machine = "AM43*",		.data = &am43xx_dispc_feats },
4770 	{ /* sentinel */ }
4771 };
4772 
4773 static int dispc_bind(struct device *dev, struct device *master, void *data)
4774 {
4775 	struct platform_device *pdev = to_platform_device(dev);
4776 	const struct soc_device_attribute *soc;
4777 	struct dss_device *dss = dss_get_device(master);
4778 	struct dispc_device *dispc;
4779 	u32 rev;
4780 	int r = 0;
4781 	struct resource *dispc_mem;
4782 	struct device_node *np = pdev->dev.of_node;
4783 
4784 	dispc = kzalloc(sizeof(*dispc), GFP_KERNEL);
4785 	if (!dispc)
4786 		return -ENOMEM;
4787 
4788 	dispc->pdev = pdev;
4789 	platform_set_drvdata(pdev, dispc);
4790 	dispc->dss = dss;
4791 
4792 	spin_lock_init(&dispc->control_lock);
4793 
4794 	/*
4795 	 * The OMAP3-based models can't be told apart using the compatible
4796 	 * string, use SoC device matching.
4797 	 */
4798 	soc = soc_device_match(dispc_soc_devices);
4799 	if (soc)
4800 		dispc->feat = soc->data;
4801 	else
4802 		dispc->feat = of_match_device(dispc_of_match, &pdev->dev)->data;
4803 
4804 	r = dispc_errata_i734_wa_init(dispc);
4805 	if (r)
4806 		goto err_free;
4807 
4808 	dispc_mem = platform_get_resource(dispc->pdev, IORESOURCE_MEM, 0);
4809 	dispc->base = devm_ioremap_resource(&pdev->dev, dispc_mem);
4810 	if (IS_ERR(dispc->base)) {
4811 		r = PTR_ERR(dispc->base);
4812 		goto err_free;
4813 	}
4814 
4815 	dispc->irq = platform_get_irq(dispc->pdev, 0);
4816 	if (dispc->irq < 0) {
4817 		DSSERR("platform_get_irq failed\n");
4818 		r = -ENODEV;
4819 		goto err_free;
4820 	}
4821 
4822 	if (np && of_property_read_bool(np, "syscon-pol")) {
4823 		dispc->syscon_pol = syscon_regmap_lookup_by_phandle(np, "syscon-pol");
4824 		if (IS_ERR(dispc->syscon_pol)) {
4825 			dev_err(&pdev->dev, "failed to get syscon-pol regmap\n");
4826 			r = PTR_ERR(dispc->syscon_pol);
4827 			goto err_free;
4828 		}
4829 
4830 		if (of_property_read_u32_index(np, "syscon-pol", 1,
4831 				&dispc->syscon_pol_offset)) {
4832 			dev_err(&pdev->dev, "failed to get syscon-pol offset\n");
4833 			r = -EINVAL;
4834 			goto err_free;
4835 		}
4836 	}
4837 
4838 	r = dispc_init_gamma_tables(dispc);
4839 	if (r)
4840 		goto err_free;
4841 
4842 	pm_runtime_enable(&pdev->dev);
4843 
4844 	r = dispc_runtime_get(dispc);
4845 	if (r)
4846 		goto err_runtime_get;
4847 
4848 	_omap_dispc_initial_config(dispc);
4849 
4850 	rev = dispc_read_reg(dispc, DISPC_REVISION);
4851 	dev_dbg(&pdev->dev, "OMAP DISPC rev %d.%d\n",
4852 	       FLD_GET(rev, 7, 4), FLD_GET(rev, 3, 0));
4853 
4854 	dispc_runtime_put(dispc);
4855 
4856 	dss->dispc = dispc;
4857 	dss->dispc_ops = &dispc_ops;
4858 
4859 	dispc->debugfs = dss_debugfs_create_file(dss, "dispc", dispc_dump_regs,
4860 						 dispc);
4861 
4862 	return 0;
4863 
4864 err_runtime_get:
4865 	pm_runtime_disable(&pdev->dev);
4866 err_free:
4867 	kfree(dispc);
4868 	return r;
4869 }
4870 
4871 static void dispc_unbind(struct device *dev, struct device *master, void *data)
4872 {
4873 	struct dispc_device *dispc = dev_get_drvdata(dev);
4874 	struct dss_device *dss = dispc->dss;
4875 
4876 	dss_debugfs_remove_file(dispc->debugfs);
4877 
4878 	dss->dispc = NULL;
4879 	dss->dispc_ops = NULL;
4880 
4881 	pm_runtime_disable(dev);
4882 
4883 	dispc_errata_i734_wa_fini(dispc);
4884 
4885 	kfree(dispc);
4886 }
4887 
4888 static const struct component_ops dispc_component_ops = {
4889 	.bind	= dispc_bind,
4890 	.unbind	= dispc_unbind,
4891 };
4892 
4893 static int dispc_probe(struct platform_device *pdev)
4894 {
4895 	return component_add(&pdev->dev, &dispc_component_ops);
4896 }
4897 
4898 static int dispc_remove(struct platform_device *pdev)
4899 {
4900 	component_del(&pdev->dev, &dispc_component_ops);
4901 	return 0;
4902 }
4903 
4904 static int dispc_runtime_suspend(struct device *dev)
4905 {
4906 	struct dispc_device *dispc = dev_get_drvdata(dev);
4907 
4908 	dispc->is_enabled = false;
4909 	/* ensure the dispc_irq_handler sees the is_enabled value */
4910 	smp_wmb();
4911 	/* wait for current handler to finish before turning the DISPC off */
4912 	synchronize_irq(dispc->irq);
4913 
4914 	dispc_save_context(dispc);
4915 
4916 	return 0;
4917 }
4918 
4919 static int dispc_runtime_resume(struct device *dev)
4920 {
4921 	struct dispc_device *dispc = dev_get_drvdata(dev);
4922 
4923 	/*
4924 	 * The reset value for load mode is 0 (OMAP_DSS_LOAD_CLUT_AND_FRAME)
4925 	 * but we always initialize it to 2 (OMAP_DSS_LOAD_FRAME_ONLY) in
4926 	 * _omap_dispc_initial_config(). We can thus use it to detect if
4927 	 * we have lost register context.
4928 	 */
4929 	if (REG_GET(dispc, DISPC_CONFIG, 2, 1) != OMAP_DSS_LOAD_FRAME_ONLY) {
4930 		_omap_dispc_initial_config(dispc);
4931 
4932 		dispc_errata_i734_wa(dispc);
4933 
4934 		dispc_restore_context(dispc);
4935 
4936 		dispc_restore_gamma_tables(dispc);
4937 	}
4938 
4939 	dispc->is_enabled = true;
4940 	/* ensure the dispc_irq_handler sees the is_enabled value */
4941 	smp_wmb();
4942 
4943 	return 0;
4944 }
4945 
4946 static const struct dev_pm_ops dispc_pm_ops = {
4947 	.runtime_suspend = dispc_runtime_suspend,
4948 	.runtime_resume = dispc_runtime_resume,
4949 };
4950 
4951 struct platform_driver omap_dispchw_driver = {
4952 	.probe		= dispc_probe,
4953 	.remove         = dispc_remove,
4954 	.driver         = {
4955 		.name   = "omapdss_dispc",
4956 		.pm	= &dispc_pm_ops,
4957 		.of_match_table = dispc_of_match,
4958 		.suppress_bind_attrs = true,
4959 	},
4960 };
4961