xref: /openbmc/linux/drivers/gpu/drm/omapdrm/dss/dispc.c (revision 98ddec80)
1 /*
2  * Copyright (C) 2009 Nokia Corporation
3  * Author: Tomi Valkeinen <tomi.valkeinen@nokia.com>
4  *
5  * Some code and ideas taken from drivers/video/omap/ driver
6  * by Imre Deak.
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms of the GNU General Public License version 2 as published by
10  * the Free Software Foundation.
11  *
12  * This program is distributed in the hope that it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  * more details.
16  *
17  * You should have received a copy of the GNU General Public License along with
18  * this program.  If not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 #define DSS_SUBSYS_NAME "DISPC"
22 
23 #include <linux/kernel.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/vmalloc.h>
26 #include <linux/export.h>
27 #include <linux/clk.h>
28 #include <linux/io.h>
29 #include <linux/jiffies.h>
30 #include <linux/seq_file.h>
31 #include <linux/delay.h>
32 #include <linux/workqueue.h>
33 #include <linux/hardirq.h>
34 #include <linux/platform_device.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/sizes.h>
37 #include <linux/mfd/syscon.h>
38 #include <linux/regmap.h>
39 #include <linux/of.h>
40 #include <linux/of_device.h>
41 #include <linux/component.h>
42 #include <linux/sys_soc.h>
43 #include <drm/drm_fourcc.h>
44 #include <drm/drm_blend.h>
45 
46 #include "omapdss.h"
47 #include "dss.h"
48 #include "dispc.h"
49 
50 struct dispc_device;
51 
52 /* DISPC */
53 #define DISPC_SZ_REGS			SZ_4K
54 
55 enum omap_burst_size {
56 	BURST_SIZE_X2 = 0,
57 	BURST_SIZE_X4 = 1,
58 	BURST_SIZE_X8 = 2,
59 };
60 
61 #define REG_GET(dispc, idx, start, end) \
62 	FLD_GET(dispc_read_reg(dispc, idx), start, end)
63 
64 #define REG_FLD_MOD(dispc, idx, val, start, end)			\
65 	dispc_write_reg(dispc, idx, \
66 			FLD_MOD(dispc_read_reg(dispc, idx), val, start, end))
67 
68 /* DISPC has feature id */
69 enum dispc_feature_id {
70 	FEAT_LCDENABLEPOL,
71 	FEAT_LCDENABLESIGNAL,
72 	FEAT_PCKFREEENABLE,
73 	FEAT_FUNCGATED,
74 	FEAT_MGR_LCD2,
75 	FEAT_MGR_LCD3,
76 	FEAT_LINEBUFFERSPLIT,
77 	FEAT_ROWREPEATENABLE,
78 	FEAT_RESIZECONF,
79 	/* Independent core clk divider */
80 	FEAT_CORE_CLK_DIV,
81 	FEAT_HANDLE_UV_SEPARATE,
82 	FEAT_ATTR2,
83 	FEAT_CPR,
84 	FEAT_PRELOAD,
85 	FEAT_FIR_COEF_V,
86 	FEAT_ALPHA_FIXED_ZORDER,
87 	FEAT_ALPHA_FREE_ZORDER,
88 	FEAT_FIFO_MERGE,
89 	/* An unknown HW bug causing the normal FIFO thresholds not to work */
90 	FEAT_OMAP3_DSI_FIFO_BUG,
91 	FEAT_BURST_2D,
92 	FEAT_MFLAG,
93 };
94 
95 struct dispc_features {
96 	u8 sw_start;
97 	u8 fp_start;
98 	u8 bp_start;
99 	u16 sw_max;
100 	u16 vp_max;
101 	u16 hp_max;
102 	u8 mgr_width_start;
103 	u8 mgr_height_start;
104 	u16 mgr_width_max;
105 	u16 mgr_height_max;
106 	unsigned long max_lcd_pclk;
107 	unsigned long max_tv_pclk;
108 	unsigned int max_downscale;
109 	unsigned int max_line_width;
110 	unsigned int min_pcd;
111 	int (*calc_scaling)(struct dispc_device *dispc,
112 		unsigned long pclk, unsigned long lclk,
113 		const struct videomode *vm,
114 		u16 width, u16 height, u16 out_width, u16 out_height,
115 		u32 fourcc, bool *five_taps,
116 		int *x_predecim, int *y_predecim, int *decim_x, int *decim_y,
117 		u16 pos_x, unsigned long *core_clk, bool mem_to_mem);
118 	unsigned long (*calc_core_clk) (unsigned long pclk,
119 		u16 width, u16 height, u16 out_width, u16 out_height,
120 		bool mem_to_mem);
121 	u8 num_fifos;
122 	const enum dispc_feature_id *features;
123 	unsigned int num_features;
124 	const struct dss_reg_field *reg_fields;
125 	const unsigned int num_reg_fields;
126 	const enum omap_overlay_caps *overlay_caps;
127 	const u32 **supported_color_modes;
128 	unsigned int num_mgrs;
129 	unsigned int num_ovls;
130 	unsigned int buffer_size_unit;
131 	unsigned int burst_size_unit;
132 
133 	/* swap GFX & WB fifos */
134 	bool gfx_fifo_workaround:1;
135 
136 	/* no DISPC_IRQ_FRAMEDONETV on this SoC */
137 	bool no_framedone_tv:1;
138 
139 	/* revert to the OMAP4 mechanism of DISPC Smart Standby operation */
140 	bool mstandby_workaround:1;
141 
142 	bool set_max_preload:1;
143 
144 	/* PIXEL_INC is not added to the last pixel of a line */
145 	bool last_pixel_inc_missing:1;
146 
147 	/* POL_FREQ has ALIGN bit */
148 	bool supports_sync_align:1;
149 
150 	bool has_writeback:1;
151 
152 	bool supports_double_pixel:1;
153 
154 	/*
155 	 * Field order for VENC is different than HDMI. We should handle this in
156 	 * some intelligent manner, but as the SoCs have either HDMI or VENC,
157 	 * never both, we can just use this flag for now.
158 	 */
159 	bool reverse_ilace_field_order:1;
160 
161 	bool has_gamma_table:1;
162 
163 	bool has_gamma_i734_bug:1;
164 };
165 
166 #define DISPC_MAX_NR_FIFOS 5
167 #define DISPC_MAX_CHANNEL_GAMMA 4
168 
169 struct dispc_device {
170 	struct platform_device *pdev;
171 	void __iomem    *base;
172 	struct dss_device *dss;
173 
174 	struct dss_debugfs_entry *debugfs;
175 
176 	int irq;
177 	irq_handler_t user_handler;
178 	void *user_data;
179 
180 	unsigned long core_clk_rate;
181 	unsigned long tv_pclk_rate;
182 
183 	u32 fifo_size[DISPC_MAX_NR_FIFOS];
184 	/* maps which plane is using a fifo. fifo-id -> plane-id */
185 	int fifo_assignment[DISPC_MAX_NR_FIFOS];
186 
187 	bool		ctx_valid;
188 	u32		ctx[DISPC_SZ_REGS / sizeof(u32)];
189 
190 	u32 *gamma_table[DISPC_MAX_CHANNEL_GAMMA];
191 
192 	const struct dispc_features *feat;
193 
194 	bool is_enabled;
195 
196 	struct regmap *syscon_pol;
197 	u32 syscon_pol_offset;
198 
199 	/* DISPC_CONTROL & DISPC_CONFIG lock*/
200 	spinlock_t control_lock;
201 };
202 
203 enum omap_color_component {
204 	/* used for all color formats for OMAP3 and earlier
205 	 * and for RGB and Y color component on OMAP4
206 	 */
207 	DISPC_COLOR_COMPONENT_RGB_Y		= 1 << 0,
208 	/* used for UV component for
209 	 * DRM_FORMAT_YUYV, DRM_FORMAT_UYVY, DRM_FORMAT_NV12
210 	 * color formats on OMAP4
211 	 */
212 	DISPC_COLOR_COMPONENT_UV		= 1 << 1,
213 };
214 
215 enum mgr_reg_fields {
216 	DISPC_MGR_FLD_ENABLE,
217 	DISPC_MGR_FLD_STNTFT,
218 	DISPC_MGR_FLD_GO,
219 	DISPC_MGR_FLD_TFTDATALINES,
220 	DISPC_MGR_FLD_STALLMODE,
221 	DISPC_MGR_FLD_TCKENABLE,
222 	DISPC_MGR_FLD_TCKSELECTION,
223 	DISPC_MGR_FLD_CPR,
224 	DISPC_MGR_FLD_FIFOHANDCHECK,
225 	/* used to maintain a count of the above fields */
226 	DISPC_MGR_FLD_NUM,
227 };
228 
229 /* DISPC register field id */
230 enum dispc_feat_reg_field {
231 	FEAT_REG_FIRHINC,
232 	FEAT_REG_FIRVINC,
233 	FEAT_REG_FIFOHIGHTHRESHOLD,
234 	FEAT_REG_FIFOLOWTHRESHOLD,
235 	FEAT_REG_FIFOSIZE,
236 	FEAT_REG_HORIZONTALACCU,
237 	FEAT_REG_VERTICALACCU,
238 };
239 
240 struct dispc_reg_field {
241 	u16 reg;
242 	u8 high;
243 	u8 low;
244 };
245 
246 struct dispc_gamma_desc {
247 	u32 len;
248 	u32 bits;
249 	u16 reg;
250 	bool has_index;
251 };
252 
253 static const struct {
254 	const char *name;
255 	u32 vsync_irq;
256 	u32 framedone_irq;
257 	u32 sync_lost_irq;
258 	struct dispc_gamma_desc gamma;
259 	struct dispc_reg_field reg_desc[DISPC_MGR_FLD_NUM];
260 } mgr_desc[] = {
261 	[OMAP_DSS_CHANNEL_LCD] = {
262 		.name		= "LCD",
263 		.vsync_irq	= DISPC_IRQ_VSYNC,
264 		.framedone_irq	= DISPC_IRQ_FRAMEDONE,
265 		.sync_lost_irq	= DISPC_IRQ_SYNC_LOST,
266 		.gamma		= {
267 			.len	= 256,
268 			.bits	= 8,
269 			.reg	= DISPC_GAMMA_TABLE0,
270 			.has_index = true,
271 		},
272 		.reg_desc	= {
273 			[DISPC_MGR_FLD_ENABLE]		= { DISPC_CONTROL,  0,  0 },
274 			[DISPC_MGR_FLD_STNTFT]		= { DISPC_CONTROL,  3,  3 },
275 			[DISPC_MGR_FLD_GO]		= { DISPC_CONTROL,  5,  5 },
276 			[DISPC_MGR_FLD_TFTDATALINES]	= { DISPC_CONTROL,  9,  8 },
277 			[DISPC_MGR_FLD_STALLMODE]	= { DISPC_CONTROL, 11, 11 },
278 			[DISPC_MGR_FLD_TCKENABLE]	= { DISPC_CONFIG,  10, 10 },
279 			[DISPC_MGR_FLD_TCKSELECTION]	= { DISPC_CONFIG,  11, 11 },
280 			[DISPC_MGR_FLD_CPR]		= { DISPC_CONFIG,  15, 15 },
281 			[DISPC_MGR_FLD_FIFOHANDCHECK]	= { DISPC_CONFIG,  16, 16 },
282 		},
283 	},
284 	[OMAP_DSS_CHANNEL_DIGIT] = {
285 		.name		= "DIGIT",
286 		.vsync_irq	= DISPC_IRQ_EVSYNC_ODD | DISPC_IRQ_EVSYNC_EVEN,
287 		.framedone_irq	= DISPC_IRQ_FRAMEDONETV,
288 		.sync_lost_irq	= DISPC_IRQ_SYNC_LOST_DIGIT,
289 		.gamma		= {
290 			.len	= 1024,
291 			.bits	= 10,
292 			.reg	= DISPC_GAMMA_TABLE2,
293 			.has_index = false,
294 		},
295 		.reg_desc	= {
296 			[DISPC_MGR_FLD_ENABLE]		= { DISPC_CONTROL,  1,  1 },
297 			[DISPC_MGR_FLD_STNTFT]		= { },
298 			[DISPC_MGR_FLD_GO]		= { DISPC_CONTROL,  6,  6 },
299 			[DISPC_MGR_FLD_TFTDATALINES]	= { },
300 			[DISPC_MGR_FLD_STALLMODE]	= { },
301 			[DISPC_MGR_FLD_TCKENABLE]	= { DISPC_CONFIG,  12, 12 },
302 			[DISPC_MGR_FLD_TCKSELECTION]	= { DISPC_CONFIG,  13, 13 },
303 			[DISPC_MGR_FLD_CPR]		= { },
304 			[DISPC_MGR_FLD_FIFOHANDCHECK]	= { DISPC_CONFIG,  16, 16 },
305 		},
306 	},
307 	[OMAP_DSS_CHANNEL_LCD2] = {
308 		.name		= "LCD2",
309 		.vsync_irq	= DISPC_IRQ_VSYNC2,
310 		.framedone_irq	= DISPC_IRQ_FRAMEDONE2,
311 		.sync_lost_irq	= DISPC_IRQ_SYNC_LOST2,
312 		.gamma		= {
313 			.len	= 256,
314 			.bits	= 8,
315 			.reg	= DISPC_GAMMA_TABLE1,
316 			.has_index = true,
317 		},
318 		.reg_desc	= {
319 			[DISPC_MGR_FLD_ENABLE]		= { DISPC_CONTROL2,  0,  0 },
320 			[DISPC_MGR_FLD_STNTFT]		= { DISPC_CONTROL2,  3,  3 },
321 			[DISPC_MGR_FLD_GO]		= { DISPC_CONTROL2,  5,  5 },
322 			[DISPC_MGR_FLD_TFTDATALINES]	= { DISPC_CONTROL2,  9,  8 },
323 			[DISPC_MGR_FLD_STALLMODE]	= { DISPC_CONTROL2, 11, 11 },
324 			[DISPC_MGR_FLD_TCKENABLE]	= { DISPC_CONFIG2,  10, 10 },
325 			[DISPC_MGR_FLD_TCKSELECTION]	= { DISPC_CONFIG2,  11, 11 },
326 			[DISPC_MGR_FLD_CPR]		= { DISPC_CONFIG2,  15, 15 },
327 			[DISPC_MGR_FLD_FIFOHANDCHECK]	= { DISPC_CONFIG2,  16, 16 },
328 		},
329 	},
330 	[OMAP_DSS_CHANNEL_LCD3] = {
331 		.name		= "LCD3",
332 		.vsync_irq	= DISPC_IRQ_VSYNC3,
333 		.framedone_irq	= DISPC_IRQ_FRAMEDONE3,
334 		.sync_lost_irq	= DISPC_IRQ_SYNC_LOST3,
335 		.gamma		= {
336 			.len	= 256,
337 			.bits	= 8,
338 			.reg	= DISPC_GAMMA_TABLE3,
339 			.has_index = true,
340 		},
341 		.reg_desc	= {
342 			[DISPC_MGR_FLD_ENABLE]		= { DISPC_CONTROL3,  0,  0 },
343 			[DISPC_MGR_FLD_STNTFT]		= { DISPC_CONTROL3,  3,  3 },
344 			[DISPC_MGR_FLD_GO]		= { DISPC_CONTROL3,  5,  5 },
345 			[DISPC_MGR_FLD_TFTDATALINES]	= { DISPC_CONTROL3,  9,  8 },
346 			[DISPC_MGR_FLD_STALLMODE]	= { DISPC_CONTROL3, 11, 11 },
347 			[DISPC_MGR_FLD_TCKENABLE]	= { DISPC_CONFIG3,  10, 10 },
348 			[DISPC_MGR_FLD_TCKSELECTION]	= { DISPC_CONFIG3,  11, 11 },
349 			[DISPC_MGR_FLD_CPR]		= { DISPC_CONFIG3,  15, 15 },
350 			[DISPC_MGR_FLD_FIFOHANDCHECK]	= { DISPC_CONFIG3,  16, 16 },
351 		},
352 	},
353 };
354 
355 static unsigned long dispc_fclk_rate(struct dispc_device *dispc);
356 static unsigned long dispc_core_clk_rate(struct dispc_device *dispc);
357 static unsigned long dispc_mgr_lclk_rate(struct dispc_device *dispc,
358 					 enum omap_channel channel);
359 static unsigned long dispc_mgr_pclk_rate(struct dispc_device *dispc,
360 					 enum omap_channel channel);
361 
362 static unsigned long dispc_plane_pclk_rate(struct dispc_device *dispc,
363 					   enum omap_plane_id plane);
364 static unsigned long dispc_plane_lclk_rate(struct dispc_device *dispc,
365 					   enum omap_plane_id plane);
366 
367 static void dispc_clear_irqstatus(struct dispc_device *dispc, u32 mask);
368 
369 static inline void dispc_write_reg(struct dispc_device *dispc, u16 idx, u32 val)
370 {
371 	__raw_writel(val, dispc->base + idx);
372 }
373 
374 static inline u32 dispc_read_reg(struct dispc_device *dispc, u16 idx)
375 {
376 	return __raw_readl(dispc->base + idx);
377 }
378 
379 static u32 mgr_fld_read(struct dispc_device *dispc, enum omap_channel channel,
380 			enum mgr_reg_fields regfld)
381 {
382 	const struct dispc_reg_field rfld = mgr_desc[channel].reg_desc[regfld];
383 
384 	return REG_GET(dispc, rfld.reg, rfld.high, rfld.low);
385 }
386 
387 static void mgr_fld_write(struct dispc_device *dispc, enum omap_channel channel,
388 			  enum mgr_reg_fields regfld, int val)
389 {
390 	const struct dispc_reg_field rfld = mgr_desc[channel].reg_desc[regfld];
391 	const bool need_lock = rfld.reg == DISPC_CONTROL || rfld.reg == DISPC_CONFIG;
392 	unsigned long flags;
393 
394 	if (need_lock) {
395 		spin_lock_irqsave(&dispc->control_lock, flags);
396 		REG_FLD_MOD(dispc, rfld.reg, val, rfld.high, rfld.low);
397 		spin_unlock_irqrestore(&dispc->control_lock, flags);
398 	} else {
399 		REG_FLD_MOD(dispc, rfld.reg, val, rfld.high, rfld.low);
400 	}
401 }
402 
403 static int dispc_get_num_ovls(struct dispc_device *dispc)
404 {
405 	return dispc->feat->num_ovls;
406 }
407 
408 static int dispc_get_num_mgrs(struct dispc_device *dispc)
409 {
410 	return dispc->feat->num_mgrs;
411 }
412 
413 static void dispc_get_reg_field(struct dispc_device *dispc,
414 				enum dispc_feat_reg_field id,
415 				u8 *start, u8 *end)
416 {
417 	if (id >= dispc->feat->num_reg_fields)
418 		BUG();
419 
420 	*start = dispc->feat->reg_fields[id].start;
421 	*end = dispc->feat->reg_fields[id].end;
422 }
423 
424 static bool dispc_has_feature(struct dispc_device *dispc,
425 			      enum dispc_feature_id id)
426 {
427 	unsigned int i;
428 
429 	for (i = 0; i < dispc->feat->num_features; i++) {
430 		if (dispc->feat->features[i] == id)
431 			return true;
432 	}
433 
434 	return false;
435 }
436 
437 #define SR(dispc, reg) \
438 	dispc->ctx[DISPC_##reg / sizeof(u32)] = dispc_read_reg(dispc, DISPC_##reg)
439 #define RR(dispc, reg) \
440 	dispc_write_reg(dispc, DISPC_##reg, dispc->ctx[DISPC_##reg / sizeof(u32)])
441 
442 static void dispc_save_context(struct dispc_device *dispc)
443 {
444 	int i, j;
445 
446 	DSSDBG("dispc_save_context\n");
447 
448 	SR(dispc, IRQENABLE);
449 	SR(dispc, CONTROL);
450 	SR(dispc, CONFIG);
451 	SR(dispc, LINE_NUMBER);
452 	if (dispc_has_feature(dispc, FEAT_ALPHA_FIXED_ZORDER) ||
453 			dispc_has_feature(dispc, FEAT_ALPHA_FREE_ZORDER))
454 		SR(dispc, GLOBAL_ALPHA);
455 	if (dispc_has_feature(dispc, FEAT_MGR_LCD2)) {
456 		SR(dispc, CONTROL2);
457 		SR(dispc, CONFIG2);
458 	}
459 	if (dispc_has_feature(dispc, FEAT_MGR_LCD3)) {
460 		SR(dispc, CONTROL3);
461 		SR(dispc, CONFIG3);
462 	}
463 
464 	for (i = 0; i < dispc_get_num_mgrs(dispc); i++) {
465 		SR(dispc, DEFAULT_COLOR(i));
466 		SR(dispc, TRANS_COLOR(i));
467 		SR(dispc, SIZE_MGR(i));
468 		if (i == OMAP_DSS_CHANNEL_DIGIT)
469 			continue;
470 		SR(dispc, TIMING_H(i));
471 		SR(dispc, TIMING_V(i));
472 		SR(dispc, POL_FREQ(i));
473 		SR(dispc, DIVISORo(i));
474 
475 		SR(dispc, DATA_CYCLE1(i));
476 		SR(dispc, DATA_CYCLE2(i));
477 		SR(dispc, DATA_CYCLE3(i));
478 
479 		if (dispc_has_feature(dispc, FEAT_CPR)) {
480 			SR(dispc, CPR_COEF_R(i));
481 			SR(dispc, CPR_COEF_G(i));
482 			SR(dispc, CPR_COEF_B(i));
483 		}
484 	}
485 
486 	for (i = 0; i < dispc_get_num_ovls(dispc); i++) {
487 		SR(dispc, OVL_BA0(i));
488 		SR(dispc, OVL_BA1(i));
489 		SR(dispc, OVL_POSITION(i));
490 		SR(dispc, OVL_SIZE(i));
491 		SR(dispc, OVL_ATTRIBUTES(i));
492 		SR(dispc, OVL_FIFO_THRESHOLD(i));
493 		SR(dispc, OVL_ROW_INC(i));
494 		SR(dispc, OVL_PIXEL_INC(i));
495 		if (dispc_has_feature(dispc, FEAT_PRELOAD))
496 			SR(dispc, OVL_PRELOAD(i));
497 		if (i == OMAP_DSS_GFX) {
498 			SR(dispc, OVL_WINDOW_SKIP(i));
499 			SR(dispc, OVL_TABLE_BA(i));
500 			continue;
501 		}
502 		SR(dispc, OVL_FIR(i));
503 		SR(dispc, OVL_PICTURE_SIZE(i));
504 		SR(dispc, OVL_ACCU0(i));
505 		SR(dispc, OVL_ACCU1(i));
506 
507 		for (j = 0; j < 8; j++)
508 			SR(dispc, OVL_FIR_COEF_H(i, j));
509 
510 		for (j = 0; j < 8; j++)
511 			SR(dispc, OVL_FIR_COEF_HV(i, j));
512 
513 		for (j = 0; j < 5; j++)
514 			SR(dispc, OVL_CONV_COEF(i, j));
515 
516 		if (dispc_has_feature(dispc, FEAT_FIR_COEF_V)) {
517 			for (j = 0; j < 8; j++)
518 				SR(dispc, OVL_FIR_COEF_V(i, j));
519 		}
520 
521 		if (dispc_has_feature(dispc, FEAT_HANDLE_UV_SEPARATE)) {
522 			SR(dispc, OVL_BA0_UV(i));
523 			SR(dispc, OVL_BA1_UV(i));
524 			SR(dispc, OVL_FIR2(i));
525 			SR(dispc, OVL_ACCU2_0(i));
526 			SR(dispc, OVL_ACCU2_1(i));
527 
528 			for (j = 0; j < 8; j++)
529 				SR(dispc, OVL_FIR_COEF_H2(i, j));
530 
531 			for (j = 0; j < 8; j++)
532 				SR(dispc, OVL_FIR_COEF_HV2(i, j));
533 
534 			for (j = 0; j < 8; j++)
535 				SR(dispc, OVL_FIR_COEF_V2(i, j));
536 		}
537 		if (dispc_has_feature(dispc, FEAT_ATTR2))
538 			SR(dispc, OVL_ATTRIBUTES2(i));
539 	}
540 
541 	if (dispc_has_feature(dispc, FEAT_CORE_CLK_DIV))
542 		SR(dispc, DIVISOR);
543 
544 	dispc->ctx_valid = true;
545 
546 	DSSDBG("context saved\n");
547 }
548 
549 static void dispc_restore_context(struct dispc_device *dispc)
550 {
551 	int i, j;
552 
553 	DSSDBG("dispc_restore_context\n");
554 
555 	if (!dispc->ctx_valid)
556 		return;
557 
558 	/*RR(dispc, IRQENABLE);*/
559 	/*RR(dispc, CONTROL);*/
560 	RR(dispc, CONFIG);
561 	RR(dispc, LINE_NUMBER);
562 	if (dispc_has_feature(dispc, FEAT_ALPHA_FIXED_ZORDER) ||
563 			dispc_has_feature(dispc, FEAT_ALPHA_FREE_ZORDER))
564 		RR(dispc, GLOBAL_ALPHA);
565 	if (dispc_has_feature(dispc, FEAT_MGR_LCD2))
566 		RR(dispc, CONFIG2);
567 	if (dispc_has_feature(dispc, FEAT_MGR_LCD3))
568 		RR(dispc, CONFIG3);
569 
570 	for (i = 0; i < dispc_get_num_mgrs(dispc); i++) {
571 		RR(dispc, DEFAULT_COLOR(i));
572 		RR(dispc, TRANS_COLOR(i));
573 		RR(dispc, SIZE_MGR(i));
574 		if (i == OMAP_DSS_CHANNEL_DIGIT)
575 			continue;
576 		RR(dispc, TIMING_H(i));
577 		RR(dispc, TIMING_V(i));
578 		RR(dispc, POL_FREQ(i));
579 		RR(dispc, DIVISORo(i));
580 
581 		RR(dispc, DATA_CYCLE1(i));
582 		RR(dispc, DATA_CYCLE2(i));
583 		RR(dispc, DATA_CYCLE3(i));
584 
585 		if (dispc_has_feature(dispc, FEAT_CPR)) {
586 			RR(dispc, CPR_COEF_R(i));
587 			RR(dispc, CPR_COEF_G(i));
588 			RR(dispc, CPR_COEF_B(i));
589 		}
590 	}
591 
592 	for (i = 0; i < dispc_get_num_ovls(dispc); i++) {
593 		RR(dispc, OVL_BA0(i));
594 		RR(dispc, OVL_BA1(i));
595 		RR(dispc, OVL_POSITION(i));
596 		RR(dispc, OVL_SIZE(i));
597 		RR(dispc, OVL_ATTRIBUTES(i));
598 		RR(dispc, OVL_FIFO_THRESHOLD(i));
599 		RR(dispc, OVL_ROW_INC(i));
600 		RR(dispc, OVL_PIXEL_INC(i));
601 		if (dispc_has_feature(dispc, FEAT_PRELOAD))
602 			RR(dispc, OVL_PRELOAD(i));
603 		if (i == OMAP_DSS_GFX) {
604 			RR(dispc, OVL_WINDOW_SKIP(i));
605 			RR(dispc, OVL_TABLE_BA(i));
606 			continue;
607 		}
608 		RR(dispc, OVL_FIR(i));
609 		RR(dispc, OVL_PICTURE_SIZE(i));
610 		RR(dispc, OVL_ACCU0(i));
611 		RR(dispc, OVL_ACCU1(i));
612 
613 		for (j = 0; j < 8; j++)
614 			RR(dispc, OVL_FIR_COEF_H(i, j));
615 
616 		for (j = 0; j < 8; j++)
617 			RR(dispc, OVL_FIR_COEF_HV(i, j));
618 
619 		for (j = 0; j < 5; j++)
620 			RR(dispc, OVL_CONV_COEF(i, j));
621 
622 		if (dispc_has_feature(dispc, FEAT_FIR_COEF_V)) {
623 			for (j = 0; j < 8; j++)
624 				RR(dispc, OVL_FIR_COEF_V(i, j));
625 		}
626 
627 		if (dispc_has_feature(dispc, FEAT_HANDLE_UV_SEPARATE)) {
628 			RR(dispc, OVL_BA0_UV(i));
629 			RR(dispc, OVL_BA1_UV(i));
630 			RR(dispc, OVL_FIR2(i));
631 			RR(dispc, OVL_ACCU2_0(i));
632 			RR(dispc, OVL_ACCU2_1(i));
633 
634 			for (j = 0; j < 8; j++)
635 				RR(dispc, OVL_FIR_COEF_H2(i, j));
636 
637 			for (j = 0; j < 8; j++)
638 				RR(dispc, OVL_FIR_COEF_HV2(i, j));
639 
640 			for (j = 0; j < 8; j++)
641 				RR(dispc, OVL_FIR_COEF_V2(i, j));
642 		}
643 		if (dispc_has_feature(dispc, FEAT_ATTR2))
644 			RR(dispc, OVL_ATTRIBUTES2(i));
645 	}
646 
647 	if (dispc_has_feature(dispc, FEAT_CORE_CLK_DIV))
648 		RR(dispc, DIVISOR);
649 
650 	/* enable last, because LCD & DIGIT enable are here */
651 	RR(dispc, CONTROL);
652 	if (dispc_has_feature(dispc, FEAT_MGR_LCD2))
653 		RR(dispc, CONTROL2);
654 	if (dispc_has_feature(dispc, FEAT_MGR_LCD3))
655 		RR(dispc, CONTROL3);
656 	/* clear spurious SYNC_LOST_DIGIT interrupts */
657 	dispc_clear_irqstatus(dispc, DISPC_IRQ_SYNC_LOST_DIGIT);
658 
659 	/*
660 	 * enable last so IRQs won't trigger before
661 	 * the context is fully restored
662 	 */
663 	RR(dispc, IRQENABLE);
664 
665 	DSSDBG("context restored\n");
666 }
667 
668 #undef SR
669 #undef RR
670 
671 int dispc_runtime_get(struct dispc_device *dispc)
672 {
673 	int r;
674 
675 	DSSDBG("dispc_runtime_get\n");
676 
677 	r = pm_runtime_get_sync(&dispc->pdev->dev);
678 	WARN_ON(r < 0);
679 	return r < 0 ? r : 0;
680 }
681 
682 void dispc_runtime_put(struct dispc_device *dispc)
683 {
684 	int r;
685 
686 	DSSDBG("dispc_runtime_put\n");
687 
688 	r = pm_runtime_put_sync(&dispc->pdev->dev);
689 	WARN_ON(r < 0 && r != -ENOSYS);
690 }
691 
692 static u32 dispc_mgr_get_vsync_irq(struct dispc_device *dispc,
693 				   enum omap_channel channel)
694 {
695 	return mgr_desc[channel].vsync_irq;
696 }
697 
698 static u32 dispc_mgr_get_framedone_irq(struct dispc_device *dispc,
699 				       enum omap_channel channel)
700 {
701 	if (channel == OMAP_DSS_CHANNEL_DIGIT && dispc->feat->no_framedone_tv)
702 		return 0;
703 
704 	return mgr_desc[channel].framedone_irq;
705 }
706 
707 static u32 dispc_mgr_get_sync_lost_irq(struct dispc_device *dispc,
708 				       enum omap_channel channel)
709 {
710 	return mgr_desc[channel].sync_lost_irq;
711 }
712 
713 static u32 dispc_wb_get_framedone_irq(struct dispc_device *dispc)
714 {
715 	return DISPC_IRQ_FRAMEDONEWB;
716 }
717 
718 static void dispc_mgr_enable(struct dispc_device *dispc,
719 			     enum omap_channel channel, bool enable)
720 {
721 	mgr_fld_write(dispc, channel, DISPC_MGR_FLD_ENABLE, enable);
722 	/* flush posted write */
723 	mgr_fld_read(dispc, channel, DISPC_MGR_FLD_ENABLE);
724 }
725 
726 static bool dispc_mgr_is_enabled(struct dispc_device *dispc,
727 				 enum omap_channel channel)
728 {
729 	return !!mgr_fld_read(dispc, channel, DISPC_MGR_FLD_ENABLE);
730 }
731 
732 static bool dispc_mgr_go_busy(struct dispc_device *dispc,
733 			      enum omap_channel channel)
734 {
735 	return mgr_fld_read(dispc, channel, DISPC_MGR_FLD_GO) == 1;
736 }
737 
738 static void dispc_mgr_go(struct dispc_device *dispc, enum omap_channel channel)
739 {
740 	WARN_ON(!dispc_mgr_is_enabled(dispc, channel));
741 	WARN_ON(dispc_mgr_go_busy(dispc, channel));
742 
743 	DSSDBG("GO %s\n", mgr_desc[channel].name);
744 
745 	mgr_fld_write(dispc, channel, DISPC_MGR_FLD_GO, 1);
746 }
747 
748 static bool dispc_wb_go_busy(struct dispc_device *dispc)
749 {
750 	return REG_GET(dispc, DISPC_CONTROL2, 6, 6) == 1;
751 }
752 
753 static void dispc_wb_go(struct dispc_device *dispc)
754 {
755 	enum omap_plane_id plane = OMAP_DSS_WB;
756 	bool enable, go;
757 
758 	enable = REG_GET(dispc, DISPC_OVL_ATTRIBUTES(plane), 0, 0) == 1;
759 
760 	if (!enable)
761 		return;
762 
763 	go = REG_GET(dispc, DISPC_CONTROL2, 6, 6) == 1;
764 	if (go) {
765 		DSSERR("GO bit not down for WB\n");
766 		return;
767 	}
768 
769 	REG_FLD_MOD(dispc, DISPC_CONTROL2, 1, 6, 6);
770 }
771 
772 static void dispc_ovl_write_firh_reg(struct dispc_device *dispc,
773 				     enum omap_plane_id plane, int reg,
774 				     u32 value)
775 {
776 	dispc_write_reg(dispc, DISPC_OVL_FIR_COEF_H(plane, reg), value);
777 }
778 
779 static void dispc_ovl_write_firhv_reg(struct dispc_device *dispc,
780 				      enum omap_plane_id plane, int reg,
781 				      u32 value)
782 {
783 	dispc_write_reg(dispc, DISPC_OVL_FIR_COEF_HV(plane, reg), value);
784 }
785 
786 static void dispc_ovl_write_firv_reg(struct dispc_device *dispc,
787 				     enum omap_plane_id plane, int reg,
788 				     u32 value)
789 {
790 	dispc_write_reg(dispc, DISPC_OVL_FIR_COEF_V(plane, reg), value);
791 }
792 
793 static void dispc_ovl_write_firh2_reg(struct dispc_device *dispc,
794 				      enum omap_plane_id plane, int reg,
795 				      u32 value)
796 {
797 	BUG_ON(plane == OMAP_DSS_GFX);
798 
799 	dispc_write_reg(dispc, DISPC_OVL_FIR_COEF_H2(plane, reg), value);
800 }
801 
802 static void dispc_ovl_write_firhv2_reg(struct dispc_device *dispc,
803 				       enum omap_plane_id plane, int reg,
804 				       u32 value)
805 {
806 	BUG_ON(plane == OMAP_DSS_GFX);
807 
808 	dispc_write_reg(dispc, DISPC_OVL_FIR_COEF_HV2(plane, reg), value);
809 }
810 
811 static void dispc_ovl_write_firv2_reg(struct dispc_device *dispc,
812 				      enum omap_plane_id plane, int reg,
813 				      u32 value)
814 {
815 	BUG_ON(plane == OMAP_DSS_GFX);
816 
817 	dispc_write_reg(dispc, DISPC_OVL_FIR_COEF_V2(plane, reg), value);
818 }
819 
820 static void dispc_ovl_set_scale_coef(struct dispc_device *dispc,
821 				     enum omap_plane_id plane, int fir_hinc,
822 				     int fir_vinc, int five_taps,
823 				     enum omap_color_component color_comp)
824 {
825 	const struct dispc_coef *h_coef, *v_coef;
826 	int i;
827 
828 	h_coef = dispc_ovl_get_scale_coef(fir_hinc, true);
829 	v_coef = dispc_ovl_get_scale_coef(fir_vinc, five_taps);
830 
831 	if (!h_coef || !v_coef) {
832 		dev_err(&dispc->pdev->dev, "%s: failed to find scale coefs\n",
833 			__func__);
834 		return;
835 	}
836 
837 	for (i = 0; i < 8; i++) {
838 		u32 h, hv;
839 
840 		h = FLD_VAL(h_coef[i].hc0_vc00, 7, 0)
841 			| FLD_VAL(h_coef[i].hc1_vc0, 15, 8)
842 			| FLD_VAL(h_coef[i].hc2_vc1, 23, 16)
843 			| FLD_VAL(h_coef[i].hc3_vc2, 31, 24);
844 		hv = FLD_VAL(h_coef[i].hc4_vc22, 7, 0)
845 			| FLD_VAL(v_coef[i].hc1_vc0, 15, 8)
846 			| FLD_VAL(v_coef[i].hc2_vc1, 23, 16)
847 			| FLD_VAL(v_coef[i].hc3_vc2, 31, 24);
848 
849 		if (color_comp == DISPC_COLOR_COMPONENT_RGB_Y) {
850 			dispc_ovl_write_firh_reg(dispc, plane, i, h);
851 			dispc_ovl_write_firhv_reg(dispc, plane, i, hv);
852 		} else {
853 			dispc_ovl_write_firh2_reg(dispc, plane, i, h);
854 			dispc_ovl_write_firhv2_reg(dispc, plane, i, hv);
855 		}
856 
857 	}
858 
859 	if (five_taps) {
860 		for (i = 0; i < 8; i++) {
861 			u32 v;
862 			v = FLD_VAL(v_coef[i].hc0_vc00, 7, 0)
863 				| FLD_VAL(v_coef[i].hc4_vc22, 15, 8);
864 			if (color_comp == DISPC_COLOR_COMPONENT_RGB_Y)
865 				dispc_ovl_write_firv_reg(dispc, plane, i, v);
866 			else
867 				dispc_ovl_write_firv2_reg(dispc, plane, i, v);
868 		}
869 	}
870 }
871 
872 struct csc_coef_yuv2rgb {
873 	int ry, rcb, rcr, gy, gcb, gcr, by, bcb, bcr;
874 	bool full_range;
875 };
876 
877 struct csc_coef_rgb2yuv {
878 	int yr, yg, yb, cbr, cbg, cbb, crr, crg, crb;
879 	bool full_range;
880 };
881 
882 static void dispc_ovl_write_color_conv_coef(struct dispc_device *dispc,
883 					    enum omap_plane_id plane,
884 					    const struct csc_coef_yuv2rgb *ct)
885 {
886 #define CVAL(x, y) (FLD_VAL(x, 26, 16) | FLD_VAL(y, 10, 0))
887 
888 	dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 0), CVAL(ct->rcr, ct->ry));
889 	dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 1), CVAL(ct->gy,  ct->rcb));
890 	dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 2), CVAL(ct->gcb, ct->gcr));
891 	dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 3), CVAL(ct->bcr, ct->by));
892 	dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 4), CVAL(0, ct->bcb));
893 
894 	REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), ct->full_range, 11, 11);
895 
896 #undef CVAL
897 }
898 
899 static void dispc_wb_write_color_conv_coef(struct dispc_device *dispc,
900 					   const struct csc_coef_rgb2yuv *ct)
901 {
902 	const enum omap_plane_id plane = OMAP_DSS_WB;
903 
904 #define CVAL(x, y) (FLD_VAL(x, 26, 16) | FLD_VAL(y, 10, 0))
905 
906 	dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 0), CVAL(ct->yg,  ct->yr));
907 	dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 1), CVAL(ct->crr, ct->yb));
908 	dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 2), CVAL(ct->crb, ct->crg));
909 	dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 3), CVAL(ct->cbg, ct->cbr));
910 	dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 4), CVAL(0, ct->cbb));
911 
912 	REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), ct->full_range, 11, 11);
913 
914 #undef CVAL
915 }
916 
917 static void dispc_setup_color_conv_coef(struct dispc_device *dispc)
918 {
919 	int i;
920 	int num_ovl = dispc_get_num_ovls(dispc);
921 
922 	/* YUV -> RGB, ITU-R BT.601, limited range */
923 	const struct csc_coef_yuv2rgb coefs_yuv2rgb_bt601_lim = {
924 		298,    0,  409,	/* ry, rcb, rcr */
925 		298, -100, -208,	/* gy, gcb, gcr */
926 		298,  516,    0,	/* by, bcb, bcr */
927 		false,			/* limited range */
928 	};
929 
930 	/* RGB -> YUV, ITU-R BT.601, limited range */
931 	const struct csc_coef_rgb2yuv coefs_rgb2yuv_bt601_lim = {
932 		 66, 129,  25,		/* yr,   yg,  yb */
933 		-38, -74, 112,		/* cbr, cbg, cbb */
934 		112, -94, -18,		/* crr, crg, crb */
935 		false,			/* limited range */
936 	};
937 
938 	for (i = 1; i < num_ovl; i++)
939 		dispc_ovl_write_color_conv_coef(dispc, i, &coefs_yuv2rgb_bt601_lim);
940 
941 	if (dispc->feat->has_writeback)
942 		dispc_wb_write_color_conv_coef(dispc, &coefs_rgb2yuv_bt601_lim);
943 }
944 
945 static void dispc_ovl_set_ba0(struct dispc_device *dispc,
946 			      enum omap_plane_id plane, u32 paddr)
947 {
948 	dispc_write_reg(dispc, DISPC_OVL_BA0(plane), paddr);
949 }
950 
951 static void dispc_ovl_set_ba1(struct dispc_device *dispc,
952 			      enum omap_plane_id plane, u32 paddr)
953 {
954 	dispc_write_reg(dispc, DISPC_OVL_BA1(plane), paddr);
955 }
956 
957 static void dispc_ovl_set_ba0_uv(struct dispc_device *dispc,
958 				 enum omap_plane_id plane, u32 paddr)
959 {
960 	dispc_write_reg(dispc, DISPC_OVL_BA0_UV(plane), paddr);
961 }
962 
963 static void dispc_ovl_set_ba1_uv(struct dispc_device *dispc,
964 				 enum omap_plane_id plane, u32 paddr)
965 {
966 	dispc_write_reg(dispc, DISPC_OVL_BA1_UV(plane), paddr);
967 }
968 
969 static void dispc_ovl_set_pos(struct dispc_device *dispc,
970 			      enum omap_plane_id plane,
971 			      enum omap_overlay_caps caps, int x, int y)
972 {
973 	u32 val;
974 
975 	if ((caps & OMAP_DSS_OVL_CAP_POS) == 0)
976 		return;
977 
978 	val = FLD_VAL(y, 26, 16) | FLD_VAL(x, 10, 0);
979 
980 	dispc_write_reg(dispc, DISPC_OVL_POSITION(plane), val);
981 }
982 
983 static void dispc_ovl_set_input_size(struct dispc_device *dispc,
984 				     enum omap_plane_id plane, int width,
985 				     int height)
986 {
987 	u32 val = FLD_VAL(height - 1, 26, 16) | FLD_VAL(width - 1, 10, 0);
988 
989 	if (plane == OMAP_DSS_GFX || plane == OMAP_DSS_WB)
990 		dispc_write_reg(dispc, DISPC_OVL_SIZE(plane), val);
991 	else
992 		dispc_write_reg(dispc, DISPC_OVL_PICTURE_SIZE(plane), val);
993 }
994 
995 static void dispc_ovl_set_output_size(struct dispc_device *dispc,
996 				      enum omap_plane_id plane, int width,
997 				      int height)
998 {
999 	u32 val;
1000 
1001 	BUG_ON(plane == OMAP_DSS_GFX);
1002 
1003 	val = FLD_VAL(height - 1, 26, 16) | FLD_VAL(width - 1, 10, 0);
1004 
1005 	if (plane == OMAP_DSS_WB)
1006 		dispc_write_reg(dispc, DISPC_OVL_PICTURE_SIZE(plane), val);
1007 	else
1008 		dispc_write_reg(dispc, DISPC_OVL_SIZE(plane), val);
1009 }
1010 
1011 static void dispc_ovl_set_zorder(struct dispc_device *dispc,
1012 				 enum omap_plane_id plane,
1013 				 enum omap_overlay_caps caps, u8 zorder)
1014 {
1015 	if ((caps & OMAP_DSS_OVL_CAP_ZORDER) == 0)
1016 		return;
1017 
1018 	REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), zorder, 27, 26);
1019 }
1020 
1021 static void dispc_ovl_enable_zorder_planes(struct dispc_device *dispc)
1022 {
1023 	int i;
1024 
1025 	if (!dispc_has_feature(dispc, FEAT_ALPHA_FREE_ZORDER))
1026 		return;
1027 
1028 	for (i = 0; i < dispc_get_num_ovls(dispc); i++)
1029 		REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(i), 1, 25, 25);
1030 }
1031 
1032 static void dispc_ovl_set_pre_mult_alpha(struct dispc_device *dispc,
1033 					 enum omap_plane_id plane,
1034 					 enum omap_overlay_caps caps,
1035 					 bool enable)
1036 {
1037 	if ((caps & OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA) == 0)
1038 		return;
1039 
1040 	REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), enable ? 1 : 0, 28, 28);
1041 }
1042 
1043 static void dispc_ovl_setup_global_alpha(struct dispc_device *dispc,
1044 					 enum omap_plane_id plane,
1045 					 enum omap_overlay_caps caps,
1046 					 u8 global_alpha)
1047 {
1048 	static const unsigned int shifts[] = { 0, 8, 16, 24, };
1049 	int shift;
1050 
1051 	if ((caps & OMAP_DSS_OVL_CAP_GLOBAL_ALPHA) == 0)
1052 		return;
1053 
1054 	shift = shifts[plane];
1055 	REG_FLD_MOD(dispc, DISPC_GLOBAL_ALPHA, global_alpha, shift + 7, shift);
1056 }
1057 
1058 static void dispc_ovl_set_pix_inc(struct dispc_device *dispc,
1059 				  enum omap_plane_id plane, s32 inc)
1060 {
1061 	dispc_write_reg(dispc, DISPC_OVL_PIXEL_INC(plane), inc);
1062 }
1063 
1064 static void dispc_ovl_set_row_inc(struct dispc_device *dispc,
1065 				  enum omap_plane_id plane, s32 inc)
1066 {
1067 	dispc_write_reg(dispc, DISPC_OVL_ROW_INC(plane), inc);
1068 }
1069 
1070 static void dispc_ovl_set_color_mode(struct dispc_device *dispc,
1071 				     enum omap_plane_id plane, u32 fourcc)
1072 {
1073 	u32 m = 0;
1074 	if (plane != OMAP_DSS_GFX) {
1075 		switch (fourcc) {
1076 		case DRM_FORMAT_NV12:
1077 			m = 0x0; break;
1078 		case DRM_FORMAT_XRGB4444:
1079 			m = 0x1; break;
1080 		case DRM_FORMAT_RGBA4444:
1081 			m = 0x2; break;
1082 		case DRM_FORMAT_RGBX4444:
1083 			m = 0x4; break;
1084 		case DRM_FORMAT_ARGB4444:
1085 			m = 0x5; break;
1086 		case DRM_FORMAT_RGB565:
1087 			m = 0x6; break;
1088 		case DRM_FORMAT_ARGB1555:
1089 			m = 0x7; break;
1090 		case DRM_FORMAT_XRGB8888:
1091 			m = 0x8; break;
1092 		case DRM_FORMAT_RGB888:
1093 			m = 0x9; break;
1094 		case DRM_FORMAT_YUYV:
1095 			m = 0xa; break;
1096 		case DRM_FORMAT_UYVY:
1097 			m = 0xb; break;
1098 		case DRM_FORMAT_ARGB8888:
1099 			m = 0xc; break;
1100 		case DRM_FORMAT_RGBA8888:
1101 			m = 0xd; break;
1102 		case DRM_FORMAT_RGBX8888:
1103 			m = 0xe; break;
1104 		case DRM_FORMAT_XRGB1555:
1105 			m = 0xf; break;
1106 		default:
1107 			BUG(); return;
1108 		}
1109 	} else {
1110 		switch (fourcc) {
1111 		case DRM_FORMAT_RGBX4444:
1112 			m = 0x4; break;
1113 		case DRM_FORMAT_ARGB4444:
1114 			m = 0x5; break;
1115 		case DRM_FORMAT_RGB565:
1116 			m = 0x6; break;
1117 		case DRM_FORMAT_ARGB1555:
1118 			m = 0x7; break;
1119 		case DRM_FORMAT_XRGB8888:
1120 			m = 0x8; break;
1121 		case DRM_FORMAT_RGB888:
1122 			m = 0x9; break;
1123 		case DRM_FORMAT_XRGB4444:
1124 			m = 0xa; break;
1125 		case DRM_FORMAT_RGBA4444:
1126 			m = 0xb; break;
1127 		case DRM_FORMAT_ARGB8888:
1128 			m = 0xc; break;
1129 		case DRM_FORMAT_RGBA8888:
1130 			m = 0xd; break;
1131 		case DRM_FORMAT_RGBX8888:
1132 			m = 0xe; break;
1133 		case DRM_FORMAT_XRGB1555:
1134 			m = 0xf; break;
1135 		default:
1136 			BUG(); return;
1137 		}
1138 	}
1139 
1140 	REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), m, 4, 1);
1141 }
1142 
1143 static bool format_is_yuv(u32 fourcc)
1144 {
1145 	switch (fourcc) {
1146 	case DRM_FORMAT_YUYV:
1147 	case DRM_FORMAT_UYVY:
1148 	case DRM_FORMAT_NV12:
1149 		return true;
1150 	default:
1151 		return false;
1152 	}
1153 }
1154 
1155 static void dispc_ovl_configure_burst_type(struct dispc_device *dispc,
1156 					   enum omap_plane_id plane,
1157 					   enum omap_dss_rotation_type rotation)
1158 {
1159 	if (dispc_has_feature(dispc, FEAT_BURST_2D) == 0)
1160 		return;
1161 
1162 	if (rotation == OMAP_DSS_ROT_TILER)
1163 		REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), 1, 29, 29);
1164 	else
1165 		REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), 0, 29, 29);
1166 }
1167 
1168 static void dispc_ovl_set_channel_out(struct dispc_device *dispc,
1169 				      enum omap_plane_id plane,
1170 				      enum omap_channel channel)
1171 {
1172 	int shift;
1173 	u32 val;
1174 	int chan = 0, chan2 = 0;
1175 
1176 	switch (plane) {
1177 	case OMAP_DSS_GFX:
1178 		shift = 8;
1179 		break;
1180 	case OMAP_DSS_VIDEO1:
1181 	case OMAP_DSS_VIDEO2:
1182 	case OMAP_DSS_VIDEO3:
1183 		shift = 16;
1184 		break;
1185 	default:
1186 		BUG();
1187 		return;
1188 	}
1189 
1190 	val = dispc_read_reg(dispc, DISPC_OVL_ATTRIBUTES(plane));
1191 	if (dispc_has_feature(dispc, FEAT_MGR_LCD2)) {
1192 		switch (channel) {
1193 		case OMAP_DSS_CHANNEL_LCD:
1194 			chan = 0;
1195 			chan2 = 0;
1196 			break;
1197 		case OMAP_DSS_CHANNEL_DIGIT:
1198 			chan = 1;
1199 			chan2 = 0;
1200 			break;
1201 		case OMAP_DSS_CHANNEL_LCD2:
1202 			chan = 0;
1203 			chan2 = 1;
1204 			break;
1205 		case OMAP_DSS_CHANNEL_LCD3:
1206 			if (dispc_has_feature(dispc, FEAT_MGR_LCD3)) {
1207 				chan = 0;
1208 				chan2 = 2;
1209 			} else {
1210 				BUG();
1211 				return;
1212 			}
1213 			break;
1214 		case OMAP_DSS_CHANNEL_WB:
1215 			chan = 0;
1216 			chan2 = 3;
1217 			break;
1218 		default:
1219 			BUG();
1220 			return;
1221 		}
1222 
1223 		val = FLD_MOD(val, chan, shift, shift);
1224 		val = FLD_MOD(val, chan2, 31, 30);
1225 	} else {
1226 		val = FLD_MOD(val, channel, shift, shift);
1227 	}
1228 	dispc_write_reg(dispc, DISPC_OVL_ATTRIBUTES(plane), val);
1229 }
1230 
1231 static enum omap_channel dispc_ovl_get_channel_out(struct dispc_device *dispc,
1232 						   enum omap_plane_id plane)
1233 {
1234 	int shift;
1235 	u32 val;
1236 
1237 	switch (plane) {
1238 	case OMAP_DSS_GFX:
1239 		shift = 8;
1240 		break;
1241 	case OMAP_DSS_VIDEO1:
1242 	case OMAP_DSS_VIDEO2:
1243 	case OMAP_DSS_VIDEO3:
1244 		shift = 16;
1245 		break;
1246 	default:
1247 		BUG();
1248 		return 0;
1249 	}
1250 
1251 	val = dispc_read_reg(dispc, DISPC_OVL_ATTRIBUTES(plane));
1252 
1253 	if (FLD_GET(val, shift, shift) == 1)
1254 		return OMAP_DSS_CHANNEL_DIGIT;
1255 
1256 	if (!dispc_has_feature(dispc, FEAT_MGR_LCD2))
1257 		return OMAP_DSS_CHANNEL_LCD;
1258 
1259 	switch (FLD_GET(val, 31, 30)) {
1260 	case 0:
1261 	default:
1262 		return OMAP_DSS_CHANNEL_LCD;
1263 	case 1:
1264 		return OMAP_DSS_CHANNEL_LCD2;
1265 	case 2:
1266 		return OMAP_DSS_CHANNEL_LCD3;
1267 	case 3:
1268 		return OMAP_DSS_CHANNEL_WB;
1269 	}
1270 }
1271 
1272 static void dispc_ovl_set_burst_size(struct dispc_device *dispc,
1273 				     enum omap_plane_id plane,
1274 				     enum omap_burst_size burst_size)
1275 {
1276 	static const unsigned int shifts[] = { 6, 14, 14, 14, 14, };
1277 	int shift;
1278 
1279 	shift = shifts[plane];
1280 	REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), burst_size,
1281 		    shift + 1, shift);
1282 }
1283 
1284 static void dispc_configure_burst_sizes(struct dispc_device *dispc)
1285 {
1286 	int i;
1287 	const int burst_size = BURST_SIZE_X8;
1288 
1289 	/* Configure burst size always to maximum size */
1290 	for (i = 0; i < dispc_get_num_ovls(dispc); ++i)
1291 		dispc_ovl_set_burst_size(dispc, i, burst_size);
1292 	if (dispc->feat->has_writeback)
1293 		dispc_ovl_set_burst_size(dispc, OMAP_DSS_WB, burst_size);
1294 }
1295 
1296 static u32 dispc_ovl_get_burst_size(struct dispc_device *dispc,
1297 				    enum omap_plane_id plane)
1298 {
1299 	/* burst multiplier is always x8 (see dispc_configure_burst_sizes()) */
1300 	return dispc->feat->burst_size_unit * 8;
1301 }
1302 
1303 static bool dispc_ovl_color_mode_supported(struct dispc_device *dispc,
1304 					   enum omap_plane_id plane, u32 fourcc)
1305 {
1306 	const u32 *modes;
1307 	unsigned int i;
1308 
1309 	modes = dispc->feat->supported_color_modes[plane];
1310 
1311 	for (i = 0; modes[i]; ++i) {
1312 		if (modes[i] == fourcc)
1313 			return true;
1314 	}
1315 
1316 	return false;
1317 }
1318 
1319 static const u32 *dispc_ovl_get_color_modes(struct dispc_device *dispc,
1320 					    enum omap_plane_id plane)
1321 {
1322 	return dispc->feat->supported_color_modes[plane];
1323 }
1324 
1325 static void dispc_mgr_enable_cpr(struct dispc_device *dispc,
1326 				 enum omap_channel channel, bool enable)
1327 {
1328 	if (channel == OMAP_DSS_CHANNEL_DIGIT)
1329 		return;
1330 
1331 	mgr_fld_write(dispc, channel, DISPC_MGR_FLD_CPR, enable);
1332 }
1333 
1334 static void dispc_mgr_set_cpr_coef(struct dispc_device *dispc,
1335 				   enum omap_channel channel,
1336 				   const struct omap_dss_cpr_coefs *coefs)
1337 {
1338 	u32 coef_r, coef_g, coef_b;
1339 
1340 	if (!dss_mgr_is_lcd(channel))
1341 		return;
1342 
1343 	coef_r = FLD_VAL(coefs->rr, 31, 22) | FLD_VAL(coefs->rg, 20, 11) |
1344 		FLD_VAL(coefs->rb, 9, 0);
1345 	coef_g = FLD_VAL(coefs->gr, 31, 22) | FLD_VAL(coefs->gg, 20, 11) |
1346 		FLD_VAL(coefs->gb, 9, 0);
1347 	coef_b = FLD_VAL(coefs->br, 31, 22) | FLD_VAL(coefs->bg, 20, 11) |
1348 		FLD_VAL(coefs->bb, 9, 0);
1349 
1350 	dispc_write_reg(dispc, DISPC_CPR_COEF_R(channel), coef_r);
1351 	dispc_write_reg(dispc, DISPC_CPR_COEF_G(channel), coef_g);
1352 	dispc_write_reg(dispc, DISPC_CPR_COEF_B(channel), coef_b);
1353 }
1354 
1355 static void dispc_ovl_set_vid_color_conv(struct dispc_device *dispc,
1356 					 enum omap_plane_id plane, bool enable)
1357 {
1358 	u32 val;
1359 
1360 	BUG_ON(plane == OMAP_DSS_GFX);
1361 
1362 	val = dispc_read_reg(dispc, DISPC_OVL_ATTRIBUTES(plane));
1363 	val = FLD_MOD(val, enable, 9, 9);
1364 	dispc_write_reg(dispc, DISPC_OVL_ATTRIBUTES(plane), val);
1365 }
1366 
1367 static void dispc_ovl_enable_replication(struct dispc_device *dispc,
1368 					 enum omap_plane_id plane,
1369 					 enum omap_overlay_caps caps,
1370 					 bool enable)
1371 {
1372 	static const unsigned int shifts[] = { 5, 10, 10, 10 };
1373 	int shift;
1374 
1375 	if ((caps & OMAP_DSS_OVL_CAP_REPLICATION) == 0)
1376 		return;
1377 
1378 	shift = shifts[plane];
1379 	REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), enable, shift, shift);
1380 }
1381 
1382 static void dispc_mgr_set_size(struct dispc_device *dispc,
1383 			       enum omap_channel channel, u16 width, u16 height)
1384 {
1385 	u32 val;
1386 
1387 	val = FLD_VAL(height - 1, dispc->feat->mgr_height_start, 16) |
1388 		FLD_VAL(width - 1, dispc->feat->mgr_width_start, 0);
1389 
1390 	dispc_write_reg(dispc, DISPC_SIZE_MGR(channel), val);
1391 }
1392 
1393 static void dispc_init_fifos(struct dispc_device *dispc)
1394 {
1395 	u32 size;
1396 	int fifo;
1397 	u8 start, end;
1398 	u32 unit;
1399 	int i;
1400 
1401 	unit = dispc->feat->buffer_size_unit;
1402 
1403 	dispc_get_reg_field(dispc, FEAT_REG_FIFOSIZE, &start, &end);
1404 
1405 	for (fifo = 0; fifo < dispc->feat->num_fifos; ++fifo) {
1406 		size = REG_GET(dispc, DISPC_OVL_FIFO_SIZE_STATUS(fifo),
1407 			       start, end);
1408 		size *= unit;
1409 		dispc->fifo_size[fifo] = size;
1410 
1411 		/*
1412 		 * By default fifos are mapped directly to overlays, fifo 0 to
1413 		 * ovl 0, fifo 1 to ovl 1, etc.
1414 		 */
1415 		dispc->fifo_assignment[fifo] = fifo;
1416 	}
1417 
1418 	/*
1419 	 * The GFX fifo on OMAP4 is smaller than the other fifos. The small fifo
1420 	 * causes problems with certain use cases, like using the tiler in 2D
1421 	 * mode. The below hack swaps the fifos of GFX and WB planes, thus
1422 	 * giving GFX plane a larger fifo. WB but should work fine with a
1423 	 * smaller fifo.
1424 	 */
1425 	if (dispc->feat->gfx_fifo_workaround) {
1426 		u32 v;
1427 
1428 		v = dispc_read_reg(dispc, DISPC_GLOBAL_BUFFER);
1429 
1430 		v = FLD_MOD(v, 4, 2, 0); /* GFX BUF top to WB */
1431 		v = FLD_MOD(v, 4, 5, 3); /* GFX BUF bottom to WB */
1432 		v = FLD_MOD(v, 0, 26, 24); /* WB BUF top to GFX */
1433 		v = FLD_MOD(v, 0, 29, 27); /* WB BUF bottom to GFX */
1434 
1435 		dispc_write_reg(dispc, DISPC_GLOBAL_BUFFER, v);
1436 
1437 		dispc->fifo_assignment[OMAP_DSS_GFX] = OMAP_DSS_WB;
1438 		dispc->fifo_assignment[OMAP_DSS_WB] = OMAP_DSS_GFX;
1439 	}
1440 
1441 	/*
1442 	 * Setup default fifo thresholds.
1443 	 */
1444 	for (i = 0; i < dispc_get_num_ovls(dispc); ++i) {
1445 		u32 low, high;
1446 		const bool use_fifomerge = false;
1447 		const bool manual_update = false;
1448 
1449 		dispc_ovl_compute_fifo_thresholds(dispc, i, &low, &high,
1450 						  use_fifomerge, manual_update);
1451 
1452 		dispc_ovl_set_fifo_threshold(dispc, i, low, high);
1453 	}
1454 
1455 	if (dispc->feat->has_writeback) {
1456 		u32 low, high;
1457 		const bool use_fifomerge = false;
1458 		const bool manual_update = false;
1459 
1460 		dispc_ovl_compute_fifo_thresholds(dispc, OMAP_DSS_WB,
1461 						  &low, &high, use_fifomerge,
1462 						  manual_update);
1463 
1464 		dispc_ovl_set_fifo_threshold(dispc, OMAP_DSS_WB, low, high);
1465 	}
1466 }
1467 
1468 static u32 dispc_ovl_get_fifo_size(struct dispc_device *dispc,
1469 				   enum omap_plane_id plane)
1470 {
1471 	int fifo;
1472 	u32 size = 0;
1473 
1474 	for (fifo = 0; fifo < dispc->feat->num_fifos; ++fifo) {
1475 		if (dispc->fifo_assignment[fifo] == plane)
1476 			size += dispc->fifo_size[fifo];
1477 	}
1478 
1479 	return size;
1480 }
1481 
1482 void dispc_ovl_set_fifo_threshold(struct dispc_device *dispc,
1483 				  enum omap_plane_id plane,
1484 				  u32 low, u32 high)
1485 {
1486 	u8 hi_start, hi_end, lo_start, lo_end;
1487 	u32 unit;
1488 
1489 	unit = dispc->feat->buffer_size_unit;
1490 
1491 	WARN_ON(low % unit != 0);
1492 	WARN_ON(high % unit != 0);
1493 
1494 	low /= unit;
1495 	high /= unit;
1496 
1497 	dispc_get_reg_field(dispc, FEAT_REG_FIFOHIGHTHRESHOLD,
1498 			    &hi_start, &hi_end);
1499 	dispc_get_reg_field(dispc, FEAT_REG_FIFOLOWTHRESHOLD,
1500 			    &lo_start, &lo_end);
1501 
1502 	DSSDBG("fifo(%d) threshold (bytes), old %u/%u, new %u/%u\n",
1503 			plane,
1504 			REG_GET(dispc, DISPC_OVL_FIFO_THRESHOLD(plane),
1505 				lo_start, lo_end) * unit,
1506 			REG_GET(dispc, DISPC_OVL_FIFO_THRESHOLD(plane),
1507 				hi_start, hi_end) * unit,
1508 			low * unit, high * unit);
1509 
1510 	dispc_write_reg(dispc, DISPC_OVL_FIFO_THRESHOLD(plane),
1511 			FLD_VAL(high, hi_start, hi_end) |
1512 			FLD_VAL(low, lo_start, lo_end));
1513 
1514 	/*
1515 	 * configure the preload to the pipeline's high threhold, if HT it's too
1516 	 * large for the preload field, set the threshold to the maximum value
1517 	 * that can be held by the preload register
1518 	 */
1519 	if (dispc_has_feature(dispc, FEAT_PRELOAD) &&
1520 	    dispc->feat->set_max_preload && plane != OMAP_DSS_WB)
1521 		dispc_write_reg(dispc, DISPC_OVL_PRELOAD(plane),
1522 				min(high, 0xfffu));
1523 }
1524 
1525 void dispc_enable_fifomerge(struct dispc_device *dispc, bool enable)
1526 {
1527 	if (!dispc_has_feature(dispc, FEAT_FIFO_MERGE)) {
1528 		WARN_ON(enable);
1529 		return;
1530 	}
1531 
1532 	DSSDBG("FIFO merge %s\n", enable ? "enabled" : "disabled");
1533 	REG_FLD_MOD(dispc, DISPC_CONFIG, enable ? 1 : 0, 14, 14);
1534 }
1535 
1536 void dispc_ovl_compute_fifo_thresholds(struct dispc_device *dispc,
1537 				       enum omap_plane_id plane,
1538 				       u32 *fifo_low, u32 *fifo_high,
1539 				       bool use_fifomerge, bool manual_update)
1540 {
1541 	/*
1542 	 * All sizes are in bytes. Both the buffer and burst are made of
1543 	 * buffer_units, and the fifo thresholds must be buffer_unit aligned.
1544 	 */
1545 	unsigned int buf_unit = dispc->feat->buffer_size_unit;
1546 	unsigned int ovl_fifo_size, total_fifo_size, burst_size;
1547 	int i;
1548 
1549 	burst_size = dispc_ovl_get_burst_size(dispc, plane);
1550 	ovl_fifo_size = dispc_ovl_get_fifo_size(dispc, plane);
1551 
1552 	if (use_fifomerge) {
1553 		total_fifo_size = 0;
1554 		for (i = 0; i < dispc_get_num_ovls(dispc); ++i)
1555 			total_fifo_size += dispc_ovl_get_fifo_size(dispc, i);
1556 	} else {
1557 		total_fifo_size = ovl_fifo_size;
1558 	}
1559 
1560 	/*
1561 	 * We use the same low threshold for both fifomerge and non-fifomerge
1562 	 * cases, but for fifomerge we calculate the high threshold using the
1563 	 * combined fifo size
1564 	 */
1565 
1566 	if (manual_update && dispc_has_feature(dispc, FEAT_OMAP3_DSI_FIFO_BUG)) {
1567 		*fifo_low = ovl_fifo_size - burst_size * 2;
1568 		*fifo_high = total_fifo_size - burst_size;
1569 	} else if (plane == OMAP_DSS_WB) {
1570 		/*
1571 		 * Most optimal configuration for writeback is to push out data
1572 		 * to the interconnect the moment writeback pushes enough pixels
1573 		 * in the FIFO to form a burst
1574 		 */
1575 		*fifo_low = 0;
1576 		*fifo_high = burst_size;
1577 	} else {
1578 		*fifo_low = ovl_fifo_size - burst_size;
1579 		*fifo_high = total_fifo_size - buf_unit;
1580 	}
1581 }
1582 
1583 static void dispc_ovl_set_mflag(struct dispc_device *dispc,
1584 				enum omap_plane_id plane, bool enable)
1585 {
1586 	int bit;
1587 
1588 	if (plane == OMAP_DSS_GFX)
1589 		bit = 14;
1590 	else
1591 		bit = 23;
1592 
1593 	REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), enable, bit, bit);
1594 }
1595 
1596 static void dispc_ovl_set_mflag_threshold(struct dispc_device *dispc,
1597 					  enum omap_plane_id plane,
1598 					  int low, int high)
1599 {
1600 	dispc_write_reg(dispc, DISPC_OVL_MFLAG_THRESHOLD(plane),
1601 		FLD_VAL(high, 31, 16) |	FLD_VAL(low, 15, 0));
1602 }
1603 
1604 static void dispc_init_mflag(struct dispc_device *dispc)
1605 {
1606 	int i;
1607 
1608 	/*
1609 	 * HACK: NV12 color format and MFLAG seem to have problems working
1610 	 * together: using two displays, and having an NV12 overlay on one of
1611 	 * the displays will cause underflows/synclosts when MFLAG_CTRL=2.
1612 	 * Changing MFLAG thresholds and PRELOAD to certain values seem to
1613 	 * remove the errors, but there doesn't seem to be a clear logic on
1614 	 * which values work and which not.
1615 	 *
1616 	 * As a work-around, set force MFLAG to always on.
1617 	 */
1618 	dispc_write_reg(dispc, DISPC_GLOBAL_MFLAG_ATTRIBUTE,
1619 		(1 << 0) |	/* MFLAG_CTRL = force always on */
1620 		(0 << 2));	/* MFLAG_START = disable */
1621 
1622 	for (i = 0; i < dispc_get_num_ovls(dispc); ++i) {
1623 		u32 size = dispc_ovl_get_fifo_size(dispc, i);
1624 		u32 unit = dispc->feat->buffer_size_unit;
1625 		u32 low, high;
1626 
1627 		dispc_ovl_set_mflag(dispc, i, true);
1628 
1629 		/*
1630 		 * Simulation team suggests below thesholds:
1631 		 * HT = fifosize * 5 / 8;
1632 		 * LT = fifosize * 4 / 8;
1633 		 */
1634 
1635 		low = size * 4 / 8 / unit;
1636 		high = size * 5 / 8 / unit;
1637 
1638 		dispc_ovl_set_mflag_threshold(dispc, i, low, high);
1639 	}
1640 
1641 	if (dispc->feat->has_writeback) {
1642 		u32 size = dispc_ovl_get_fifo_size(dispc, OMAP_DSS_WB);
1643 		u32 unit = dispc->feat->buffer_size_unit;
1644 		u32 low, high;
1645 
1646 		dispc_ovl_set_mflag(dispc, OMAP_DSS_WB, true);
1647 
1648 		/*
1649 		 * Simulation team suggests below thesholds:
1650 		 * HT = fifosize * 5 / 8;
1651 		 * LT = fifosize * 4 / 8;
1652 		 */
1653 
1654 		low = size * 4 / 8 / unit;
1655 		high = size * 5 / 8 / unit;
1656 
1657 		dispc_ovl_set_mflag_threshold(dispc, OMAP_DSS_WB, low, high);
1658 	}
1659 }
1660 
1661 static void dispc_ovl_set_fir(struct dispc_device *dispc,
1662 			      enum omap_plane_id plane,
1663 			      int hinc, int vinc,
1664 			      enum omap_color_component color_comp)
1665 {
1666 	u32 val;
1667 
1668 	if (color_comp == DISPC_COLOR_COMPONENT_RGB_Y) {
1669 		u8 hinc_start, hinc_end, vinc_start, vinc_end;
1670 
1671 		dispc_get_reg_field(dispc, FEAT_REG_FIRHINC,
1672 				    &hinc_start, &hinc_end);
1673 		dispc_get_reg_field(dispc, FEAT_REG_FIRVINC,
1674 				    &vinc_start, &vinc_end);
1675 		val = FLD_VAL(vinc, vinc_start, vinc_end) |
1676 				FLD_VAL(hinc, hinc_start, hinc_end);
1677 
1678 		dispc_write_reg(dispc, DISPC_OVL_FIR(plane), val);
1679 	} else {
1680 		val = FLD_VAL(vinc, 28, 16) | FLD_VAL(hinc, 12, 0);
1681 		dispc_write_reg(dispc, DISPC_OVL_FIR2(plane), val);
1682 	}
1683 }
1684 
1685 static void dispc_ovl_set_vid_accu0(struct dispc_device *dispc,
1686 				    enum omap_plane_id plane, int haccu,
1687 				    int vaccu)
1688 {
1689 	u32 val;
1690 	u8 hor_start, hor_end, vert_start, vert_end;
1691 
1692 	dispc_get_reg_field(dispc, FEAT_REG_HORIZONTALACCU,
1693 			    &hor_start, &hor_end);
1694 	dispc_get_reg_field(dispc, FEAT_REG_VERTICALACCU,
1695 			    &vert_start, &vert_end);
1696 
1697 	val = FLD_VAL(vaccu, vert_start, vert_end) |
1698 			FLD_VAL(haccu, hor_start, hor_end);
1699 
1700 	dispc_write_reg(dispc, DISPC_OVL_ACCU0(plane), val);
1701 }
1702 
1703 static void dispc_ovl_set_vid_accu1(struct dispc_device *dispc,
1704 				    enum omap_plane_id plane, int haccu,
1705 				    int vaccu)
1706 {
1707 	u32 val;
1708 	u8 hor_start, hor_end, vert_start, vert_end;
1709 
1710 	dispc_get_reg_field(dispc, FEAT_REG_HORIZONTALACCU,
1711 			    &hor_start, &hor_end);
1712 	dispc_get_reg_field(dispc, FEAT_REG_VERTICALACCU,
1713 			    &vert_start, &vert_end);
1714 
1715 	val = FLD_VAL(vaccu, vert_start, vert_end) |
1716 			FLD_VAL(haccu, hor_start, hor_end);
1717 
1718 	dispc_write_reg(dispc, DISPC_OVL_ACCU1(plane), val);
1719 }
1720 
1721 static void dispc_ovl_set_vid_accu2_0(struct dispc_device *dispc,
1722 				      enum omap_plane_id plane, int haccu,
1723 				      int vaccu)
1724 {
1725 	u32 val;
1726 
1727 	val = FLD_VAL(vaccu, 26, 16) | FLD_VAL(haccu, 10, 0);
1728 	dispc_write_reg(dispc, DISPC_OVL_ACCU2_0(plane), val);
1729 }
1730 
1731 static void dispc_ovl_set_vid_accu2_1(struct dispc_device *dispc,
1732 				      enum omap_plane_id plane, int haccu,
1733 				      int vaccu)
1734 {
1735 	u32 val;
1736 
1737 	val = FLD_VAL(vaccu, 26, 16) | FLD_VAL(haccu, 10, 0);
1738 	dispc_write_reg(dispc, DISPC_OVL_ACCU2_1(plane), val);
1739 }
1740 
1741 static void dispc_ovl_set_scale_param(struct dispc_device *dispc,
1742 				      enum omap_plane_id plane,
1743 				      u16 orig_width, u16 orig_height,
1744 				      u16 out_width, u16 out_height,
1745 				      bool five_taps, u8 rotation,
1746 				      enum omap_color_component color_comp)
1747 {
1748 	int fir_hinc, fir_vinc;
1749 
1750 	fir_hinc = 1024 * orig_width / out_width;
1751 	fir_vinc = 1024 * orig_height / out_height;
1752 
1753 	dispc_ovl_set_scale_coef(dispc, plane, fir_hinc, fir_vinc, five_taps,
1754 				 color_comp);
1755 	dispc_ovl_set_fir(dispc, plane, fir_hinc, fir_vinc, color_comp);
1756 }
1757 
1758 static void dispc_ovl_set_accu_uv(struct dispc_device *dispc,
1759 				  enum omap_plane_id plane,
1760 				  u16 orig_width, u16 orig_height,
1761 				  u16 out_width, u16 out_height,
1762 				  bool ilace, u32 fourcc, u8 rotation)
1763 {
1764 	int h_accu2_0, h_accu2_1;
1765 	int v_accu2_0, v_accu2_1;
1766 	int chroma_hinc, chroma_vinc;
1767 	int idx;
1768 
1769 	struct accu {
1770 		s8 h0_m, h0_n;
1771 		s8 h1_m, h1_n;
1772 		s8 v0_m, v0_n;
1773 		s8 v1_m, v1_n;
1774 	};
1775 
1776 	const struct accu *accu_table;
1777 	const struct accu *accu_val;
1778 
1779 	static const struct accu accu_nv12[4] = {
1780 		{  0, 1,  0, 1 , -1, 2, 0, 1 },
1781 		{  1, 2, -3, 4 ,  0, 1, 0, 1 },
1782 		{ -1, 1,  0, 1 , -1, 2, 0, 1 },
1783 		{ -1, 2, -1, 2 , -1, 1, 0, 1 },
1784 	};
1785 
1786 	static const struct accu accu_nv12_ilace[4] = {
1787 		{  0, 1,  0, 1 , -3, 4, -1, 4 },
1788 		{ -1, 4, -3, 4 ,  0, 1,  0, 1 },
1789 		{ -1, 1,  0, 1 , -1, 4, -3, 4 },
1790 		{ -3, 4, -3, 4 , -1, 1,  0, 1 },
1791 	};
1792 
1793 	static const struct accu accu_yuv[4] = {
1794 		{  0, 1, 0, 1,  0, 1, 0, 1 },
1795 		{  0, 1, 0, 1,  0, 1, 0, 1 },
1796 		{ -1, 1, 0, 1,  0, 1, 0, 1 },
1797 		{  0, 1, 0, 1, -1, 1, 0, 1 },
1798 	};
1799 
1800 	/* Note: DSS HW rotates clockwise, DRM_MODE_ROTATE_* counter-clockwise */
1801 	switch (rotation & DRM_MODE_ROTATE_MASK) {
1802 	default:
1803 	case DRM_MODE_ROTATE_0:
1804 		idx = 0;
1805 		break;
1806 	case DRM_MODE_ROTATE_90:
1807 		idx = 3;
1808 		break;
1809 	case DRM_MODE_ROTATE_180:
1810 		idx = 2;
1811 		break;
1812 	case DRM_MODE_ROTATE_270:
1813 		idx = 1;
1814 		break;
1815 	}
1816 
1817 	switch (fourcc) {
1818 	case DRM_FORMAT_NV12:
1819 		if (ilace)
1820 			accu_table = accu_nv12_ilace;
1821 		else
1822 			accu_table = accu_nv12;
1823 		break;
1824 	case DRM_FORMAT_YUYV:
1825 	case DRM_FORMAT_UYVY:
1826 		accu_table = accu_yuv;
1827 		break;
1828 	default:
1829 		BUG();
1830 		return;
1831 	}
1832 
1833 	accu_val = &accu_table[idx];
1834 
1835 	chroma_hinc = 1024 * orig_width / out_width;
1836 	chroma_vinc = 1024 * orig_height / out_height;
1837 
1838 	h_accu2_0 = (accu_val->h0_m * chroma_hinc / accu_val->h0_n) % 1024;
1839 	h_accu2_1 = (accu_val->h1_m * chroma_hinc / accu_val->h1_n) % 1024;
1840 	v_accu2_0 = (accu_val->v0_m * chroma_vinc / accu_val->v0_n) % 1024;
1841 	v_accu2_1 = (accu_val->v1_m * chroma_vinc / accu_val->v1_n) % 1024;
1842 
1843 	dispc_ovl_set_vid_accu2_0(dispc, plane, h_accu2_0, v_accu2_0);
1844 	dispc_ovl_set_vid_accu2_1(dispc, plane, h_accu2_1, v_accu2_1);
1845 }
1846 
1847 static void dispc_ovl_set_scaling_common(struct dispc_device *dispc,
1848 					 enum omap_plane_id plane,
1849 					 u16 orig_width, u16 orig_height,
1850 					 u16 out_width, u16 out_height,
1851 					 bool ilace, bool five_taps,
1852 					 bool fieldmode, u32 fourcc,
1853 					 u8 rotation)
1854 {
1855 	int accu0 = 0;
1856 	int accu1 = 0;
1857 	u32 l;
1858 
1859 	dispc_ovl_set_scale_param(dispc, plane, orig_width, orig_height,
1860 				  out_width, out_height, five_taps,
1861 				  rotation, DISPC_COLOR_COMPONENT_RGB_Y);
1862 	l = dispc_read_reg(dispc, DISPC_OVL_ATTRIBUTES(plane));
1863 
1864 	/* RESIZEENABLE and VERTICALTAPS */
1865 	l &= ~((0x3 << 5) | (0x1 << 21));
1866 	l |= (orig_width != out_width) ? (1 << 5) : 0;
1867 	l |= (orig_height != out_height) ? (1 << 6) : 0;
1868 	l |= five_taps ? (1 << 21) : 0;
1869 
1870 	/* VRESIZECONF and HRESIZECONF */
1871 	if (dispc_has_feature(dispc, FEAT_RESIZECONF)) {
1872 		l &= ~(0x3 << 7);
1873 		l |= (orig_width <= out_width) ? 0 : (1 << 7);
1874 		l |= (orig_height <= out_height) ? 0 : (1 << 8);
1875 	}
1876 
1877 	/* LINEBUFFERSPLIT */
1878 	if (dispc_has_feature(dispc, FEAT_LINEBUFFERSPLIT)) {
1879 		l &= ~(0x1 << 22);
1880 		l |= five_taps ? (1 << 22) : 0;
1881 	}
1882 
1883 	dispc_write_reg(dispc, DISPC_OVL_ATTRIBUTES(plane), l);
1884 
1885 	/*
1886 	 * field 0 = even field = bottom field
1887 	 * field 1 = odd field = top field
1888 	 */
1889 	if (ilace && !fieldmode) {
1890 		accu1 = 0;
1891 		accu0 = ((1024 * orig_height / out_height) / 2) & 0x3ff;
1892 		if (accu0 >= 1024/2) {
1893 			accu1 = 1024/2;
1894 			accu0 -= accu1;
1895 		}
1896 	}
1897 
1898 	dispc_ovl_set_vid_accu0(dispc, plane, 0, accu0);
1899 	dispc_ovl_set_vid_accu1(dispc, plane, 0, accu1);
1900 }
1901 
1902 static void dispc_ovl_set_scaling_uv(struct dispc_device *dispc,
1903 				     enum omap_plane_id plane,
1904 				     u16 orig_width, u16 orig_height,
1905 				     u16 out_width, u16 out_height,
1906 				     bool ilace, bool five_taps,
1907 				     bool fieldmode, u32 fourcc,
1908 				     u8 rotation)
1909 {
1910 	int scale_x = out_width != orig_width;
1911 	int scale_y = out_height != orig_height;
1912 	bool chroma_upscale = plane != OMAP_DSS_WB;
1913 
1914 	if (!dispc_has_feature(dispc, FEAT_HANDLE_UV_SEPARATE))
1915 		return;
1916 
1917 	if (!format_is_yuv(fourcc)) {
1918 		/* reset chroma resampling for RGB formats  */
1919 		if (plane != OMAP_DSS_WB)
1920 			REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES2(plane),
1921 				    0, 8, 8);
1922 		return;
1923 	}
1924 
1925 	dispc_ovl_set_accu_uv(dispc, plane, orig_width, orig_height, out_width,
1926 			      out_height, ilace, fourcc, rotation);
1927 
1928 	switch (fourcc) {
1929 	case DRM_FORMAT_NV12:
1930 		if (chroma_upscale) {
1931 			/* UV is subsampled by 2 horizontally and vertically */
1932 			orig_height >>= 1;
1933 			orig_width >>= 1;
1934 		} else {
1935 			/* UV is downsampled by 2 horizontally and vertically */
1936 			orig_height <<= 1;
1937 			orig_width <<= 1;
1938 		}
1939 
1940 		break;
1941 	case DRM_FORMAT_YUYV:
1942 	case DRM_FORMAT_UYVY:
1943 		/* For YUV422 with 90/270 rotation, we don't upsample chroma */
1944 		if (!drm_rotation_90_or_270(rotation)) {
1945 			if (chroma_upscale)
1946 				/* UV is subsampled by 2 horizontally */
1947 				orig_width >>= 1;
1948 			else
1949 				/* UV is downsampled by 2 horizontally */
1950 				orig_width <<= 1;
1951 		}
1952 
1953 		/* must use FIR for YUV422 if rotated */
1954 		if ((rotation & DRM_MODE_ROTATE_MASK) != DRM_MODE_ROTATE_0)
1955 			scale_x = scale_y = true;
1956 
1957 		break;
1958 	default:
1959 		BUG();
1960 		return;
1961 	}
1962 
1963 	if (out_width != orig_width)
1964 		scale_x = true;
1965 	if (out_height != orig_height)
1966 		scale_y = true;
1967 
1968 	dispc_ovl_set_scale_param(dispc, plane, orig_width, orig_height,
1969 				  out_width, out_height, five_taps,
1970 				  rotation, DISPC_COLOR_COMPONENT_UV);
1971 
1972 	if (plane != OMAP_DSS_WB)
1973 		REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES2(plane),
1974 			(scale_x || scale_y) ? 1 : 0, 8, 8);
1975 
1976 	/* set H scaling */
1977 	REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), scale_x ? 1 : 0, 5, 5);
1978 	/* set V scaling */
1979 	REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), scale_y ? 1 : 0, 6, 6);
1980 }
1981 
1982 static void dispc_ovl_set_scaling(struct dispc_device *dispc,
1983 				  enum omap_plane_id plane,
1984 				  u16 orig_width, u16 orig_height,
1985 				  u16 out_width, u16 out_height,
1986 				  bool ilace, bool five_taps,
1987 				  bool fieldmode, u32 fourcc,
1988 				  u8 rotation)
1989 {
1990 	BUG_ON(plane == OMAP_DSS_GFX);
1991 
1992 	dispc_ovl_set_scaling_common(dispc, plane, orig_width, orig_height,
1993 				     out_width, out_height, ilace, five_taps,
1994 				     fieldmode, fourcc, rotation);
1995 
1996 	dispc_ovl_set_scaling_uv(dispc, plane, orig_width, orig_height,
1997 				 out_width, out_height, ilace, five_taps,
1998 				 fieldmode, fourcc, rotation);
1999 }
2000 
2001 static void dispc_ovl_set_rotation_attrs(struct dispc_device *dispc,
2002 					 enum omap_plane_id plane, u8 rotation,
2003 					 enum omap_dss_rotation_type rotation_type,
2004 					 u32 fourcc)
2005 {
2006 	bool row_repeat = false;
2007 	int vidrot = 0;
2008 
2009 	/* Note: DSS HW rotates clockwise, DRM_MODE_ROTATE_* counter-clockwise */
2010 	if (fourcc == DRM_FORMAT_YUYV || fourcc == DRM_FORMAT_UYVY) {
2011 
2012 		if (rotation & DRM_MODE_REFLECT_X) {
2013 			switch (rotation & DRM_MODE_ROTATE_MASK) {
2014 			case DRM_MODE_ROTATE_0:
2015 				vidrot = 2;
2016 				break;
2017 			case DRM_MODE_ROTATE_90:
2018 				vidrot = 1;
2019 				break;
2020 			case DRM_MODE_ROTATE_180:
2021 				vidrot = 0;
2022 				break;
2023 			case DRM_MODE_ROTATE_270:
2024 				vidrot = 3;
2025 				break;
2026 			}
2027 		} else {
2028 			switch (rotation & DRM_MODE_ROTATE_MASK) {
2029 			case DRM_MODE_ROTATE_0:
2030 				vidrot = 0;
2031 				break;
2032 			case DRM_MODE_ROTATE_90:
2033 				vidrot = 3;
2034 				break;
2035 			case DRM_MODE_ROTATE_180:
2036 				vidrot = 2;
2037 				break;
2038 			case DRM_MODE_ROTATE_270:
2039 				vidrot = 1;
2040 				break;
2041 			}
2042 		}
2043 
2044 		if (drm_rotation_90_or_270(rotation))
2045 			row_repeat = true;
2046 		else
2047 			row_repeat = false;
2048 	}
2049 
2050 	/*
2051 	 * OMAP4/5 Errata i631:
2052 	 * NV12 in 1D mode must use ROTATION=1. Otherwise DSS will fetch extra
2053 	 * rows beyond the framebuffer, which may cause OCP error.
2054 	 */
2055 	if (fourcc == DRM_FORMAT_NV12 && rotation_type != OMAP_DSS_ROT_TILER)
2056 		vidrot = 1;
2057 
2058 	REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), vidrot, 13, 12);
2059 	if (dispc_has_feature(dispc, FEAT_ROWREPEATENABLE))
2060 		REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane),
2061 			row_repeat ? 1 : 0, 18, 18);
2062 
2063 	if (dispc_ovl_color_mode_supported(dispc, plane, DRM_FORMAT_NV12)) {
2064 		bool doublestride =
2065 			fourcc == DRM_FORMAT_NV12 &&
2066 			rotation_type == OMAP_DSS_ROT_TILER &&
2067 			!drm_rotation_90_or_270(rotation);
2068 
2069 		/* DOUBLESTRIDE */
2070 		REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane),
2071 			    doublestride, 22, 22);
2072 	}
2073 }
2074 
2075 static int color_mode_to_bpp(u32 fourcc)
2076 {
2077 	switch (fourcc) {
2078 	case DRM_FORMAT_NV12:
2079 		return 8;
2080 	case DRM_FORMAT_RGBX4444:
2081 	case DRM_FORMAT_RGB565:
2082 	case DRM_FORMAT_ARGB4444:
2083 	case DRM_FORMAT_YUYV:
2084 	case DRM_FORMAT_UYVY:
2085 	case DRM_FORMAT_RGBA4444:
2086 	case DRM_FORMAT_XRGB4444:
2087 	case DRM_FORMAT_ARGB1555:
2088 	case DRM_FORMAT_XRGB1555:
2089 		return 16;
2090 	case DRM_FORMAT_RGB888:
2091 		return 24;
2092 	case DRM_FORMAT_XRGB8888:
2093 	case DRM_FORMAT_ARGB8888:
2094 	case DRM_FORMAT_RGBA8888:
2095 	case DRM_FORMAT_RGBX8888:
2096 		return 32;
2097 	default:
2098 		BUG();
2099 		return 0;
2100 	}
2101 }
2102 
2103 static s32 pixinc(int pixels, u8 ps)
2104 {
2105 	if (pixels == 1)
2106 		return 1;
2107 	else if (pixels > 1)
2108 		return 1 + (pixels - 1) * ps;
2109 	else if (pixels < 0)
2110 		return 1 - (-pixels + 1) * ps;
2111 	else
2112 		BUG();
2113 		return 0;
2114 }
2115 
2116 static void calc_offset(u16 screen_width, u16 width,
2117 		u32 fourcc, bool fieldmode, unsigned int field_offset,
2118 		unsigned int *offset0, unsigned int *offset1,
2119 		s32 *row_inc, s32 *pix_inc, int x_predecim, int y_predecim,
2120 		enum omap_dss_rotation_type rotation_type, u8 rotation)
2121 {
2122 	u8 ps;
2123 
2124 	ps = color_mode_to_bpp(fourcc) / 8;
2125 
2126 	DSSDBG("scrw %d, width %d\n", screen_width, width);
2127 
2128 	if (rotation_type == OMAP_DSS_ROT_TILER &&
2129 	    (fourcc == DRM_FORMAT_UYVY || fourcc == DRM_FORMAT_YUYV) &&
2130 	    drm_rotation_90_or_270(rotation)) {
2131 		/*
2132 		 * HACK: ROW_INC needs to be calculated with TILER units.
2133 		 * We get such 'screen_width' that multiplying it with the
2134 		 * YUV422 pixel size gives the correct TILER container width.
2135 		 * However, 'width' is in pixels and multiplying it with YUV422
2136 		 * pixel size gives incorrect result. We thus multiply it here
2137 		 * with 2 to match the 32 bit TILER unit size.
2138 		 */
2139 		width *= 2;
2140 	}
2141 
2142 	/*
2143 	 * field 0 = even field = bottom field
2144 	 * field 1 = odd field = top field
2145 	 */
2146 	*offset0 = field_offset * screen_width * ps;
2147 	*offset1 = 0;
2148 
2149 	*row_inc = pixinc(1 + (y_predecim * screen_width - width * x_predecim) +
2150 			(fieldmode ? screen_width : 0), ps);
2151 	if (fourcc == DRM_FORMAT_YUYV || fourcc == DRM_FORMAT_UYVY)
2152 		*pix_inc = pixinc(x_predecim, 2 * ps);
2153 	else
2154 		*pix_inc = pixinc(x_predecim, ps);
2155 }
2156 
2157 /*
2158  * This function is used to avoid synclosts in OMAP3, because of some
2159  * undocumented horizontal position and timing related limitations.
2160  */
2161 static int check_horiz_timing_omap3(unsigned long pclk, unsigned long lclk,
2162 		const struct videomode *vm, u16 pos_x,
2163 		u16 width, u16 height, u16 out_width, u16 out_height,
2164 		bool five_taps)
2165 {
2166 	const int ds = DIV_ROUND_UP(height, out_height);
2167 	unsigned long nonactive;
2168 	static const u8 limits[3] = { 8, 10, 20 };
2169 	u64 val, blank;
2170 	int i;
2171 
2172 	nonactive = vm->hactive + vm->hfront_porch + vm->hsync_len +
2173 		    vm->hback_porch - out_width;
2174 
2175 	i = 0;
2176 	if (out_height < height)
2177 		i++;
2178 	if (out_width < width)
2179 		i++;
2180 	blank = div_u64((u64)(vm->hback_porch + vm->hsync_len + vm->hfront_porch) *
2181 			lclk, pclk);
2182 	DSSDBG("blanking period + ppl = %llu (limit = %u)\n", blank, limits[i]);
2183 	if (blank <= limits[i])
2184 		return -EINVAL;
2185 
2186 	/* FIXME add checks for 3-tap filter once the limitations are known */
2187 	if (!five_taps)
2188 		return 0;
2189 
2190 	/*
2191 	 * Pixel data should be prepared before visible display point starts.
2192 	 * So, atleast DS-2 lines must have already been fetched by DISPC
2193 	 * during nonactive - pos_x period.
2194 	 */
2195 	val = div_u64((u64)(nonactive - pos_x) * lclk, pclk);
2196 	DSSDBG("(nonactive - pos_x) * pcd = %llu max(0, DS - 2) * width = %d\n",
2197 		val, max(0, ds - 2) * width);
2198 	if (val < max(0, ds - 2) * width)
2199 		return -EINVAL;
2200 
2201 	/*
2202 	 * All lines need to be refilled during the nonactive period of which
2203 	 * only one line can be loaded during the active period. So, atleast
2204 	 * DS - 1 lines should be loaded during nonactive period.
2205 	 */
2206 	val =  div_u64((u64)nonactive * lclk, pclk);
2207 	DSSDBG("nonactive * pcd  = %llu, max(0, DS - 1) * width = %d\n",
2208 		val, max(0, ds - 1) * width);
2209 	if (val < max(0, ds - 1) * width)
2210 		return -EINVAL;
2211 
2212 	return 0;
2213 }
2214 
2215 static unsigned long calc_core_clk_five_taps(unsigned long pclk,
2216 		const struct videomode *vm, u16 width,
2217 		u16 height, u16 out_width, u16 out_height,
2218 		u32 fourcc)
2219 {
2220 	u32 core_clk = 0;
2221 	u64 tmp;
2222 
2223 	if (height <= out_height && width <= out_width)
2224 		return (unsigned long) pclk;
2225 
2226 	if (height > out_height) {
2227 		unsigned int ppl = vm->hactive;
2228 
2229 		tmp = (u64)pclk * height * out_width;
2230 		do_div(tmp, 2 * out_height * ppl);
2231 		core_clk = tmp;
2232 
2233 		if (height > 2 * out_height) {
2234 			if (ppl == out_width)
2235 				return 0;
2236 
2237 			tmp = (u64)pclk * (height - 2 * out_height) * out_width;
2238 			do_div(tmp, 2 * out_height * (ppl - out_width));
2239 			core_clk = max_t(u32, core_clk, tmp);
2240 		}
2241 	}
2242 
2243 	if (width > out_width) {
2244 		tmp = (u64)pclk * width;
2245 		do_div(tmp, out_width);
2246 		core_clk = max_t(u32, core_clk, tmp);
2247 
2248 		if (fourcc == DRM_FORMAT_XRGB8888)
2249 			core_clk <<= 1;
2250 	}
2251 
2252 	return core_clk;
2253 }
2254 
2255 static unsigned long calc_core_clk_24xx(unsigned long pclk, u16 width,
2256 		u16 height, u16 out_width, u16 out_height, bool mem_to_mem)
2257 {
2258 	if (height > out_height && width > out_width)
2259 		return pclk * 4;
2260 	else
2261 		return pclk * 2;
2262 }
2263 
2264 static unsigned long calc_core_clk_34xx(unsigned long pclk, u16 width,
2265 		u16 height, u16 out_width, u16 out_height, bool mem_to_mem)
2266 {
2267 	unsigned int hf, vf;
2268 
2269 	/*
2270 	 * FIXME how to determine the 'A' factor
2271 	 * for the no downscaling case ?
2272 	 */
2273 
2274 	if (width > 3 * out_width)
2275 		hf = 4;
2276 	else if (width > 2 * out_width)
2277 		hf = 3;
2278 	else if (width > out_width)
2279 		hf = 2;
2280 	else
2281 		hf = 1;
2282 	if (height > out_height)
2283 		vf = 2;
2284 	else
2285 		vf = 1;
2286 
2287 	return pclk * vf * hf;
2288 }
2289 
2290 static unsigned long calc_core_clk_44xx(unsigned long pclk, u16 width,
2291 		u16 height, u16 out_width, u16 out_height, bool mem_to_mem)
2292 {
2293 	/*
2294 	 * If the overlay/writeback is in mem to mem mode, there are no
2295 	 * downscaling limitations with respect to pixel clock, return 1 as
2296 	 * required core clock to represent that we have sufficient enough
2297 	 * core clock to do maximum downscaling
2298 	 */
2299 	if (mem_to_mem)
2300 		return 1;
2301 
2302 	if (width > out_width)
2303 		return DIV_ROUND_UP(pclk, out_width) * width;
2304 	else
2305 		return pclk;
2306 }
2307 
2308 static int dispc_ovl_calc_scaling_24xx(struct dispc_device *dispc,
2309 				       unsigned long pclk, unsigned long lclk,
2310 				       const struct videomode *vm,
2311 				       u16 width, u16 height,
2312 				       u16 out_width, u16 out_height,
2313 				       u32 fourcc, bool *five_taps,
2314 				       int *x_predecim, int *y_predecim,
2315 				       int *decim_x, int *decim_y,
2316 				       u16 pos_x, unsigned long *core_clk,
2317 				       bool mem_to_mem)
2318 {
2319 	int error;
2320 	u16 in_width, in_height;
2321 	int min_factor = min(*decim_x, *decim_y);
2322 	const int maxsinglelinewidth = dispc->feat->max_line_width;
2323 
2324 	*five_taps = false;
2325 
2326 	do {
2327 		in_height = height / *decim_y;
2328 		in_width = width / *decim_x;
2329 		*core_clk = dispc->feat->calc_core_clk(pclk, in_width,
2330 				in_height, out_width, out_height, mem_to_mem);
2331 		error = (in_width > maxsinglelinewidth || !*core_clk ||
2332 			*core_clk > dispc_core_clk_rate(dispc));
2333 		if (error) {
2334 			if (*decim_x == *decim_y) {
2335 				*decim_x = min_factor;
2336 				++*decim_y;
2337 			} else {
2338 				swap(*decim_x, *decim_y);
2339 				if (*decim_x < *decim_y)
2340 					++*decim_x;
2341 			}
2342 		}
2343 	} while (*decim_x <= *x_predecim && *decim_y <= *y_predecim && error);
2344 
2345 	if (error) {
2346 		DSSERR("failed to find scaling settings\n");
2347 		return -EINVAL;
2348 	}
2349 
2350 	if (in_width > maxsinglelinewidth) {
2351 		DSSERR("Cannot scale max input width exceeded\n");
2352 		return -EINVAL;
2353 	}
2354 	return 0;
2355 }
2356 
2357 static int dispc_ovl_calc_scaling_34xx(struct dispc_device *dispc,
2358 				       unsigned long pclk, unsigned long lclk,
2359 				       const struct videomode *vm,
2360 				       u16 width, u16 height,
2361 				       u16 out_width, u16 out_height,
2362 				       u32 fourcc, bool *five_taps,
2363 				       int *x_predecim, int *y_predecim,
2364 				       int *decim_x, int *decim_y,
2365 				       u16 pos_x, unsigned long *core_clk,
2366 				       bool mem_to_mem)
2367 {
2368 	int error;
2369 	u16 in_width, in_height;
2370 	const int maxsinglelinewidth = dispc->feat->max_line_width;
2371 
2372 	do {
2373 		in_height = height / *decim_y;
2374 		in_width = width / *decim_x;
2375 		*five_taps = in_height > out_height;
2376 
2377 		if (in_width > maxsinglelinewidth)
2378 			if (in_height > out_height &&
2379 						in_height < out_height * 2)
2380 				*five_taps = false;
2381 again:
2382 		if (*five_taps)
2383 			*core_clk = calc_core_clk_five_taps(pclk, vm,
2384 						in_width, in_height, out_width,
2385 						out_height, fourcc);
2386 		else
2387 			*core_clk = dispc->feat->calc_core_clk(pclk, in_width,
2388 					in_height, out_width, out_height,
2389 					mem_to_mem);
2390 
2391 		error = check_horiz_timing_omap3(pclk, lclk, vm,
2392 				pos_x, in_width, in_height, out_width,
2393 				out_height, *five_taps);
2394 		if (error && *five_taps) {
2395 			*five_taps = false;
2396 			goto again;
2397 		}
2398 
2399 		error = (error || in_width > maxsinglelinewidth * 2 ||
2400 			(in_width > maxsinglelinewidth && *five_taps) ||
2401 			!*core_clk || *core_clk > dispc_core_clk_rate(dispc));
2402 
2403 		if (!error) {
2404 			/* verify that we're inside the limits of scaler */
2405 			if (in_width / 4 > out_width)
2406 					error = 1;
2407 
2408 			if (*five_taps) {
2409 				if (in_height / 4 > out_height)
2410 					error = 1;
2411 			} else {
2412 				if (in_height / 2 > out_height)
2413 					error = 1;
2414 			}
2415 		}
2416 
2417 		if (error)
2418 			++*decim_y;
2419 	} while (*decim_x <= *x_predecim && *decim_y <= *y_predecim && error);
2420 
2421 	if (error) {
2422 		DSSERR("failed to find scaling settings\n");
2423 		return -EINVAL;
2424 	}
2425 
2426 	if (check_horiz_timing_omap3(pclk, lclk, vm, pos_x, in_width,
2427 				in_height, out_width, out_height, *five_taps)) {
2428 			DSSERR("horizontal timing too tight\n");
2429 			return -EINVAL;
2430 	}
2431 
2432 	if (in_width > (maxsinglelinewidth * 2)) {
2433 		DSSERR("Cannot setup scaling\n");
2434 		DSSERR("width exceeds maximum width possible\n");
2435 		return -EINVAL;
2436 	}
2437 
2438 	if (in_width > maxsinglelinewidth && *five_taps) {
2439 		DSSERR("cannot setup scaling with five taps\n");
2440 		return -EINVAL;
2441 	}
2442 	return 0;
2443 }
2444 
2445 static int dispc_ovl_calc_scaling_44xx(struct dispc_device *dispc,
2446 				       unsigned long pclk, unsigned long lclk,
2447 				       const struct videomode *vm,
2448 				       u16 width, u16 height,
2449 				       u16 out_width, u16 out_height,
2450 				       u32 fourcc, bool *five_taps,
2451 				       int *x_predecim, int *y_predecim,
2452 				       int *decim_x, int *decim_y,
2453 				       u16 pos_x, unsigned long *core_clk,
2454 				       bool mem_to_mem)
2455 {
2456 	u16 in_width, in_width_max;
2457 	int decim_x_min = *decim_x;
2458 	u16 in_height = height / *decim_y;
2459 	const int maxsinglelinewidth = dispc->feat->max_line_width;
2460 	const int maxdownscale = dispc->feat->max_downscale;
2461 
2462 	if (mem_to_mem) {
2463 		in_width_max = out_width * maxdownscale;
2464 	} else {
2465 		in_width_max = dispc_core_clk_rate(dispc)
2466 			     / DIV_ROUND_UP(pclk, out_width);
2467 	}
2468 
2469 	*decim_x = DIV_ROUND_UP(width, in_width_max);
2470 
2471 	*decim_x = *decim_x > decim_x_min ? *decim_x : decim_x_min;
2472 	if (*decim_x > *x_predecim)
2473 		return -EINVAL;
2474 
2475 	do {
2476 		in_width = width / *decim_x;
2477 	} while (*decim_x <= *x_predecim &&
2478 			in_width > maxsinglelinewidth && ++*decim_x);
2479 
2480 	if (in_width > maxsinglelinewidth) {
2481 		DSSERR("Cannot scale width exceeds max line width\n");
2482 		return -EINVAL;
2483 	}
2484 
2485 	if (*decim_x > 4 && fourcc != DRM_FORMAT_NV12) {
2486 		/*
2487 		 * Let's disable all scaling that requires horizontal
2488 		 * decimation with higher factor than 4, until we have
2489 		 * better estimates of what we can and can not
2490 		 * do. However, NV12 color format appears to work Ok
2491 		 * with all decimation factors.
2492 		 *
2493 		 * When decimating horizontally by more that 4 the dss
2494 		 * is not able to fetch the data in burst mode. When
2495 		 * this happens it is hard to tell if there enough
2496 		 * bandwidth. Despite what theory says this appears to
2497 		 * be true also for 16-bit color formats.
2498 		 */
2499 		DSSERR("Not enough bandwidth, too much downscaling (x-decimation factor %d > 4)\n", *decim_x);
2500 
2501 		return -EINVAL;
2502 	}
2503 
2504 	*core_clk = dispc->feat->calc_core_clk(pclk, in_width, in_height,
2505 				out_width, out_height, mem_to_mem);
2506 	return 0;
2507 }
2508 
2509 #define DIV_FRAC(dividend, divisor) \
2510 	((dividend) * 100 / (divisor) - ((dividend) / (divisor) * 100))
2511 
2512 static int dispc_ovl_calc_scaling(struct dispc_device *dispc,
2513 				  enum omap_plane_id plane,
2514 				  unsigned long pclk, unsigned long lclk,
2515 				  enum omap_overlay_caps caps,
2516 				  const struct videomode *vm,
2517 				  u16 width, u16 height,
2518 				  u16 out_width, u16 out_height,
2519 				  u32 fourcc, bool *five_taps,
2520 				  int *x_predecim, int *y_predecim, u16 pos_x,
2521 				  enum omap_dss_rotation_type rotation_type,
2522 				  bool mem_to_mem)
2523 {
2524 	int maxhdownscale = dispc->feat->max_downscale;
2525 	int maxvdownscale = dispc->feat->max_downscale;
2526 	const int max_decim_limit = 16;
2527 	unsigned long core_clk = 0;
2528 	int decim_x, decim_y, ret;
2529 
2530 	if (width == out_width && height == out_height)
2531 		return 0;
2532 
2533 	if (plane == OMAP_DSS_WB) {
2534 		switch (fourcc) {
2535 		case DRM_FORMAT_NV12:
2536 			maxhdownscale = maxvdownscale = 2;
2537 			break;
2538 		case DRM_FORMAT_YUYV:
2539 		case DRM_FORMAT_UYVY:
2540 			maxhdownscale = 2;
2541 			maxvdownscale = 4;
2542 			break;
2543 		default:
2544 			break;
2545 		}
2546 	}
2547 	if (!mem_to_mem && (pclk == 0 || vm->pixelclock == 0)) {
2548 		DSSERR("cannot calculate scaling settings: pclk is zero\n");
2549 		return -EINVAL;
2550 	}
2551 
2552 	if ((caps & OMAP_DSS_OVL_CAP_SCALE) == 0)
2553 		return -EINVAL;
2554 
2555 	if (mem_to_mem) {
2556 		*x_predecim = *y_predecim = 1;
2557 	} else {
2558 		*x_predecim = max_decim_limit;
2559 		*y_predecim = (rotation_type == OMAP_DSS_ROT_TILER &&
2560 				dispc_has_feature(dispc, FEAT_BURST_2D)) ?
2561 				2 : max_decim_limit;
2562 	}
2563 
2564 	decim_x = DIV_ROUND_UP(DIV_ROUND_UP(width, out_width), maxhdownscale);
2565 	decim_y = DIV_ROUND_UP(DIV_ROUND_UP(height, out_height), maxvdownscale);
2566 
2567 	if (decim_x > *x_predecim || out_width > width * 8)
2568 		return -EINVAL;
2569 
2570 	if (decim_y > *y_predecim || out_height > height * 8)
2571 		return -EINVAL;
2572 
2573 	ret = dispc->feat->calc_scaling(dispc, pclk, lclk, vm, width, height,
2574 					out_width, out_height, fourcc,
2575 					five_taps, x_predecim, y_predecim,
2576 					&decim_x, &decim_y, pos_x, &core_clk,
2577 					mem_to_mem);
2578 	if (ret)
2579 		return ret;
2580 
2581 	DSSDBG("%dx%d -> %dx%d (%d.%02d x %d.%02d), decim %dx%d %dx%d (%d.%02d x %d.%02d), taps %d, req clk %lu, cur clk %lu\n",
2582 		width, height,
2583 		out_width, out_height,
2584 		out_width / width, DIV_FRAC(out_width, width),
2585 		out_height / height, DIV_FRAC(out_height, height),
2586 
2587 		decim_x, decim_y,
2588 		width / decim_x, height / decim_y,
2589 		out_width / (width / decim_x), DIV_FRAC(out_width, width / decim_x),
2590 		out_height / (height / decim_y), DIV_FRAC(out_height, height / decim_y),
2591 
2592 		*five_taps ? 5 : 3,
2593 		core_clk, dispc_core_clk_rate(dispc));
2594 
2595 	if (!core_clk || core_clk > dispc_core_clk_rate(dispc)) {
2596 		DSSERR("failed to set up scaling, "
2597 			"required core clk rate = %lu Hz, "
2598 			"current core clk rate = %lu Hz\n",
2599 			core_clk, dispc_core_clk_rate(dispc));
2600 		return -EINVAL;
2601 	}
2602 
2603 	*x_predecim = decim_x;
2604 	*y_predecim = decim_y;
2605 	return 0;
2606 }
2607 
2608 static int dispc_ovl_setup_common(struct dispc_device *dispc,
2609 				  enum omap_plane_id plane,
2610 				  enum omap_overlay_caps caps,
2611 				  u32 paddr, u32 p_uv_addr,
2612 				  u16 screen_width, int pos_x, int pos_y,
2613 				  u16 width, u16 height,
2614 				  u16 out_width, u16 out_height,
2615 				  u32 fourcc, u8 rotation, u8 zorder,
2616 				  u8 pre_mult_alpha, u8 global_alpha,
2617 				  enum omap_dss_rotation_type rotation_type,
2618 				  bool replication, const struct videomode *vm,
2619 				  bool mem_to_mem)
2620 {
2621 	bool five_taps = true;
2622 	bool fieldmode = false;
2623 	int r, cconv = 0;
2624 	unsigned int offset0, offset1;
2625 	s32 row_inc;
2626 	s32 pix_inc;
2627 	u16 frame_width, frame_height;
2628 	unsigned int field_offset = 0;
2629 	u16 in_height = height;
2630 	u16 in_width = width;
2631 	int x_predecim = 1, y_predecim = 1;
2632 	bool ilace = !!(vm->flags & DISPLAY_FLAGS_INTERLACED);
2633 	unsigned long pclk = dispc_plane_pclk_rate(dispc, plane);
2634 	unsigned long lclk = dispc_plane_lclk_rate(dispc, plane);
2635 
2636 	/* when setting up WB, dispc_plane_pclk_rate() returns 0 */
2637 	if (plane == OMAP_DSS_WB)
2638 		pclk = vm->pixelclock;
2639 
2640 	if (paddr == 0 && rotation_type != OMAP_DSS_ROT_TILER)
2641 		return -EINVAL;
2642 
2643 	if (format_is_yuv(fourcc) && (in_width & 1)) {
2644 		DSSERR("input width %d is not even for YUV format\n", in_width);
2645 		return -EINVAL;
2646 	}
2647 
2648 	out_width = out_width == 0 ? width : out_width;
2649 	out_height = out_height == 0 ? height : out_height;
2650 
2651 	if (plane != OMAP_DSS_WB) {
2652 		if (ilace && height == out_height)
2653 			fieldmode = true;
2654 
2655 		if (ilace) {
2656 			if (fieldmode)
2657 				in_height /= 2;
2658 			pos_y /= 2;
2659 			out_height /= 2;
2660 
2661 			DSSDBG("adjusting for ilace: height %d, pos_y %d, out_height %d\n",
2662 				in_height, pos_y, out_height);
2663 		}
2664 	}
2665 
2666 	if (!dispc_ovl_color_mode_supported(dispc, plane, fourcc))
2667 		return -EINVAL;
2668 
2669 	r = dispc_ovl_calc_scaling(dispc, plane, pclk, lclk, caps, vm, in_width,
2670 				   in_height, out_width, out_height, fourcc,
2671 				   &five_taps, &x_predecim, &y_predecim, pos_x,
2672 				   rotation_type, mem_to_mem);
2673 	if (r)
2674 		return r;
2675 
2676 	in_width = in_width / x_predecim;
2677 	in_height = in_height / y_predecim;
2678 
2679 	if (x_predecim > 1 || y_predecim > 1)
2680 		DSSDBG("predecimation %d x %x, new input size %d x %d\n",
2681 			x_predecim, y_predecim, in_width, in_height);
2682 
2683 	if (format_is_yuv(fourcc) && (in_width & 1)) {
2684 		DSSDBG("predecimated input width is not even for YUV format\n");
2685 		DSSDBG("adjusting input width %d -> %d\n",
2686 			in_width, in_width & ~1);
2687 
2688 		in_width &= ~1;
2689 	}
2690 
2691 	if (format_is_yuv(fourcc))
2692 		cconv = 1;
2693 
2694 	if (ilace && !fieldmode) {
2695 		/*
2696 		 * when downscaling the bottom field may have to start several
2697 		 * source lines below the top field. Unfortunately ACCUI
2698 		 * registers will only hold the fractional part of the offset
2699 		 * so the integer part must be added to the base address of the
2700 		 * bottom field.
2701 		 */
2702 		if (!in_height || in_height == out_height)
2703 			field_offset = 0;
2704 		else
2705 			field_offset = in_height / out_height / 2;
2706 	}
2707 
2708 	/* Fields are independent but interleaved in memory. */
2709 	if (fieldmode)
2710 		field_offset = 1;
2711 
2712 	offset0 = 0;
2713 	offset1 = 0;
2714 	row_inc = 0;
2715 	pix_inc = 0;
2716 
2717 	if (plane == OMAP_DSS_WB) {
2718 		frame_width = out_width;
2719 		frame_height = out_height;
2720 	} else {
2721 		frame_width = in_width;
2722 		frame_height = height;
2723 	}
2724 
2725 	calc_offset(screen_width, frame_width,
2726 			fourcc, fieldmode, field_offset,
2727 			&offset0, &offset1, &row_inc, &pix_inc,
2728 			x_predecim, y_predecim,
2729 			rotation_type, rotation);
2730 
2731 	DSSDBG("offset0 %u, offset1 %u, row_inc %d, pix_inc %d\n",
2732 			offset0, offset1, row_inc, pix_inc);
2733 
2734 	dispc_ovl_set_color_mode(dispc, plane, fourcc);
2735 
2736 	dispc_ovl_configure_burst_type(dispc, plane, rotation_type);
2737 
2738 	if (dispc->feat->reverse_ilace_field_order)
2739 		swap(offset0, offset1);
2740 
2741 	dispc_ovl_set_ba0(dispc, plane, paddr + offset0);
2742 	dispc_ovl_set_ba1(dispc, plane, paddr + offset1);
2743 
2744 	if (fourcc == DRM_FORMAT_NV12) {
2745 		dispc_ovl_set_ba0_uv(dispc, plane, p_uv_addr + offset0);
2746 		dispc_ovl_set_ba1_uv(dispc, plane, p_uv_addr + offset1);
2747 	}
2748 
2749 	if (dispc->feat->last_pixel_inc_missing)
2750 		row_inc += pix_inc - 1;
2751 
2752 	dispc_ovl_set_row_inc(dispc, plane, row_inc);
2753 	dispc_ovl_set_pix_inc(dispc, plane, pix_inc);
2754 
2755 	DSSDBG("%d,%d %dx%d -> %dx%d\n", pos_x, pos_y, in_width,
2756 			in_height, out_width, out_height);
2757 
2758 	dispc_ovl_set_pos(dispc, plane, caps, pos_x, pos_y);
2759 
2760 	dispc_ovl_set_input_size(dispc, plane, in_width, in_height);
2761 
2762 	if (caps & OMAP_DSS_OVL_CAP_SCALE) {
2763 		dispc_ovl_set_scaling(dispc, plane, in_width, in_height,
2764 				      out_width, out_height, ilace, five_taps,
2765 				      fieldmode, fourcc, rotation);
2766 		dispc_ovl_set_output_size(dispc, plane, out_width, out_height);
2767 		dispc_ovl_set_vid_color_conv(dispc, plane, cconv);
2768 	}
2769 
2770 	dispc_ovl_set_rotation_attrs(dispc, plane, rotation, rotation_type,
2771 				     fourcc);
2772 
2773 	dispc_ovl_set_zorder(dispc, plane, caps, zorder);
2774 	dispc_ovl_set_pre_mult_alpha(dispc, plane, caps, pre_mult_alpha);
2775 	dispc_ovl_setup_global_alpha(dispc, plane, caps, global_alpha);
2776 
2777 	dispc_ovl_enable_replication(dispc, plane, caps, replication);
2778 
2779 	return 0;
2780 }
2781 
2782 static int dispc_ovl_setup(struct dispc_device *dispc,
2783 			   enum omap_plane_id plane,
2784 			   const struct omap_overlay_info *oi,
2785 			   const struct videomode *vm, bool mem_to_mem,
2786 			   enum omap_channel channel)
2787 {
2788 	int r;
2789 	enum omap_overlay_caps caps = dispc->feat->overlay_caps[plane];
2790 	const bool replication = true;
2791 
2792 	DSSDBG("dispc_ovl_setup %d, pa %pad, pa_uv %pad, sw %d, %d,%d, %dx%d ->"
2793 		" %dx%d, cmode %x, rot %d, chan %d repl %d\n",
2794 		plane, &oi->paddr, &oi->p_uv_addr, oi->screen_width, oi->pos_x,
2795 		oi->pos_y, oi->width, oi->height, oi->out_width, oi->out_height,
2796 		oi->fourcc, oi->rotation, channel, replication);
2797 
2798 	dispc_ovl_set_channel_out(dispc, plane, channel);
2799 
2800 	r = dispc_ovl_setup_common(dispc, plane, caps, oi->paddr, oi->p_uv_addr,
2801 		oi->screen_width, oi->pos_x, oi->pos_y, oi->width, oi->height,
2802 		oi->out_width, oi->out_height, oi->fourcc, oi->rotation,
2803 		oi->zorder, oi->pre_mult_alpha, oi->global_alpha,
2804 		oi->rotation_type, replication, vm, mem_to_mem);
2805 
2806 	return r;
2807 }
2808 
2809 static int dispc_wb_setup(struct dispc_device *dispc,
2810 		   const struct omap_dss_writeback_info *wi,
2811 		   bool mem_to_mem, const struct videomode *vm,
2812 		   enum dss_writeback_channel channel_in)
2813 {
2814 	int r;
2815 	u32 l;
2816 	enum omap_plane_id plane = OMAP_DSS_WB;
2817 	const int pos_x = 0, pos_y = 0;
2818 	const u8 zorder = 0, global_alpha = 0;
2819 	const bool replication = true;
2820 	bool truncation;
2821 	int in_width = vm->hactive;
2822 	int in_height = vm->vactive;
2823 	enum omap_overlay_caps caps =
2824 		OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA;
2825 
2826 	if (vm->flags & DISPLAY_FLAGS_INTERLACED)
2827 		in_height /= 2;
2828 
2829 	DSSDBG("dispc_wb_setup, pa %x, pa_uv %x, %d,%d -> %dx%d, cmode %x, "
2830 		"rot %d\n", wi->paddr, wi->p_uv_addr, in_width,
2831 		in_height, wi->width, wi->height, wi->fourcc, wi->rotation);
2832 
2833 	r = dispc_ovl_setup_common(dispc, plane, caps, wi->paddr, wi->p_uv_addr,
2834 		wi->buf_width, pos_x, pos_y, in_width, in_height, wi->width,
2835 		wi->height, wi->fourcc, wi->rotation, zorder,
2836 		wi->pre_mult_alpha, global_alpha, wi->rotation_type,
2837 		replication, vm, mem_to_mem);
2838 	if (r)
2839 		return r;
2840 
2841 	switch (wi->fourcc) {
2842 	case DRM_FORMAT_RGB565:
2843 	case DRM_FORMAT_RGB888:
2844 	case DRM_FORMAT_ARGB4444:
2845 	case DRM_FORMAT_RGBA4444:
2846 	case DRM_FORMAT_RGBX4444:
2847 	case DRM_FORMAT_ARGB1555:
2848 	case DRM_FORMAT_XRGB1555:
2849 	case DRM_FORMAT_XRGB4444:
2850 		truncation = true;
2851 		break;
2852 	default:
2853 		truncation = false;
2854 		break;
2855 	}
2856 
2857 	/* setup extra DISPC_WB_ATTRIBUTES */
2858 	l = dispc_read_reg(dispc, DISPC_OVL_ATTRIBUTES(plane));
2859 	l = FLD_MOD(l, truncation, 10, 10);	/* TRUNCATIONENABLE */
2860 	l = FLD_MOD(l, channel_in, 18, 16);	/* CHANNELIN */
2861 	l = FLD_MOD(l, mem_to_mem, 19, 19);	/* WRITEBACKMODE */
2862 	if (mem_to_mem)
2863 		l = FLD_MOD(l, 1, 26, 24);	/* CAPTUREMODE */
2864 	else
2865 		l = FLD_MOD(l, 0, 26, 24);	/* CAPTUREMODE */
2866 	dispc_write_reg(dispc, DISPC_OVL_ATTRIBUTES(plane), l);
2867 
2868 	if (mem_to_mem) {
2869 		/* WBDELAYCOUNT */
2870 		REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES2(plane), 0, 7, 0);
2871 	} else {
2872 		u32 wbdelay;
2873 
2874 		if (channel_in == DSS_WB_TV_MGR)
2875 			wbdelay = vm->vsync_len + vm->vback_porch;
2876 		else
2877 			wbdelay = vm->vfront_porch + vm->vsync_len +
2878 				vm->vback_porch;
2879 
2880 		if (vm->flags & DISPLAY_FLAGS_INTERLACED)
2881 			wbdelay /= 2;
2882 
2883 		wbdelay = min(wbdelay, 255u);
2884 
2885 		/* WBDELAYCOUNT */
2886 		REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES2(plane), wbdelay, 7, 0);
2887 	}
2888 
2889 	return 0;
2890 }
2891 
2892 static bool dispc_has_writeback(struct dispc_device *dispc)
2893 {
2894 	return dispc->feat->has_writeback;
2895 }
2896 
2897 static int dispc_ovl_enable(struct dispc_device *dispc,
2898 			    enum omap_plane_id plane, bool enable)
2899 {
2900 	DSSDBG("dispc_enable_plane %d, %d\n", plane, enable);
2901 
2902 	REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), enable ? 1 : 0, 0, 0);
2903 
2904 	return 0;
2905 }
2906 
2907 static enum omap_dss_output_id
2908 dispc_mgr_get_supported_outputs(struct dispc_device *dispc,
2909 				enum omap_channel channel)
2910 {
2911 	return dss_get_supported_outputs(dispc->dss, channel);
2912 }
2913 
2914 static void dispc_lcd_enable_signal_polarity(struct dispc_device *dispc,
2915 					     bool act_high)
2916 {
2917 	if (!dispc_has_feature(dispc, FEAT_LCDENABLEPOL))
2918 		return;
2919 
2920 	REG_FLD_MOD(dispc, DISPC_CONTROL, act_high ? 1 : 0, 29, 29);
2921 }
2922 
2923 void dispc_lcd_enable_signal(struct dispc_device *dispc, bool enable)
2924 {
2925 	if (!dispc_has_feature(dispc, FEAT_LCDENABLESIGNAL))
2926 		return;
2927 
2928 	REG_FLD_MOD(dispc, DISPC_CONTROL, enable ? 1 : 0, 28, 28);
2929 }
2930 
2931 void dispc_pck_free_enable(struct dispc_device *dispc, bool enable)
2932 {
2933 	if (!dispc_has_feature(dispc, FEAT_PCKFREEENABLE))
2934 		return;
2935 
2936 	REG_FLD_MOD(dispc, DISPC_CONTROL, enable ? 1 : 0, 27, 27);
2937 }
2938 
2939 static void dispc_mgr_enable_fifohandcheck(struct dispc_device *dispc,
2940 					   enum omap_channel channel,
2941 					   bool enable)
2942 {
2943 	mgr_fld_write(dispc, channel, DISPC_MGR_FLD_FIFOHANDCHECK, enable);
2944 }
2945 
2946 
2947 static void dispc_mgr_set_lcd_type_tft(struct dispc_device *dispc,
2948 				       enum omap_channel channel)
2949 {
2950 	mgr_fld_write(dispc, channel, DISPC_MGR_FLD_STNTFT, 1);
2951 }
2952 
2953 static void dispc_set_loadmode(struct dispc_device *dispc,
2954 			       enum omap_dss_load_mode mode)
2955 {
2956 	REG_FLD_MOD(dispc, DISPC_CONFIG, mode, 2, 1);
2957 }
2958 
2959 
2960 static void dispc_mgr_set_default_color(struct dispc_device *dispc,
2961 					enum omap_channel channel, u32 color)
2962 {
2963 	dispc_write_reg(dispc, DISPC_DEFAULT_COLOR(channel), color);
2964 }
2965 
2966 static void dispc_mgr_set_trans_key(struct dispc_device *dispc,
2967 				    enum omap_channel ch,
2968 				    enum omap_dss_trans_key_type type,
2969 				    u32 trans_key)
2970 {
2971 	mgr_fld_write(dispc, ch, DISPC_MGR_FLD_TCKSELECTION, type);
2972 
2973 	dispc_write_reg(dispc, DISPC_TRANS_COLOR(ch), trans_key);
2974 }
2975 
2976 static void dispc_mgr_enable_trans_key(struct dispc_device *dispc,
2977 				       enum omap_channel ch, bool enable)
2978 {
2979 	mgr_fld_write(dispc, ch, DISPC_MGR_FLD_TCKENABLE, enable);
2980 }
2981 
2982 static void dispc_mgr_enable_alpha_fixed_zorder(struct dispc_device *dispc,
2983 						enum omap_channel ch,
2984 						bool enable)
2985 {
2986 	if (!dispc_has_feature(dispc, FEAT_ALPHA_FIXED_ZORDER))
2987 		return;
2988 
2989 	if (ch == OMAP_DSS_CHANNEL_LCD)
2990 		REG_FLD_MOD(dispc, DISPC_CONFIG, enable, 18, 18);
2991 	else if (ch == OMAP_DSS_CHANNEL_DIGIT)
2992 		REG_FLD_MOD(dispc, DISPC_CONFIG, enable, 19, 19);
2993 }
2994 
2995 static void dispc_mgr_setup(struct dispc_device *dispc,
2996 			    enum omap_channel channel,
2997 			    const struct omap_overlay_manager_info *info)
2998 {
2999 	dispc_mgr_set_default_color(dispc, channel, info->default_color);
3000 	dispc_mgr_set_trans_key(dispc, channel, info->trans_key_type,
3001 				info->trans_key);
3002 	dispc_mgr_enable_trans_key(dispc, channel, info->trans_enabled);
3003 	dispc_mgr_enable_alpha_fixed_zorder(dispc, channel,
3004 			info->partial_alpha_enabled);
3005 	if (dispc_has_feature(dispc, FEAT_CPR)) {
3006 		dispc_mgr_enable_cpr(dispc, channel, info->cpr_enable);
3007 		dispc_mgr_set_cpr_coef(dispc, channel, &info->cpr_coefs);
3008 	}
3009 }
3010 
3011 static void dispc_mgr_set_tft_data_lines(struct dispc_device *dispc,
3012 					 enum omap_channel channel,
3013 					 u8 data_lines)
3014 {
3015 	int code;
3016 
3017 	switch (data_lines) {
3018 	case 12:
3019 		code = 0;
3020 		break;
3021 	case 16:
3022 		code = 1;
3023 		break;
3024 	case 18:
3025 		code = 2;
3026 		break;
3027 	case 24:
3028 		code = 3;
3029 		break;
3030 	default:
3031 		BUG();
3032 		return;
3033 	}
3034 
3035 	mgr_fld_write(dispc, channel, DISPC_MGR_FLD_TFTDATALINES, code);
3036 }
3037 
3038 static void dispc_mgr_set_io_pad_mode(struct dispc_device *dispc,
3039 				      enum dss_io_pad_mode mode)
3040 {
3041 	u32 l;
3042 	int gpout0, gpout1;
3043 
3044 	switch (mode) {
3045 	case DSS_IO_PAD_MODE_RESET:
3046 		gpout0 = 0;
3047 		gpout1 = 0;
3048 		break;
3049 	case DSS_IO_PAD_MODE_RFBI:
3050 		gpout0 = 1;
3051 		gpout1 = 0;
3052 		break;
3053 	case DSS_IO_PAD_MODE_BYPASS:
3054 		gpout0 = 1;
3055 		gpout1 = 1;
3056 		break;
3057 	default:
3058 		BUG();
3059 		return;
3060 	}
3061 
3062 	l = dispc_read_reg(dispc, DISPC_CONTROL);
3063 	l = FLD_MOD(l, gpout0, 15, 15);
3064 	l = FLD_MOD(l, gpout1, 16, 16);
3065 	dispc_write_reg(dispc, DISPC_CONTROL, l);
3066 }
3067 
3068 static void dispc_mgr_enable_stallmode(struct dispc_device *dispc,
3069 				       enum omap_channel channel, bool enable)
3070 {
3071 	mgr_fld_write(dispc, channel, DISPC_MGR_FLD_STALLMODE, enable);
3072 }
3073 
3074 static void dispc_mgr_set_lcd_config(struct dispc_device *dispc,
3075 				     enum omap_channel channel,
3076 				     const struct dss_lcd_mgr_config *config)
3077 {
3078 	dispc_mgr_set_io_pad_mode(dispc, config->io_pad_mode);
3079 
3080 	dispc_mgr_enable_stallmode(dispc, channel, config->stallmode);
3081 	dispc_mgr_enable_fifohandcheck(dispc, channel, config->fifohandcheck);
3082 
3083 	dispc_mgr_set_clock_div(dispc, channel, &config->clock_info);
3084 
3085 	dispc_mgr_set_tft_data_lines(dispc, channel, config->video_port_width);
3086 
3087 	dispc_lcd_enable_signal_polarity(dispc, config->lcden_sig_polarity);
3088 
3089 	dispc_mgr_set_lcd_type_tft(dispc, channel);
3090 }
3091 
3092 static bool _dispc_mgr_size_ok(struct dispc_device *dispc,
3093 			       u16 width, u16 height)
3094 {
3095 	return width <= dispc->feat->mgr_width_max &&
3096 		height <= dispc->feat->mgr_height_max;
3097 }
3098 
3099 static bool _dispc_lcd_timings_ok(struct dispc_device *dispc,
3100 				  int hsync_len, int hfp, int hbp,
3101 				  int vsw, int vfp, int vbp)
3102 {
3103 	if (hsync_len < 1 || hsync_len > dispc->feat->sw_max ||
3104 	    hfp < 1 || hfp > dispc->feat->hp_max ||
3105 	    hbp < 1 || hbp > dispc->feat->hp_max ||
3106 	    vsw < 1 || vsw > dispc->feat->sw_max ||
3107 	    vfp < 0 || vfp > dispc->feat->vp_max ||
3108 	    vbp < 0 || vbp > dispc->feat->vp_max)
3109 		return false;
3110 	return true;
3111 }
3112 
3113 static bool _dispc_mgr_pclk_ok(struct dispc_device *dispc,
3114 			       enum omap_channel channel,
3115 			       unsigned long pclk)
3116 {
3117 	if (dss_mgr_is_lcd(channel))
3118 		return pclk <= dispc->feat->max_lcd_pclk;
3119 	else
3120 		return pclk <= dispc->feat->max_tv_pclk;
3121 }
3122 
3123 bool dispc_mgr_timings_ok(struct dispc_device *dispc, enum omap_channel channel,
3124 			  const struct videomode *vm)
3125 {
3126 	if (!_dispc_mgr_size_ok(dispc, vm->hactive, vm->vactive))
3127 		return false;
3128 
3129 	if (!_dispc_mgr_pclk_ok(dispc, channel, vm->pixelclock))
3130 		return false;
3131 
3132 	if (dss_mgr_is_lcd(channel)) {
3133 		/* TODO: OMAP4+ supports interlace for LCD outputs */
3134 		if (vm->flags & DISPLAY_FLAGS_INTERLACED)
3135 			return false;
3136 
3137 		if (!_dispc_lcd_timings_ok(dispc, vm->hsync_len,
3138 				vm->hfront_porch, vm->hback_porch,
3139 				vm->vsync_len, vm->vfront_porch,
3140 				vm->vback_porch))
3141 			return false;
3142 	}
3143 
3144 	return true;
3145 }
3146 
3147 static void _dispc_mgr_set_lcd_timings(struct dispc_device *dispc,
3148 				       enum omap_channel channel,
3149 				       const struct videomode *vm)
3150 {
3151 	u32 timing_h, timing_v, l;
3152 	bool onoff, rf, ipc, vs, hs, de;
3153 
3154 	timing_h = FLD_VAL(vm->hsync_len - 1, dispc->feat->sw_start, 0) |
3155 		   FLD_VAL(vm->hfront_porch - 1, dispc->feat->fp_start, 8) |
3156 		   FLD_VAL(vm->hback_porch - 1, dispc->feat->bp_start, 20);
3157 	timing_v = FLD_VAL(vm->vsync_len - 1, dispc->feat->sw_start, 0) |
3158 		   FLD_VAL(vm->vfront_porch, dispc->feat->fp_start, 8) |
3159 		   FLD_VAL(vm->vback_porch, dispc->feat->bp_start, 20);
3160 
3161 	dispc_write_reg(dispc, DISPC_TIMING_H(channel), timing_h);
3162 	dispc_write_reg(dispc, DISPC_TIMING_V(channel), timing_v);
3163 
3164 	if (vm->flags & DISPLAY_FLAGS_VSYNC_HIGH)
3165 		vs = false;
3166 	else
3167 		vs = true;
3168 
3169 	if (vm->flags & DISPLAY_FLAGS_HSYNC_HIGH)
3170 		hs = false;
3171 	else
3172 		hs = true;
3173 
3174 	if (vm->flags & DISPLAY_FLAGS_DE_HIGH)
3175 		de = false;
3176 	else
3177 		de = true;
3178 
3179 	if (vm->flags & DISPLAY_FLAGS_PIXDATA_POSEDGE)
3180 		ipc = false;
3181 	else
3182 		ipc = true;
3183 
3184 	/* always use the 'rf' setting */
3185 	onoff = true;
3186 
3187 	if (vm->flags & DISPLAY_FLAGS_SYNC_POSEDGE)
3188 		rf = true;
3189 	else
3190 		rf = false;
3191 
3192 	l = FLD_VAL(onoff, 17, 17) |
3193 		FLD_VAL(rf, 16, 16) |
3194 		FLD_VAL(de, 15, 15) |
3195 		FLD_VAL(ipc, 14, 14) |
3196 		FLD_VAL(hs, 13, 13) |
3197 		FLD_VAL(vs, 12, 12);
3198 
3199 	/* always set ALIGN bit when available */
3200 	if (dispc->feat->supports_sync_align)
3201 		l |= (1 << 18);
3202 
3203 	dispc_write_reg(dispc, DISPC_POL_FREQ(channel), l);
3204 
3205 	if (dispc->syscon_pol) {
3206 		const int shifts[] = {
3207 			[OMAP_DSS_CHANNEL_LCD] = 0,
3208 			[OMAP_DSS_CHANNEL_LCD2] = 1,
3209 			[OMAP_DSS_CHANNEL_LCD3] = 2,
3210 		};
3211 
3212 		u32 mask, val;
3213 
3214 		mask = (1 << 0) | (1 << 3) | (1 << 6);
3215 		val = (rf << 0) | (ipc << 3) | (onoff << 6);
3216 
3217 		mask <<= 16 + shifts[channel];
3218 		val <<= 16 + shifts[channel];
3219 
3220 		regmap_update_bits(dispc->syscon_pol, dispc->syscon_pol_offset,
3221 				   mask, val);
3222 	}
3223 }
3224 
3225 static int vm_flag_to_int(enum display_flags flags, enum display_flags high,
3226 	enum display_flags low)
3227 {
3228 	if (flags & high)
3229 		return 1;
3230 	if (flags & low)
3231 		return -1;
3232 	return 0;
3233 }
3234 
3235 /* change name to mode? */
3236 static void dispc_mgr_set_timings(struct dispc_device *dispc,
3237 				  enum omap_channel channel,
3238 				  const struct videomode *vm)
3239 {
3240 	unsigned int xtot, ytot;
3241 	unsigned long ht, vt;
3242 	struct videomode t = *vm;
3243 
3244 	DSSDBG("channel %d xres %u yres %u\n", channel, t.hactive, t.vactive);
3245 
3246 	if (!dispc_mgr_timings_ok(dispc, channel, &t)) {
3247 		BUG();
3248 		return;
3249 	}
3250 
3251 	if (dss_mgr_is_lcd(channel)) {
3252 		_dispc_mgr_set_lcd_timings(dispc, channel, &t);
3253 
3254 		xtot = t.hactive + t.hfront_porch + t.hsync_len + t.hback_porch;
3255 		ytot = t.vactive + t.vfront_porch + t.vsync_len + t.vback_porch;
3256 
3257 		ht = vm->pixelclock / xtot;
3258 		vt = vm->pixelclock / xtot / ytot;
3259 
3260 		DSSDBG("pck %lu\n", vm->pixelclock);
3261 		DSSDBG("hsync_len %d hfp %d hbp %d vsw %d vfp %d vbp %d\n",
3262 			t.hsync_len, t.hfront_porch, t.hback_porch,
3263 			t.vsync_len, t.vfront_porch, t.vback_porch);
3264 		DSSDBG("vsync_level %d hsync_level %d data_pclk_edge %d de_level %d sync_pclk_edge %d\n",
3265 			vm_flag_to_int(t.flags, DISPLAY_FLAGS_VSYNC_HIGH, DISPLAY_FLAGS_VSYNC_LOW),
3266 			vm_flag_to_int(t.flags, DISPLAY_FLAGS_HSYNC_HIGH, DISPLAY_FLAGS_HSYNC_LOW),
3267 			vm_flag_to_int(t.flags, DISPLAY_FLAGS_PIXDATA_POSEDGE, DISPLAY_FLAGS_PIXDATA_NEGEDGE),
3268 			vm_flag_to_int(t.flags, DISPLAY_FLAGS_DE_HIGH, DISPLAY_FLAGS_DE_LOW),
3269 			vm_flag_to_int(t.flags, DISPLAY_FLAGS_SYNC_POSEDGE, DISPLAY_FLAGS_SYNC_NEGEDGE));
3270 
3271 		DSSDBG("hsync %luHz, vsync %luHz\n", ht, vt);
3272 	} else {
3273 		if (t.flags & DISPLAY_FLAGS_INTERLACED)
3274 			t.vactive /= 2;
3275 
3276 		if (dispc->feat->supports_double_pixel)
3277 			REG_FLD_MOD(dispc, DISPC_CONTROL,
3278 				    !!(t.flags & DISPLAY_FLAGS_DOUBLECLK),
3279 				    19, 17);
3280 	}
3281 
3282 	dispc_mgr_set_size(dispc, channel, t.hactive, t.vactive);
3283 }
3284 
3285 static void dispc_mgr_set_lcd_divisor(struct dispc_device *dispc,
3286 				      enum omap_channel channel, u16 lck_div,
3287 				      u16 pck_div)
3288 {
3289 	BUG_ON(lck_div < 1);
3290 	BUG_ON(pck_div < 1);
3291 
3292 	dispc_write_reg(dispc, DISPC_DIVISORo(channel),
3293 			FLD_VAL(lck_div, 23, 16) | FLD_VAL(pck_div, 7, 0));
3294 
3295 	if (!dispc_has_feature(dispc, FEAT_CORE_CLK_DIV) &&
3296 			channel == OMAP_DSS_CHANNEL_LCD)
3297 		dispc->core_clk_rate = dispc_fclk_rate(dispc) / lck_div;
3298 }
3299 
3300 static void dispc_mgr_get_lcd_divisor(struct dispc_device *dispc,
3301 				      enum omap_channel channel, int *lck_div,
3302 				      int *pck_div)
3303 {
3304 	u32 l;
3305 	l = dispc_read_reg(dispc, DISPC_DIVISORo(channel));
3306 	*lck_div = FLD_GET(l, 23, 16);
3307 	*pck_div = FLD_GET(l, 7, 0);
3308 }
3309 
3310 static unsigned long dispc_fclk_rate(struct dispc_device *dispc)
3311 {
3312 	unsigned long r;
3313 	enum dss_clk_source src;
3314 
3315 	src = dss_get_dispc_clk_source(dispc->dss);
3316 
3317 	if (src == DSS_CLK_SRC_FCK) {
3318 		r = dss_get_dispc_clk_rate(dispc->dss);
3319 	} else {
3320 		struct dss_pll *pll;
3321 		unsigned int clkout_idx;
3322 
3323 		pll = dss_pll_find_by_src(dispc->dss, src);
3324 		clkout_idx = dss_pll_get_clkout_idx_for_src(src);
3325 
3326 		r = pll->cinfo.clkout[clkout_idx];
3327 	}
3328 
3329 	return r;
3330 }
3331 
3332 static unsigned long dispc_mgr_lclk_rate(struct dispc_device *dispc,
3333 					 enum omap_channel channel)
3334 {
3335 	int lcd;
3336 	unsigned long r;
3337 	enum dss_clk_source src;
3338 
3339 	/* for TV, LCLK rate is the FCLK rate */
3340 	if (!dss_mgr_is_lcd(channel))
3341 		return dispc_fclk_rate(dispc);
3342 
3343 	src = dss_get_lcd_clk_source(dispc->dss, channel);
3344 
3345 	if (src == DSS_CLK_SRC_FCK) {
3346 		r = dss_get_dispc_clk_rate(dispc->dss);
3347 	} else {
3348 		struct dss_pll *pll;
3349 		unsigned int clkout_idx;
3350 
3351 		pll = dss_pll_find_by_src(dispc->dss, src);
3352 		clkout_idx = dss_pll_get_clkout_idx_for_src(src);
3353 
3354 		r = pll->cinfo.clkout[clkout_idx];
3355 	}
3356 
3357 	lcd = REG_GET(dispc, DISPC_DIVISORo(channel), 23, 16);
3358 
3359 	return r / lcd;
3360 }
3361 
3362 static unsigned long dispc_mgr_pclk_rate(struct dispc_device *dispc,
3363 					 enum omap_channel channel)
3364 {
3365 	unsigned long r;
3366 
3367 	if (dss_mgr_is_lcd(channel)) {
3368 		int pcd;
3369 		u32 l;
3370 
3371 		l = dispc_read_reg(dispc, DISPC_DIVISORo(channel));
3372 
3373 		pcd = FLD_GET(l, 7, 0);
3374 
3375 		r = dispc_mgr_lclk_rate(dispc, channel);
3376 
3377 		return r / pcd;
3378 	} else {
3379 		return dispc->tv_pclk_rate;
3380 	}
3381 }
3382 
3383 void dispc_set_tv_pclk(struct dispc_device *dispc, unsigned long pclk)
3384 {
3385 	dispc->tv_pclk_rate = pclk;
3386 }
3387 
3388 static unsigned long dispc_core_clk_rate(struct dispc_device *dispc)
3389 {
3390 	return dispc->core_clk_rate;
3391 }
3392 
3393 static unsigned long dispc_plane_pclk_rate(struct dispc_device *dispc,
3394 					   enum omap_plane_id plane)
3395 {
3396 	enum omap_channel channel;
3397 
3398 	if (plane == OMAP_DSS_WB)
3399 		return 0;
3400 
3401 	channel = dispc_ovl_get_channel_out(dispc, plane);
3402 
3403 	return dispc_mgr_pclk_rate(dispc, channel);
3404 }
3405 
3406 static unsigned long dispc_plane_lclk_rate(struct dispc_device *dispc,
3407 					   enum omap_plane_id plane)
3408 {
3409 	enum omap_channel channel;
3410 
3411 	if (plane == OMAP_DSS_WB)
3412 		return 0;
3413 
3414 	channel	= dispc_ovl_get_channel_out(dispc, plane);
3415 
3416 	return dispc_mgr_lclk_rate(dispc, channel);
3417 }
3418 
3419 static void dispc_dump_clocks_channel(struct dispc_device *dispc,
3420 				      struct seq_file *s,
3421 				      enum omap_channel channel)
3422 {
3423 	int lcd, pcd;
3424 	enum dss_clk_source lcd_clk_src;
3425 
3426 	seq_printf(s, "- %s -\n", mgr_desc[channel].name);
3427 
3428 	lcd_clk_src = dss_get_lcd_clk_source(dispc->dss, channel);
3429 
3430 	seq_printf(s, "%s clk source = %s\n", mgr_desc[channel].name,
3431 		dss_get_clk_source_name(lcd_clk_src));
3432 
3433 	dispc_mgr_get_lcd_divisor(dispc, channel, &lcd, &pcd);
3434 
3435 	seq_printf(s, "lck\t\t%-16lulck div\t%u\n",
3436 		dispc_mgr_lclk_rate(dispc, channel), lcd);
3437 	seq_printf(s, "pck\t\t%-16lupck div\t%u\n",
3438 		dispc_mgr_pclk_rate(dispc, channel), pcd);
3439 }
3440 
3441 void dispc_dump_clocks(struct dispc_device *dispc, struct seq_file *s)
3442 {
3443 	enum dss_clk_source dispc_clk_src;
3444 	int lcd;
3445 	u32 l;
3446 
3447 	if (dispc_runtime_get(dispc))
3448 		return;
3449 
3450 	seq_printf(s, "- DISPC -\n");
3451 
3452 	dispc_clk_src = dss_get_dispc_clk_source(dispc->dss);
3453 	seq_printf(s, "dispc fclk source = %s\n",
3454 			dss_get_clk_source_name(dispc_clk_src));
3455 
3456 	seq_printf(s, "fck\t\t%-16lu\n", dispc_fclk_rate(dispc));
3457 
3458 	if (dispc_has_feature(dispc, FEAT_CORE_CLK_DIV)) {
3459 		seq_printf(s, "- DISPC-CORE-CLK -\n");
3460 		l = dispc_read_reg(dispc, DISPC_DIVISOR);
3461 		lcd = FLD_GET(l, 23, 16);
3462 
3463 		seq_printf(s, "lck\t\t%-16lulck div\t%u\n",
3464 				(dispc_fclk_rate(dispc)/lcd), lcd);
3465 	}
3466 
3467 	dispc_dump_clocks_channel(dispc, s, OMAP_DSS_CHANNEL_LCD);
3468 
3469 	if (dispc_has_feature(dispc, FEAT_MGR_LCD2))
3470 		dispc_dump_clocks_channel(dispc, s, OMAP_DSS_CHANNEL_LCD2);
3471 	if (dispc_has_feature(dispc, FEAT_MGR_LCD3))
3472 		dispc_dump_clocks_channel(dispc, s, OMAP_DSS_CHANNEL_LCD3);
3473 
3474 	dispc_runtime_put(dispc);
3475 }
3476 
3477 static int dispc_dump_regs(struct seq_file *s, void *p)
3478 {
3479 	struct dispc_device *dispc = s->private;
3480 	int i, j;
3481 	const char *mgr_names[] = {
3482 		[OMAP_DSS_CHANNEL_LCD]		= "LCD",
3483 		[OMAP_DSS_CHANNEL_DIGIT]	= "TV",
3484 		[OMAP_DSS_CHANNEL_LCD2]		= "LCD2",
3485 		[OMAP_DSS_CHANNEL_LCD3]		= "LCD3",
3486 	};
3487 	const char *ovl_names[] = {
3488 		[OMAP_DSS_GFX]		= "GFX",
3489 		[OMAP_DSS_VIDEO1]	= "VID1",
3490 		[OMAP_DSS_VIDEO2]	= "VID2",
3491 		[OMAP_DSS_VIDEO3]	= "VID3",
3492 		[OMAP_DSS_WB]		= "WB",
3493 	};
3494 	const char **p_names;
3495 
3496 #define DUMPREG(dispc, r) \
3497 	seq_printf(s, "%-50s %08x\n", #r, dispc_read_reg(dispc, r))
3498 
3499 	if (dispc_runtime_get(dispc))
3500 		return 0;
3501 
3502 	/* DISPC common registers */
3503 	DUMPREG(dispc, DISPC_REVISION);
3504 	DUMPREG(dispc, DISPC_SYSCONFIG);
3505 	DUMPREG(dispc, DISPC_SYSSTATUS);
3506 	DUMPREG(dispc, DISPC_IRQSTATUS);
3507 	DUMPREG(dispc, DISPC_IRQENABLE);
3508 	DUMPREG(dispc, DISPC_CONTROL);
3509 	DUMPREG(dispc, DISPC_CONFIG);
3510 	DUMPREG(dispc, DISPC_CAPABLE);
3511 	DUMPREG(dispc, DISPC_LINE_STATUS);
3512 	DUMPREG(dispc, DISPC_LINE_NUMBER);
3513 	if (dispc_has_feature(dispc, FEAT_ALPHA_FIXED_ZORDER) ||
3514 			dispc_has_feature(dispc, FEAT_ALPHA_FREE_ZORDER))
3515 		DUMPREG(dispc, DISPC_GLOBAL_ALPHA);
3516 	if (dispc_has_feature(dispc, FEAT_MGR_LCD2)) {
3517 		DUMPREG(dispc, DISPC_CONTROL2);
3518 		DUMPREG(dispc, DISPC_CONFIG2);
3519 	}
3520 	if (dispc_has_feature(dispc, FEAT_MGR_LCD3)) {
3521 		DUMPREG(dispc, DISPC_CONTROL3);
3522 		DUMPREG(dispc, DISPC_CONFIG3);
3523 	}
3524 	if (dispc_has_feature(dispc, FEAT_MFLAG))
3525 		DUMPREG(dispc, DISPC_GLOBAL_MFLAG_ATTRIBUTE);
3526 
3527 #undef DUMPREG
3528 
3529 #define DISPC_REG(i, name) name(i)
3530 #define DUMPREG(dispc, i, r) seq_printf(s, "%s(%s)%*s %08x\n", #r, p_names[i], \
3531 	(int)(48 - strlen(#r) - strlen(p_names[i])), " ", \
3532 	dispc_read_reg(dispc, DISPC_REG(i, r)))
3533 
3534 	p_names = mgr_names;
3535 
3536 	/* DISPC channel specific registers */
3537 	for (i = 0; i < dispc_get_num_mgrs(dispc); i++) {
3538 		DUMPREG(dispc, i, DISPC_DEFAULT_COLOR);
3539 		DUMPREG(dispc, i, DISPC_TRANS_COLOR);
3540 		DUMPREG(dispc, i, DISPC_SIZE_MGR);
3541 
3542 		if (i == OMAP_DSS_CHANNEL_DIGIT)
3543 			continue;
3544 
3545 		DUMPREG(dispc, i, DISPC_TIMING_H);
3546 		DUMPREG(dispc, i, DISPC_TIMING_V);
3547 		DUMPREG(dispc, i, DISPC_POL_FREQ);
3548 		DUMPREG(dispc, i, DISPC_DIVISORo);
3549 
3550 		DUMPREG(dispc, i, DISPC_DATA_CYCLE1);
3551 		DUMPREG(dispc, i, DISPC_DATA_CYCLE2);
3552 		DUMPREG(dispc, i, DISPC_DATA_CYCLE3);
3553 
3554 		if (dispc_has_feature(dispc, FEAT_CPR)) {
3555 			DUMPREG(dispc, i, DISPC_CPR_COEF_R);
3556 			DUMPREG(dispc, i, DISPC_CPR_COEF_G);
3557 			DUMPREG(dispc, i, DISPC_CPR_COEF_B);
3558 		}
3559 	}
3560 
3561 	p_names = ovl_names;
3562 
3563 	for (i = 0; i < dispc_get_num_ovls(dispc); i++) {
3564 		DUMPREG(dispc, i, DISPC_OVL_BA0);
3565 		DUMPREG(dispc, i, DISPC_OVL_BA1);
3566 		DUMPREG(dispc, i, DISPC_OVL_POSITION);
3567 		DUMPREG(dispc, i, DISPC_OVL_SIZE);
3568 		DUMPREG(dispc, i, DISPC_OVL_ATTRIBUTES);
3569 		DUMPREG(dispc, i, DISPC_OVL_FIFO_THRESHOLD);
3570 		DUMPREG(dispc, i, DISPC_OVL_FIFO_SIZE_STATUS);
3571 		DUMPREG(dispc, i, DISPC_OVL_ROW_INC);
3572 		DUMPREG(dispc, i, DISPC_OVL_PIXEL_INC);
3573 
3574 		if (dispc_has_feature(dispc, FEAT_PRELOAD))
3575 			DUMPREG(dispc, i, DISPC_OVL_PRELOAD);
3576 		if (dispc_has_feature(dispc, FEAT_MFLAG))
3577 			DUMPREG(dispc, i, DISPC_OVL_MFLAG_THRESHOLD);
3578 
3579 		if (i == OMAP_DSS_GFX) {
3580 			DUMPREG(dispc, i, DISPC_OVL_WINDOW_SKIP);
3581 			DUMPREG(dispc, i, DISPC_OVL_TABLE_BA);
3582 			continue;
3583 		}
3584 
3585 		DUMPREG(dispc, i, DISPC_OVL_FIR);
3586 		DUMPREG(dispc, i, DISPC_OVL_PICTURE_SIZE);
3587 		DUMPREG(dispc, i, DISPC_OVL_ACCU0);
3588 		DUMPREG(dispc, i, DISPC_OVL_ACCU1);
3589 		if (dispc_has_feature(dispc, FEAT_HANDLE_UV_SEPARATE)) {
3590 			DUMPREG(dispc, i, DISPC_OVL_BA0_UV);
3591 			DUMPREG(dispc, i, DISPC_OVL_BA1_UV);
3592 			DUMPREG(dispc, i, DISPC_OVL_FIR2);
3593 			DUMPREG(dispc, i, DISPC_OVL_ACCU2_0);
3594 			DUMPREG(dispc, i, DISPC_OVL_ACCU2_1);
3595 		}
3596 		if (dispc_has_feature(dispc, FEAT_ATTR2))
3597 			DUMPREG(dispc, i, DISPC_OVL_ATTRIBUTES2);
3598 	}
3599 
3600 	if (dispc->feat->has_writeback) {
3601 		i = OMAP_DSS_WB;
3602 		DUMPREG(dispc, i, DISPC_OVL_BA0);
3603 		DUMPREG(dispc, i, DISPC_OVL_BA1);
3604 		DUMPREG(dispc, i, DISPC_OVL_SIZE);
3605 		DUMPREG(dispc, i, DISPC_OVL_ATTRIBUTES);
3606 		DUMPREG(dispc, i, DISPC_OVL_FIFO_THRESHOLD);
3607 		DUMPREG(dispc, i, DISPC_OVL_FIFO_SIZE_STATUS);
3608 		DUMPREG(dispc, i, DISPC_OVL_ROW_INC);
3609 		DUMPREG(dispc, i, DISPC_OVL_PIXEL_INC);
3610 
3611 		if (dispc_has_feature(dispc, FEAT_MFLAG))
3612 			DUMPREG(dispc, i, DISPC_OVL_MFLAG_THRESHOLD);
3613 
3614 		DUMPREG(dispc, i, DISPC_OVL_FIR);
3615 		DUMPREG(dispc, i, DISPC_OVL_PICTURE_SIZE);
3616 		DUMPREG(dispc, i, DISPC_OVL_ACCU0);
3617 		DUMPREG(dispc, i, DISPC_OVL_ACCU1);
3618 		if (dispc_has_feature(dispc, FEAT_HANDLE_UV_SEPARATE)) {
3619 			DUMPREG(dispc, i, DISPC_OVL_BA0_UV);
3620 			DUMPREG(dispc, i, DISPC_OVL_BA1_UV);
3621 			DUMPREG(dispc, i, DISPC_OVL_FIR2);
3622 			DUMPREG(dispc, i, DISPC_OVL_ACCU2_0);
3623 			DUMPREG(dispc, i, DISPC_OVL_ACCU2_1);
3624 		}
3625 		if (dispc_has_feature(dispc, FEAT_ATTR2))
3626 			DUMPREG(dispc, i, DISPC_OVL_ATTRIBUTES2);
3627 	}
3628 
3629 #undef DISPC_REG
3630 #undef DUMPREG
3631 
3632 #define DISPC_REG(plane, name, i) name(plane, i)
3633 #define DUMPREG(dispc, plane, name, i) \
3634 	seq_printf(s, "%s_%d(%s)%*s %08x\n", #name, i, p_names[plane], \
3635 	(int)(46 - strlen(#name) - strlen(p_names[plane])), " ", \
3636 	dispc_read_reg(dispc, DISPC_REG(plane, name, i)))
3637 
3638 	/* Video pipeline coefficient registers */
3639 
3640 	/* start from OMAP_DSS_VIDEO1 */
3641 	for (i = 1; i < dispc_get_num_ovls(dispc); i++) {
3642 		for (j = 0; j < 8; j++)
3643 			DUMPREG(dispc, i, DISPC_OVL_FIR_COEF_H, j);
3644 
3645 		for (j = 0; j < 8; j++)
3646 			DUMPREG(dispc, i, DISPC_OVL_FIR_COEF_HV, j);
3647 
3648 		for (j = 0; j < 5; j++)
3649 			DUMPREG(dispc, i, DISPC_OVL_CONV_COEF, j);
3650 
3651 		if (dispc_has_feature(dispc, FEAT_FIR_COEF_V)) {
3652 			for (j = 0; j < 8; j++)
3653 				DUMPREG(dispc, i, DISPC_OVL_FIR_COEF_V, j);
3654 		}
3655 
3656 		if (dispc_has_feature(dispc, FEAT_HANDLE_UV_SEPARATE)) {
3657 			for (j = 0; j < 8; j++)
3658 				DUMPREG(dispc, i, DISPC_OVL_FIR_COEF_H2, j);
3659 
3660 			for (j = 0; j < 8; j++)
3661 				DUMPREG(dispc, i, DISPC_OVL_FIR_COEF_HV2, j);
3662 
3663 			for (j = 0; j < 8; j++)
3664 				DUMPREG(dispc, i, DISPC_OVL_FIR_COEF_V2, j);
3665 		}
3666 	}
3667 
3668 	dispc_runtime_put(dispc);
3669 
3670 #undef DISPC_REG
3671 #undef DUMPREG
3672 
3673 	return 0;
3674 }
3675 
3676 /* calculate clock rates using dividers in cinfo */
3677 int dispc_calc_clock_rates(struct dispc_device *dispc,
3678 			   unsigned long dispc_fclk_rate,
3679 			   struct dispc_clock_info *cinfo)
3680 {
3681 	if (cinfo->lck_div > 255 || cinfo->lck_div == 0)
3682 		return -EINVAL;
3683 	if (cinfo->pck_div < 1 || cinfo->pck_div > 255)
3684 		return -EINVAL;
3685 
3686 	cinfo->lck = dispc_fclk_rate / cinfo->lck_div;
3687 	cinfo->pck = cinfo->lck / cinfo->pck_div;
3688 
3689 	return 0;
3690 }
3691 
3692 bool dispc_div_calc(struct dispc_device *dispc, unsigned long dispc_freq,
3693 		    unsigned long pck_min, unsigned long pck_max,
3694 		    dispc_div_calc_func func, void *data)
3695 {
3696 	int lckd, lckd_start, lckd_stop;
3697 	int pckd, pckd_start, pckd_stop;
3698 	unsigned long pck, lck;
3699 	unsigned long lck_max;
3700 	unsigned long pckd_hw_min, pckd_hw_max;
3701 	unsigned int min_fck_per_pck;
3702 	unsigned long fck;
3703 
3704 #ifdef CONFIG_OMAP2_DSS_MIN_FCK_PER_PCK
3705 	min_fck_per_pck = CONFIG_OMAP2_DSS_MIN_FCK_PER_PCK;
3706 #else
3707 	min_fck_per_pck = 0;
3708 #endif
3709 
3710 	pckd_hw_min = dispc->feat->min_pcd;
3711 	pckd_hw_max = 255;
3712 
3713 	lck_max = dss_get_max_fck_rate(dispc->dss);
3714 
3715 	pck_min = pck_min ? pck_min : 1;
3716 	pck_max = pck_max ? pck_max : ULONG_MAX;
3717 
3718 	lckd_start = max(DIV_ROUND_UP(dispc_freq, lck_max), 1ul);
3719 	lckd_stop = min(dispc_freq / pck_min, 255ul);
3720 
3721 	for (lckd = lckd_start; lckd <= lckd_stop; ++lckd) {
3722 		lck = dispc_freq / lckd;
3723 
3724 		pckd_start = max(DIV_ROUND_UP(lck, pck_max), pckd_hw_min);
3725 		pckd_stop = min(lck / pck_min, pckd_hw_max);
3726 
3727 		for (pckd = pckd_start; pckd <= pckd_stop; ++pckd) {
3728 			pck = lck / pckd;
3729 
3730 			/*
3731 			 * For OMAP2/3 the DISPC fclk is the same as LCD's logic
3732 			 * clock, which means we're configuring DISPC fclk here
3733 			 * also. Thus we need to use the calculated lck. For
3734 			 * OMAP4+ the DISPC fclk is a separate clock.
3735 			 */
3736 			if (dispc_has_feature(dispc, FEAT_CORE_CLK_DIV))
3737 				fck = dispc_core_clk_rate(dispc);
3738 			else
3739 				fck = lck;
3740 
3741 			if (fck < pck * min_fck_per_pck)
3742 				continue;
3743 
3744 			if (func(lckd, pckd, lck, pck, data))
3745 				return true;
3746 		}
3747 	}
3748 
3749 	return false;
3750 }
3751 
3752 void dispc_mgr_set_clock_div(struct dispc_device *dispc,
3753 			     enum omap_channel channel,
3754 			     const struct dispc_clock_info *cinfo)
3755 {
3756 	DSSDBG("lck = %lu (%u)\n", cinfo->lck, cinfo->lck_div);
3757 	DSSDBG("pck = %lu (%u)\n", cinfo->pck, cinfo->pck_div);
3758 
3759 	dispc_mgr_set_lcd_divisor(dispc, channel, cinfo->lck_div,
3760 				  cinfo->pck_div);
3761 }
3762 
3763 int dispc_mgr_get_clock_div(struct dispc_device *dispc,
3764 			    enum omap_channel channel,
3765 			    struct dispc_clock_info *cinfo)
3766 {
3767 	unsigned long fck;
3768 
3769 	fck = dispc_fclk_rate(dispc);
3770 
3771 	cinfo->lck_div = REG_GET(dispc, DISPC_DIVISORo(channel), 23, 16);
3772 	cinfo->pck_div = REG_GET(dispc, DISPC_DIVISORo(channel), 7, 0);
3773 
3774 	cinfo->lck = fck / cinfo->lck_div;
3775 	cinfo->pck = cinfo->lck / cinfo->pck_div;
3776 
3777 	return 0;
3778 }
3779 
3780 static u32 dispc_read_irqstatus(struct dispc_device *dispc)
3781 {
3782 	return dispc_read_reg(dispc, DISPC_IRQSTATUS);
3783 }
3784 
3785 static void dispc_clear_irqstatus(struct dispc_device *dispc, u32 mask)
3786 {
3787 	dispc_write_reg(dispc, DISPC_IRQSTATUS, mask);
3788 }
3789 
3790 static void dispc_write_irqenable(struct dispc_device *dispc, u32 mask)
3791 {
3792 	u32 old_mask = dispc_read_reg(dispc, DISPC_IRQENABLE);
3793 
3794 	/* clear the irqstatus for newly enabled irqs */
3795 	dispc_clear_irqstatus(dispc, (mask ^ old_mask) & mask);
3796 
3797 	dispc_write_reg(dispc, DISPC_IRQENABLE, mask);
3798 
3799 	/* flush posted write */
3800 	dispc_read_reg(dispc, DISPC_IRQENABLE);
3801 }
3802 
3803 void dispc_enable_sidle(struct dispc_device *dispc)
3804 {
3805 	/* SIDLEMODE: smart idle */
3806 	REG_FLD_MOD(dispc, DISPC_SYSCONFIG, 2, 4, 3);
3807 }
3808 
3809 void dispc_disable_sidle(struct dispc_device *dispc)
3810 {
3811 	REG_FLD_MOD(dispc, DISPC_SYSCONFIG, 1, 4, 3);	/* SIDLEMODE: no idle */
3812 }
3813 
3814 static u32 dispc_mgr_gamma_size(struct dispc_device *dispc,
3815 				enum omap_channel channel)
3816 {
3817 	const struct dispc_gamma_desc *gdesc = &mgr_desc[channel].gamma;
3818 
3819 	if (!dispc->feat->has_gamma_table)
3820 		return 0;
3821 
3822 	return gdesc->len;
3823 }
3824 
3825 static void dispc_mgr_write_gamma_table(struct dispc_device *dispc,
3826 					enum omap_channel channel)
3827 {
3828 	const struct dispc_gamma_desc *gdesc = &mgr_desc[channel].gamma;
3829 	u32 *table = dispc->gamma_table[channel];
3830 	unsigned int i;
3831 
3832 	DSSDBG("%s: channel %d\n", __func__, channel);
3833 
3834 	for (i = 0; i < gdesc->len; ++i) {
3835 		u32 v = table[i];
3836 
3837 		if (gdesc->has_index)
3838 			v |= i << 24;
3839 		else if (i == 0)
3840 			v |= 1 << 31;
3841 
3842 		dispc_write_reg(dispc, gdesc->reg, v);
3843 	}
3844 }
3845 
3846 static void dispc_restore_gamma_tables(struct dispc_device *dispc)
3847 {
3848 	DSSDBG("%s()\n", __func__);
3849 
3850 	if (!dispc->feat->has_gamma_table)
3851 		return;
3852 
3853 	dispc_mgr_write_gamma_table(dispc, OMAP_DSS_CHANNEL_LCD);
3854 
3855 	dispc_mgr_write_gamma_table(dispc, OMAP_DSS_CHANNEL_DIGIT);
3856 
3857 	if (dispc_has_feature(dispc, FEAT_MGR_LCD2))
3858 		dispc_mgr_write_gamma_table(dispc, OMAP_DSS_CHANNEL_LCD2);
3859 
3860 	if (dispc_has_feature(dispc, FEAT_MGR_LCD3))
3861 		dispc_mgr_write_gamma_table(dispc, OMAP_DSS_CHANNEL_LCD3);
3862 }
3863 
3864 static const struct drm_color_lut dispc_mgr_gamma_default_lut[] = {
3865 	{ .red = 0, .green = 0, .blue = 0, },
3866 	{ .red = U16_MAX, .green = U16_MAX, .blue = U16_MAX, },
3867 };
3868 
3869 static void dispc_mgr_set_gamma(struct dispc_device *dispc,
3870 				enum omap_channel channel,
3871 				const struct drm_color_lut *lut,
3872 				unsigned int length)
3873 {
3874 	const struct dispc_gamma_desc *gdesc = &mgr_desc[channel].gamma;
3875 	u32 *table = dispc->gamma_table[channel];
3876 	uint i;
3877 
3878 	DSSDBG("%s: channel %d, lut len %u, hw len %u\n", __func__,
3879 	       channel, length, gdesc->len);
3880 
3881 	if (!dispc->feat->has_gamma_table)
3882 		return;
3883 
3884 	if (lut == NULL || length < 2) {
3885 		lut = dispc_mgr_gamma_default_lut;
3886 		length = ARRAY_SIZE(dispc_mgr_gamma_default_lut);
3887 	}
3888 
3889 	for (i = 0; i < length - 1; ++i) {
3890 		uint first = i * (gdesc->len - 1) / (length - 1);
3891 		uint last = (i + 1) * (gdesc->len - 1) / (length - 1);
3892 		uint w = last - first;
3893 		u16 r, g, b;
3894 		uint j;
3895 
3896 		if (w == 0)
3897 			continue;
3898 
3899 		for (j = 0; j <= w; j++) {
3900 			r = (lut[i].red * (w - j) + lut[i+1].red * j) / w;
3901 			g = (lut[i].green * (w - j) + lut[i+1].green * j) / w;
3902 			b = (lut[i].blue * (w - j) + lut[i+1].blue * j) / w;
3903 
3904 			r >>= 16 - gdesc->bits;
3905 			g >>= 16 - gdesc->bits;
3906 			b >>= 16 - gdesc->bits;
3907 
3908 			table[first + j] = (r << (gdesc->bits * 2)) |
3909 				(g << gdesc->bits) | b;
3910 		}
3911 	}
3912 
3913 	if (dispc->is_enabled)
3914 		dispc_mgr_write_gamma_table(dispc, channel);
3915 }
3916 
3917 static int dispc_init_gamma_tables(struct dispc_device *dispc)
3918 {
3919 	int channel;
3920 
3921 	if (!dispc->feat->has_gamma_table)
3922 		return 0;
3923 
3924 	for (channel = 0; channel < ARRAY_SIZE(dispc->gamma_table); channel++) {
3925 		const struct dispc_gamma_desc *gdesc = &mgr_desc[channel].gamma;
3926 		u32 *gt;
3927 
3928 		if (channel == OMAP_DSS_CHANNEL_LCD2 &&
3929 		    !dispc_has_feature(dispc, FEAT_MGR_LCD2))
3930 			continue;
3931 
3932 		if (channel == OMAP_DSS_CHANNEL_LCD3 &&
3933 		    !dispc_has_feature(dispc, FEAT_MGR_LCD3))
3934 			continue;
3935 
3936 		gt = devm_kmalloc_array(&dispc->pdev->dev, gdesc->len,
3937 					sizeof(u32), GFP_KERNEL);
3938 		if (!gt)
3939 			return -ENOMEM;
3940 
3941 		dispc->gamma_table[channel] = gt;
3942 
3943 		dispc_mgr_set_gamma(dispc, channel, NULL, 0);
3944 	}
3945 	return 0;
3946 }
3947 
3948 static void _omap_dispc_initial_config(struct dispc_device *dispc)
3949 {
3950 	u32 l;
3951 
3952 	/* Exclusively enable DISPC_CORE_CLK and set divider to 1 */
3953 	if (dispc_has_feature(dispc, FEAT_CORE_CLK_DIV)) {
3954 		l = dispc_read_reg(dispc, DISPC_DIVISOR);
3955 		/* Use DISPC_DIVISOR.LCD, instead of DISPC_DIVISOR1.LCD */
3956 		l = FLD_MOD(l, 1, 0, 0);
3957 		l = FLD_MOD(l, 1, 23, 16);
3958 		dispc_write_reg(dispc, DISPC_DIVISOR, l);
3959 
3960 		dispc->core_clk_rate = dispc_fclk_rate(dispc);
3961 	}
3962 
3963 	/* Use gamma table mode, instead of palette mode */
3964 	if (dispc->feat->has_gamma_table)
3965 		REG_FLD_MOD(dispc, DISPC_CONFIG, 1, 3, 3);
3966 
3967 	/* For older DSS versions (FEAT_FUNCGATED) this enables
3968 	 * func-clock auto-gating. For newer versions
3969 	 * (dispc->feat->has_gamma_table) this enables tv-out gamma tables.
3970 	 */
3971 	if (dispc_has_feature(dispc, FEAT_FUNCGATED) ||
3972 	    dispc->feat->has_gamma_table)
3973 		REG_FLD_MOD(dispc, DISPC_CONFIG, 1, 9, 9);
3974 
3975 	dispc_setup_color_conv_coef(dispc);
3976 
3977 	dispc_set_loadmode(dispc, OMAP_DSS_LOAD_FRAME_ONLY);
3978 
3979 	dispc_init_fifos(dispc);
3980 
3981 	dispc_configure_burst_sizes(dispc);
3982 
3983 	dispc_ovl_enable_zorder_planes(dispc);
3984 
3985 	if (dispc->feat->mstandby_workaround)
3986 		REG_FLD_MOD(dispc, DISPC_MSTANDBY_CTRL, 1, 0, 0);
3987 
3988 	if (dispc_has_feature(dispc, FEAT_MFLAG))
3989 		dispc_init_mflag(dispc);
3990 }
3991 
3992 static const enum dispc_feature_id omap2_dispc_features_list[] = {
3993 	FEAT_LCDENABLEPOL,
3994 	FEAT_LCDENABLESIGNAL,
3995 	FEAT_PCKFREEENABLE,
3996 	FEAT_FUNCGATED,
3997 	FEAT_ROWREPEATENABLE,
3998 	FEAT_RESIZECONF,
3999 };
4000 
4001 static const enum dispc_feature_id omap3_dispc_features_list[] = {
4002 	FEAT_LCDENABLEPOL,
4003 	FEAT_LCDENABLESIGNAL,
4004 	FEAT_PCKFREEENABLE,
4005 	FEAT_FUNCGATED,
4006 	FEAT_LINEBUFFERSPLIT,
4007 	FEAT_ROWREPEATENABLE,
4008 	FEAT_RESIZECONF,
4009 	FEAT_CPR,
4010 	FEAT_PRELOAD,
4011 	FEAT_FIR_COEF_V,
4012 	FEAT_ALPHA_FIXED_ZORDER,
4013 	FEAT_FIFO_MERGE,
4014 	FEAT_OMAP3_DSI_FIFO_BUG,
4015 };
4016 
4017 static const enum dispc_feature_id am43xx_dispc_features_list[] = {
4018 	FEAT_LCDENABLEPOL,
4019 	FEAT_LCDENABLESIGNAL,
4020 	FEAT_PCKFREEENABLE,
4021 	FEAT_FUNCGATED,
4022 	FEAT_LINEBUFFERSPLIT,
4023 	FEAT_ROWREPEATENABLE,
4024 	FEAT_RESIZECONF,
4025 	FEAT_CPR,
4026 	FEAT_PRELOAD,
4027 	FEAT_FIR_COEF_V,
4028 	FEAT_ALPHA_FIXED_ZORDER,
4029 	FEAT_FIFO_MERGE,
4030 };
4031 
4032 static const enum dispc_feature_id omap4_dispc_features_list[] = {
4033 	FEAT_MGR_LCD2,
4034 	FEAT_CORE_CLK_DIV,
4035 	FEAT_HANDLE_UV_SEPARATE,
4036 	FEAT_ATTR2,
4037 	FEAT_CPR,
4038 	FEAT_PRELOAD,
4039 	FEAT_FIR_COEF_V,
4040 	FEAT_ALPHA_FREE_ZORDER,
4041 	FEAT_FIFO_MERGE,
4042 	FEAT_BURST_2D,
4043 };
4044 
4045 static const enum dispc_feature_id omap5_dispc_features_list[] = {
4046 	FEAT_MGR_LCD2,
4047 	FEAT_MGR_LCD3,
4048 	FEAT_CORE_CLK_DIV,
4049 	FEAT_HANDLE_UV_SEPARATE,
4050 	FEAT_ATTR2,
4051 	FEAT_CPR,
4052 	FEAT_PRELOAD,
4053 	FEAT_FIR_COEF_V,
4054 	FEAT_ALPHA_FREE_ZORDER,
4055 	FEAT_FIFO_MERGE,
4056 	FEAT_BURST_2D,
4057 	FEAT_MFLAG,
4058 };
4059 
4060 static const struct dss_reg_field omap2_dispc_reg_fields[] = {
4061 	[FEAT_REG_FIRHINC]			= { 11, 0 },
4062 	[FEAT_REG_FIRVINC]			= { 27, 16 },
4063 	[FEAT_REG_FIFOLOWTHRESHOLD]		= { 8, 0 },
4064 	[FEAT_REG_FIFOHIGHTHRESHOLD]		= { 24, 16 },
4065 	[FEAT_REG_FIFOSIZE]			= { 8, 0 },
4066 	[FEAT_REG_HORIZONTALACCU]		= { 9, 0 },
4067 	[FEAT_REG_VERTICALACCU]			= { 25, 16 },
4068 };
4069 
4070 static const struct dss_reg_field omap3_dispc_reg_fields[] = {
4071 	[FEAT_REG_FIRHINC]			= { 12, 0 },
4072 	[FEAT_REG_FIRVINC]			= { 28, 16 },
4073 	[FEAT_REG_FIFOLOWTHRESHOLD]		= { 11, 0 },
4074 	[FEAT_REG_FIFOHIGHTHRESHOLD]		= { 27, 16 },
4075 	[FEAT_REG_FIFOSIZE]			= { 10, 0 },
4076 	[FEAT_REG_HORIZONTALACCU]		= { 9, 0 },
4077 	[FEAT_REG_VERTICALACCU]			= { 25, 16 },
4078 };
4079 
4080 static const struct dss_reg_field omap4_dispc_reg_fields[] = {
4081 	[FEAT_REG_FIRHINC]			= { 12, 0 },
4082 	[FEAT_REG_FIRVINC]			= { 28, 16 },
4083 	[FEAT_REG_FIFOLOWTHRESHOLD]		= { 15, 0 },
4084 	[FEAT_REG_FIFOHIGHTHRESHOLD]		= { 31, 16 },
4085 	[FEAT_REG_FIFOSIZE]			= { 15, 0 },
4086 	[FEAT_REG_HORIZONTALACCU]		= { 10, 0 },
4087 	[FEAT_REG_VERTICALACCU]			= { 26, 16 },
4088 };
4089 
4090 static const enum omap_overlay_caps omap2_dispc_overlay_caps[] = {
4091 	/* OMAP_DSS_GFX */
4092 	OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION,
4093 
4094 	/* OMAP_DSS_VIDEO1 */
4095 	OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_POS |
4096 		OMAP_DSS_OVL_CAP_REPLICATION,
4097 
4098 	/* OMAP_DSS_VIDEO2 */
4099 	OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_POS |
4100 		OMAP_DSS_OVL_CAP_REPLICATION,
4101 };
4102 
4103 static const enum omap_overlay_caps omap3430_dispc_overlay_caps[] = {
4104 	/* OMAP_DSS_GFX */
4105 	OMAP_DSS_OVL_CAP_GLOBAL_ALPHA | OMAP_DSS_OVL_CAP_POS |
4106 		OMAP_DSS_OVL_CAP_REPLICATION,
4107 
4108 	/* OMAP_DSS_VIDEO1 */
4109 	OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_POS |
4110 		OMAP_DSS_OVL_CAP_REPLICATION,
4111 
4112 	/* OMAP_DSS_VIDEO2 */
4113 	OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_GLOBAL_ALPHA |
4114 		OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION,
4115 };
4116 
4117 static const enum omap_overlay_caps omap3630_dispc_overlay_caps[] = {
4118 	/* OMAP_DSS_GFX */
4119 	OMAP_DSS_OVL_CAP_GLOBAL_ALPHA | OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA |
4120 		OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION,
4121 
4122 	/* OMAP_DSS_VIDEO1 */
4123 	OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_POS |
4124 		OMAP_DSS_OVL_CAP_REPLICATION,
4125 
4126 	/* OMAP_DSS_VIDEO2 */
4127 	OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_GLOBAL_ALPHA |
4128 		OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA | OMAP_DSS_OVL_CAP_POS |
4129 		OMAP_DSS_OVL_CAP_REPLICATION,
4130 };
4131 
4132 static const enum omap_overlay_caps omap4_dispc_overlay_caps[] = {
4133 	/* OMAP_DSS_GFX */
4134 	OMAP_DSS_OVL_CAP_GLOBAL_ALPHA | OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA |
4135 		OMAP_DSS_OVL_CAP_ZORDER | OMAP_DSS_OVL_CAP_POS |
4136 		OMAP_DSS_OVL_CAP_REPLICATION,
4137 
4138 	/* OMAP_DSS_VIDEO1 */
4139 	OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_GLOBAL_ALPHA |
4140 		OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA | OMAP_DSS_OVL_CAP_ZORDER |
4141 		OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION,
4142 
4143 	/* OMAP_DSS_VIDEO2 */
4144 	OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_GLOBAL_ALPHA |
4145 		OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA | OMAP_DSS_OVL_CAP_ZORDER |
4146 		OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION,
4147 
4148 	/* OMAP_DSS_VIDEO3 */
4149 	OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_GLOBAL_ALPHA |
4150 		OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA | OMAP_DSS_OVL_CAP_ZORDER |
4151 		OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION,
4152 };
4153 
4154 #define COLOR_ARRAY(arr...) (const u32[]) { arr, 0 }
4155 
4156 static const u32 *omap2_dispc_supported_color_modes[] = {
4157 
4158 	/* OMAP_DSS_GFX */
4159 	COLOR_ARRAY(
4160 	DRM_FORMAT_RGBX4444, DRM_FORMAT_RGB565,
4161 	DRM_FORMAT_XRGB8888, DRM_FORMAT_RGB888),
4162 
4163 	/* OMAP_DSS_VIDEO1 */
4164 	COLOR_ARRAY(
4165 	DRM_FORMAT_RGB565, DRM_FORMAT_XRGB8888,
4166 	DRM_FORMAT_RGB888, DRM_FORMAT_YUYV,
4167 	DRM_FORMAT_UYVY),
4168 
4169 	/* OMAP_DSS_VIDEO2 */
4170 	COLOR_ARRAY(
4171 	DRM_FORMAT_RGB565, DRM_FORMAT_XRGB8888,
4172 	DRM_FORMAT_RGB888, DRM_FORMAT_YUYV,
4173 	DRM_FORMAT_UYVY),
4174 };
4175 
4176 static const u32 *omap3_dispc_supported_color_modes[] = {
4177 	/* OMAP_DSS_GFX */
4178 	COLOR_ARRAY(
4179 	DRM_FORMAT_RGBX4444, DRM_FORMAT_ARGB4444,
4180 	DRM_FORMAT_RGB565, DRM_FORMAT_XRGB8888,
4181 	DRM_FORMAT_RGB888, DRM_FORMAT_ARGB8888,
4182 	DRM_FORMAT_RGBA8888, DRM_FORMAT_RGBX8888),
4183 
4184 	/* OMAP_DSS_VIDEO1 */
4185 	COLOR_ARRAY(
4186 	DRM_FORMAT_XRGB8888, DRM_FORMAT_RGB888,
4187 	DRM_FORMAT_RGBX4444, DRM_FORMAT_RGB565,
4188 	DRM_FORMAT_YUYV, DRM_FORMAT_UYVY),
4189 
4190 	/* OMAP_DSS_VIDEO2 */
4191 	COLOR_ARRAY(
4192 	DRM_FORMAT_RGBX4444, DRM_FORMAT_ARGB4444,
4193 	DRM_FORMAT_RGB565, DRM_FORMAT_XRGB8888,
4194 	DRM_FORMAT_RGB888, DRM_FORMAT_YUYV,
4195 	DRM_FORMAT_UYVY, DRM_FORMAT_ARGB8888,
4196 	DRM_FORMAT_RGBA8888, DRM_FORMAT_RGBX8888),
4197 };
4198 
4199 static const u32 *omap4_dispc_supported_color_modes[] = {
4200 	/* OMAP_DSS_GFX */
4201 	COLOR_ARRAY(
4202 	DRM_FORMAT_RGBX4444, DRM_FORMAT_ARGB4444,
4203 	DRM_FORMAT_RGB565, DRM_FORMAT_XRGB8888,
4204 	DRM_FORMAT_RGB888, DRM_FORMAT_ARGB8888,
4205 	DRM_FORMAT_RGBA8888, DRM_FORMAT_RGBX8888,
4206 	DRM_FORMAT_ARGB1555, DRM_FORMAT_XRGB4444,
4207 	DRM_FORMAT_RGBA4444, DRM_FORMAT_XRGB1555),
4208 
4209 	/* OMAP_DSS_VIDEO1 */
4210 	COLOR_ARRAY(
4211 	DRM_FORMAT_RGB565, DRM_FORMAT_RGBX4444,
4212 	DRM_FORMAT_YUYV, DRM_FORMAT_ARGB1555,
4213 	DRM_FORMAT_RGBA8888, DRM_FORMAT_NV12,
4214 	DRM_FORMAT_RGBA4444, DRM_FORMAT_XRGB8888,
4215 	DRM_FORMAT_RGB888, DRM_FORMAT_UYVY,
4216 	DRM_FORMAT_ARGB4444, DRM_FORMAT_XRGB1555,
4217 	DRM_FORMAT_ARGB8888, DRM_FORMAT_XRGB4444,
4218 	DRM_FORMAT_RGBX8888),
4219 
4220        /* OMAP_DSS_VIDEO2 */
4221 	COLOR_ARRAY(
4222 	DRM_FORMAT_RGB565, DRM_FORMAT_RGBX4444,
4223 	DRM_FORMAT_YUYV, DRM_FORMAT_ARGB1555,
4224 	DRM_FORMAT_RGBA8888, DRM_FORMAT_NV12,
4225 	DRM_FORMAT_RGBA4444, DRM_FORMAT_XRGB8888,
4226 	DRM_FORMAT_RGB888, DRM_FORMAT_UYVY,
4227 	DRM_FORMAT_ARGB4444, DRM_FORMAT_XRGB1555,
4228 	DRM_FORMAT_ARGB8888, DRM_FORMAT_XRGB4444,
4229 	DRM_FORMAT_RGBX8888),
4230 
4231 	/* OMAP_DSS_VIDEO3 */
4232 	COLOR_ARRAY(
4233 	DRM_FORMAT_RGB565, DRM_FORMAT_RGBX4444,
4234 	DRM_FORMAT_YUYV, DRM_FORMAT_ARGB1555,
4235 	DRM_FORMAT_RGBA8888, DRM_FORMAT_NV12,
4236 	DRM_FORMAT_RGBA4444, DRM_FORMAT_XRGB8888,
4237 	DRM_FORMAT_RGB888, DRM_FORMAT_UYVY,
4238 	DRM_FORMAT_ARGB4444, DRM_FORMAT_XRGB1555,
4239 	DRM_FORMAT_ARGB8888, DRM_FORMAT_XRGB4444,
4240 	DRM_FORMAT_RGBX8888),
4241 
4242 	/* OMAP_DSS_WB */
4243 	COLOR_ARRAY(
4244 	DRM_FORMAT_RGB565, DRM_FORMAT_RGBX4444,
4245 	DRM_FORMAT_YUYV, DRM_FORMAT_ARGB1555,
4246 	DRM_FORMAT_RGBA8888, DRM_FORMAT_NV12,
4247 	DRM_FORMAT_RGBA4444, DRM_FORMAT_XRGB8888,
4248 	DRM_FORMAT_RGB888, DRM_FORMAT_UYVY,
4249 	DRM_FORMAT_ARGB4444, DRM_FORMAT_XRGB1555,
4250 	DRM_FORMAT_ARGB8888, DRM_FORMAT_XRGB4444,
4251 	DRM_FORMAT_RGBX8888),
4252 };
4253 
4254 static const struct dispc_features omap24xx_dispc_feats = {
4255 	.sw_start		=	5,
4256 	.fp_start		=	15,
4257 	.bp_start		=	27,
4258 	.sw_max			=	64,
4259 	.vp_max			=	255,
4260 	.hp_max			=	256,
4261 	.mgr_width_start	=	10,
4262 	.mgr_height_start	=	26,
4263 	.mgr_width_max		=	2048,
4264 	.mgr_height_max		=	2048,
4265 	.max_lcd_pclk		=	66500000,
4266 	.max_downscale		=	2,
4267 	/*
4268 	 * Assume the line width buffer to be 768 pixels as OMAP2 DISPC scaler
4269 	 * cannot scale an image width larger than 768.
4270 	 */
4271 	.max_line_width		=	768,
4272 	.min_pcd		=	2,
4273 	.calc_scaling		=	dispc_ovl_calc_scaling_24xx,
4274 	.calc_core_clk		=	calc_core_clk_24xx,
4275 	.num_fifos		=	3,
4276 	.features		=	omap2_dispc_features_list,
4277 	.num_features		=	ARRAY_SIZE(omap2_dispc_features_list),
4278 	.reg_fields		=	omap2_dispc_reg_fields,
4279 	.num_reg_fields		=	ARRAY_SIZE(omap2_dispc_reg_fields),
4280 	.overlay_caps		=	omap2_dispc_overlay_caps,
4281 	.supported_color_modes	=	omap2_dispc_supported_color_modes,
4282 	.num_mgrs		=	2,
4283 	.num_ovls		=	3,
4284 	.buffer_size_unit	=	1,
4285 	.burst_size_unit	=	8,
4286 	.no_framedone_tv	=	true,
4287 	.set_max_preload	=	false,
4288 	.last_pixel_inc_missing	=	true,
4289 };
4290 
4291 static const struct dispc_features omap34xx_rev1_0_dispc_feats = {
4292 	.sw_start		=	5,
4293 	.fp_start		=	15,
4294 	.bp_start		=	27,
4295 	.sw_max			=	64,
4296 	.vp_max			=	255,
4297 	.hp_max			=	256,
4298 	.mgr_width_start	=	10,
4299 	.mgr_height_start	=	26,
4300 	.mgr_width_max		=	2048,
4301 	.mgr_height_max		=	2048,
4302 	.max_lcd_pclk		=	173000000,
4303 	.max_tv_pclk		=	59000000,
4304 	.max_downscale		=	4,
4305 	.max_line_width		=	1024,
4306 	.min_pcd		=	1,
4307 	.calc_scaling		=	dispc_ovl_calc_scaling_34xx,
4308 	.calc_core_clk		=	calc_core_clk_34xx,
4309 	.num_fifos		=	3,
4310 	.features		=	omap3_dispc_features_list,
4311 	.num_features		=	ARRAY_SIZE(omap3_dispc_features_list),
4312 	.reg_fields		=	omap3_dispc_reg_fields,
4313 	.num_reg_fields		=	ARRAY_SIZE(omap3_dispc_reg_fields),
4314 	.overlay_caps		=	omap3430_dispc_overlay_caps,
4315 	.supported_color_modes	=	omap3_dispc_supported_color_modes,
4316 	.num_mgrs		=	2,
4317 	.num_ovls		=	3,
4318 	.buffer_size_unit	=	1,
4319 	.burst_size_unit	=	8,
4320 	.no_framedone_tv	=	true,
4321 	.set_max_preload	=	false,
4322 	.last_pixel_inc_missing	=	true,
4323 };
4324 
4325 static const struct dispc_features omap34xx_rev3_0_dispc_feats = {
4326 	.sw_start		=	7,
4327 	.fp_start		=	19,
4328 	.bp_start		=	31,
4329 	.sw_max			=	256,
4330 	.vp_max			=	4095,
4331 	.hp_max			=	4096,
4332 	.mgr_width_start	=	10,
4333 	.mgr_height_start	=	26,
4334 	.mgr_width_max		=	2048,
4335 	.mgr_height_max		=	2048,
4336 	.max_lcd_pclk		=	173000000,
4337 	.max_tv_pclk		=	59000000,
4338 	.max_downscale		=	4,
4339 	.max_line_width		=	1024,
4340 	.min_pcd		=	1,
4341 	.calc_scaling		=	dispc_ovl_calc_scaling_34xx,
4342 	.calc_core_clk		=	calc_core_clk_34xx,
4343 	.num_fifos		=	3,
4344 	.features		=	omap3_dispc_features_list,
4345 	.num_features		=	ARRAY_SIZE(omap3_dispc_features_list),
4346 	.reg_fields		=	omap3_dispc_reg_fields,
4347 	.num_reg_fields		=	ARRAY_SIZE(omap3_dispc_reg_fields),
4348 	.overlay_caps		=	omap3430_dispc_overlay_caps,
4349 	.supported_color_modes	=	omap3_dispc_supported_color_modes,
4350 	.num_mgrs		=	2,
4351 	.num_ovls		=	3,
4352 	.buffer_size_unit	=	1,
4353 	.burst_size_unit	=	8,
4354 	.no_framedone_tv	=	true,
4355 	.set_max_preload	=	false,
4356 	.last_pixel_inc_missing	=	true,
4357 };
4358 
4359 static const struct dispc_features omap36xx_dispc_feats = {
4360 	.sw_start		=	7,
4361 	.fp_start		=	19,
4362 	.bp_start		=	31,
4363 	.sw_max			=	256,
4364 	.vp_max			=	4095,
4365 	.hp_max			=	4096,
4366 	.mgr_width_start	=	10,
4367 	.mgr_height_start	=	26,
4368 	.mgr_width_max		=	2048,
4369 	.mgr_height_max		=	2048,
4370 	.max_lcd_pclk		=	173000000,
4371 	.max_tv_pclk		=	59000000,
4372 	.max_downscale		=	4,
4373 	.max_line_width		=	1024,
4374 	.min_pcd		=	1,
4375 	.calc_scaling		=	dispc_ovl_calc_scaling_34xx,
4376 	.calc_core_clk		=	calc_core_clk_34xx,
4377 	.num_fifos		=	3,
4378 	.features		=	omap3_dispc_features_list,
4379 	.num_features		=	ARRAY_SIZE(omap3_dispc_features_list),
4380 	.reg_fields		=	omap3_dispc_reg_fields,
4381 	.num_reg_fields		=	ARRAY_SIZE(omap3_dispc_reg_fields),
4382 	.overlay_caps		=	omap3630_dispc_overlay_caps,
4383 	.supported_color_modes	=	omap3_dispc_supported_color_modes,
4384 	.num_mgrs		=	2,
4385 	.num_ovls		=	3,
4386 	.buffer_size_unit	=	1,
4387 	.burst_size_unit	=	8,
4388 	.no_framedone_tv	=	true,
4389 	.set_max_preload	=	false,
4390 	.last_pixel_inc_missing	=	true,
4391 };
4392 
4393 static const struct dispc_features am43xx_dispc_feats = {
4394 	.sw_start		=	7,
4395 	.fp_start		=	19,
4396 	.bp_start		=	31,
4397 	.sw_max			=	256,
4398 	.vp_max			=	4095,
4399 	.hp_max			=	4096,
4400 	.mgr_width_start	=	10,
4401 	.mgr_height_start	=	26,
4402 	.mgr_width_max		=	2048,
4403 	.mgr_height_max		=	2048,
4404 	.max_lcd_pclk		=	173000000,
4405 	.max_tv_pclk		=	59000000,
4406 	.max_downscale		=	4,
4407 	.max_line_width		=	1024,
4408 	.min_pcd		=	1,
4409 	.calc_scaling		=	dispc_ovl_calc_scaling_34xx,
4410 	.calc_core_clk		=	calc_core_clk_34xx,
4411 	.num_fifos		=	3,
4412 	.features		=	am43xx_dispc_features_list,
4413 	.num_features		=	ARRAY_SIZE(am43xx_dispc_features_list),
4414 	.reg_fields		=	omap3_dispc_reg_fields,
4415 	.num_reg_fields		=	ARRAY_SIZE(omap3_dispc_reg_fields),
4416 	.overlay_caps		=	omap3430_dispc_overlay_caps,
4417 	.supported_color_modes	=	omap3_dispc_supported_color_modes,
4418 	.num_mgrs		=	1,
4419 	.num_ovls		=	3,
4420 	.buffer_size_unit	=	1,
4421 	.burst_size_unit	=	8,
4422 	.no_framedone_tv	=	true,
4423 	.set_max_preload	=	false,
4424 	.last_pixel_inc_missing	=	true,
4425 };
4426 
4427 static const struct dispc_features omap44xx_dispc_feats = {
4428 	.sw_start		=	7,
4429 	.fp_start		=	19,
4430 	.bp_start		=	31,
4431 	.sw_max			=	256,
4432 	.vp_max			=	4095,
4433 	.hp_max			=	4096,
4434 	.mgr_width_start	=	10,
4435 	.mgr_height_start	=	26,
4436 	.mgr_width_max		=	2048,
4437 	.mgr_height_max		=	2048,
4438 	.max_lcd_pclk		=	170000000,
4439 	.max_tv_pclk		=	185625000,
4440 	.max_downscale		=	4,
4441 	.max_line_width		=	2048,
4442 	.min_pcd		=	1,
4443 	.calc_scaling		=	dispc_ovl_calc_scaling_44xx,
4444 	.calc_core_clk		=	calc_core_clk_44xx,
4445 	.num_fifos		=	5,
4446 	.features		=	omap4_dispc_features_list,
4447 	.num_features		=	ARRAY_SIZE(omap4_dispc_features_list),
4448 	.reg_fields		=	omap4_dispc_reg_fields,
4449 	.num_reg_fields		=	ARRAY_SIZE(omap4_dispc_reg_fields),
4450 	.overlay_caps		=	omap4_dispc_overlay_caps,
4451 	.supported_color_modes	=	omap4_dispc_supported_color_modes,
4452 	.num_mgrs		=	3,
4453 	.num_ovls		=	4,
4454 	.buffer_size_unit	=	16,
4455 	.burst_size_unit	=	16,
4456 	.gfx_fifo_workaround	=	true,
4457 	.set_max_preload	=	true,
4458 	.supports_sync_align	=	true,
4459 	.has_writeback		=	true,
4460 	.supports_double_pixel	=	true,
4461 	.reverse_ilace_field_order =	true,
4462 	.has_gamma_table	=	true,
4463 	.has_gamma_i734_bug	=	true,
4464 };
4465 
4466 static const struct dispc_features omap54xx_dispc_feats = {
4467 	.sw_start		=	7,
4468 	.fp_start		=	19,
4469 	.bp_start		=	31,
4470 	.sw_max			=	256,
4471 	.vp_max			=	4095,
4472 	.hp_max			=	4096,
4473 	.mgr_width_start	=	11,
4474 	.mgr_height_start	=	27,
4475 	.mgr_width_max		=	4096,
4476 	.mgr_height_max		=	4096,
4477 	.max_lcd_pclk		=	170000000,
4478 	.max_tv_pclk		=	186000000,
4479 	.max_downscale		=	4,
4480 	.max_line_width		=	2048,
4481 	.min_pcd		=	1,
4482 	.calc_scaling		=	dispc_ovl_calc_scaling_44xx,
4483 	.calc_core_clk		=	calc_core_clk_44xx,
4484 	.num_fifos		=	5,
4485 	.features		=	omap5_dispc_features_list,
4486 	.num_features		=	ARRAY_SIZE(omap5_dispc_features_list),
4487 	.reg_fields		=	omap4_dispc_reg_fields,
4488 	.num_reg_fields		=	ARRAY_SIZE(omap4_dispc_reg_fields),
4489 	.overlay_caps		=	omap4_dispc_overlay_caps,
4490 	.supported_color_modes	=	omap4_dispc_supported_color_modes,
4491 	.num_mgrs		=	4,
4492 	.num_ovls		=	4,
4493 	.buffer_size_unit	=	16,
4494 	.burst_size_unit	=	16,
4495 	.gfx_fifo_workaround	=	true,
4496 	.mstandby_workaround	=	true,
4497 	.set_max_preload	=	true,
4498 	.supports_sync_align	=	true,
4499 	.has_writeback		=	true,
4500 	.supports_double_pixel	=	true,
4501 	.reverse_ilace_field_order =	true,
4502 	.has_gamma_table	=	true,
4503 	.has_gamma_i734_bug	=	true,
4504 };
4505 
4506 static irqreturn_t dispc_irq_handler(int irq, void *arg)
4507 {
4508 	struct dispc_device *dispc = arg;
4509 
4510 	if (!dispc->is_enabled)
4511 		return IRQ_NONE;
4512 
4513 	return dispc->user_handler(irq, dispc->user_data);
4514 }
4515 
4516 static int dispc_request_irq(struct dispc_device *dispc, irq_handler_t handler,
4517 			     void *dev_id)
4518 {
4519 	int r;
4520 
4521 	if (dispc->user_handler != NULL)
4522 		return -EBUSY;
4523 
4524 	dispc->user_handler = handler;
4525 	dispc->user_data = dev_id;
4526 
4527 	/* ensure the dispc_irq_handler sees the values above */
4528 	smp_wmb();
4529 
4530 	r = devm_request_irq(&dispc->pdev->dev, dispc->irq, dispc_irq_handler,
4531 			     IRQF_SHARED, "OMAP DISPC", dispc);
4532 	if (r) {
4533 		dispc->user_handler = NULL;
4534 		dispc->user_data = NULL;
4535 	}
4536 
4537 	return r;
4538 }
4539 
4540 static void dispc_free_irq(struct dispc_device *dispc, void *dev_id)
4541 {
4542 	devm_free_irq(&dispc->pdev->dev, dispc->irq, dispc);
4543 
4544 	dispc->user_handler = NULL;
4545 	dispc->user_data = NULL;
4546 }
4547 
4548 static u32 dispc_get_memory_bandwidth_limit(struct dispc_device *dispc)
4549 {
4550 	u32 limit = 0;
4551 
4552 	/* Optional maximum memory bandwidth */
4553 	of_property_read_u32(dispc->pdev->dev.of_node, "max-memory-bandwidth",
4554 			     &limit);
4555 
4556 	return limit;
4557 }
4558 
4559 /*
4560  * Workaround for errata i734 in DSS dispc
4561  *  - LCD1 Gamma Correction Is Not Working When GFX Pipe Is Disabled
4562  *
4563  * For gamma tables to work on LCD1 the GFX plane has to be used at
4564  * least once after DSS HW has come out of reset. The workaround
4565  * sets up a minimal LCD setup with GFX plane and waits for one
4566  * vertical sync irq before disabling the setup and continuing with
4567  * the context restore. The physical outputs are gated during the
4568  * operation. This workaround requires that gamma table's LOADMODE
4569  * is set to 0x2 in DISPC_CONTROL1 register.
4570  *
4571  * For details see:
4572  * OMAP543x Multimedia Device Silicon Revision 2.0 Silicon Errata
4573  * Literature Number: SWPZ037E
4574  * Or some other relevant errata document for the DSS IP version.
4575  */
4576 
4577 static const struct dispc_errata_i734_data {
4578 	struct videomode vm;
4579 	struct omap_overlay_info ovli;
4580 	struct omap_overlay_manager_info mgri;
4581 	struct dss_lcd_mgr_config lcd_conf;
4582 } i734 = {
4583 	.vm = {
4584 		.hactive = 8, .vactive = 1,
4585 		.pixelclock = 16000000,
4586 		.hsync_len = 8, .hfront_porch = 4, .hback_porch = 4,
4587 		.vsync_len = 1, .vfront_porch = 1, .vback_porch = 1,
4588 
4589 		.flags = DISPLAY_FLAGS_HSYNC_LOW | DISPLAY_FLAGS_VSYNC_LOW |
4590 			 DISPLAY_FLAGS_DE_HIGH | DISPLAY_FLAGS_SYNC_POSEDGE |
4591 			 DISPLAY_FLAGS_PIXDATA_POSEDGE,
4592 	},
4593 	.ovli = {
4594 		.screen_width = 1,
4595 		.width = 1, .height = 1,
4596 		.fourcc = DRM_FORMAT_XRGB8888,
4597 		.rotation = DRM_MODE_ROTATE_0,
4598 		.rotation_type = OMAP_DSS_ROT_NONE,
4599 		.pos_x = 0, .pos_y = 0,
4600 		.out_width = 0, .out_height = 0,
4601 		.global_alpha = 0xff,
4602 		.pre_mult_alpha = 0,
4603 		.zorder = 0,
4604 	},
4605 	.mgri = {
4606 		.default_color = 0,
4607 		.trans_enabled = false,
4608 		.partial_alpha_enabled = false,
4609 		.cpr_enable = false,
4610 	},
4611 	.lcd_conf = {
4612 		.io_pad_mode = DSS_IO_PAD_MODE_BYPASS,
4613 		.stallmode = false,
4614 		.fifohandcheck = false,
4615 		.clock_info = {
4616 			.lck_div = 1,
4617 			.pck_div = 2,
4618 		},
4619 		.video_port_width = 24,
4620 		.lcden_sig_polarity = 0,
4621 	},
4622 };
4623 
4624 static struct i734_buf {
4625 	size_t size;
4626 	dma_addr_t paddr;
4627 	void *vaddr;
4628 } i734_buf;
4629 
4630 static int dispc_errata_i734_wa_init(struct dispc_device *dispc)
4631 {
4632 	if (!dispc->feat->has_gamma_i734_bug)
4633 		return 0;
4634 
4635 	i734_buf.size = i734.ovli.width * i734.ovli.height *
4636 		color_mode_to_bpp(i734.ovli.fourcc) / 8;
4637 
4638 	i734_buf.vaddr = dma_alloc_writecombine(&dispc->pdev->dev,
4639 						i734_buf.size, &i734_buf.paddr,
4640 						GFP_KERNEL);
4641 	if (!i734_buf.vaddr) {
4642 		dev_err(&dispc->pdev->dev, "%s: dma_alloc_writecombine failed\n",
4643 			__func__);
4644 		return -ENOMEM;
4645 	}
4646 
4647 	return 0;
4648 }
4649 
4650 static void dispc_errata_i734_wa_fini(struct dispc_device *dispc)
4651 {
4652 	if (!dispc->feat->has_gamma_i734_bug)
4653 		return;
4654 
4655 	dma_free_writecombine(&dispc->pdev->dev, i734_buf.size, i734_buf.vaddr,
4656 			      i734_buf.paddr);
4657 }
4658 
4659 static void dispc_errata_i734_wa(struct dispc_device *dispc)
4660 {
4661 	u32 framedone_irq = dispc_mgr_get_framedone_irq(dispc,
4662 							OMAP_DSS_CHANNEL_LCD);
4663 	struct omap_overlay_info ovli;
4664 	struct dss_lcd_mgr_config lcd_conf;
4665 	u32 gatestate;
4666 	unsigned int count;
4667 
4668 	if (!dispc->feat->has_gamma_i734_bug)
4669 		return;
4670 
4671 	gatestate = REG_GET(dispc, DISPC_CONFIG, 8, 4);
4672 
4673 	ovli = i734.ovli;
4674 	ovli.paddr = i734_buf.paddr;
4675 	lcd_conf = i734.lcd_conf;
4676 
4677 	/* Gate all LCD1 outputs */
4678 	REG_FLD_MOD(dispc, DISPC_CONFIG, 0x1f, 8, 4);
4679 
4680 	/* Setup and enable GFX plane */
4681 	dispc_ovl_setup(dispc, OMAP_DSS_GFX, &ovli, &i734.vm, false,
4682 			OMAP_DSS_CHANNEL_LCD);
4683 	dispc_ovl_enable(dispc, OMAP_DSS_GFX, true);
4684 
4685 	/* Set up and enable display manager for LCD1 */
4686 	dispc_mgr_setup(dispc, OMAP_DSS_CHANNEL_LCD, &i734.mgri);
4687 	dispc_calc_clock_rates(dispc, dss_get_dispc_clk_rate(dispc->dss),
4688 			       &lcd_conf.clock_info);
4689 	dispc_mgr_set_lcd_config(dispc, OMAP_DSS_CHANNEL_LCD, &lcd_conf);
4690 	dispc_mgr_set_timings(dispc, OMAP_DSS_CHANNEL_LCD, &i734.vm);
4691 
4692 	dispc_clear_irqstatus(dispc, framedone_irq);
4693 
4694 	/* Enable and shut the channel to produce just one frame */
4695 	dispc_mgr_enable(dispc, OMAP_DSS_CHANNEL_LCD, true);
4696 	dispc_mgr_enable(dispc, OMAP_DSS_CHANNEL_LCD, false);
4697 
4698 	/* Busy wait for framedone. We can't fiddle with irq handlers
4699 	 * in PM resume. Typically the loop runs less than 5 times and
4700 	 * waits less than a micro second.
4701 	 */
4702 	count = 0;
4703 	while (!(dispc_read_irqstatus(dispc) & framedone_irq)) {
4704 		if (count++ > 10000) {
4705 			dev_err(&dispc->pdev->dev, "%s: framedone timeout\n",
4706 				__func__);
4707 			break;
4708 		}
4709 	}
4710 	dispc_ovl_enable(dispc, OMAP_DSS_GFX, false);
4711 
4712 	/* Clear all irq bits before continuing */
4713 	dispc_clear_irqstatus(dispc, 0xffffffff);
4714 
4715 	/* Restore the original state to LCD1 output gates */
4716 	REG_FLD_MOD(dispc, DISPC_CONFIG, gatestate, 8, 4);
4717 }
4718 
4719 static const struct dispc_ops dispc_ops = {
4720 	.read_irqstatus = dispc_read_irqstatus,
4721 	.clear_irqstatus = dispc_clear_irqstatus,
4722 	.write_irqenable = dispc_write_irqenable,
4723 
4724 	.request_irq = dispc_request_irq,
4725 	.free_irq = dispc_free_irq,
4726 
4727 	.runtime_get = dispc_runtime_get,
4728 	.runtime_put = dispc_runtime_put,
4729 
4730 	.get_num_ovls = dispc_get_num_ovls,
4731 	.get_num_mgrs = dispc_get_num_mgrs,
4732 
4733 	.get_memory_bandwidth_limit = dispc_get_memory_bandwidth_limit,
4734 
4735 	.mgr_enable = dispc_mgr_enable,
4736 	.mgr_is_enabled = dispc_mgr_is_enabled,
4737 	.mgr_get_vsync_irq = dispc_mgr_get_vsync_irq,
4738 	.mgr_get_framedone_irq = dispc_mgr_get_framedone_irq,
4739 	.mgr_get_sync_lost_irq = dispc_mgr_get_sync_lost_irq,
4740 	.mgr_go_busy = dispc_mgr_go_busy,
4741 	.mgr_go = dispc_mgr_go,
4742 	.mgr_set_lcd_config = dispc_mgr_set_lcd_config,
4743 	.mgr_set_timings = dispc_mgr_set_timings,
4744 	.mgr_setup = dispc_mgr_setup,
4745 	.mgr_get_supported_outputs = dispc_mgr_get_supported_outputs,
4746 	.mgr_gamma_size = dispc_mgr_gamma_size,
4747 	.mgr_set_gamma = dispc_mgr_set_gamma,
4748 
4749 	.ovl_enable = dispc_ovl_enable,
4750 	.ovl_setup = dispc_ovl_setup,
4751 	.ovl_get_color_modes = dispc_ovl_get_color_modes,
4752 
4753 	.wb_get_framedone_irq = dispc_wb_get_framedone_irq,
4754 	.wb_setup = dispc_wb_setup,
4755 	.has_writeback = dispc_has_writeback,
4756 	.wb_go_busy = dispc_wb_go_busy,
4757 	.wb_go = dispc_wb_go,
4758 };
4759 
4760 /* DISPC HW IP initialisation */
4761 static const struct of_device_id dispc_of_match[] = {
4762 	{ .compatible = "ti,omap2-dispc", .data = &omap24xx_dispc_feats },
4763 	{ .compatible = "ti,omap3-dispc", .data = &omap36xx_dispc_feats },
4764 	{ .compatible = "ti,omap4-dispc", .data = &omap44xx_dispc_feats },
4765 	{ .compatible = "ti,omap5-dispc", .data = &omap54xx_dispc_feats },
4766 	{ .compatible = "ti,dra7-dispc",  .data = &omap54xx_dispc_feats },
4767 	{},
4768 };
4769 
4770 static const struct soc_device_attribute dispc_soc_devices[] = {
4771 	{ .machine = "OMAP3[45]*",
4772 	  .revision = "ES[12].?",	.data = &omap34xx_rev1_0_dispc_feats },
4773 	{ .machine = "OMAP3[45]*",	.data = &omap34xx_rev3_0_dispc_feats },
4774 	{ .machine = "AM35*",		.data = &omap34xx_rev3_0_dispc_feats },
4775 	{ .machine = "AM43*",		.data = &am43xx_dispc_feats },
4776 	{ /* sentinel */ }
4777 };
4778 
4779 static int dispc_bind(struct device *dev, struct device *master, void *data)
4780 {
4781 	struct platform_device *pdev = to_platform_device(dev);
4782 	const struct soc_device_attribute *soc;
4783 	struct dss_device *dss = dss_get_device(master);
4784 	struct dispc_device *dispc;
4785 	u32 rev;
4786 	int r = 0;
4787 	struct resource *dispc_mem;
4788 	struct device_node *np = pdev->dev.of_node;
4789 
4790 	dispc = kzalloc(sizeof(*dispc), GFP_KERNEL);
4791 	if (!dispc)
4792 		return -ENOMEM;
4793 
4794 	dispc->pdev = pdev;
4795 	platform_set_drvdata(pdev, dispc);
4796 	dispc->dss = dss;
4797 
4798 	spin_lock_init(&dispc->control_lock);
4799 
4800 	/*
4801 	 * The OMAP3-based models can't be told apart using the compatible
4802 	 * string, use SoC device matching.
4803 	 */
4804 	soc = soc_device_match(dispc_soc_devices);
4805 	if (soc)
4806 		dispc->feat = soc->data;
4807 	else
4808 		dispc->feat = of_match_device(dispc_of_match, &pdev->dev)->data;
4809 
4810 	r = dispc_errata_i734_wa_init(dispc);
4811 	if (r)
4812 		goto err_free;
4813 
4814 	dispc_mem = platform_get_resource(dispc->pdev, IORESOURCE_MEM, 0);
4815 	dispc->base = devm_ioremap_resource(&pdev->dev, dispc_mem);
4816 	if (IS_ERR(dispc->base)) {
4817 		r = PTR_ERR(dispc->base);
4818 		goto err_free;
4819 	}
4820 
4821 	dispc->irq = platform_get_irq(dispc->pdev, 0);
4822 	if (dispc->irq < 0) {
4823 		DSSERR("platform_get_irq failed\n");
4824 		r = -ENODEV;
4825 		goto err_free;
4826 	}
4827 
4828 	if (np && of_property_read_bool(np, "syscon-pol")) {
4829 		dispc->syscon_pol = syscon_regmap_lookup_by_phandle(np, "syscon-pol");
4830 		if (IS_ERR(dispc->syscon_pol)) {
4831 			dev_err(&pdev->dev, "failed to get syscon-pol regmap\n");
4832 			r = PTR_ERR(dispc->syscon_pol);
4833 			goto err_free;
4834 		}
4835 
4836 		if (of_property_read_u32_index(np, "syscon-pol", 1,
4837 				&dispc->syscon_pol_offset)) {
4838 			dev_err(&pdev->dev, "failed to get syscon-pol offset\n");
4839 			r = -EINVAL;
4840 			goto err_free;
4841 		}
4842 	}
4843 
4844 	r = dispc_init_gamma_tables(dispc);
4845 	if (r)
4846 		goto err_free;
4847 
4848 	pm_runtime_enable(&pdev->dev);
4849 
4850 	r = dispc_runtime_get(dispc);
4851 	if (r)
4852 		goto err_runtime_get;
4853 
4854 	_omap_dispc_initial_config(dispc);
4855 
4856 	rev = dispc_read_reg(dispc, DISPC_REVISION);
4857 	dev_dbg(&pdev->dev, "OMAP DISPC rev %d.%d\n",
4858 	       FLD_GET(rev, 7, 4), FLD_GET(rev, 3, 0));
4859 
4860 	dispc_runtime_put(dispc);
4861 
4862 	dss->dispc = dispc;
4863 	dss->dispc_ops = &dispc_ops;
4864 
4865 	dispc->debugfs = dss_debugfs_create_file(dss, "dispc", dispc_dump_regs,
4866 						 dispc);
4867 
4868 	return 0;
4869 
4870 err_runtime_get:
4871 	pm_runtime_disable(&pdev->dev);
4872 err_free:
4873 	kfree(dispc);
4874 	return r;
4875 }
4876 
4877 static void dispc_unbind(struct device *dev, struct device *master, void *data)
4878 {
4879 	struct dispc_device *dispc = dev_get_drvdata(dev);
4880 	struct dss_device *dss = dispc->dss;
4881 
4882 	dss_debugfs_remove_file(dispc->debugfs);
4883 
4884 	dss->dispc = NULL;
4885 	dss->dispc_ops = NULL;
4886 
4887 	pm_runtime_disable(dev);
4888 
4889 	dispc_errata_i734_wa_fini(dispc);
4890 
4891 	kfree(dispc);
4892 }
4893 
4894 static const struct component_ops dispc_component_ops = {
4895 	.bind	= dispc_bind,
4896 	.unbind	= dispc_unbind,
4897 };
4898 
4899 static int dispc_probe(struct platform_device *pdev)
4900 {
4901 	return component_add(&pdev->dev, &dispc_component_ops);
4902 }
4903 
4904 static int dispc_remove(struct platform_device *pdev)
4905 {
4906 	component_del(&pdev->dev, &dispc_component_ops);
4907 	return 0;
4908 }
4909 
4910 static int dispc_runtime_suspend(struct device *dev)
4911 {
4912 	struct dispc_device *dispc = dev_get_drvdata(dev);
4913 
4914 	dispc->is_enabled = false;
4915 	/* ensure the dispc_irq_handler sees the is_enabled value */
4916 	smp_wmb();
4917 	/* wait for current handler to finish before turning the DISPC off */
4918 	synchronize_irq(dispc->irq);
4919 
4920 	dispc_save_context(dispc);
4921 
4922 	return 0;
4923 }
4924 
4925 static int dispc_runtime_resume(struct device *dev)
4926 {
4927 	struct dispc_device *dispc = dev_get_drvdata(dev);
4928 
4929 	/*
4930 	 * The reset value for load mode is 0 (OMAP_DSS_LOAD_CLUT_AND_FRAME)
4931 	 * but we always initialize it to 2 (OMAP_DSS_LOAD_FRAME_ONLY) in
4932 	 * _omap_dispc_initial_config(). We can thus use it to detect if
4933 	 * we have lost register context.
4934 	 */
4935 	if (REG_GET(dispc, DISPC_CONFIG, 2, 1) != OMAP_DSS_LOAD_FRAME_ONLY) {
4936 		_omap_dispc_initial_config(dispc);
4937 
4938 		dispc_errata_i734_wa(dispc);
4939 
4940 		dispc_restore_context(dispc);
4941 
4942 		dispc_restore_gamma_tables(dispc);
4943 	}
4944 
4945 	dispc->is_enabled = true;
4946 	/* ensure the dispc_irq_handler sees the is_enabled value */
4947 	smp_wmb();
4948 
4949 	return 0;
4950 }
4951 
4952 static const struct dev_pm_ops dispc_pm_ops = {
4953 	.runtime_suspend = dispc_runtime_suspend,
4954 	.runtime_resume = dispc_runtime_resume,
4955 };
4956 
4957 struct platform_driver omap_dispchw_driver = {
4958 	.probe		= dispc_probe,
4959 	.remove         = dispc_remove,
4960 	.driver         = {
4961 		.name   = "omapdss_dispc",
4962 		.pm	= &dispc_pm_ops,
4963 		.of_match_table = dispc_of_match,
4964 		.suppress_bind_attrs = true,
4965 	},
4966 };
4967