xref: /openbmc/linux/drivers/gpu/drm/omapdrm/dss/dispc.c (revision 8e8e69d6)
1 /*
2  * Copyright (C) 2009 Nokia Corporation
3  * Author: Tomi Valkeinen <tomi.valkeinen@ti.com>
4  *
5  * Some code and ideas taken from drivers/video/omap/ driver
6  * by Imre Deak.
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms of the GNU General Public License version 2 as published by
10  * the Free Software Foundation.
11  *
12  * This program is distributed in the hope that it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  * more details.
16  *
17  * You should have received a copy of the GNU General Public License along with
18  * this program.  If not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 #define DSS_SUBSYS_NAME "DISPC"
22 
23 #include <linux/kernel.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/vmalloc.h>
26 #include <linux/export.h>
27 #include <linux/clk.h>
28 #include <linux/io.h>
29 #include <linux/jiffies.h>
30 #include <linux/seq_file.h>
31 #include <linux/delay.h>
32 #include <linux/workqueue.h>
33 #include <linux/hardirq.h>
34 #include <linux/platform_device.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/sizes.h>
37 #include <linux/mfd/syscon.h>
38 #include <linux/regmap.h>
39 #include <linux/of.h>
40 #include <linux/of_device.h>
41 #include <linux/component.h>
42 #include <linux/sys_soc.h>
43 #include <drm/drm_fourcc.h>
44 #include <drm/drm_blend.h>
45 
46 #include "omapdss.h"
47 #include "dss.h"
48 #include "dispc.h"
49 
50 struct dispc_device;
51 
52 /* DISPC */
53 #define DISPC_SZ_REGS			SZ_4K
54 
55 enum omap_burst_size {
56 	BURST_SIZE_X2 = 0,
57 	BURST_SIZE_X4 = 1,
58 	BURST_SIZE_X8 = 2,
59 };
60 
61 #define REG_GET(dispc, idx, start, end) \
62 	FLD_GET(dispc_read_reg(dispc, idx), start, end)
63 
64 #define REG_FLD_MOD(dispc, idx, val, start, end)			\
65 	dispc_write_reg(dispc, idx, \
66 			FLD_MOD(dispc_read_reg(dispc, idx), val, start, end))
67 
68 /* DISPC has feature id */
69 enum dispc_feature_id {
70 	FEAT_LCDENABLEPOL,
71 	FEAT_LCDENABLESIGNAL,
72 	FEAT_PCKFREEENABLE,
73 	FEAT_FUNCGATED,
74 	FEAT_MGR_LCD2,
75 	FEAT_MGR_LCD3,
76 	FEAT_LINEBUFFERSPLIT,
77 	FEAT_ROWREPEATENABLE,
78 	FEAT_RESIZECONF,
79 	/* Independent core clk divider */
80 	FEAT_CORE_CLK_DIV,
81 	FEAT_HANDLE_UV_SEPARATE,
82 	FEAT_ATTR2,
83 	FEAT_CPR,
84 	FEAT_PRELOAD,
85 	FEAT_FIR_COEF_V,
86 	FEAT_ALPHA_FIXED_ZORDER,
87 	FEAT_ALPHA_FREE_ZORDER,
88 	FEAT_FIFO_MERGE,
89 	/* An unknown HW bug causing the normal FIFO thresholds not to work */
90 	FEAT_OMAP3_DSI_FIFO_BUG,
91 	FEAT_BURST_2D,
92 	FEAT_MFLAG,
93 };
94 
95 struct dispc_features {
96 	u8 sw_start;
97 	u8 fp_start;
98 	u8 bp_start;
99 	u16 sw_max;
100 	u16 vp_max;
101 	u16 hp_max;
102 	u8 mgr_width_start;
103 	u8 mgr_height_start;
104 	u16 mgr_width_max;
105 	u16 mgr_height_max;
106 	unsigned long max_lcd_pclk;
107 	unsigned long max_tv_pclk;
108 	unsigned int max_downscale;
109 	unsigned int max_line_width;
110 	unsigned int min_pcd;
111 	int (*calc_scaling)(struct dispc_device *dispc,
112 		unsigned long pclk, unsigned long lclk,
113 		const struct videomode *vm,
114 		u16 width, u16 height, u16 out_width, u16 out_height,
115 		u32 fourcc, bool *five_taps,
116 		int *x_predecim, int *y_predecim, int *decim_x, int *decim_y,
117 		u16 pos_x, unsigned long *core_clk, bool mem_to_mem);
118 	unsigned long (*calc_core_clk) (unsigned long pclk,
119 		u16 width, u16 height, u16 out_width, u16 out_height,
120 		bool mem_to_mem);
121 	u8 num_fifos;
122 	const enum dispc_feature_id *features;
123 	unsigned int num_features;
124 	const struct dss_reg_field *reg_fields;
125 	const unsigned int num_reg_fields;
126 	const enum omap_overlay_caps *overlay_caps;
127 	const u32 **supported_color_modes;
128 	unsigned int num_mgrs;
129 	unsigned int num_ovls;
130 	unsigned int buffer_size_unit;
131 	unsigned int burst_size_unit;
132 
133 	/* swap GFX & WB fifos */
134 	bool gfx_fifo_workaround:1;
135 
136 	/* no DISPC_IRQ_FRAMEDONETV on this SoC */
137 	bool no_framedone_tv:1;
138 
139 	/* revert to the OMAP4 mechanism of DISPC Smart Standby operation */
140 	bool mstandby_workaround:1;
141 
142 	bool set_max_preload:1;
143 
144 	/* PIXEL_INC is not added to the last pixel of a line */
145 	bool last_pixel_inc_missing:1;
146 
147 	/* POL_FREQ has ALIGN bit */
148 	bool supports_sync_align:1;
149 
150 	bool has_writeback:1;
151 
152 	bool supports_double_pixel:1;
153 
154 	/*
155 	 * Field order for VENC is different than HDMI. We should handle this in
156 	 * some intelligent manner, but as the SoCs have either HDMI or VENC,
157 	 * never both, we can just use this flag for now.
158 	 */
159 	bool reverse_ilace_field_order:1;
160 
161 	bool has_gamma_table:1;
162 
163 	bool has_gamma_i734_bug:1;
164 };
165 
166 #define DISPC_MAX_NR_FIFOS 5
167 #define DISPC_MAX_CHANNEL_GAMMA 4
168 
169 struct dispc_device {
170 	struct platform_device *pdev;
171 	void __iomem    *base;
172 	struct dss_device *dss;
173 
174 	struct dss_debugfs_entry *debugfs;
175 
176 	int irq;
177 	irq_handler_t user_handler;
178 	void *user_data;
179 
180 	unsigned long core_clk_rate;
181 	unsigned long tv_pclk_rate;
182 
183 	u32 fifo_size[DISPC_MAX_NR_FIFOS];
184 	/* maps which plane is using a fifo. fifo-id -> plane-id */
185 	int fifo_assignment[DISPC_MAX_NR_FIFOS];
186 
187 	bool		ctx_valid;
188 	u32		ctx[DISPC_SZ_REGS / sizeof(u32)];
189 
190 	u32 *gamma_table[DISPC_MAX_CHANNEL_GAMMA];
191 
192 	const struct dispc_features *feat;
193 
194 	bool is_enabled;
195 
196 	struct regmap *syscon_pol;
197 	u32 syscon_pol_offset;
198 
199 	/* DISPC_CONTROL & DISPC_CONFIG lock*/
200 	spinlock_t control_lock;
201 };
202 
203 enum omap_color_component {
204 	/* used for all color formats for OMAP3 and earlier
205 	 * and for RGB and Y color component on OMAP4
206 	 */
207 	DISPC_COLOR_COMPONENT_RGB_Y		= 1 << 0,
208 	/* used for UV component for
209 	 * DRM_FORMAT_YUYV, DRM_FORMAT_UYVY, DRM_FORMAT_NV12
210 	 * color formats on OMAP4
211 	 */
212 	DISPC_COLOR_COMPONENT_UV		= 1 << 1,
213 };
214 
215 enum mgr_reg_fields {
216 	DISPC_MGR_FLD_ENABLE,
217 	DISPC_MGR_FLD_STNTFT,
218 	DISPC_MGR_FLD_GO,
219 	DISPC_MGR_FLD_TFTDATALINES,
220 	DISPC_MGR_FLD_STALLMODE,
221 	DISPC_MGR_FLD_TCKENABLE,
222 	DISPC_MGR_FLD_TCKSELECTION,
223 	DISPC_MGR_FLD_CPR,
224 	DISPC_MGR_FLD_FIFOHANDCHECK,
225 	/* used to maintain a count of the above fields */
226 	DISPC_MGR_FLD_NUM,
227 };
228 
229 /* DISPC register field id */
230 enum dispc_feat_reg_field {
231 	FEAT_REG_FIRHINC,
232 	FEAT_REG_FIRVINC,
233 	FEAT_REG_FIFOHIGHTHRESHOLD,
234 	FEAT_REG_FIFOLOWTHRESHOLD,
235 	FEAT_REG_FIFOSIZE,
236 	FEAT_REG_HORIZONTALACCU,
237 	FEAT_REG_VERTICALACCU,
238 };
239 
240 struct dispc_reg_field {
241 	u16 reg;
242 	u8 high;
243 	u8 low;
244 };
245 
246 struct dispc_gamma_desc {
247 	u32 len;
248 	u32 bits;
249 	u16 reg;
250 	bool has_index;
251 };
252 
253 static const struct {
254 	const char *name;
255 	u32 vsync_irq;
256 	u32 framedone_irq;
257 	u32 sync_lost_irq;
258 	struct dispc_gamma_desc gamma;
259 	struct dispc_reg_field reg_desc[DISPC_MGR_FLD_NUM];
260 } mgr_desc[] = {
261 	[OMAP_DSS_CHANNEL_LCD] = {
262 		.name		= "LCD",
263 		.vsync_irq	= DISPC_IRQ_VSYNC,
264 		.framedone_irq	= DISPC_IRQ_FRAMEDONE,
265 		.sync_lost_irq	= DISPC_IRQ_SYNC_LOST,
266 		.gamma		= {
267 			.len	= 256,
268 			.bits	= 8,
269 			.reg	= DISPC_GAMMA_TABLE0,
270 			.has_index = true,
271 		},
272 		.reg_desc	= {
273 			[DISPC_MGR_FLD_ENABLE]		= { DISPC_CONTROL,  0,  0 },
274 			[DISPC_MGR_FLD_STNTFT]		= { DISPC_CONTROL,  3,  3 },
275 			[DISPC_MGR_FLD_GO]		= { DISPC_CONTROL,  5,  5 },
276 			[DISPC_MGR_FLD_TFTDATALINES]	= { DISPC_CONTROL,  9,  8 },
277 			[DISPC_MGR_FLD_STALLMODE]	= { DISPC_CONTROL, 11, 11 },
278 			[DISPC_MGR_FLD_TCKENABLE]	= { DISPC_CONFIG,  10, 10 },
279 			[DISPC_MGR_FLD_TCKSELECTION]	= { DISPC_CONFIG,  11, 11 },
280 			[DISPC_MGR_FLD_CPR]		= { DISPC_CONFIG,  15, 15 },
281 			[DISPC_MGR_FLD_FIFOHANDCHECK]	= { DISPC_CONFIG,  16, 16 },
282 		},
283 	},
284 	[OMAP_DSS_CHANNEL_DIGIT] = {
285 		.name		= "DIGIT",
286 		.vsync_irq	= DISPC_IRQ_EVSYNC_ODD | DISPC_IRQ_EVSYNC_EVEN,
287 		.framedone_irq	= DISPC_IRQ_FRAMEDONETV,
288 		.sync_lost_irq	= DISPC_IRQ_SYNC_LOST_DIGIT,
289 		.gamma		= {
290 			.len	= 1024,
291 			.bits	= 10,
292 			.reg	= DISPC_GAMMA_TABLE2,
293 			.has_index = false,
294 		},
295 		.reg_desc	= {
296 			[DISPC_MGR_FLD_ENABLE]		= { DISPC_CONTROL,  1,  1 },
297 			[DISPC_MGR_FLD_STNTFT]		= { },
298 			[DISPC_MGR_FLD_GO]		= { DISPC_CONTROL,  6,  6 },
299 			[DISPC_MGR_FLD_TFTDATALINES]	= { },
300 			[DISPC_MGR_FLD_STALLMODE]	= { },
301 			[DISPC_MGR_FLD_TCKENABLE]	= { DISPC_CONFIG,  12, 12 },
302 			[DISPC_MGR_FLD_TCKSELECTION]	= { DISPC_CONFIG,  13, 13 },
303 			[DISPC_MGR_FLD_CPR]		= { },
304 			[DISPC_MGR_FLD_FIFOHANDCHECK]	= { DISPC_CONFIG,  16, 16 },
305 		},
306 	},
307 	[OMAP_DSS_CHANNEL_LCD2] = {
308 		.name		= "LCD2",
309 		.vsync_irq	= DISPC_IRQ_VSYNC2,
310 		.framedone_irq	= DISPC_IRQ_FRAMEDONE2,
311 		.sync_lost_irq	= DISPC_IRQ_SYNC_LOST2,
312 		.gamma		= {
313 			.len	= 256,
314 			.bits	= 8,
315 			.reg	= DISPC_GAMMA_TABLE1,
316 			.has_index = true,
317 		},
318 		.reg_desc	= {
319 			[DISPC_MGR_FLD_ENABLE]		= { DISPC_CONTROL2,  0,  0 },
320 			[DISPC_MGR_FLD_STNTFT]		= { DISPC_CONTROL2,  3,  3 },
321 			[DISPC_MGR_FLD_GO]		= { DISPC_CONTROL2,  5,  5 },
322 			[DISPC_MGR_FLD_TFTDATALINES]	= { DISPC_CONTROL2,  9,  8 },
323 			[DISPC_MGR_FLD_STALLMODE]	= { DISPC_CONTROL2, 11, 11 },
324 			[DISPC_MGR_FLD_TCKENABLE]	= { DISPC_CONFIG2,  10, 10 },
325 			[DISPC_MGR_FLD_TCKSELECTION]	= { DISPC_CONFIG2,  11, 11 },
326 			[DISPC_MGR_FLD_CPR]		= { DISPC_CONFIG2,  15, 15 },
327 			[DISPC_MGR_FLD_FIFOHANDCHECK]	= { DISPC_CONFIG2,  16, 16 },
328 		},
329 	},
330 	[OMAP_DSS_CHANNEL_LCD3] = {
331 		.name		= "LCD3",
332 		.vsync_irq	= DISPC_IRQ_VSYNC3,
333 		.framedone_irq	= DISPC_IRQ_FRAMEDONE3,
334 		.sync_lost_irq	= DISPC_IRQ_SYNC_LOST3,
335 		.gamma		= {
336 			.len	= 256,
337 			.bits	= 8,
338 			.reg	= DISPC_GAMMA_TABLE3,
339 			.has_index = true,
340 		},
341 		.reg_desc	= {
342 			[DISPC_MGR_FLD_ENABLE]		= { DISPC_CONTROL3,  0,  0 },
343 			[DISPC_MGR_FLD_STNTFT]		= { DISPC_CONTROL3,  3,  3 },
344 			[DISPC_MGR_FLD_GO]		= { DISPC_CONTROL3,  5,  5 },
345 			[DISPC_MGR_FLD_TFTDATALINES]	= { DISPC_CONTROL3,  9,  8 },
346 			[DISPC_MGR_FLD_STALLMODE]	= { DISPC_CONTROL3, 11, 11 },
347 			[DISPC_MGR_FLD_TCKENABLE]	= { DISPC_CONFIG3,  10, 10 },
348 			[DISPC_MGR_FLD_TCKSELECTION]	= { DISPC_CONFIG3,  11, 11 },
349 			[DISPC_MGR_FLD_CPR]		= { DISPC_CONFIG3,  15, 15 },
350 			[DISPC_MGR_FLD_FIFOHANDCHECK]	= { DISPC_CONFIG3,  16, 16 },
351 		},
352 	},
353 };
354 
355 static unsigned long dispc_fclk_rate(struct dispc_device *dispc);
356 static unsigned long dispc_core_clk_rate(struct dispc_device *dispc);
357 static unsigned long dispc_mgr_lclk_rate(struct dispc_device *dispc,
358 					 enum omap_channel channel);
359 static unsigned long dispc_mgr_pclk_rate(struct dispc_device *dispc,
360 					 enum omap_channel channel);
361 
362 static unsigned long dispc_plane_pclk_rate(struct dispc_device *dispc,
363 					   enum omap_plane_id plane);
364 static unsigned long dispc_plane_lclk_rate(struct dispc_device *dispc,
365 					   enum omap_plane_id plane);
366 
367 static void dispc_clear_irqstatus(struct dispc_device *dispc, u32 mask);
368 
369 static inline void dispc_write_reg(struct dispc_device *dispc, u16 idx, u32 val)
370 {
371 	__raw_writel(val, dispc->base + idx);
372 }
373 
374 static inline u32 dispc_read_reg(struct dispc_device *dispc, u16 idx)
375 {
376 	return __raw_readl(dispc->base + idx);
377 }
378 
379 static u32 mgr_fld_read(struct dispc_device *dispc, enum omap_channel channel,
380 			enum mgr_reg_fields regfld)
381 {
382 	const struct dispc_reg_field rfld = mgr_desc[channel].reg_desc[regfld];
383 
384 	return REG_GET(dispc, rfld.reg, rfld.high, rfld.low);
385 }
386 
387 static void mgr_fld_write(struct dispc_device *dispc, enum omap_channel channel,
388 			  enum mgr_reg_fields regfld, int val)
389 {
390 	const struct dispc_reg_field rfld = mgr_desc[channel].reg_desc[regfld];
391 	const bool need_lock = rfld.reg == DISPC_CONTROL || rfld.reg == DISPC_CONFIG;
392 	unsigned long flags;
393 
394 	if (need_lock) {
395 		spin_lock_irqsave(&dispc->control_lock, flags);
396 		REG_FLD_MOD(dispc, rfld.reg, val, rfld.high, rfld.low);
397 		spin_unlock_irqrestore(&dispc->control_lock, flags);
398 	} else {
399 		REG_FLD_MOD(dispc, rfld.reg, val, rfld.high, rfld.low);
400 	}
401 }
402 
403 static int dispc_get_num_ovls(struct dispc_device *dispc)
404 {
405 	return dispc->feat->num_ovls;
406 }
407 
408 static int dispc_get_num_mgrs(struct dispc_device *dispc)
409 {
410 	return dispc->feat->num_mgrs;
411 }
412 
413 static void dispc_get_reg_field(struct dispc_device *dispc,
414 				enum dispc_feat_reg_field id,
415 				u8 *start, u8 *end)
416 {
417 	if (id >= dispc->feat->num_reg_fields)
418 		BUG();
419 
420 	*start = dispc->feat->reg_fields[id].start;
421 	*end = dispc->feat->reg_fields[id].end;
422 }
423 
424 static bool dispc_has_feature(struct dispc_device *dispc,
425 			      enum dispc_feature_id id)
426 {
427 	unsigned int i;
428 
429 	for (i = 0; i < dispc->feat->num_features; i++) {
430 		if (dispc->feat->features[i] == id)
431 			return true;
432 	}
433 
434 	return false;
435 }
436 
437 #define SR(dispc, reg) \
438 	dispc->ctx[DISPC_##reg / sizeof(u32)] = dispc_read_reg(dispc, DISPC_##reg)
439 #define RR(dispc, reg) \
440 	dispc_write_reg(dispc, DISPC_##reg, dispc->ctx[DISPC_##reg / sizeof(u32)])
441 
442 static void dispc_save_context(struct dispc_device *dispc)
443 {
444 	int i, j;
445 
446 	DSSDBG("dispc_save_context\n");
447 
448 	SR(dispc, IRQENABLE);
449 	SR(dispc, CONTROL);
450 	SR(dispc, CONFIG);
451 	SR(dispc, LINE_NUMBER);
452 	if (dispc_has_feature(dispc, FEAT_ALPHA_FIXED_ZORDER) ||
453 			dispc_has_feature(dispc, FEAT_ALPHA_FREE_ZORDER))
454 		SR(dispc, GLOBAL_ALPHA);
455 	if (dispc_has_feature(dispc, FEAT_MGR_LCD2)) {
456 		SR(dispc, CONTROL2);
457 		SR(dispc, CONFIG2);
458 	}
459 	if (dispc_has_feature(dispc, FEAT_MGR_LCD3)) {
460 		SR(dispc, CONTROL3);
461 		SR(dispc, CONFIG3);
462 	}
463 
464 	for (i = 0; i < dispc_get_num_mgrs(dispc); i++) {
465 		SR(dispc, DEFAULT_COLOR(i));
466 		SR(dispc, TRANS_COLOR(i));
467 		SR(dispc, SIZE_MGR(i));
468 		if (i == OMAP_DSS_CHANNEL_DIGIT)
469 			continue;
470 		SR(dispc, TIMING_H(i));
471 		SR(dispc, TIMING_V(i));
472 		SR(dispc, POL_FREQ(i));
473 		SR(dispc, DIVISORo(i));
474 
475 		SR(dispc, DATA_CYCLE1(i));
476 		SR(dispc, DATA_CYCLE2(i));
477 		SR(dispc, DATA_CYCLE3(i));
478 
479 		if (dispc_has_feature(dispc, FEAT_CPR)) {
480 			SR(dispc, CPR_COEF_R(i));
481 			SR(dispc, CPR_COEF_G(i));
482 			SR(dispc, CPR_COEF_B(i));
483 		}
484 	}
485 
486 	for (i = 0; i < dispc_get_num_ovls(dispc); i++) {
487 		SR(dispc, OVL_BA0(i));
488 		SR(dispc, OVL_BA1(i));
489 		SR(dispc, OVL_POSITION(i));
490 		SR(dispc, OVL_SIZE(i));
491 		SR(dispc, OVL_ATTRIBUTES(i));
492 		SR(dispc, OVL_FIFO_THRESHOLD(i));
493 		SR(dispc, OVL_ROW_INC(i));
494 		SR(dispc, OVL_PIXEL_INC(i));
495 		if (dispc_has_feature(dispc, FEAT_PRELOAD))
496 			SR(dispc, OVL_PRELOAD(i));
497 		if (i == OMAP_DSS_GFX) {
498 			SR(dispc, OVL_WINDOW_SKIP(i));
499 			SR(dispc, OVL_TABLE_BA(i));
500 			continue;
501 		}
502 		SR(dispc, OVL_FIR(i));
503 		SR(dispc, OVL_PICTURE_SIZE(i));
504 		SR(dispc, OVL_ACCU0(i));
505 		SR(dispc, OVL_ACCU1(i));
506 
507 		for (j = 0; j < 8; j++)
508 			SR(dispc, OVL_FIR_COEF_H(i, j));
509 
510 		for (j = 0; j < 8; j++)
511 			SR(dispc, OVL_FIR_COEF_HV(i, j));
512 
513 		for (j = 0; j < 5; j++)
514 			SR(dispc, OVL_CONV_COEF(i, j));
515 
516 		if (dispc_has_feature(dispc, FEAT_FIR_COEF_V)) {
517 			for (j = 0; j < 8; j++)
518 				SR(dispc, OVL_FIR_COEF_V(i, j));
519 		}
520 
521 		if (dispc_has_feature(dispc, FEAT_HANDLE_UV_SEPARATE)) {
522 			SR(dispc, OVL_BA0_UV(i));
523 			SR(dispc, OVL_BA1_UV(i));
524 			SR(dispc, OVL_FIR2(i));
525 			SR(dispc, OVL_ACCU2_0(i));
526 			SR(dispc, OVL_ACCU2_1(i));
527 
528 			for (j = 0; j < 8; j++)
529 				SR(dispc, OVL_FIR_COEF_H2(i, j));
530 
531 			for (j = 0; j < 8; j++)
532 				SR(dispc, OVL_FIR_COEF_HV2(i, j));
533 
534 			for (j = 0; j < 8; j++)
535 				SR(dispc, OVL_FIR_COEF_V2(i, j));
536 		}
537 		if (dispc_has_feature(dispc, FEAT_ATTR2))
538 			SR(dispc, OVL_ATTRIBUTES2(i));
539 	}
540 
541 	if (dispc_has_feature(dispc, FEAT_CORE_CLK_DIV))
542 		SR(dispc, DIVISOR);
543 
544 	dispc->ctx_valid = true;
545 
546 	DSSDBG("context saved\n");
547 }
548 
549 static void dispc_restore_context(struct dispc_device *dispc)
550 {
551 	int i, j;
552 
553 	DSSDBG("dispc_restore_context\n");
554 
555 	if (!dispc->ctx_valid)
556 		return;
557 
558 	/*RR(dispc, IRQENABLE);*/
559 	/*RR(dispc, CONTROL);*/
560 	RR(dispc, CONFIG);
561 	RR(dispc, LINE_NUMBER);
562 	if (dispc_has_feature(dispc, FEAT_ALPHA_FIXED_ZORDER) ||
563 			dispc_has_feature(dispc, FEAT_ALPHA_FREE_ZORDER))
564 		RR(dispc, GLOBAL_ALPHA);
565 	if (dispc_has_feature(dispc, FEAT_MGR_LCD2))
566 		RR(dispc, CONFIG2);
567 	if (dispc_has_feature(dispc, FEAT_MGR_LCD3))
568 		RR(dispc, CONFIG3);
569 
570 	for (i = 0; i < dispc_get_num_mgrs(dispc); i++) {
571 		RR(dispc, DEFAULT_COLOR(i));
572 		RR(dispc, TRANS_COLOR(i));
573 		RR(dispc, SIZE_MGR(i));
574 		if (i == OMAP_DSS_CHANNEL_DIGIT)
575 			continue;
576 		RR(dispc, TIMING_H(i));
577 		RR(dispc, TIMING_V(i));
578 		RR(dispc, POL_FREQ(i));
579 		RR(dispc, DIVISORo(i));
580 
581 		RR(dispc, DATA_CYCLE1(i));
582 		RR(dispc, DATA_CYCLE2(i));
583 		RR(dispc, DATA_CYCLE3(i));
584 
585 		if (dispc_has_feature(dispc, FEAT_CPR)) {
586 			RR(dispc, CPR_COEF_R(i));
587 			RR(dispc, CPR_COEF_G(i));
588 			RR(dispc, CPR_COEF_B(i));
589 		}
590 	}
591 
592 	for (i = 0; i < dispc_get_num_ovls(dispc); i++) {
593 		RR(dispc, OVL_BA0(i));
594 		RR(dispc, OVL_BA1(i));
595 		RR(dispc, OVL_POSITION(i));
596 		RR(dispc, OVL_SIZE(i));
597 		RR(dispc, OVL_ATTRIBUTES(i));
598 		RR(dispc, OVL_FIFO_THRESHOLD(i));
599 		RR(dispc, OVL_ROW_INC(i));
600 		RR(dispc, OVL_PIXEL_INC(i));
601 		if (dispc_has_feature(dispc, FEAT_PRELOAD))
602 			RR(dispc, OVL_PRELOAD(i));
603 		if (i == OMAP_DSS_GFX) {
604 			RR(dispc, OVL_WINDOW_SKIP(i));
605 			RR(dispc, OVL_TABLE_BA(i));
606 			continue;
607 		}
608 		RR(dispc, OVL_FIR(i));
609 		RR(dispc, OVL_PICTURE_SIZE(i));
610 		RR(dispc, OVL_ACCU0(i));
611 		RR(dispc, OVL_ACCU1(i));
612 
613 		for (j = 0; j < 8; j++)
614 			RR(dispc, OVL_FIR_COEF_H(i, j));
615 
616 		for (j = 0; j < 8; j++)
617 			RR(dispc, OVL_FIR_COEF_HV(i, j));
618 
619 		for (j = 0; j < 5; j++)
620 			RR(dispc, OVL_CONV_COEF(i, j));
621 
622 		if (dispc_has_feature(dispc, FEAT_FIR_COEF_V)) {
623 			for (j = 0; j < 8; j++)
624 				RR(dispc, OVL_FIR_COEF_V(i, j));
625 		}
626 
627 		if (dispc_has_feature(dispc, FEAT_HANDLE_UV_SEPARATE)) {
628 			RR(dispc, OVL_BA0_UV(i));
629 			RR(dispc, OVL_BA1_UV(i));
630 			RR(dispc, OVL_FIR2(i));
631 			RR(dispc, OVL_ACCU2_0(i));
632 			RR(dispc, OVL_ACCU2_1(i));
633 
634 			for (j = 0; j < 8; j++)
635 				RR(dispc, OVL_FIR_COEF_H2(i, j));
636 
637 			for (j = 0; j < 8; j++)
638 				RR(dispc, OVL_FIR_COEF_HV2(i, j));
639 
640 			for (j = 0; j < 8; j++)
641 				RR(dispc, OVL_FIR_COEF_V2(i, j));
642 		}
643 		if (dispc_has_feature(dispc, FEAT_ATTR2))
644 			RR(dispc, OVL_ATTRIBUTES2(i));
645 	}
646 
647 	if (dispc_has_feature(dispc, FEAT_CORE_CLK_DIV))
648 		RR(dispc, DIVISOR);
649 
650 	/* enable last, because LCD & DIGIT enable are here */
651 	RR(dispc, CONTROL);
652 	if (dispc_has_feature(dispc, FEAT_MGR_LCD2))
653 		RR(dispc, CONTROL2);
654 	if (dispc_has_feature(dispc, FEAT_MGR_LCD3))
655 		RR(dispc, CONTROL3);
656 	/* clear spurious SYNC_LOST_DIGIT interrupts */
657 	dispc_clear_irqstatus(dispc, DISPC_IRQ_SYNC_LOST_DIGIT);
658 
659 	/*
660 	 * enable last so IRQs won't trigger before
661 	 * the context is fully restored
662 	 */
663 	RR(dispc, IRQENABLE);
664 
665 	DSSDBG("context restored\n");
666 }
667 
668 #undef SR
669 #undef RR
670 
671 int dispc_runtime_get(struct dispc_device *dispc)
672 {
673 	int r;
674 
675 	DSSDBG("dispc_runtime_get\n");
676 
677 	r = pm_runtime_get_sync(&dispc->pdev->dev);
678 	WARN_ON(r < 0);
679 	return r < 0 ? r : 0;
680 }
681 
682 void dispc_runtime_put(struct dispc_device *dispc)
683 {
684 	int r;
685 
686 	DSSDBG("dispc_runtime_put\n");
687 
688 	r = pm_runtime_put_sync(&dispc->pdev->dev);
689 	WARN_ON(r < 0 && r != -ENOSYS);
690 }
691 
692 static u32 dispc_mgr_get_vsync_irq(struct dispc_device *dispc,
693 				   enum omap_channel channel)
694 {
695 	return mgr_desc[channel].vsync_irq;
696 }
697 
698 static u32 dispc_mgr_get_framedone_irq(struct dispc_device *dispc,
699 				       enum omap_channel channel)
700 {
701 	if (channel == OMAP_DSS_CHANNEL_DIGIT && dispc->feat->no_framedone_tv)
702 		return 0;
703 
704 	return mgr_desc[channel].framedone_irq;
705 }
706 
707 static u32 dispc_mgr_get_sync_lost_irq(struct dispc_device *dispc,
708 				       enum omap_channel channel)
709 {
710 	return mgr_desc[channel].sync_lost_irq;
711 }
712 
713 static u32 dispc_wb_get_framedone_irq(struct dispc_device *dispc)
714 {
715 	return DISPC_IRQ_FRAMEDONEWB;
716 }
717 
718 static void dispc_mgr_enable(struct dispc_device *dispc,
719 			     enum omap_channel channel, bool enable)
720 {
721 	mgr_fld_write(dispc, channel, DISPC_MGR_FLD_ENABLE, enable);
722 	/* flush posted write */
723 	mgr_fld_read(dispc, channel, DISPC_MGR_FLD_ENABLE);
724 }
725 
726 static bool dispc_mgr_is_enabled(struct dispc_device *dispc,
727 				 enum omap_channel channel)
728 {
729 	return !!mgr_fld_read(dispc, channel, DISPC_MGR_FLD_ENABLE);
730 }
731 
732 static bool dispc_mgr_go_busy(struct dispc_device *dispc,
733 			      enum omap_channel channel)
734 {
735 	return mgr_fld_read(dispc, channel, DISPC_MGR_FLD_GO) == 1;
736 }
737 
738 static void dispc_mgr_go(struct dispc_device *dispc, enum omap_channel channel)
739 {
740 	WARN_ON(!dispc_mgr_is_enabled(dispc, channel));
741 	WARN_ON(dispc_mgr_go_busy(dispc, channel));
742 
743 	DSSDBG("GO %s\n", mgr_desc[channel].name);
744 
745 	mgr_fld_write(dispc, channel, DISPC_MGR_FLD_GO, 1);
746 }
747 
748 static bool dispc_wb_go_busy(struct dispc_device *dispc)
749 {
750 	return REG_GET(dispc, DISPC_CONTROL2, 6, 6) == 1;
751 }
752 
753 static void dispc_wb_go(struct dispc_device *dispc)
754 {
755 	enum omap_plane_id plane = OMAP_DSS_WB;
756 	bool enable, go;
757 
758 	enable = REG_GET(dispc, DISPC_OVL_ATTRIBUTES(plane), 0, 0) == 1;
759 
760 	if (!enable)
761 		return;
762 
763 	go = REG_GET(dispc, DISPC_CONTROL2, 6, 6) == 1;
764 	if (go) {
765 		DSSERR("GO bit not down for WB\n");
766 		return;
767 	}
768 
769 	REG_FLD_MOD(dispc, DISPC_CONTROL2, 1, 6, 6);
770 }
771 
772 static void dispc_ovl_write_firh_reg(struct dispc_device *dispc,
773 				     enum omap_plane_id plane, int reg,
774 				     u32 value)
775 {
776 	dispc_write_reg(dispc, DISPC_OVL_FIR_COEF_H(plane, reg), value);
777 }
778 
779 static void dispc_ovl_write_firhv_reg(struct dispc_device *dispc,
780 				      enum omap_plane_id plane, int reg,
781 				      u32 value)
782 {
783 	dispc_write_reg(dispc, DISPC_OVL_FIR_COEF_HV(plane, reg), value);
784 }
785 
786 static void dispc_ovl_write_firv_reg(struct dispc_device *dispc,
787 				     enum omap_plane_id plane, int reg,
788 				     u32 value)
789 {
790 	dispc_write_reg(dispc, DISPC_OVL_FIR_COEF_V(plane, reg), value);
791 }
792 
793 static void dispc_ovl_write_firh2_reg(struct dispc_device *dispc,
794 				      enum omap_plane_id plane, int reg,
795 				      u32 value)
796 {
797 	BUG_ON(plane == OMAP_DSS_GFX);
798 
799 	dispc_write_reg(dispc, DISPC_OVL_FIR_COEF_H2(plane, reg), value);
800 }
801 
802 static void dispc_ovl_write_firhv2_reg(struct dispc_device *dispc,
803 				       enum omap_plane_id plane, int reg,
804 				       u32 value)
805 {
806 	BUG_ON(plane == OMAP_DSS_GFX);
807 
808 	dispc_write_reg(dispc, DISPC_OVL_FIR_COEF_HV2(plane, reg), value);
809 }
810 
811 static void dispc_ovl_write_firv2_reg(struct dispc_device *dispc,
812 				      enum omap_plane_id plane, int reg,
813 				      u32 value)
814 {
815 	BUG_ON(plane == OMAP_DSS_GFX);
816 
817 	dispc_write_reg(dispc, DISPC_OVL_FIR_COEF_V2(plane, reg), value);
818 }
819 
820 static void dispc_ovl_set_scale_coef(struct dispc_device *dispc,
821 				     enum omap_plane_id plane, int fir_hinc,
822 				     int fir_vinc, int five_taps,
823 				     enum omap_color_component color_comp)
824 {
825 	const struct dispc_coef *h_coef, *v_coef;
826 	int i;
827 
828 	h_coef = dispc_ovl_get_scale_coef(fir_hinc, true);
829 	v_coef = dispc_ovl_get_scale_coef(fir_vinc, five_taps);
830 
831 	if (!h_coef || !v_coef) {
832 		dev_err(&dispc->pdev->dev, "%s: failed to find scale coefs\n",
833 			__func__);
834 		return;
835 	}
836 
837 	for (i = 0; i < 8; i++) {
838 		u32 h, hv;
839 
840 		h = FLD_VAL(h_coef[i].hc0_vc00, 7, 0)
841 			| FLD_VAL(h_coef[i].hc1_vc0, 15, 8)
842 			| FLD_VAL(h_coef[i].hc2_vc1, 23, 16)
843 			| FLD_VAL(h_coef[i].hc3_vc2, 31, 24);
844 		hv = FLD_VAL(h_coef[i].hc4_vc22, 7, 0)
845 			| FLD_VAL(v_coef[i].hc1_vc0, 15, 8)
846 			| FLD_VAL(v_coef[i].hc2_vc1, 23, 16)
847 			| FLD_VAL(v_coef[i].hc3_vc2, 31, 24);
848 
849 		if (color_comp == DISPC_COLOR_COMPONENT_RGB_Y) {
850 			dispc_ovl_write_firh_reg(dispc, plane, i, h);
851 			dispc_ovl_write_firhv_reg(dispc, plane, i, hv);
852 		} else {
853 			dispc_ovl_write_firh2_reg(dispc, plane, i, h);
854 			dispc_ovl_write_firhv2_reg(dispc, plane, i, hv);
855 		}
856 
857 	}
858 
859 	if (five_taps) {
860 		for (i = 0; i < 8; i++) {
861 			u32 v;
862 			v = FLD_VAL(v_coef[i].hc0_vc00, 7, 0)
863 				| FLD_VAL(v_coef[i].hc4_vc22, 15, 8);
864 			if (color_comp == DISPC_COLOR_COMPONENT_RGB_Y)
865 				dispc_ovl_write_firv_reg(dispc, plane, i, v);
866 			else
867 				dispc_ovl_write_firv2_reg(dispc, plane, i, v);
868 		}
869 	}
870 }
871 
872 struct csc_coef_yuv2rgb {
873 	int ry, rcb, rcr, gy, gcb, gcr, by, bcb, bcr;
874 	bool full_range;
875 };
876 
877 struct csc_coef_rgb2yuv {
878 	int yr, yg, yb, cbr, cbg, cbb, crr, crg, crb;
879 	bool full_range;
880 };
881 
882 static void dispc_ovl_write_color_conv_coef(struct dispc_device *dispc,
883 					    enum omap_plane_id plane,
884 					    const struct csc_coef_yuv2rgb *ct)
885 {
886 #define CVAL(x, y) (FLD_VAL(x, 26, 16) | FLD_VAL(y, 10, 0))
887 
888 	dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 0), CVAL(ct->rcr, ct->ry));
889 	dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 1), CVAL(ct->gy,  ct->rcb));
890 	dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 2), CVAL(ct->gcb, ct->gcr));
891 	dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 3), CVAL(ct->bcr, ct->by));
892 	dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 4), CVAL(0, ct->bcb));
893 
894 	REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), ct->full_range, 11, 11);
895 
896 #undef CVAL
897 }
898 
899 static void dispc_wb_write_color_conv_coef(struct dispc_device *dispc,
900 					   const struct csc_coef_rgb2yuv *ct)
901 {
902 	const enum omap_plane_id plane = OMAP_DSS_WB;
903 
904 #define CVAL(x, y) (FLD_VAL(x, 26, 16) | FLD_VAL(y, 10, 0))
905 
906 	dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 0), CVAL(ct->yg,  ct->yr));
907 	dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 1), CVAL(ct->crr, ct->yb));
908 	dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 2), CVAL(ct->crb, ct->crg));
909 	dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 3), CVAL(ct->cbg, ct->cbr));
910 	dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 4), CVAL(0, ct->cbb));
911 
912 	REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), ct->full_range, 11, 11);
913 
914 #undef CVAL
915 }
916 
917 static void dispc_setup_color_conv_coef(struct dispc_device *dispc)
918 {
919 	int i;
920 	int num_ovl = dispc_get_num_ovls(dispc);
921 
922 	/* YUV -> RGB, ITU-R BT.601, limited range */
923 	const struct csc_coef_yuv2rgb coefs_yuv2rgb_bt601_lim = {
924 		298,    0,  409,	/* ry, rcb, rcr */
925 		298, -100, -208,	/* gy, gcb, gcr */
926 		298,  516,    0,	/* by, bcb, bcr */
927 		false,			/* limited range */
928 	};
929 
930 	/* RGB -> YUV, ITU-R BT.601, limited range */
931 	const struct csc_coef_rgb2yuv coefs_rgb2yuv_bt601_lim = {
932 		 66, 129,  25,		/* yr,   yg,  yb */
933 		-38, -74, 112,		/* cbr, cbg, cbb */
934 		112, -94, -18,		/* crr, crg, crb */
935 		false,			/* limited range */
936 	};
937 
938 	for (i = 1; i < num_ovl; i++)
939 		dispc_ovl_write_color_conv_coef(dispc, i, &coefs_yuv2rgb_bt601_lim);
940 
941 	if (dispc->feat->has_writeback)
942 		dispc_wb_write_color_conv_coef(dispc, &coefs_rgb2yuv_bt601_lim);
943 }
944 
945 static void dispc_ovl_set_ba0(struct dispc_device *dispc,
946 			      enum omap_plane_id plane, u32 paddr)
947 {
948 	dispc_write_reg(dispc, DISPC_OVL_BA0(plane), paddr);
949 }
950 
951 static void dispc_ovl_set_ba1(struct dispc_device *dispc,
952 			      enum omap_plane_id plane, u32 paddr)
953 {
954 	dispc_write_reg(dispc, DISPC_OVL_BA1(plane), paddr);
955 }
956 
957 static void dispc_ovl_set_ba0_uv(struct dispc_device *dispc,
958 				 enum omap_plane_id plane, u32 paddr)
959 {
960 	dispc_write_reg(dispc, DISPC_OVL_BA0_UV(plane), paddr);
961 }
962 
963 static void dispc_ovl_set_ba1_uv(struct dispc_device *dispc,
964 				 enum omap_plane_id plane, u32 paddr)
965 {
966 	dispc_write_reg(dispc, DISPC_OVL_BA1_UV(plane), paddr);
967 }
968 
969 static void dispc_ovl_set_pos(struct dispc_device *dispc,
970 			      enum omap_plane_id plane,
971 			      enum omap_overlay_caps caps, int x, int y)
972 {
973 	u32 val;
974 
975 	if ((caps & OMAP_DSS_OVL_CAP_POS) == 0)
976 		return;
977 
978 	val = FLD_VAL(y, 26, 16) | FLD_VAL(x, 10, 0);
979 
980 	dispc_write_reg(dispc, DISPC_OVL_POSITION(plane), val);
981 }
982 
983 static void dispc_ovl_set_input_size(struct dispc_device *dispc,
984 				     enum omap_plane_id plane, int width,
985 				     int height)
986 {
987 	u32 val = FLD_VAL(height - 1, 26, 16) | FLD_VAL(width - 1, 10, 0);
988 
989 	if (plane == OMAP_DSS_GFX || plane == OMAP_DSS_WB)
990 		dispc_write_reg(dispc, DISPC_OVL_SIZE(plane), val);
991 	else
992 		dispc_write_reg(dispc, DISPC_OVL_PICTURE_SIZE(plane), val);
993 }
994 
995 static void dispc_ovl_set_output_size(struct dispc_device *dispc,
996 				      enum omap_plane_id plane, int width,
997 				      int height)
998 {
999 	u32 val;
1000 
1001 	BUG_ON(plane == OMAP_DSS_GFX);
1002 
1003 	val = FLD_VAL(height - 1, 26, 16) | FLD_VAL(width - 1, 10, 0);
1004 
1005 	if (plane == OMAP_DSS_WB)
1006 		dispc_write_reg(dispc, DISPC_OVL_PICTURE_SIZE(plane), val);
1007 	else
1008 		dispc_write_reg(dispc, DISPC_OVL_SIZE(plane), val);
1009 }
1010 
1011 static void dispc_ovl_set_zorder(struct dispc_device *dispc,
1012 				 enum omap_plane_id plane,
1013 				 enum omap_overlay_caps caps, u8 zorder)
1014 {
1015 	if ((caps & OMAP_DSS_OVL_CAP_ZORDER) == 0)
1016 		return;
1017 
1018 	REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), zorder, 27, 26);
1019 }
1020 
1021 static void dispc_ovl_enable_zorder_planes(struct dispc_device *dispc)
1022 {
1023 	int i;
1024 
1025 	if (!dispc_has_feature(dispc, FEAT_ALPHA_FREE_ZORDER))
1026 		return;
1027 
1028 	for (i = 0; i < dispc_get_num_ovls(dispc); i++)
1029 		REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(i), 1, 25, 25);
1030 }
1031 
1032 static void dispc_ovl_set_pre_mult_alpha(struct dispc_device *dispc,
1033 					 enum omap_plane_id plane,
1034 					 enum omap_overlay_caps caps,
1035 					 bool enable)
1036 {
1037 	if ((caps & OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA) == 0)
1038 		return;
1039 
1040 	REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), enable ? 1 : 0, 28, 28);
1041 }
1042 
1043 static void dispc_ovl_setup_global_alpha(struct dispc_device *dispc,
1044 					 enum omap_plane_id plane,
1045 					 enum omap_overlay_caps caps,
1046 					 u8 global_alpha)
1047 {
1048 	static const unsigned int shifts[] = { 0, 8, 16, 24, };
1049 	int shift;
1050 
1051 	if ((caps & OMAP_DSS_OVL_CAP_GLOBAL_ALPHA) == 0)
1052 		return;
1053 
1054 	shift = shifts[plane];
1055 	REG_FLD_MOD(dispc, DISPC_GLOBAL_ALPHA, global_alpha, shift + 7, shift);
1056 }
1057 
1058 static void dispc_ovl_set_pix_inc(struct dispc_device *dispc,
1059 				  enum omap_plane_id plane, s32 inc)
1060 {
1061 	dispc_write_reg(dispc, DISPC_OVL_PIXEL_INC(plane), inc);
1062 }
1063 
1064 static void dispc_ovl_set_row_inc(struct dispc_device *dispc,
1065 				  enum omap_plane_id plane, s32 inc)
1066 {
1067 	dispc_write_reg(dispc, DISPC_OVL_ROW_INC(plane), inc);
1068 }
1069 
1070 static void dispc_ovl_set_color_mode(struct dispc_device *dispc,
1071 				     enum omap_plane_id plane, u32 fourcc)
1072 {
1073 	u32 m = 0;
1074 	if (plane != OMAP_DSS_GFX) {
1075 		switch (fourcc) {
1076 		case DRM_FORMAT_NV12:
1077 			m = 0x0; break;
1078 		case DRM_FORMAT_XRGB4444:
1079 			m = 0x1; break;
1080 		case DRM_FORMAT_RGBA4444:
1081 			m = 0x2; break;
1082 		case DRM_FORMAT_RGBX4444:
1083 			m = 0x4; break;
1084 		case DRM_FORMAT_ARGB4444:
1085 			m = 0x5; break;
1086 		case DRM_FORMAT_RGB565:
1087 			m = 0x6; break;
1088 		case DRM_FORMAT_ARGB1555:
1089 			m = 0x7; break;
1090 		case DRM_FORMAT_XRGB8888:
1091 			m = 0x8; break;
1092 		case DRM_FORMAT_RGB888:
1093 			m = 0x9; break;
1094 		case DRM_FORMAT_YUYV:
1095 			m = 0xa; break;
1096 		case DRM_FORMAT_UYVY:
1097 			m = 0xb; break;
1098 		case DRM_FORMAT_ARGB8888:
1099 			m = 0xc; break;
1100 		case DRM_FORMAT_RGBA8888:
1101 			m = 0xd; break;
1102 		case DRM_FORMAT_RGBX8888:
1103 			m = 0xe; break;
1104 		case DRM_FORMAT_XRGB1555:
1105 			m = 0xf; break;
1106 		default:
1107 			BUG(); return;
1108 		}
1109 	} else {
1110 		switch (fourcc) {
1111 		case DRM_FORMAT_RGBX4444:
1112 			m = 0x4; break;
1113 		case DRM_FORMAT_ARGB4444:
1114 			m = 0x5; break;
1115 		case DRM_FORMAT_RGB565:
1116 			m = 0x6; break;
1117 		case DRM_FORMAT_ARGB1555:
1118 			m = 0x7; break;
1119 		case DRM_FORMAT_XRGB8888:
1120 			m = 0x8; break;
1121 		case DRM_FORMAT_RGB888:
1122 			m = 0x9; break;
1123 		case DRM_FORMAT_XRGB4444:
1124 			m = 0xa; break;
1125 		case DRM_FORMAT_RGBA4444:
1126 			m = 0xb; break;
1127 		case DRM_FORMAT_ARGB8888:
1128 			m = 0xc; break;
1129 		case DRM_FORMAT_RGBA8888:
1130 			m = 0xd; break;
1131 		case DRM_FORMAT_RGBX8888:
1132 			m = 0xe; break;
1133 		case DRM_FORMAT_XRGB1555:
1134 			m = 0xf; break;
1135 		default:
1136 			BUG(); return;
1137 		}
1138 	}
1139 
1140 	REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), m, 4, 1);
1141 }
1142 
1143 static void dispc_ovl_configure_burst_type(struct dispc_device *dispc,
1144 					   enum omap_plane_id plane,
1145 					   enum omap_dss_rotation_type rotation)
1146 {
1147 	if (dispc_has_feature(dispc, FEAT_BURST_2D) == 0)
1148 		return;
1149 
1150 	if (rotation == OMAP_DSS_ROT_TILER)
1151 		REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), 1, 29, 29);
1152 	else
1153 		REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), 0, 29, 29);
1154 }
1155 
1156 static void dispc_ovl_set_channel_out(struct dispc_device *dispc,
1157 				      enum omap_plane_id plane,
1158 				      enum omap_channel channel)
1159 {
1160 	int shift;
1161 	u32 val;
1162 	int chan = 0, chan2 = 0;
1163 
1164 	switch (plane) {
1165 	case OMAP_DSS_GFX:
1166 		shift = 8;
1167 		break;
1168 	case OMAP_DSS_VIDEO1:
1169 	case OMAP_DSS_VIDEO2:
1170 	case OMAP_DSS_VIDEO3:
1171 		shift = 16;
1172 		break;
1173 	default:
1174 		BUG();
1175 		return;
1176 	}
1177 
1178 	val = dispc_read_reg(dispc, DISPC_OVL_ATTRIBUTES(plane));
1179 	if (dispc_has_feature(dispc, FEAT_MGR_LCD2)) {
1180 		switch (channel) {
1181 		case OMAP_DSS_CHANNEL_LCD:
1182 			chan = 0;
1183 			chan2 = 0;
1184 			break;
1185 		case OMAP_DSS_CHANNEL_DIGIT:
1186 			chan = 1;
1187 			chan2 = 0;
1188 			break;
1189 		case OMAP_DSS_CHANNEL_LCD2:
1190 			chan = 0;
1191 			chan2 = 1;
1192 			break;
1193 		case OMAP_DSS_CHANNEL_LCD3:
1194 			if (dispc_has_feature(dispc, FEAT_MGR_LCD3)) {
1195 				chan = 0;
1196 				chan2 = 2;
1197 			} else {
1198 				BUG();
1199 				return;
1200 			}
1201 			break;
1202 		case OMAP_DSS_CHANNEL_WB:
1203 			chan = 0;
1204 			chan2 = 3;
1205 			break;
1206 		default:
1207 			BUG();
1208 			return;
1209 		}
1210 
1211 		val = FLD_MOD(val, chan, shift, shift);
1212 		val = FLD_MOD(val, chan2, 31, 30);
1213 	} else {
1214 		val = FLD_MOD(val, channel, shift, shift);
1215 	}
1216 	dispc_write_reg(dispc, DISPC_OVL_ATTRIBUTES(plane), val);
1217 }
1218 
1219 static enum omap_channel dispc_ovl_get_channel_out(struct dispc_device *dispc,
1220 						   enum omap_plane_id plane)
1221 {
1222 	int shift;
1223 	u32 val;
1224 
1225 	switch (plane) {
1226 	case OMAP_DSS_GFX:
1227 		shift = 8;
1228 		break;
1229 	case OMAP_DSS_VIDEO1:
1230 	case OMAP_DSS_VIDEO2:
1231 	case OMAP_DSS_VIDEO3:
1232 		shift = 16;
1233 		break;
1234 	default:
1235 		BUG();
1236 		return 0;
1237 	}
1238 
1239 	val = dispc_read_reg(dispc, DISPC_OVL_ATTRIBUTES(plane));
1240 
1241 	if (FLD_GET(val, shift, shift) == 1)
1242 		return OMAP_DSS_CHANNEL_DIGIT;
1243 
1244 	if (!dispc_has_feature(dispc, FEAT_MGR_LCD2))
1245 		return OMAP_DSS_CHANNEL_LCD;
1246 
1247 	switch (FLD_GET(val, 31, 30)) {
1248 	case 0:
1249 	default:
1250 		return OMAP_DSS_CHANNEL_LCD;
1251 	case 1:
1252 		return OMAP_DSS_CHANNEL_LCD2;
1253 	case 2:
1254 		return OMAP_DSS_CHANNEL_LCD3;
1255 	case 3:
1256 		return OMAP_DSS_CHANNEL_WB;
1257 	}
1258 }
1259 
1260 static void dispc_ovl_set_burst_size(struct dispc_device *dispc,
1261 				     enum omap_plane_id plane,
1262 				     enum omap_burst_size burst_size)
1263 {
1264 	static const unsigned int shifts[] = { 6, 14, 14, 14, 14, };
1265 	int shift;
1266 
1267 	shift = shifts[plane];
1268 	REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), burst_size,
1269 		    shift + 1, shift);
1270 }
1271 
1272 static void dispc_configure_burst_sizes(struct dispc_device *dispc)
1273 {
1274 	int i;
1275 	const int burst_size = BURST_SIZE_X8;
1276 
1277 	/* Configure burst size always to maximum size */
1278 	for (i = 0; i < dispc_get_num_ovls(dispc); ++i)
1279 		dispc_ovl_set_burst_size(dispc, i, burst_size);
1280 	if (dispc->feat->has_writeback)
1281 		dispc_ovl_set_burst_size(dispc, OMAP_DSS_WB, burst_size);
1282 }
1283 
1284 static u32 dispc_ovl_get_burst_size(struct dispc_device *dispc,
1285 				    enum omap_plane_id plane)
1286 {
1287 	/* burst multiplier is always x8 (see dispc_configure_burst_sizes()) */
1288 	return dispc->feat->burst_size_unit * 8;
1289 }
1290 
1291 static bool dispc_ovl_color_mode_supported(struct dispc_device *dispc,
1292 					   enum omap_plane_id plane, u32 fourcc)
1293 {
1294 	const u32 *modes;
1295 	unsigned int i;
1296 
1297 	modes = dispc->feat->supported_color_modes[plane];
1298 
1299 	for (i = 0; modes[i]; ++i) {
1300 		if (modes[i] == fourcc)
1301 			return true;
1302 	}
1303 
1304 	return false;
1305 }
1306 
1307 static const u32 *dispc_ovl_get_color_modes(struct dispc_device *dispc,
1308 					    enum omap_plane_id plane)
1309 {
1310 	return dispc->feat->supported_color_modes[plane];
1311 }
1312 
1313 static void dispc_mgr_enable_cpr(struct dispc_device *dispc,
1314 				 enum omap_channel channel, bool enable)
1315 {
1316 	if (channel == OMAP_DSS_CHANNEL_DIGIT)
1317 		return;
1318 
1319 	mgr_fld_write(dispc, channel, DISPC_MGR_FLD_CPR, enable);
1320 }
1321 
1322 static void dispc_mgr_set_cpr_coef(struct dispc_device *dispc,
1323 				   enum omap_channel channel,
1324 				   const struct omap_dss_cpr_coefs *coefs)
1325 {
1326 	u32 coef_r, coef_g, coef_b;
1327 
1328 	if (!dss_mgr_is_lcd(channel))
1329 		return;
1330 
1331 	coef_r = FLD_VAL(coefs->rr, 31, 22) | FLD_VAL(coefs->rg, 20, 11) |
1332 		FLD_VAL(coefs->rb, 9, 0);
1333 	coef_g = FLD_VAL(coefs->gr, 31, 22) | FLD_VAL(coefs->gg, 20, 11) |
1334 		FLD_VAL(coefs->gb, 9, 0);
1335 	coef_b = FLD_VAL(coefs->br, 31, 22) | FLD_VAL(coefs->bg, 20, 11) |
1336 		FLD_VAL(coefs->bb, 9, 0);
1337 
1338 	dispc_write_reg(dispc, DISPC_CPR_COEF_R(channel), coef_r);
1339 	dispc_write_reg(dispc, DISPC_CPR_COEF_G(channel), coef_g);
1340 	dispc_write_reg(dispc, DISPC_CPR_COEF_B(channel), coef_b);
1341 }
1342 
1343 static void dispc_ovl_set_vid_color_conv(struct dispc_device *dispc,
1344 					 enum omap_plane_id plane, bool enable)
1345 {
1346 	u32 val;
1347 
1348 	BUG_ON(plane == OMAP_DSS_GFX);
1349 
1350 	val = dispc_read_reg(dispc, DISPC_OVL_ATTRIBUTES(plane));
1351 	val = FLD_MOD(val, enable, 9, 9);
1352 	dispc_write_reg(dispc, DISPC_OVL_ATTRIBUTES(plane), val);
1353 }
1354 
1355 static void dispc_ovl_enable_replication(struct dispc_device *dispc,
1356 					 enum omap_plane_id plane,
1357 					 enum omap_overlay_caps caps,
1358 					 bool enable)
1359 {
1360 	static const unsigned int shifts[] = { 5, 10, 10, 10 };
1361 	int shift;
1362 
1363 	if ((caps & OMAP_DSS_OVL_CAP_REPLICATION) == 0)
1364 		return;
1365 
1366 	shift = shifts[plane];
1367 	REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), enable, shift, shift);
1368 }
1369 
1370 static void dispc_mgr_set_size(struct dispc_device *dispc,
1371 			       enum omap_channel channel, u16 width, u16 height)
1372 {
1373 	u32 val;
1374 
1375 	val = FLD_VAL(height - 1, dispc->feat->mgr_height_start, 16) |
1376 		FLD_VAL(width - 1, dispc->feat->mgr_width_start, 0);
1377 
1378 	dispc_write_reg(dispc, DISPC_SIZE_MGR(channel), val);
1379 }
1380 
1381 static void dispc_init_fifos(struct dispc_device *dispc)
1382 {
1383 	u32 size;
1384 	int fifo;
1385 	u8 start, end;
1386 	u32 unit;
1387 	int i;
1388 
1389 	unit = dispc->feat->buffer_size_unit;
1390 
1391 	dispc_get_reg_field(dispc, FEAT_REG_FIFOSIZE, &start, &end);
1392 
1393 	for (fifo = 0; fifo < dispc->feat->num_fifos; ++fifo) {
1394 		size = REG_GET(dispc, DISPC_OVL_FIFO_SIZE_STATUS(fifo),
1395 			       start, end);
1396 		size *= unit;
1397 		dispc->fifo_size[fifo] = size;
1398 
1399 		/*
1400 		 * By default fifos are mapped directly to overlays, fifo 0 to
1401 		 * ovl 0, fifo 1 to ovl 1, etc.
1402 		 */
1403 		dispc->fifo_assignment[fifo] = fifo;
1404 	}
1405 
1406 	/*
1407 	 * The GFX fifo on OMAP4 is smaller than the other fifos. The small fifo
1408 	 * causes problems with certain use cases, like using the tiler in 2D
1409 	 * mode. The below hack swaps the fifos of GFX and WB planes, thus
1410 	 * giving GFX plane a larger fifo. WB but should work fine with a
1411 	 * smaller fifo.
1412 	 */
1413 	if (dispc->feat->gfx_fifo_workaround) {
1414 		u32 v;
1415 
1416 		v = dispc_read_reg(dispc, DISPC_GLOBAL_BUFFER);
1417 
1418 		v = FLD_MOD(v, 4, 2, 0); /* GFX BUF top to WB */
1419 		v = FLD_MOD(v, 4, 5, 3); /* GFX BUF bottom to WB */
1420 		v = FLD_MOD(v, 0, 26, 24); /* WB BUF top to GFX */
1421 		v = FLD_MOD(v, 0, 29, 27); /* WB BUF bottom to GFX */
1422 
1423 		dispc_write_reg(dispc, DISPC_GLOBAL_BUFFER, v);
1424 
1425 		dispc->fifo_assignment[OMAP_DSS_GFX] = OMAP_DSS_WB;
1426 		dispc->fifo_assignment[OMAP_DSS_WB] = OMAP_DSS_GFX;
1427 	}
1428 
1429 	/*
1430 	 * Setup default fifo thresholds.
1431 	 */
1432 	for (i = 0; i < dispc_get_num_ovls(dispc); ++i) {
1433 		u32 low, high;
1434 		const bool use_fifomerge = false;
1435 		const bool manual_update = false;
1436 
1437 		dispc_ovl_compute_fifo_thresholds(dispc, i, &low, &high,
1438 						  use_fifomerge, manual_update);
1439 
1440 		dispc_ovl_set_fifo_threshold(dispc, i, low, high);
1441 	}
1442 
1443 	if (dispc->feat->has_writeback) {
1444 		u32 low, high;
1445 		const bool use_fifomerge = false;
1446 		const bool manual_update = false;
1447 
1448 		dispc_ovl_compute_fifo_thresholds(dispc, OMAP_DSS_WB,
1449 						  &low, &high, use_fifomerge,
1450 						  manual_update);
1451 
1452 		dispc_ovl_set_fifo_threshold(dispc, OMAP_DSS_WB, low, high);
1453 	}
1454 }
1455 
1456 static u32 dispc_ovl_get_fifo_size(struct dispc_device *dispc,
1457 				   enum omap_plane_id plane)
1458 {
1459 	int fifo;
1460 	u32 size = 0;
1461 
1462 	for (fifo = 0; fifo < dispc->feat->num_fifos; ++fifo) {
1463 		if (dispc->fifo_assignment[fifo] == plane)
1464 			size += dispc->fifo_size[fifo];
1465 	}
1466 
1467 	return size;
1468 }
1469 
1470 void dispc_ovl_set_fifo_threshold(struct dispc_device *dispc,
1471 				  enum omap_plane_id plane,
1472 				  u32 low, u32 high)
1473 {
1474 	u8 hi_start, hi_end, lo_start, lo_end;
1475 	u32 unit;
1476 
1477 	unit = dispc->feat->buffer_size_unit;
1478 
1479 	WARN_ON(low % unit != 0);
1480 	WARN_ON(high % unit != 0);
1481 
1482 	low /= unit;
1483 	high /= unit;
1484 
1485 	dispc_get_reg_field(dispc, FEAT_REG_FIFOHIGHTHRESHOLD,
1486 			    &hi_start, &hi_end);
1487 	dispc_get_reg_field(dispc, FEAT_REG_FIFOLOWTHRESHOLD,
1488 			    &lo_start, &lo_end);
1489 
1490 	DSSDBG("fifo(%d) threshold (bytes), old %u/%u, new %u/%u\n",
1491 			plane,
1492 			REG_GET(dispc, DISPC_OVL_FIFO_THRESHOLD(plane),
1493 				lo_start, lo_end) * unit,
1494 			REG_GET(dispc, DISPC_OVL_FIFO_THRESHOLD(plane),
1495 				hi_start, hi_end) * unit,
1496 			low * unit, high * unit);
1497 
1498 	dispc_write_reg(dispc, DISPC_OVL_FIFO_THRESHOLD(plane),
1499 			FLD_VAL(high, hi_start, hi_end) |
1500 			FLD_VAL(low, lo_start, lo_end));
1501 
1502 	/*
1503 	 * configure the preload to the pipeline's high threhold, if HT it's too
1504 	 * large for the preload field, set the threshold to the maximum value
1505 	 * that can be held by the preload register
1506 	 */
1507 	if (dispc_has_feature(dispc, FEAT_PRELOAD) &&
1508 	    dispc->feat->set_max_preload && plane != OMAP_DSS_WB)
1509 		dispc_write_reg(dispc, DISPC_OVL_PRELOAD(plane),
1510 				min(high, 0xfffu));
1511 }
1512 
1513 void dispc_enable_fifomerge(struct dispc_device *dispc, bool enable)
1514 {
1515 	if (!dispc_has_feature(dispc, FEAT_FIFO_MERGE)) {
1516 		WARN_ON(enable);
1517 		return;
1518 	}
1519 
1520 	DSSDBG("FIFO merge %s\n", enable ? "enabled" : "disabled");
1521 	REG_FLD_MOD(dispc, DISPC_CONFIG, enable ? 1 : 0, 14, 14);
1522 }
1523 
1524 void dispc_ovl_compute_fifo_thresholds(struct dispc_device *dispc,
1525 				       enum omap_plane_id plane,
1526 				       u32 *fifo_low, u32 *fifo_high,
1527 				       bool use_fifomerge, bool manual_update)
1528 {
1529 	/*
1530 	 * All sizes are in bytes. Both the buffer and burst are made of
1531 	 * buffer_units, and the fifo thresholds must be buffer_unit aligned.
1532 	 */
1533 	unsigned int buf_unit = dispc->feat->buffer_size_unit;
1534 	unsigned int ovl_fifo_size, total_fifo_size, burst_size;
1535 	int i;
1536 
1537 	burst_size = dispc_ovl_get_burst_size(dispc, plane);
1538 	ovl_fifo_size = dispc_ovl_get_fifo_size(dispc, plane);
1539 
1540 	if (use_fifomerge) {
1541 		total_fifo_size = 0;
1542 		for (i = 0; i < dispc_get_num_ovls(dispc); ++i)
1543 			total_fifo_size += dispc_ovl_get_fifo_size(dispc, i);
1544 	} else {
1545 		total_fifo_size = ovl_fifo_size;
1546 	}
1547 
1548 	/*
1549 	 * We use the same low threshold for both fifomerge and non-fifomerge
1550 	 * cases, but for fifomerge we calculate the high threshold using the
1551 	 * combined fifo size
1552 	 */
1553 
1554 	if (manual_update && dispc_has_feature(dispc, FEAT_OMAP3_DSI_FIFO_BUG)) {
1555 		*fifo_low = ovl_fifo_size - burst_size * 2;
1556 		*fifo_high = total_fifo_size - burst_size;
1557 	} else if (plane == OMAP_DSS_WB) {
1558 		/*
1559 		 * Most optimal configuration for writeback is to push out data
1560 		 * to the interconnect the moment writeback pushes enough pixels
1561 		 * in the FIFO to form a burst
1562 		 */
1563 		*fifo_low = 0;
1564 		*fifo_high = burst_size;
1565 	} else {
1566 		*fifo_low = ovl_fifo_size - burst_size;
1567 		*fifo_high = total_fifo_size - buf_unit;
1568 	}
1569 }
1570 
1571 static void dispc_ovl_set_mflag(struct dispc_device *dispc,
1572 				enum omap_plane_id plane, bool enable)
1573 {
1574 	int bit;
1575 
1576 	if (plane == OMAP_DSS_GFX)
1577 		bit = 14;
1578 	else
1579 		bit = 23;
1580 
1581 	REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), enable, bit, bit);
1582 }
1583 
1584 static void dispc_ovl_set_mflag_threshold(struct dispc_device *dispc,
1585 					  enum omap_plane_id plane,
1586 					  int low, int high)
1587 {
1588 	dispc_write_reg(dispc, DISPC_OVL_MFLAG_THRESHOLD(plane),
1589 		FLD_VAL(high, 31, 16) |	FLD_VAL(low, 15, 0));
1590 }
1591 
1592 static void dispc_init_mflag(struct dispc_device *dispc)
1593 {
1594 	int i;
1595 
1596 	/*
1597 	 * HACK: NV12 color format and MFLAG seem to have problems working
1598 	 * together: using two displays, and having an NV12 overlay on one of
1599 	 * the displays will cause underflows/synclosts when MFLAG_CTRL=2.
1600 	 * Changing MFLAG thresholds and PRELOAD to certain values seem to
1601 	 * remove the errors, but there doesn't seem to be a clear logic on
1602 	 * which values work and which not.
1603 	 *
1604 	 * As a work-around, set force MFLAG to always on.
1605 	 */
1606 	dispc_write_reg(dispc, DISPC_GLOBAL_MFLAG_ATTRIBUTE,
1607 		(1 << 0) |	/* MFLAG_CTRL = force always on */
1608 		(0 << 2));	/* MFLAG_START = disable */
1609 
1610 	for (i = 0; i < dispc_get_num_ovls(dispc); ++i) {
1611 		u32 size = dispc_ovl_get_fifo_size(dispc, i);
1612 		u32 unit = dispc->feat->buffer_size_unit;
1613 		u32 low, high;
1614 
1615 		dispc_ovl_set_mflag(dispc, i, true);
1616 
1617 		/*
1618 		 * Simulation team suggests below thesholds:
1619 		 * HT = fifosize * 5 / 8;
1620 		 * LT = fifosize * 4 / 8;
1621 		 */
1622 
1623 		low = size * 4 / 8 / unit;
1624 		high = size * 5 / 8 / unit;
1625 
1626 		dispc_ovl_set_mflag_threshold(dispc, i, low, high);
1627 	}
1628 
1629 	if (dispc->feat->has_writeback) {
1630 		u32 size = dispc_ovl_get_fifo_size(dispc, OMAP_DSS_WB);
1631 		u32 unit = dispc->feat->buffer_size_unit;
1632 		u32 low, high;
1633 
1634 		dispc_ovl_set_mflag(dispc, OMAP_DSS_WB, true);
1635 
1636 		/*
1637 		 * Simulation team suggests below thesholds:
1638 		 * HT = fifosize * 5 / 8;
1639 		 * LT = fifosize * 4 / 8;
1640 		 */
1641 
1642 		low = size * 4 / 8 / unit;
1643 		high = size * 5 / 8 / unit;
1644 
1645 		dispc_ovl_set_mflag_threshold(dispc, OMAP_DSS_WB, low, high);
1646 	}
1647 }
1648 
1649 static void dispc_ovl_set_fir(struct dispc_device *dispc,
1650 			      enum omap_plane_id plane,
1651 			      int hinc, int vinc,
1652 			      enum omap_color_component color_comp)
1653 {
1654 	u32 val;
1655 
1656 	if (color_comp == DISPC_COLOR_COMPONENT_RGB_Y) {
1657 		u8 hinc_start, hinc_end, vinc_start, vinc_end;
1658 
1659 		dispc_get_reg_field(dispc, FEAT_REG_FIRHINC,
1660 				    &hinc_start, &hinc_end);
1661 		dispc_get_reg_field(dispc, FEAT_REG_FIRVINC,
1662 				    &vinc_start, &vinc_end);
1663 		val = FLD_VAL(vinc, vinc_start, vinc_end) |
1664 				FLD_VAL(hinc, hinc_start, hinc_end);
1665 
1666 		dispc_write_reg(dispc, DISPC_OVL_FIR(plane), val);
1667 	} else {
1668 		val = FLD_VAL(vinc, 28, 16) | FLD_VAL(hinc, 12, 0);
1669 		dispc_write_reg(dispc, DISPC_OVL_FIR2(plane), val);
1670 	}
1671 }
1672 
1673 static void dispc_ovl_set_vid_accu0(struct dispc_device *dispc,
1674 				    enum omap_plane_id plane, int haccu,
1675 				    int vaccu)
1676 {
1677 	u32 val;
1678 	u8 hor_start, hor_end, vert_start, vert_end;
1679 
1680 	dispc_get_reg_field(dispc, FEAT_REG_HORIZONTALACCU,
1681 			    &hor_start, &hor_end);
1682 	dispc_get_reg_field(dispc, FEAT_REG_VERTICALACCU,
1683 			    &vert_start, &vert_end);
1684 
1685 	val = FLD_VAL(vaccu, vert_start, vert_end) |
1686 			FLD_VAL(haccu, hor_start, hor_end);
1687 
1688 	dispc_write_reg(dispc, DISPC_OVL_ACCU0(plane), val);
1689 }
1690 
1691 static void dispc_ovl_set_vid_accu1(struct dispc_device *dispc,
1692 				    enum omap_plane_id plane, int haccu,
1693 				    int vaccu)
1694 {
1695 	u32 val;
1696 	u8 hor_start, hor_end, vert_start, vert_end;
1697 
1698 	dispc_get_reg_field(dispc, FEAT_REG_HORIZONTALACCU,
1699 			    &hor_start, &hor_end);
1700 	dispc_get_reg_field(dispc, FEAT_REG_VERTICALACCU,
1701 			    &vert_start, &vert_end);
1702 
1703 	val = FLD_VAL(vaccu, vert_start, vert_end) |
1704 			FLD_VAL(haccu, hor_start, hor_end);
1705 
1706 	dispc_write_reg(dispc, DISPC_OVL_ACCU1(plane), val);
1707 }
1708 
1709 static void dispc_ovl_set_vid_accu2_0(struct dispc_device *dispc,
1710 				      enum omap_plane_id plane, int haccu,
1711 				      int vaccu)
1712 {
1713 	u32 val;
1714 
1715 	val = FLD_VAL(vaccu, 26, 16) | FLD_VAL(haccu, 10, 0);
1716 	dispc_write_reg(dispc, DISPC_OVL_ACCU2_0(plane), val);
1717 }
1718 
1719 static void dispc_ovl_set_vid_accu2_1(struct dispc_device *dispc,
1720 				      enum omap_plane_id plane, int haccu,
1721 				      int vaccu)
1722 {
1723 	u32 val;
1724 
1725 	val = FLD_VAL(vaccu, 26, 16) | FLD_VAL(haccu, 10, 0);
1726 	dispc_write_reg(dispc, DISPC_OVL_ACCU2_1(plane), val);
1727 }
1728 
1729 static void dispc_ovl_set_scale_param(struct dispc_device *dispc,
1730 				      enum omap_plane_id plane,
1731 				      u16 orig_width, u16 orig_height,
1732 				      u16 out_width, u16 out_height,
1733 				      bool five_taps, u8 rotation,
1734 				      enum omap_color_component color_comp)
1735 {
1736 	int fir_hinc, fir_vinc;
1737 
1738 	fir_hinc = 1024 * orig_width / out_width;
1739 	fir_vinc = 1024 * orig_height / out_height;
1740 
1741 	dispc_ovl_set_scale_coef(dispc, plane, fir_hinc, fir_vinc, five_taps,
1742 				 color_comp);
1743 	dispc_ovl_set_fir(dispc, plane, fir_hinc, fir_vinc, color_comp);
1744 }
1745 
1746 static void dispc_ovl_set_accu_uv(struct dispc_device *dispc,
1747 				  enum omap_plane_id plane,
1748 				  u16 orig_width, u16 orig_height,
1749 				  u16 out_width, u16 out_height,
1750 				  bool ilace, u32 fourcc, u8 rotation)
1751 {
1752 	int h_accu2_0, h_accu2_1;
1753 	int v_accu2_0, v_accu2_1;
1754 	int chroma_hinc, chroma_vinc;
1755 	int idx;
1756 
1757 	struct accu {
1758 		s8 h0_m, h0_n;
1759 		s8 h1_m, h1_n;
1760 		s8 v0_m, v0_n;
1761 		s8 v1_m, v1_n;
1762 	};
1763 
1764 	const struct accu *accu_table;
1765 	const struct accu *accu_val;
1766 
1767 	static const struct accu accu_nv12[4] = {
1768 		{  0, 1,  0, 1 , -1, 2, 0, 1 },
1769 		{  1, 2, -3, 4 ,  0, 1, 0, 1 },
1770 		{ -1, 1,  0, 1 , -1, 2, 0, 1 },
1771 		{ -1, 2, -1, 2 , -1, 1, 0, 1 },
1772 	};
1773 
1774 	static const struct accu accu_nv12_ilace[4] = {
1775 		{  0, 1,  0, 1 , -3, 4, -1, 4 },
1776 		{ -1, 4, -3, 4 ,  0, 1,  0, 1 },
1777 		{ -1, 1,  0, 1 , -1, 4, -3, 4 },
1778 		{ -3, 4, -3, 4 , -1, 1,  0, 1 },
1779 	};
1780 
1781 	static const struct accu accu_yuv[4] = {
1782 		{  0, 1, 0, 1,  0, 1, 0, 1 },
1783 		{  0, 1, 0, 1,  0, 1, 0, 1 },
1784 		{ -1, 1, 0, 1,  0, 1, 0, 1 },
1785 		{  0, 1, 0, 1, -1, 1, 0, 1 },
1786 	};
1787 
1788 	/* Note: DSS HW rotates clockwise, DRM_MODE_ROTATE_* counter-clockwise */
1789 	switch (rotation & DRM_MODE_ROTATE_MASK) {
1790 	default:
1791 	case DRM_MODE_ROTATE_0:
1792 		idx = 0;
1793 		break;
1794 	case DRM_MODE_ROTATE_90:
1795 		idx = 3;
1796 		break;
1797 	case DRM_MODE_ROTATE_180:
1798 		idx = 2;
1799 		break;
1800 	case DRM_MODE_ROTATE_270:
1801 		idx = 1;
1802 		break;
1803 	}
1804 
1805 	switch (fourcc) {
1806 	case DRM_FORMAT_NV12:
1807 		if (ilace)
1808 			accu_table = accu_nv12_ilace;
1809 		else
1810 			accu_table = accu_nv12;
1811 		break;
1812 	case DRM_FORMAT_YUYV:
1813 	case DRM_FORMAT_UYVY:
1814 		accu_table = accu_yuv;
1815 		break;
1816 	default:
1817 		BUG();
1818 		return;
1819 	}
1820 
1821 	accu_val = &accu_table[idx];
1822 
1823 	chroma_hinc = 1024 * orig_width / out_width;
1824 	chroma_vinc = 1024 * orig_height / out_height;
1825 
1826 	h_accu2_0 = (accu_val->h0_m * chroma_hinc / accu_val->h0_n) % 1024;
1827 	h_accu2_1 = (accu_val->h1_m * chroma_hinc / accu_val->h1_n) % 1024;
1828 	v_accu2_0 = (accu_val->v0_m * chroma_vinc / accu_val->v0_n) % 1024;
1829 	v_accu2_1 = (accu_val->v1_m * chroma_vinc / accu_val->v1_n) % 1024;
1830 
1831 	dispc_ovl_set_vid_accu2_0(dispc, plane, h_accu2_0, v_accu2_0);
1832 	dispc_ovl_set_vid_accu2_1(dispc, plane, h_accu2_1, v_accu2_1);
1833 }
1834 
1835 static void dispc_ovl_set_scaling_common(struct dispc_device *dispc,
1836 					 enum omap_plane_id plane,
1837 					 u16 orig_width, u16 orig_height,
1838 					 u16 out_width, u16 out_height,
1839 					 bool ilace, bool five_taps,
1840 					 bool fieldmode, u32 fourcc,
1841 					 u8 rotation)
1842 {
1843 	int accu0 = 0;
1844 	int accu1 = 0;
1845 	u32 l;
1846 
1847 	dispc_ovl_set_scale_param(dispc, plane, orig_width, orig_height,
1848 				  out_width, out_height, five_taps,
1849 				  rotation, DISPC_COLOR_COMPONENT_RGB_Y);
1850 	l = dispc_read_reg(dispc, DISPC_OVL_ATTRIBUTES(plane));
1851 
1852 	/* RESIZEENABLE and VERTICALTAPS */
1853 	l &= ~((0x3 << 5) | (0x1 << 21));
1854 	l |= (orig_width != out_width) ? (1 << 5) : 0;
1855 	l |= (orig_height != out_height) ? (1 << 6) : 0;
1856 	l |= five_taps ? (1 << 21) : 0;
1857 
1858 	/* VRESIZECONF and HRESIZECONF */
1859 	if (dispc_has_feature(dispc, FEAT_RESIZECONF)) {
1860 		l &= ~(0x3 << 7);
1861 		l |= (orig_width <= out_width) ? 0 : (1 << 7);
1862 		l |= (orig_height <= out_height) ? 0 : (1 << 8);
1863 	}
1864 
1865 	/* LINEBUFFERSPLIT */
1866 	if (dispc_has_feature(dispc, FEAT_LINEBUFFERSPLIT)) {
1867 		l &= ~(0x1 << 22);
1868 		l |= five_taps ? (1 << 22) : 0;
1869 	}
1870 
1871 	dispc_write_reg(dispc, DISPC_OVL_ATTRIBUTES(plane), l);
1872 
1873 	/*
1874 	 * field 0 = even field = bottom field
1875 	 * field 1 = odd field = top field
1876 	 */
1877 	if (ilace && !fieldmode) {
1878 		accu1 = 0;
1879 		accu0 = ((1024 * orig_height / out_height) / 2) & 0x3ff;
1880 		if (accu0 >= 1024/2) {
1881 			accu1 = 1024/2;
1882 			accu0 -= accu1;
1883 		}
1884 	}
1885 
1886 	dispc_ovl_set_vid_accu0(dispc, plane, 0, accu0);
1887 	dispc_ovl_set_vid_accu1(dispc, plane, 0, accu1);
1888 }
1889 
1890 static void dispc_ovl_set_scaling_uv(struct dispc_device *dispc,
1891 				     enum omap_plane_id plane,
1892 				     u16 orig_width, u16 orig_height,
1893 				     u16 out_width, u16 out_height,
1894 				     bool ilace, bool five_taps,
1895 				     bool fieldmode, u32 fourcc,
1896 				     u8 rotation)
1897 {
1898 	int scale_x = out_width != orig_width;
1899 	int scale_y = out_height != orig_height;
1900 	bool chroma_upscale = plane != OMAP_DSS_WB;
1901 	const struct drm_format_info *info;
1902 
1903 	info = drm_format_info(fourcc);
1904 
1905 	if (!dispc_has_feature(dispc, FEAT_HANDLE_UV_SEPARATE))
1906 		return;
1907 
1908 	if (!info->is_yuv) {
1909 		/* reset chroma resampling for RGB formats  */
1910 		if (plane != OMAP_DSS_WB)
1911 			REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES2(plane),
1912 				    0, 8, 8);
1913 		return;
1914 	}
1915 
1916 	dispc_ovl_set_accu_uv(dispc, plane, orig_width, orig_height, out_width,
1917 			      out_height, ilace, fourcc, rotation);
1918 
1919 	switch (fourcc) {
1920 	case DRM_FORMAT_NV12:
1921 		if (chroma_upscale) {
1922 			/* UV is subsampled by 2 horizontally and vertically */
1923 			orig_height >>= 1;
1924 			orig_width >>= 1;
1925 		} else {
1926 			/* UV is downsampled by 2 horizontally and vertically */
1927 			orig_height <<= 1;
1928 			orig_width <<= 1;
1929 		}
1930 
1931 		break;
1932 	case DRM_FORMAT_YUYV:
1933 	case DRM_FORMAT_UYVY:
1934 		/* For YUV422 with 90/270 rotation, we don't upsample chroma */
1935 		if (!drm_rotation_90_or_270(rotation)) {
1936 			if (chroma_upscale)
1937 				/* UV is subsampled by 2 horizontally */
1938 				orig_width >>= 1;
1939 			else
1940 				/* UV is downsampled by 2 horizontally */
1941 				orig_width <<= 1;
1942 		}
1943 
1944 		/* must use FIR for YUV422 if rotated */
1945 		if ((rotation & DRM_MODE_ROTATE_MASK) != DRM_MODE_ROTATE_0)
1946 			scale_x = scale_y = true;
1947 
1948 		break;
1949 	default:
1950 		BUG();
1951 		return;
1952 	}
1953 
1954 	if (out_width != orig_width)
1955 		scale_x = true;
1956 	if (out_height != orig_height)
1957 		scale_y = true;
1958 
1959 	dispc_ovl_set_scale_param(dispc, plane, orig_width, orig_height,
1960 				  out_width, out_height, five_taps,
1961 				  rotation, DISPC_COLOR_COMPONENT_UV);
1962 
1963 	if (plane != OMAP_DSS_WB)
1964 		REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES2(plane),
1965 			(scale_x || scale_y) ? 1 : 0, 8, 8);
1966 
1967 	/* set H scaling */
1968 	REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), scale_x ? 1 : 0, 5, 5);
1969 	/* set V scaling */
1970 	REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), scale_y ? 1 : 0, 6, 6);
1971 }
1972 
1973 static void dispc_ovl_set_scaling(struct dispc_device *dispc,
1974 				  enum omap_plane_id plane,
1975 				  u16 orig_width, u16 orig_height,
1976 				  u16 out_width, u16 out_height,
1977 				  bool ilace, bool five_taps,
1978 				  bool fieldmode, u32 fourcc,
1979 				  u8 rotation)
1980 {
1981 	BUG_ON(plane == OMAP_DSS_GFX);
1982 
1983 	dispc_ovl_set_scaling_common(dispc, plane, orig_width, orig_height,
1984 				     out_width, out_height, ilace, five_taps,
1985 				     fieldmode, fourcc, rotation);
1986 
1987 	dispc_ovl_set_scaling_uv(dispc, plane, orig_width, orig_height,
1988 				 out_width, out_height, ilace, five_taps,
1989 				 fieldmode, fourcc, rotation);
1990 }
1991 
1992 static void dispc_ovl_set_rotation_attrs(struct dispc_device *dispc,
1993 					 enum omap_plane_id plane, u8 rotation,
1994 					 enum omap_dss_rotation_type rotation_type,
1995 					 u32 fourcc)
1996 {
1997 	bool row_repeat = false;
1998 	int vidrot = 0;
1999 
2000 	/* Note: DSS HW rotates clockwise, DRM_MODE_ROTATE_* counter-clockwise */
2001 	if (fourcc == DRM_FORMAT_YUYV || fourcc == DRM_FORMAT_UYVY) {
2002 
2003 		if (rotation & DRM_MODE_REFLECT_X) {
2004 			switch (rotation & DRM_MODE_ROTATE_MASK) {
2005 			case DRM_MODE_ROTATE_0:
2006 				vidrot = 2;
2007 				break;
2008 			case DRM_MODE_ROTATE_90:
2009 				vidrot = 1;
2010 				break;
2011 			case DRM_MODE_ROTATE_180:
2012 				vidrot = 0;
2013 				break;
2014 			case DRM_MODE_ROTATE_270:
2015 				vidrot = 3;
2016 				break;
2017 			}
2018 		} else {
2019 			switch (rotation & DRM_MODE_ROTATE_MASK) {
2020 			case DRM_MODE_ROTATE_0:
2021 				vidrot = 0;
2022 				break;
2023 			case DRM_MODE_ROTATE_90:
2024 				vidrot = 3;
2025 				break;
2026 			case DRM_MODE_ROTATE_180:
2027 				vidrot = 2;
2028 				break;
2029 			case DRM_MODE_ROTATE_270:
2030 				vidrot = 1;
2031 				break;
2032 			}
2033 		}
2034 
2035 		if (drm_rotation_90_or_270(rotation))
2036 			row_repeat = true;
2037 		else
2038 			row_repeat = false;
2039 	}
2040 
2041 	/*
2042 	 * OMAP4/5 Errata i631:
2043 	 * NV12 in 1D mode must use ROTATION=1. Otherwise DSS will fetch extra
2044 	 * rows beyond the framebuffer, which may cause OCP error.
2045 	 */
2046 	if (fourcc == DRM_FORMAT_NV12 && rotation_type != OMAP_DSS_ROT_TILER)
2047 		vidrot = 1;
2048 
2049 	REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), vidrot, 13, 12);
2050 	if (dispc_has_feature(dispc, FEAT_ROWREPEATENABLE))
2051 		REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane),
2052 			row_repeat ? 1 : 0, 18, 18);
2053 
2054 	if (dispc_ovl_color_mode_supported(dispc, plane, DRM_FORMAT_NV12)) {
2055 		bool doublestride =
2056 			fourcc == DRM_FORMAT_NV12 &&
2057 			rotation_type == OMAP_DSS_ROT_TILER &&
2058 			!drm_rotation_90_or_270(rotation);
2059 
2060 		/* DOUBLESTRIDE */
2061 		REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane),
2062 			    doublestride, 22, 22);
2063 	}
2064 }
2065 
2066 static int color_mode_to_bpp(u32 fourcc)
2067 {
2068 	switch (fourcc) {
2069 	case DRM_FORMAT_NV12:
2070 		return 8;
2071 	case DRM_FORMAT_RGBX4444:
2072 	case DRM_FORMAT_RGB565:
2073 	case DRM_FORMAT_ARGB4444:
2074 	case DRM_FORMAT_YUYV:
2075 	case DRM_FORMAT_UYVY:
2076 	case DRM_FORMAT_RGBA4444:
2077 	case DRM_FORMAT_XRGB4444:
2078 	case DRM_FORMAT_ARGB1555:
2079 	case DRM_FORMAT_XRGB1555:
2080 		return 16;
2081 	case DRM_FORMAT_RGB888:
2082 		return 24;
2083 	case DRM_FORMAT_XRGB8888:
2084 	case DRM_FORMAT_ARGB8888:
2085 	case DRM_FORMAT_RGBA8888:
2086 	case DRM_FORMAT_RGBX8888:
2087 		return 32;
2088 	default:
2089 		BUG();
2090 		return 0;
2091 	}
2092 }
2093 
2094 static s32 pixinc(int pixels, u8 ps)
2095 {
2096 	if (pixels == 1)
2097 		return 1;
2098 	else if (pixels > 1)
2099 		return 1 + (pixels - 1) * ps;
2100 	else if (pixels < 0)
2101 		return 1 - (-pixels + 1) * ps;
2102 	else
2103 		BUG();
2104 		return 0;
2105 }
2106 
2107 static void calc_offset(u16 screen_width, u16 width,
2108 		u32 fourcc, bool fieldmode, unsigned int field_offset,
2109 		unsigned int *offset0, unsigned int *offset1,
2110 		s32 *row_inc, s32 *pix_inc, int x_predecim, int y_predecim,
2111 		enum omap_dss_rotation_type rotation_type, u8 rotation)
2112 {
2113 	u8 ps;
2114 
2115 	ps = color_mode_to_bpp(fourcc) / 8;
2116 
2117 	DSSDBG("scrw %d, width %d\n", screen_width, width);
2118 
2119 	if (rotation_type == OMAP_DSS_ROT_TILER &&
2120 	    (fourcc == DRM_FORMAT_UYVY || fourcc == DRM_FORMAT_YUYV) &&
2121 	    drm_rotation_90_or_270(rotation)) {
2122 		/*
2123 		 * HACK: ROW_INC needs to be calculated with TILER units.
2124 		 * We get such 'screen_width' that multiplying it with the
2125 		 * YUV422 pixel size gives the correct TILER container width.
2126 		 * However, 'width' is in pixels and multiplying it with YUV422
2127 		 * pixel size gives incorrect result. We thus multiply it here
2128 		 * with 2 to match the 32 bit TILER unit size.
2129 		 */
2130 		width *= 2;
2131 	}
2132 
2133 	/*
2134 	 * field 0 = even field = bottom field
2135 	 * field 1 = odd field = top field
2136 	 */
2137 	*offset0 = field_offset * screen_width * ps;
2138 	*offset1 = 0;
2139 
2140 	*row_inc = pixinc(1 + (y_predecim * screen_width - width * x_predecim) +
2141 			(fieldmode ? screen_width : 0), ps);
2142 	if (fourcc == DRM_FORMAT_YUYV || fourcc == DRM_FORMAT_UYVY)
2143 		*pix_inc = pixinc(x_predecim, 2 * ps);
2144 	else
2145 		*pix_inc = pixinc(x_predecim, ps);
2146 }
2147 
2148 /*
2149  * This function is used to avoid synclosts in OMAP3, because of some
2150  * undocumented horizontal position and timing related limitations.
2151  */
2152 static int check_horiz_timing_omap3(unsigned long pclk, unsigned long lclk,
2153 		const struct videomode *vm, u16 pos_x,
2154 		u16 width, u16 height, u16 out_width, u16 out_height,
2155 		bool five_taps)
2156 {
2157 	const int ds = DIV_ROUND_UP(height, out_height);
2158 	unsigned long nonactive;
2159 	static const u8 limits[3] = { 8, 10, 20 };
2160 	u64 val, blank;
2161 	int i;
2162 
2163 	nonactive = vm->hactive + vm->hfront_porch + vm->hsync_len +
2164 		    vm->hback_porch - out_width;
2165 
2166 	i = 0;
2167 	if (out_height < height)
2168 		i++;
2169 	if (out_width < width)
2170 		i++;
2171 	blank = div_u64((u64)(vm->hback_porch + vm->hsync_len + vm->hfront_porch) *
2172 			lclk, pclk);
2173 	DSSDBG("blanking period + ppl = %llu (limit = %u)\n", blank, limits[i]);
2174 	if (blank <= limits[i])
2175 		return -EINVAL;
2176 
2177 	/* FIXME add checks for 3-tap filter once the limitations are known */
2178 	if (!five_taps)
2179 		return 0;
2180 
2181 	/*
2182 	 * Pixel data should be prepared before visible display point starts.
2183 	 * So, atleast DS-2 lines must have already been fetched by DISPC
2184 	 * during nonactive - pos_x period.
2185 	 */
2186 	val = div_u64((u64)(nonactive - pos_x) * lclk, pclk);
2187 	DSSDBG("(nonactive - pos_x) * pcd = %llu max(0, DS - 2) * width = %d\n",
2188 		val, max(0, ds - 2) * width);
2189 	if (val < max(0, ds - 2) * width)
2190 		return -EINVAL;
2191 
2192 	/*
2193 	 * All lines need to be refilled during the nonactive period of which
2194 	 * only one line can be loaded during the active period. So, atleast
2195 	 * DS - 1 lines should be loaded during nonactive period.
2196 	 */
2197 	val =  div_u64((u64)nonactive * lclk, pclk);
2198 	DSSDBG("nonactive * pcd  = %llu, max(0, DS - 1) * width = %d\n",
2199 		val, max(0, ds - 1) * width);
2200 	if (val < max(0, ds - 1) * width)
2201 		return -EINVAL;
2202 
2203 	return 0;
2204 }
2205 
2206 static unsigned long calc_core_clk_five_taps(unsigned long pclk,
2207 		const struct videomode *vm, u16 width,
2208 		u16 height, u16 out_width, u16 out_height,
2209 		u32 fourcc)
2210 {
2211 	u32 core_clk = 0;
2212 	u64 tmp;
2213 
2214 	if (height <= out_height && width <= out_width)
2215 		return (unsigned long) pclk;
2216 
2217 	if (height > out_height) {
2218 		unsigned int ppl = vm->hactive;
2219 
2220 		tmp = (u64)pclk * height * out_width;
2221 		do_div(tmp, 2 * out_height * ppl);
2222 		core_clk = tmp;
2223 
2224 		if (height > 2 * out_height) {
2225 			if (ppl == out_width)
2226 				return 0;
2227 
2228 			tmp = (u64)pclk * (height - 2 * out_height) * out_width;
2229 			do_div(tmp, 2 * out_height * (ppl - out_width));
2230 			core_clk = max_t(u32, core_clk, tmp);
2231 		}
2232 	}
2233 
2234 	if (width > out_width) {
2235 		tmp = (u64)pclk * width;
2236 		do_div(tmp, out_width);
2237 		core_clk = max_t(u32, core_clk, tmp);
2238 
2239 		if (fourcc == DRM_FORMAT_XRGB8888)
2240 			core_clk <<= 1;
2241 	}
2242 
2243 	return core_clk;
2244 }
2245 
2246 static unsigned long calc_core_clk_24xx(unsigned long pclk, u16 width,
2247 		u16 height, u16 out_width, u16 out_height, bool mem_to_mem)
2248 {
2249 	if (height > out_height && width > out_width)
2250 		return pclk * 4;
2251 	else
2252 		return pclk * 2;
2253 }
2254 
2255 static unsigned long calc_core_clk_34xx(unsigned long pclk, u16 width,
2256 		u16 height, u16 out_width, u16 out_height, bool mem_to_mem)
2257 {
2258 	unsigned int hf, vf;
2259 
2260 	/*
2261 	 * FIXME how to determine the 'A' factor
2262 	 * for the no downscaling case ?
2263 	 */
2264 
2265 	if (width > 3 * out_width)
2266 		hf = 4;
2267 	else if (width > 2 * out_width)
2268 		hf = 3;
2269 	else if (width > out_width)
2270 		hf = 2;
2271 	else
2272 		hf = 1;
2273 	if (height > out_height)
2274 		vf = 2;
2275 	else
2276 		vf = 1;
2277 
2278 	return pclk * vf * hf;
2279 }
2280 
2281 static unsigned long calc_core_clk_44xx(unsigned long pclk, u16 width,
2282 		u16 height, u16 out_width, u16 out_height, bool mem_to_mem)
2283 {
2284 	/*
2285 	 * If the overlay/writeback is in mem to mem mode, there are no
2286 	 * downscaling limitations with respect to pixel clock, return 1 as
2287 	 * required core clock to represent that we have sufficient enough
2288 	 * core clock to do maximum downscaling
2289 	 */
2290 	if (mem_to_mem)
2291 		return 1;
2292 
2293 	if (width > out_width)
2294 		return DIV_ROUND_UP(pclk, out_width) * width;
2295 	else
2296 		return pclk;
2297 }
2298 
2299 static int dispc_ovl_calc_scaling_24xx(struct dispc_device *dispc,
2300 				       unsigned long pclk, unsigned long lclk,
2301 				       const struct videomode *vm,
2302 				       u16 width, u16 height,
2303 				       u16 out_width, u16 out_height,
2304 				       u32 fourcc, bool *five_taps,
2305 				       int *x_predecim, int *y_predecim,
2306 				       int *decim_x, int *decim_y,
2307 				       u16 pos_x, unsigned long *core_clk,
2308 				       bool mem_to_mem)
2309 {
2310 	int error;
2311 	u16 in_width, in_height;
2312 	int min_factor = min(*decim_x, *decim_y);
2313 	const int maxsinglelinewidth = dispc->feat->max_line_width;
2314 
2315 	*five_taps = false;
2316 
2317 	do {
2318 		in_height = height / *decim_y;
2319 		in_width = width / *decim_x;
2320 		*core_clk = dispc->feat->calc_core_clk(pclk, in_width,
2321 				in_height, out_width, out_height, mem_to_mem);
2322 		error = (in_width > maxsinglelinewidth || !*core_clk ||
2323 			*core_clk > dispc_core_clk_rate(dispc));
2324 		if (error) {
2325 			if (*decim_x == *decim_y) {
2326 				*decim_x = min_factor;
2327 				++*decim_y;
2328 			} else {
2329 				swap(*decim_x, *decim_y);
2330 				if (*decim_x < *decim_y)
2331 					++*decim_x;
2332 			}
2333 		}
2334 	} while (*decim_x <= *x_predecim && *decim_y <= *y_predecim && error);
2335 
2336 	if (error) {
2337 		DSSERR("failed to find scaling settings\n");
2338 		return -EINVAL;
2339 	}
2340 
2341 	if (in_width > maxsinglelinewidth) {
2342 		DSSERR("Cannot scale max input width exceeded\n");
2343 		return -EINVAL;
2344 	}
2345 	return 0;
2346 }
2347 
2348 static int dispc_ovl_calc_scaling_34xx(struct dispc_device *dispc,
2349 				       unsigned long pclk, unsigned long lclk,
2350 				       const struct videomode *vm,
2351 				       u16 width, u16 height,
2352 				       u16 out_width, u16 out_height,
2353 				       u32 fourcc, bool *five_taps,
2354 				       int *x_predecim, int *y_predecim,
2355 				       int *decim_x, int *decim_y,
2356 				       u16 pos_x, unsigned long *core_clk,
2357 				       bool mem_to_mem)
2358 {
2359 	int error;
2360 	u16 in_width, in_height;
2361 	const int maxsinglelinewidth = dispc->feat->max_line_width;
2362 
2363 	do {
2364 		in_height = height / *decim_y;
2365 		in_width = width / *decim_x;
2366 		*five_taps = in_height > out_height;
2367 
2368 		if (in_width > maxsinglelinewidth)
2369 			if (in_height > out_height &&
2370 						in_height < out_height * 2)
2371 				*five_taps = false;
2372 again:
2373 		if (*five_taps)
2374 			*core_clk = calc_core_clk_five_taps(pclk, vm,
2375 						in_width, in_height, out_width,
2376 						out_height, fourcc);
2377 		else
2378 			*core_clk = dispc->feat->calc_core_clk(pclk, in_width,
2379 					in_height, out_width, out_height,
2380 					mem_to_mem);
2381 
2382 		error = check_horiz_timing_omap3(pclk, lclk, vm,
2383 				pos_x, in_width, in_height, out_width,
2384 				out_height, *five_taps);
2385 		if (error && *five_taps) {
2386 			*five_taps = false;
2387 			goto again;
2388 		}
2389 
2390 		error = (error || in_width > maxsinglelinewidth * 2 ||
2391 			(in_width > maxsinglelinewidth && *five_taps) ||
2392 			!*core_clk || *core_clk > dispc_core_clk_rate(dispc));
2393 
2394 		if (!error) {
2395 			/* verify that we're inside the limits of scaler */
2396 			if (in_width / 4 > out_width)
2397 					error = 1;
2398 
2399 			if (*five_taps) {
2400 				if (in_height / 4 > out_height)
2401 					error = 1;
2402 			} else {
2403 				if (in_height / 2 > out_height)
2404 					error = 1;
2405 			}
2406 		}
2407 
2408 		if (error)
2409 			++*decim_y;
2410 	} while (*decim_x <= *x_predecim && *decim_y <= *y_predecim && error);
2411 
2412 	if (error) {
2413 		DSSERR("failed to find scaling settings\n");
2414 		return -EINVAL;
2415 	}
2416 
2417 	if (check_horiz_timing_omap3(pclk, lclk, vm, pos_x, in_width,
2418 				in_height, out_width, out_height, *five_taps)) {
2419 			DSSERR("horizontal timing too tight\n");
2420 			return -EINVAL;
2421 	}
2422 
2423 	if (in_width > (maxsinglelinewidth * 2)) {
2424 		DSSERR("Cannot setup scaling\n");
2425 		DSSERR("width exceeds maximum width possible\n");
2426 		return -EINVAL;
2427 	}
2428 
2429 	if (in_width > maxsinglelinewidth && *five_taps) {
2430 		DSSERR("cannot setup scaling with five taps\n");
2431 		return -EINVAL;
2432 	}
2433 	return 0;
2434 }
2435 
2436 static int dispc_ovl_calc_scaling_44xx(struct dispc_device *dispc,
2437 				       unsigned long pclk, unsigned long lclk,
2438 				       const struct videomode *vm,
2439 				       u16 width, u16 height,
2440 				       u16 out_width, u16 out_height,
2441 				       u32 fourcc, bool *five_taps,
2442 				       int *x_predecim, int *y_predecim,
2443 				       int *decim_x, int *decim_y,
2444 				       u16 pos_x, unsigned long *core_clk,
2445 				       bool mem_to_mem)
2446 {
2447 	u16 in_width, in_width_max;
2448 	int decim_x_min = *decim_x;
2449 	u16 in_height = height / *decim_y;
2450 	const int maxsinglelinewidth = dispc->feat->max_line_width;
2451 	const int maxdownscale = dispc->feat->max_downscale;
2452 
2453 	if (mem_to_mem) {
2454 		in_width_max = out_width * maxdownscale;
2455 	} else {
2456 		in_width_max = dispc_core_clk_rate(dispc)
2457 			     / DIV_ROUND_UP(pclk, out_width);
2458 	}
2459 
2460 	*decim_x = DIV_ROUND_UP(width, in_width_max);
2461 
2462 	*decim_x = *decim_x > decim_x_min ? *decim_x : decim_x_min;
2463 	if (*decim_x > *x_predecim)
2464 		return -EINVAL;
2465 
2466 	do {
2467 		in_width = width / *decim_x;
2468 	} while (*decim_x <= *x_predecim &&
2469 			in_width > maxsinglelinewidth && ++*decim_x);
2470 
2471 	if (in_width > maxsinglelinewidth) {
2472 		DSSERR("Cannot scale width exceeds max line width\n");
2473 		return -EINVAL;
2474 	}
2475 
2476 	if (*decim_x > 4 && fourcc != DRM_FORMAT_NV12) {
2477 		/*
2478 		 * Let's disable all scaling that requires horizontal
2479 		 * decimation with higher factor than 4, until we have
2480 		 * better estimates of what we can and can not
2481 		 * do. However, NV12 color format appears to work Ok
2482 		 * with all decimation factors.
2483 		 *
2484 		 * When decimating horizontally by more that 4 the dss
2485 		 * is not able to fetch the data in burst mode. When
2486 		 * this happens it is hard to tell if there enough
2487 		 * bandwidth. Despite what theory says this appears to
2488 		 * be true also for 16-bit color formats.
2489 		 */
2490 		DSSERR("Not enough bandwidth, too much downscaling (x-decimation factor %d > 4)\n", *decim_x);
2491 
2492 		return -EINVAL;
2493 	}
2494 
2495 	*core_clk = dispc->feat->calc_core_clk(pclk, in_width, in_height,
2496 				out_width, out_height, mem_to_mem);
2497 	return 0;
2498 }
2499 
2500 #define DIV_FRAC(dividend, divisor) \
2501 	((dividend) * 100 / (divisor) - ((dividend) / (divisor) * 100))
2502 
2503 static int dispc_ovl_calc_scaling(struct dispc_device *dispc,
2504 				  enum omap_plane_id plane,
2505 				  unsigned long pclk, unsigned long lclk,
2506 				  enum omap_overlay_caps caps,
2507 				  const struct videomode *vm,
2508 				  u16 width, u16 height,
2509 				  u16 out_width, u16 out_height,
2510 				  u32 fourcc, bool *five_taps,
2511 				  int *x_predecim, int *y_predecim, u16 pos_x,
2512 				  enum omap_dss_rotation_type rotation_type,
2513 				  bool mem_to_mem)
2514 {
2515 	int maxhdownscale = dispc->feat->max_downscale;
2516 	int maxvdownscale = dispc->feat->max_downscale;
2517 	const int max_decim_limit = 16;
2518 	unsigned long core_clk = 0;
2519 	int decim_x, decim_y, ret;
2520 
2521 	if (width == out_width && height == out_height)
2522 		return 0;
2523 
2524 	if (plane == OMAP_DSS_WB) {
2525 		switch (fourcc) {
2526 		case DRM_FORMAT_NV12:
2527 			maxhdownscale = maxvdownscale = 2;
2528 			break;
2529 		case DRM_FORMAT_YUYV:
2530 		case DRM_FORMAT_UYVY:
2531 			maxhdownscale = 2;
2532 			maxvdownscale = 4;
2533 			break;
2534 		default:
2535 			break;
2536 		}
2537 	}
2538 	if (!mem_to_mem && (pclk == 0 || vm->pixelclock == 0)) {
2539 		DSSERR("cannot calculate scaling settings: pclk is zero\n");
2540 		return -EINVAL;
2541 	}
2542 
2543 	if ((caps & OMAP_DSS_OVL_CAP_SCALE) == 0)
2544 		return -EINVAL;
2545 
2546 	if (mem_to_mem) {
2547 		*x_predecim = *y_predecim = 1;
2548 	} else {
2549 		*x_predecim = max_decim_limit;
2550 		*y_predecim = (rotation_type == OMAP_DSS_ROT_TILER &&
2551 				dispc_has_feature(dispc, FEAT_BURST_2D)) ?
2552 				2 : max_decim_limit;
2553 	}
2554 
2555 	decim_x = DIV_ROUND_UP(DIV_ROUND_UP(width, out_width), maxhdownscale);
2556 	decim_y = DIV_ROUND_UP(DIV_ROUND_UP(height, out_height), maxvdownscale);
2557 
2558 	if (decim_x > *x_predecim || out_width > width * 8)
2559 		return -EINVAL;
2560 
2561 	if (decim_y > *y_predecim || out_height > height * 8)
2562 		return -EINVAL;
2563 
2564 	ret = dispc->feat->calc_scaling(dispc, pclk, lclk, vm, width, height,
2565 					out_width, out_height, fourcc,
2566 					five_taps, x_predecim, y_predecim,
2567 					&decim_x, &decim_y, pos_x, &core_clk,
2568 					mem_to_mem);
2569 	if (ret)
2570 		return ret;
2571 
2572 	DSSDBG("%dx%d -> %dx%d (%d.%02d x %d.%02d), decim %dx%d %dx%d (%d.%02d x %d.%02d), taps %d, req clk %lu, cur clk %lu\n",
2573 		width, height,
2574 		out_width, out_height,
2575 		out_width / width, DIV_FRAC(out_width, width),
2576 		out_height / height, DIV_FRAC(out_height, height),
2577 
2578 		decim_x, decim_y,
2579 		width / decim_x, height / decim_y,
2580 		out_width / (width / decim_x), DIV_FRAC(out_width, width / decim_x),
2581 		out_height / (height / decim_y), DIV_FRAC(out_height, height / decim_y),
2582 
2583 		*five_taps ? 5 : 3,
2584 		core_clk, dispc_core_clk_rate(dispc));
2585 
2586 	if (!core_clk || core_clk > dispc_core_clk_rate(dispc)) {
2587 		DSSERR("failed to set up scaling, "
2588 			"required core clk rate = %lu Hz, "
2589 			"current core clk rate = %lu Hz\n",
2590 			core_clk, dispc_core_clk_rate(dispc));
2591 		return -EINVAL;
2592 	}
2593 
2594 	*x_predecim = decim_x;
2595 	*y_predecim = decim_y;
2596 	return 0;
2597 }
2598 
2599 static int dispc_ovl_setup_common(struct dispc_device *dispc,
2600 				  enum omap_plane_id plane,
2601 				  enum omap_overlay_caps caps,
2602 				  u32 paddr, u32 p_uv_addr,
2603 				  u16 screen_width, int pos_x, int pos_y,
2604 				  u16 width, u16 height,
2605 				  u16 out_width, u16 out_height,
2606 				  u32 fourcc, u8 rotation, u8 zorder,
2607 				  u8 pre_mult_alpha, u8 global_alpha,
2608 				  enum omap_dss_rotation_type rotation_type,
2609 				  bool replication, const struct videomode *vm,
2610 				  bool mem_to_mem)
2611 {
2612 	bool five_taps = true;
2613 	bool fieldmode = false;
2614 	int r, cconv = 0;
2615 	unsigned int offset0, offset1;
2616 	s32 row_inc;
2617 	s32 pix_inc;
2618 	u16 frame_width;
2619 	unsigned int field_offset = 0;
2620 	u16 in_height = height;
2621 	u16 in_width = width;
2622 	int x_predecim = 1, y_predecim = 1;
2623 	bool ilace = !!(vm->flags & DISPLAY_FLAGS_INTERLACED);
2624 	unsigned long pclk = dispc_plane_pclk_rate(dispc, plane);
2625 	unsigned long lclk = dispc_plane_lclk_rate(dispc, plane);
2626 	const struct drm_format_info *info;
2627 
2628 	info = drm_format_info(fourcc);
2629 
2630 	/* when setting up WB, dispc_plane_pclk_rate() returns 0 */
2631 	if (plane == OMAP_DSS_WB)
2632 		pclk = vm->pixelclock;
2633 
2634 	if (paddr == 0 && rotation_type != OMAP_DSS_ROT_TILER)
2635 		return -EINVAL;
2636 
2637 	if (info->is_yuv && (in_width & 1)) {
2638 		DSSERR("input width %d is not even for YUV format\n", in_width);
2639 		return -EINVAL;
2640 	}
2641 
2642 	out_width = out_width == 0 ? width : out_width;
2643 	out_height = out_height == 0 ? height : out_height;
2644 
2645 	if (plane != OMAP_DSS_WB) {
2646 		if (ilace && height == out_height)
2647 			fieldmode = true;
2648 
2649 		if (ilace) {
2650 			if (fieldmode)
2651 				in_height /= 2;
2652 			pos_y /= 2;
2653 			out_height /= 2;
2654 
2655 			DSSDBG("adjusting for ilace: height %d, pos_y %d, out_height %d\n",
2656 				in_height, pos_y, out_height);
2657 		}
2658 	}
2659 
2660 	if (!dispc_ovl_color_mode_supported(dispc, plane, fourcc))
2661 		return -EINVAL;
2662 
2663 	r = dispc_ovl_calc_scaling(dispc, plane, pclk, lclk, caps, vm, in_width,
2664 				   in_height, out_width, out_height, fourcc,
2665 				   &five_taps, &x_predecim, &y_predecim, pos_x,
2666 				   rotation_type, mem_to_mem);
2667 	if (r)
2668 		return r;
2669 
2670 	in_width = in_width / x_predecim;
2671 	in_height = in_height / y_predecim;
2672 
2673 	if (x_predecim > 1 || y_predecim > 1)
2674 		DSSDBG("predecimation %d x %x, new input size %d x %d\n",
2675 			x_predecim, y_predecim, in_width, in_height);
2676 
2677 	if (info->is_yuv && (in_width & 1)) {
2678 		DSSDBG("predecimated input width is not even for YUV format\n");
2679 		DSSDBG("adjusting input width %d -> %d\n",
2680 			in_width, in_width & ~1);
2681 
2682 		in_width &= ~1;
2683 	}
2684 
2685 	if (info->is_yuv)
2686 		cconv = 1;
2687 
2688 	if (ilace && !fieldmode) {
2689 		/*
2690 		 * when downscaling the bottom field may have to start several
2691 		 * source lines below the top field. Unfortunately ACCUI
2692 		 * registers will only hold the fractional part of the offset
2693 		 * so the integer part must be added to the base address of the
2694 		 * bottom field.
2695 		 */
2696 		if (!in_height || in_height == out_height)
2697 			field_offset = 0;
2698 		else
2699 			field_offset = in_height / out_height / 2;
2700 	}
2701 
2702 	/* Fields are independent but interleaved in memory. */
2703 	if (fieldmode)
2704 		field_offset = 1;
2705 
2706 	offset0 = 0;
2707 	offset1 = 0;
2708 	row_inc = 0;
2709 	pix_inc = 0;
2710 
2711 	if (plane == OMAP_DSS_WB)
2712 		frame_width = out_width;
2713 	else
2714 		frame_width = in_width;
2715 
2716 	calc_offset(screen_width, frame_width,
2717 			fourcc, fieldmode, field_offset,
2718 			&offset0, &offset1, &row_inc, &pix_inc,
2719 			x_predecim, y_predecim,
2720 			rotation_type, rotation);
2721 
2722 	DSSDBG("offset0 %u, offset1 %u, row_inc %d, pix_inc %d\n",
2723 			offset0, offset1, row_inc, pix_inc);
2724 
2725 	dispc_ovl_set_color_mode(dispc, plane, fourcc);
2726 
2727 	dispc_ovl_configure_burst_type(dispc, plane, rotation_type);
2728 
2729 	if (dispc->feat->reverse_ilace_field_order)
2730 		swap(offset0, offset1);
2731 
2732 	dispc_ovl_set_ba0(dispc, plane, paddr + offset0);
2733 	dispc_ovl_set_ba1(dispc, plane, paddr + offset1);
2734 
2735 	if (fourcc == DRM_FORMAT_NV12) {
2736 		dispc_ovl_set_ba0_uv(dispc, plane, p_uv_addr + offset0);
2737 		dispc_ovl_set_ba1_uv(dispc, plane, p_uv_addr + offset1);
2738 	}
2739 
2740 	if (dispc->feat->last_pixel_inc_missing)
2741 		row_inc += pix_inc - 1;
2742 
2743 	dispc_ovl_set_row_inc(dispc, plane, row_inc);
2744 	dispc_ovl_set_pix_inc(dispc, plane, pix_inc);
2745 
2746 	DSSDBG("%d,%d %dx%d -> %dx%d\n", pos_x, pos_y, in_width,
2747 			in_height, out_width, out_height);
2748 
2749 	dispc_ovl_set_pos(dispc, plane, caps, pos_x, pos_y);
2750 
2751 	dispc_ovl_set_input_size(dispc, plane, in_width, in_height);
2752 
2753 	if (caps & OMAP_DSS_OVL_CAP_SCALE) {
2754 		dispc_ovl_set_scaling(dispc, plane, in_width, in_height,
2755 				      out_width, out_height, ilace, five_taps,
2756 				      fieldmode, fourcc, rotation);
2757 		dispc_ovl_set_output_size(dispc, plane, out_width, out_height);
2758 		dispc_ovl_set_vid_color_conv(dispc, plane, cconv);
2759 	}
2760 
2761 	dispc_ovl_set_rotation_attrs(dispc, plane, rotation, rotation_type,
2762 				     fourcc);
2763 
2764 	dispc_ovl_set_zorder(dispc, plane, caps, zorder);
2765 	dispc_ovl_set_pre_mult_alpha(dispc, plane, caps, pre_mult_alpha);
2766 	dispc_ovl_setup_global_alpha(dispc, plane, caps, global_alpha);
2767 
2768 	dispc_ovl_enable_replication(dispc, plane, caps, replication);
2769 
2770 	return 0;
2771 }
2772 
2773 static int dispc_ovl_setup(struct dispc_device *dispc,
2774 			   enum omap_plane_id plane,
2775 			   const struct omap_overlay_info *oi,
2776 			   const struct videomode *vm, bool mem_to_mem,
2777 			   enum omap_channel channel)
2778 {
2779 	int r;
2780 	enum omap_overlay_caps caps = dispc->feat->overlay_caps[plane];
2781 	const bool replication = true;
2782 
2783 	DSSDBG("dispc_ovl_setup %d, pa %pad, pa_uv %pad, sw %d, %d,%d, %dx%d ->"
2784 		" %dx%d, cmode %x, rot %d, chan %d repl %d\n",
2785 		plane, &oi->paddr, &oi->p_uv_addr, oi->screen_width, oi->pos_x,
2786 		oi->pos_y, oi->width, oi->height, oi->out_width, oi->out_height,
2787 		oi->fourcc, oi->rotation, channel, replication);
2788 
2789 	dispc_ovl_set_channel_out(dispc, plane, channel);
2790 
2791 	r = dispc_ovl_setup_common(dispc, plane, caps, oi->paddr, oi->p_uv_addr,
2792 		oi->screen_width, oi->pos_x, oi->pos_y, oi->width, oi->height,
2793 		oi->out_width, oi->out_height, oi->fourcc, oi->rotation,
2794 		oi->zorder, oi->pre_mult_alpha, oi->global_alpha,
2795 		oi->rotation_type, replication, vm, mem_to_mem);
2796 
2797 	return r;
2798 }
2799 
2800 static int dispc_wb_setup(struct dispc_device *dispc,
2801 		   const struct omap_dss_writeback_info *wi,
2802 		   bool mem_to_mem, const struct videomode *vm,
2803 		   enum dss_writeback_channel channel_in)
2804 {
2805 	int r;
2806 	u32 l;
2807 	enum omap_plane_id plane = OMAP_DSS_WB;
2808 	const int pos_x = 0, pos_y = 0;
2809 	const u8 zorder = 0, global_alpha = 0;
2810 	const bool replication = true;
2811 	bool truncation;
2812 	int in_width = vm->hactive;
2813 	int in_height = vm->vactive;
2814 	enum omap_overlay_caps caps =
2815 		OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA;
2816 
2817 	if (vm->flags & DISPLAY_FLAGS_INTERLACED)
2818 		in_height /= 2;
2819 
2820 	DSSDBG("dispc_wb_setup, pa %x, pa_uv %x, %d,%d -> %dx%d, cmode %x, "
2821 		"rot %d\n", wi->paddr, wi->p_uv_addr, in_width,
2822 		in_height, wi->width, wi->height, wi->fourcc, wi->rotation);
2823 
2824 	r = dispc_ovl_setup_common(dispc, plane, caps, wi->paddr, wi->p_uv_addr,
2825 		wi->buf_width, pos_x, pos_y, in_width, in_height, wi->width,
2826 		wi->height, wi->fourcc, wi->rotation, zorder,
2827 		wi->pre_mult_alpha, global_alpha, wi->rotation_type,
2828 		replication, vm, mem_to_mem);
2829 	if (r)
2830 		return r;
2831 
2832 	switch (wi->fourcc) {
2833 	case DRM_FORMAT_RGB565:
2834 	case DRM_FORMAT_RGB888:
2835 	case DRM_FORMAT_ARGB4444:
2836 	case DRM_FORMAT_RGBA4444:
2837 	case DRM_FORMAT_RGBX4444:
2838 	case DRM_FORMAT_ARGB1555:
2839 	case DRM_FORMAT_XRGB1555:
2840 	case DRM_FORMAT_XRGB4444:
2841 		truncation = true;
2842 		break;
2843 	default:
2844 		truncation = false;
2845 		break;
2846 	}
2847 
2848 	/* setup extra DISPC_WB_ATTRIBUTES */
2849 	l = dispc_read_reg(dispc, DISPC_OVL_ATTRIBUTES(plane));
2850 	l = FLD_MOD(l, truncation, 10, 10);	/* TRUNCATIONENABLE */
2851 	l = FLD_MOD(l, channel_in, 18, 16);	/* CHANNELIN */
2852 	l = FLD_MOD(l, mem_to_mem, 19, 19);	/* WRITEBACKMODE */
2853 	if (mem_to_mem)
2854 		l = FLD_MOD(l, 1, 26, 24);	/* CAPTUREMODE */
2855 	else
2856 		l = FLD_MOD(l, 0, 26, 24);	/* CAPTUREMODE */
2857 	dispc_write_reg(dispc, DISPC_OVL_ATTRIBUTES(plane), l);
2858 
2859 	if (mem_to_mem) {
2860 		/* WBDELAYCOUNT */
2861 		REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES2(plane), 0, 7, 0);
2862 	} else {
2863 		u32 wbdelay;
2864 
2865 		if (channel_in == DSS_WB_TV_MGR)
2866 			wbdelay = vm->vsync_len + vm->vback_porch;
2867 		else
2868 			wbdelay = vm->vfront_porch + vm->vsync_len +
2869 				vm->vback_porch;
2870 
2871 		if (vm->flags & DISPLAY_FLAGS_INTERLACED)
2872 			wbdelay /= 2;
2873 
2874 		wbdelay = min(wbdelay, 255u);
2875 
2876 		/* WBDELAYCOUNT */
2877 		REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES2(plane), wbdelay, 7, 0);
2878 	}
2879 
2880 	return 0;
2881 }
2882 
2883 static bool dispc_has_writeback(struct dispc_device *dispc)
2884 {
2885 	return dispc->feat->has_writeback;
2886 }
2887 
2888 static int dispc_ovl_enable(struct dispc_device *dispc,
2889 			    enum omap_plane_id plane, bool enable)
2890 {
2891 	DSSDBG("dispc_enable_plane %d, %d\n", plane, enable);
2892 
2893 	REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), enable ? 1 : 0, 0, 0);
2894 
2895 	return 0;
2896 }
2897 
2898 static void dispc_lcd_enable_signal_polarity(struct dispc_device *dispc,
2899 					     bool act_high)
2900 {
2901 	if (!dispc_has_feature(dispc, FEAT_LCDENABLEPOL))
2902 		return;
2903 
2904 	REG_FLD_MOD(dispc, DISPC_CONTROL, act_high ? 1 : 0, 29, 29);
2905 }
2906 
2907 void dispc_lcd_enable_signal(struct dispc_device *dispc, bool enable)
2908 {
2909 	if (!dispc_has_feature(dispc, FEAT_LCDENABLESIGNAL))
2910 		return;
2911 
2912 	REG_FLD_MOD(dispc, DISPC_CONTROL, enable ? 1 : 0, 28, 28);
2913 }
2914 
2915 void dispc_pck_free_enable(struct dispc_device *dispc, bool enable)
2916 {
2917 	if (!dispc_has_feature(dispc, FEAT_PCKFREEENABLE))
2918 		return;
2919 
2920 	REG_FLD_MOD(dispc, DISPC_CONTROL, enable ? 1 : 0, 27, 27);
2921 }
2922 
2923 static void dispc_mgr_enable_fifohandcheck(struct dispc_device *dispc,
2924 					   enum omap_channel channel,
2925 					   bool enable)
2926 {
2927 	mgr_fld_write(dispc, channel, DISPC_MGR_FLD_FIFOHANDCHECK, enable);
2928 }
2929 
2930 
2931 static void dispc_mgr_set_lcd_type_tft(struct dispc_device *dispc,
2932 				       enum omap_channel channel)
2933 {
2934 	mgr_fld_write(dispc, channel, DISPC_MGR_FLD_STNTFT, 1);
2935 }
2936 
2937 static void dispc_set_loadmode(struct dispc_device *dispc,
2938 			       enum omap_dss_load_mode mode)
2939 {
2940 	REG_FLD_MOD(dispc, DISPC_CONFIG, mode, 2, 1);
2941 }
2942 
2943 
2944 static void dispc_mgr_set_default_color(struct dispc_device *dispc,
2945 					enum omap_channel channel, u32 color)
2946 {
2947 	dispc_write_reg(dispc, DISPC_DEFAULT_COLOR(channel), color);
2948 }
2949 
2950 static void dispc_mgr_set_trans_key(struct dispc_device *dispc,
2951 				    enum omap_channel ch,
2952 				    enum omap_dss_trans_key_type type,
2953 				    u32 trans_key)
2954 {
2955 	mgr_fld_write(dispc, ch, DISPC_MGR_FLD_TCKSELECTION, type);
2956 
2957 	dispc_write_reg(dispc, DISPC_TRANS_COLOR(ch), trans_key);
2958 }
2959 
2960 static void dispc_mgr_enable_trans_key(struct dispc_device *dispc,
2961 				       enum omap_channel ch, bool enable)
2962 {
2963 	mgr_fld_write(dispc, ch, DISPC_MGR_FLD_TCKENABLE, enable);
2964 }
2965 
2966 static void dispc_mgr_enable_alpha_fixed_zorder(struct dispc_device *dispc,
2967 						enum omap_channel ch,
2968 						bool enable)
2969 {
2970 	if (!dispc_has_feature(dispc, FEAT_ALPHA_FIXED_ZORDER))
2971 		return;
2972 
2973 	if (ch == OMAP_DSS_CHANNEL_LCD)
2974 		REG_FLD_MOD(dispc, DISPC_CONFIG, enable, 18, 18);
2975 	else if (ch == OMAP_DSS_CHANNEL_DIGIT)
2976 		REG_FLD_MOD(dispc, DISPC_CONFIG, enable, 19, 19);
2977 }
2978 
2979 static void dispc_mgr_setup(struct dispc_device *dispc,
2980 			    enum omap_channel channel,
2981 			    const struct omap_overlay_manager_info *info)
2982 {
2983 	dispc_mgr_set_default_color(dispc, channel, info->default_color);
2984 	dispc_mgr_set_trans_key(dispc, channel, info->trans_key_type,
2985 				info->trans_key);
2986 	dispc_mgr_enable_trans_key(dispc, channel, info->trans_enabled);
2987 	dispc_mgr_enable_alpha_fixed_zorder(dispc, channel,
2988 			info->partial_alpha_enabled);
2989 	if (dispc_has_feature(dispc, FEAT_CPR)) {
2990 		dispc_mgr_enable_cpr(dispc, channel, info->cpr_enable);
2991 		dispc_mgr_set_cpr_coef(dispc, channel, &info->cpr_coefs);
2992 	}
2993 }
2994 
2995 static void dispc_mgr_set_tft_data_lines(struct dispc_device *dispc,
2996 					 enum omap_channel channel,
2997 					 u8 data_lines)
2998 {
2999 	int code;
3000 
3001 	switch (data_lines) {
3002 	case 12:
3003 		code = 0;
3004 		break;
3005 	case 16:
3006 		code = 1;
3007 		break;
3008 	case 18:
3009 		code = 2;
3010 		break;
3011 	case 24:
3012 		code = 3;
3013 		break;
3014 	default:
3015 		BUG();
3016 		return;
3017 	}
3018 
3019 	mgr_fld_write(dispc, channel, DISPC_MGR_FLD_TFTDATALINES, code);
3020 }
3021 
3022 static void dispc_mgr_set_io_pad_mode(struct dispc_device *dispc,
3023 				      enum dss_io_pad_mode mode)
3024 {
3025 	u32 l;
3026 	int gpout0, gpout1;
3027 
3028 	switch (mode) {
3029 	case DSS_IO_PAD_MODE_RESET:
3030 		gpout0 = 0;
3031 		gpout1 = 0;
3032 		break;
3033 	case DSS_IO_PAD_MODE_RFBI:
3034 		gpout0 = 1;
3035 		gpout1 = 0;
3036 		break;
3037 	case DSS_IO_PAD_MODE_BYPASS:
3038 		gpout0 = 1;
3039 		gpout1 = 1;
3040 		break;
3041 	default:
3042 		BUG();
3043 		return;
3044 	}
3045 
3046 	l = dispc_read_reg(dispc, DISPC_CONTROL);
3047 	l = FLD_MOD(l, gpout0, 15, 15);
3048 	l = FLD_MOD(l, gpout1, 16, 16);
3049 	dispc_write_reg(dispc, DISPC_CONTROL, l);
3050 }
3051 
3052 static void dispc_mgr_enable_stallmode(struct dispc_device *dispc,
3053 				       enum omap_channel channel, bool enable)
3054 {
3055 	mgr_fld_write(dispc, channel, DISPC_MGR_FLD_STALLMODE, enable);
3056 }
3057 
3058 static void dispc_mgr_set_lcd_config(struct dispc_device *dispc,
3059 				     enum omap_channel channel,
3060 				     const struct dss_lcd_mgr_config *config)
3061 {
3062 	dispc_mgr_set_io_pad_mode(dispc, config->io_pad_mode);
3063 
3064 	dispc_mgr_enable_stallmode(dispc, channel, config->stallmode);
3065 	dispc_mgr_enable_fifohandcheck(dispc, channel, config->fifohandcheck);
3066 
3067 	dispc_mgr_set_clock_div(dispc, channel, &config->clock_info);
3068 
3069 	dispc_mgr_set_tft_data_lines(dispc, channel, config->video_port_width);
3070 
3071 	dispc_lcd_enable_signal_polarity(dispc, config->lcden_sig_polarity);
3072 
3073 	dispc_mgr_set_lcd_type_tft(dispc, channel);
3074 }
3075 
3076 static bool _dispc_mgr_size_ok(struct dispc_device *dispc,
3077 			       u16 width, u16 height)
3078 {
3079 	return width <= dispc->feat->mgr_width_max &&
3080 		height <= dispc->feat->mgr_height_max;
3081 }
3082 
3083 static bool _dispc_lcd_timings_ok(struct dispc_device *dispc,
3084 				  int hsync_len, int hfp, int hbp,
3085 				  int vsw, int vfp, int vbp)
3086 {
3087 	if (hsync_len < 1 || hsync_len > dispc->feat->sw_max ||
3088 	    hfp < 1 || hfp > dispc->feat->hp_max ||
3089 	    hbp < 1 || hbp > dispc->feat->hp_max ||
3090 	    vsw < 1 || vsw > dispc->feat->sw_max ||
3091 	    vfp < 0 || vfp > dispc->feat->vp_max ||
3092 	    vbp < 0 || vbp > dispc->feat->vp_max)
3093 		return false;
3094 	return true;
3095 }
3096 
3097 static bool _dispc_mgr_pclk_ok(struct dispc_device *dispc,
3098 			       enum omap_channel channel,
3099 			       unsigned long pclk)
3100 {
3101 	if (dss_mgr_is_lcd(channel))
3102 		return pclk <= dispc->feat->max_lcd_pclk;
3103 	else
3104 		return pclk <= dispc->feat->max_tv_pclk;
3105 }
3106 
3107 static int dispc_mgr_check_timings(struct dispc_device *dispc,
3108 				   enum omap_channel channel,
3109 				   const struct videomode *vm)
3110 {
3111 	if (!_dispc_mgr_size_ok(dispc, vm->hactive, vm->vactive))
3112 		return MODE_BAD;
3113 
3114 	if (!_dispc_mgr_pclk_ok(dispc, channel, vm->pixelclock))
3115 		return MODE_BAD;
3116 
3117 	if (dss_mgr_is_lcd(channel)) {
3118 		/* TODO: OMAP4+ supports interlace for LCD outputs */
3119 		if (vm->flags & DISPLAY_FLAGS_INTERLACED)
3120 			return MODE_BAD;
3121 
3122 		if (!_dispc_lcd_timings_ok(dispc, vm->hsync_len,
3123 				vm->hfront_porch, vm->hback_porch,
3124 				vm->vsync_len, vm->vfront_porch,
3125 				vm->vback_porch))
3126 			return MODE_BAD;
3127 	}
3128 
3129 	return MODE_OK;
3130 }
3131 
3132 static void _dispc_mgr_set_lcd_timings(struct dispc_device *dispc,
3133 				       enum omap_channel channel,
3134 				       const struct videomode *vm)
3135 {
3136 	u32 timing_h, timing_v, l;
3137 	bool onoff, rf, ipc, vs, hs, de;
3138 
3139 	timing_h = FLD_VAL(vm->hsync_len - 1, dispc->feat->sw_start, 0) |
3140 		   FLD_VAL(vm->hfront_porch - 1, dispc->feat->fp_start, 8) |
3141 		   FLD_VAL(vm->hback_porch - 1, dispc->feat->bp_start, 20);
3142 	timing_v = FLD_VAL(vm->vsync_len - 1, dispc->feat->sw_start, 0) |
3143 		   FLD_VAL(vm->vfront_porch, dispc->feat->fp_start, 8) |
3144 		   FLD_VAL(vm->vback_porch, dispc->feat->bp_start, 20);
3145 
3146 	dispc_write_reg(dispc, DISPC_TIMING_H(channel), timing_h);
3147 	dispc_write_reg(dispc, DISPC_TIMING_V(channel), timing_v);
3148 
3149 	if (vm->flags & DISPLAY_FLAGS_VSYNC_HIGH)
3150 		vs = false;
3151 	else
3152 		vs = true;
3153 
3154 	if (vm->flags & DISPLAY_FLAGS_HSYNC_HIGH)
3155 		hs = false;
3156 	else
3157 		hs = true;
3158 
3159 	if (vm->flags & DISPLAY_FLAGS_DE_HIGH)
3160 		de = false;
3161 	else
3162 		de = true;
3163 
3164 	if (vm->flags & DISPLAY_FLAGS_PIXDATA_POSEDGE)
3165 		ipc = false;
3166 	else
3167 		ipc = true;
3168 
3169 	/* always use the 'rf' setting */
3170 	onoff = true;
3171 
3172 	if (vm->flags & DISPLAY_FLAGS_SYNC_POSEDGE)
3173 		rf = true;
3174 	else
3175 		rf = false;
3176 
3177 	l = FLD_VAL(onoff, 17, 17) |
3178 		FLD_VAL(rf, 16, 16) |
3179 		FLD_VAL(de, 15, 15) |
3180 		FLD_VAL(ipc, 14, 14) |
3181 		FLD_VAL(hs, 13, 13) |
3182 		FLD_VAL(vs, 12, 12);
3183 
3184 	/* always set ALIGN bit when available */
3185 	if (dispc->feat->supports_sync_align)
3186 		l |= (1 << 18);
3187 
3188 	dispc_write_reg(dispc, DISPC_POL_FREQ(channel), l);
3189 
3190 	if (dispc->syscon_pol) {
3191 		const int shifts[] = {
3192 			[OMAP_DSS_CHANNEL_LCD] = 0,
3193 			[OMAP_DSS_CHANNEL_LCD2] = 1,
3194 			[OMAP_DSS_CHANNEL_LCD3] = 2,
3195 		};
3196 
3197 		u32 mask, val;
3198 
3199 		mask = (1 << 0) | (1 << 3) | (1 << 6);
3200 		val = (rf << 0) | (ipc << 3) | (onoff << 6);
3201 
3202 		mask <<= 16 + shifts[channel];
3203 		val <<= 16 + shifts[channel];
3204 
3205 		regmap_update_bits(dispc->syscon_pol, dispc->syscon_pol_offset,
3206 				   mask, val);
3207 	}
3208 }
3209 
3210 static int vm_flag_to_int(enum display_flags flags, enum display_flags high,
3211 	enum display_flags low)
3212 {
3213 	if (flags & high)
3214 		return 1;
3215 	if (flags & low)
3216 		return -1;
3217 	return 0;
3218 }
3219 
3220 /* change name to mode? */
3221 static void dispc_mgr_set_timings(struct dispc_device *dispc,
3222 				  enum omap_channel channel,
3223 				  const struct videomode *vm)
3224 {
3225 	unsigned int xtot, ytot;
3226 	unsigned long ht, vt;
3227 	struct videomode t = *vm;
3228 
3229 	DSSDBG("channel %d xres %u yres %u\n", channel, t.hactive, t.vactive);
3230 
3231 	if (dispc_mgr_check_timings(dispc, channel, &t)) {
3232 		BUG();
3233 		return;
3234 	}
3235 
3236 	if (dss_mgr_is_lcd(channel)) {
3237 		_dispc_mgr_set_lcd_timings(dispc, channel, &t);
3238 
3239 		xtot = t.hactive + t.hfront_porch + t.hsync_len + t.hback_porch;
3240 		ytot = t.vactive + t.vfront_porch + t.vsync_len + t.vback_porch;
3241 
3242 		ht = vm->pixelclock / xtot;
3243 		vt = vm->pixelclock / xtot / ytot;
3244 
3245 		DSSDBG("pck %lu\n", vm->pixelclock);
3246 		DSSDBG("hsync_len %d hfp %d hbp %d vsw %d vfp %d vbp %d\n",
3247 			t.hsync_len, t.hfront_porch, t.hback_porch,
3248 			t.vsync_len, t.vfront_porch, t.vback_porch);
3249 		DSSDBG("vsync_level %d hsync_level %d data_pclk_edge %d de_level %d sync_pclk_edge %d\n",
3250 			vm_flag_to_int(t.flags, DISPLAY_FLAGS_VSYNC_HIGH, DISPLAY_FLAGS_VSYNC_LOW),
3251 			vm_flag_to_int(t.flags, DISPLAY_FLAGS_HSYNC_HIGH, DISPLAY_FLAGS_HSYNC_LOW),
3252 			vm_flag_to_int(t.flags, DISPLAY_FLAGS_PIXDATA_POSEDGE, DISPLAY_FLAGS_PIXDATA_NEGEDGE),
3253 			vm_flag_to_int(t.flags, DISPLAY_FLAGS_DE_HIGH, DISPLAY_FLAGS_DE_LOW),
3254 			vm_flag_to_int(t.flags, DISPLAY_FLAGS_SYNC_POSEDGE, DISPLAY_FLAGS_SYNC_NEGEDGE));
3255 
3256 		DSSDBG("hsync %luHz, vsync %luHz\n", ht, vt);
3257 	} else {
3258 		if (t.flags & DISPLAY_FLAGS_INTERLACED)
3259 			t.vactive /= 2;
3260 
3261 		if (dispc->feat->supports_double_pixel)
3262 			REG_FLD_MOD(dispc, DISPC_CONTROL,
3263 				    !!(t.flags & DISPLAY_FLAGS_DOUBLECLK),
3264 				    19, 17);
3265 	}
3266 
3267 	dispc_mgr_set_size(dispc, channel, t.hactive, t.vactive);
3268 }
3269 
3270 static void dispc_mgr_set_lcd_divisor(struct dispc_device *dispc,
3271 				      enum omap_channel channel, u16 lck_div,
3272 				      u16 pck_div)
3273 {
3274 	BUG_ON(lck_div < 1);
3275 	BUG_ON(pck_div < 1);
3276 
3277 	dispc_write_reg(dispc, DISPC_DIVISORo(channel),
3278 			FLD_VAL(lck_div, 23, 16) | FLD_VAL(pck_div, 7, 0));
3279 
3280 	if (!dispc_has_feature(dispc, FEAT_CORE_CLK_DIV) &&
3281 			channel == OMAP_DSS_CHANNEL_LCD)
3282 		dispc->core_clk_rate = dispc_fclk_rate(dispc) / lck_div;
3283 }
3284 
3285 static void dispc_mgr_get_lcd_divisor(struct dispc_device *dispc,
3286 				      enum omap_channel channel, int *lck_div,
3287 				      int *pck_div)
3288 {
3289 	u32 l;
3290 	l = dispc_read_reg(dispc, DISPC_DIVISORo(channel));
3291 	*lck_div = FLD_GET(l, 23, 16);
3292 	*pck_div = FLD_GET(l, 7, 0);
3293 }
3294 
3295 static unsigned long dispc_fclk_rate(struct dispc_device *dispc)
3296 {
3297 	unsigned long r;
3298 	enum dss_clk_source src;
3299 
3300 	src = dss_get_dispc_clk_source(dispc->dss);
3301 
3302 	if (src == DSS_CLK_SRC_FCK) {
3303 		r = dss_get_dispc_clk_rate(dispc->dss);
3304 	} else {
3305 		struct dss_pll *pll;
3306 		unsigned int clkout_idx;
3307 
3308 		pll = dss_pll_find_by_src(dispc->dss, src);
3309 		clkout_idx = dss_pll_get_clkout_idx_for_src(src);
3310 
3311 		r = pll->cinfo.clkout[clkout_idx];
3312 	}
3313 
3314 	return r;
3315 }
3316 
3317 static unsigned long dispc_mgr_lclk_rate(struct dispc_device *dispc,
3318 					 enum omap_channel channel)
3319 {
3320 	int lcd;
3321 	unsigned long r;
3322 	enum dss_clk_source src;
3323 
3324 	/* for TV, LCLK rate is the FCLK rate */
3325 	if (!dss_mgr_is_lcd(channel))
3326 		return dispc_fclk_rate(dispc);
3327 
3328 	src = dss_get_lcd_clk_source(dispc->dss, channel);
3329 
3330 	if (src == DSS_CLK_SRC_FCK) {
3331 		r = dss_get_dispc_clk_rate(dispc->dss);
3332 	} else {
3333 		struct dss_pll *pll;
3334 		unsigned int clkout_idx;
3335 
3336 		pll = dss_pll_find_by_src(dispc->dss, src);
3337 		clkout_idx = dss_pll_get_clkout_idx_for_src(src);
3338 
3339 		r = pll->cinfo.clkout[clkout_idx];
3340 	}
3341 
3342 	lcd = REG_GET(dispc, DISPC_DIVISORo(channel), 23, 16);
3343 
3344 	return r / lcd;
3345 }
3346 
3347 static unsigned long dispc_mgr_pclk_rate(struct dispc_device *dispc,
3348 					 enum omap_channel channel)
3349 {
3350 	unsigned long r;
3351 
3352 	if (dss_mgr_is_lcd(channel)) {
3353 		int pcd;
3354 		u32 l;
3355 
3356 		l = dispc_read_reg(dispc, DISPC_DIVISORo(channel));
3357 
3358 		pcd = FLD_GET(l, 7, 0);
3359 
3360 		r = dispc_mgr_lclk_rate(dispc, channel);
3361 
3362 		return r / pcd;
3363 	} else {
3364 		return dispc->tv_pclk_rate;
3365 	}
3366 }
3367 
3368 void dispc_set_tv_pclk(struct dispc_device *dispc, unsigned long pclk)
3369 {
3370 	dispc->tv_pclk_rate = pclk;
3371 }
3372 
3373 static unsigned long dispc_core_clk_rate(struct dispc_device *dispc)
3374 {
3375 	return dispc->core_clk_rate;
3376 }
3377 
3378 static unsigned long dispc_plane_pclk_rate(struct dispc_device *dispc,
3379 					   enum omap_plane_id plane)
3380 {
3381 	enum omap_channel channel;
3382 
3383 	if (plane == OMAP_DSS_WB)
3384 		return 0;
3385 
3386 	channel = dispc_ovl_get_channel_out(dispc, plane);
3387 
3388 	return dispc_mgr_pclk_rate(dispc, channel);
3389 }
3390 
3391 static unsigned long dispc_plane_lclk_rate(struct dispc_device *dispc,
3392 					   enum omap_plane_id plane)
3393 {
3394 	enum omap_channel channel;
3395 
3396 	if (plane == OMAP_DSS_WB)
3397 		return 0;
3398 
3399 	channel	= dispc_ovl_get_channel_out(dispc, plane);
3400 
3401 	return dispc_mgr_lclk_rate(dispc, channel);
3402 }
3403 
3404 static void dispc_dump_clocks_channel(struct dispc_device *dispc,
3405 				      struct seq_file *s,
3406 				      enum omap_channel channel)
3407 {
3408 	int lcd, pcd;
3409 	enum dss_clk_source lcd_clk_src;
3410 
3411 	seq_printf(s, "- %s -\n", mgr_desc[channel].name);
3412 
3413 	lcd_clk_src = dss_get_lcd_clk_source(dispc->dss, channel);
3414 
3415 	seq_printf(s, "%s clk source = %s\n", mgr_desc[channel].name,
3416 		dss_get_clk_source_name(lcd_clk_src));
3417 
3418 	dispc_mgr_get_lcd_divisor(dispc, channel, &lcd, &pcd);
3419 
3420 	seq_printf(s, "lck\t\t%-16lulck div\t%u\n",
3421 		dispc_mgr_lclk_rate(dispc, channel), lcd);
3422 	seq_printf(s, "pck\t\t%-16lupck div\t%u\n",
3423 		dispc_mgr_pclk_rate(dispc, channel), pcd);
3424 }
3425 
3426 void dispc_dump_clocks(struct dispc_device *dispc, struct seq_file *s)
3427 {
3428 	enum dss_clk_source dispc_clk_src;
3429 	int lcd;
3430 	u32 l;
3431 
3432 	if (dispc_runtime_get(dispc))
3433 		return;
3434 
3435 	seq_printf(s, "- DISPC -\n");
3436 
3437 	dispc_clk_src = dss_get_dispc_clk_source(dispc->dss);
3438 	seq_printf(s, "dispc fclk source = %s\n",
3439 			dss_get_clk_source_name(dispc_clk_src));
3440 
3441 	seq_printf(s, "fck\t\t%-16lu\n", dispc_fclk_rate(dispc));
3442 
3443 	if (dispc_has_feature(dispc, FEAT_CORE_CLK_DIV)) {
3444 		seq_printf(s, "- DISPC-CORE-CLK -\n");
3445 		l = dispc_read_reg(dispc, DISPC_DIVISOR);
3446 		lcd = FLD_GET(l, 23, 16);
3447 
3448 		seq_printf(s, "lck\t\t%-16lulck div\t%u\n",
3449 				(dispc_fclk_rate(dispc)/lcd), lcd);
3450 	}
3451 
3452 	dispc_dump_clocks_channel(dispc, s, OMAP_DSS_CHANNEL_LCD);
3453 
3454 	if (dispc_has_feature(dispc, FEAT_MGR_LCD2))
3455 		dispc_dump_clocks_channel(dispc, s, OMAP_DSS_CHANNEL_LCD2);
3456 	if (dispc_has_feature(dispc, FEAT_MGR_LCD3))
3457 		dispc_dump_clocks_channel(dispc, s, OMAP_DSS_CHANNEL_LCD3);
3458 
3459 	dispc_runtime_put(dispc);
3460 }
3461 
3462 static int dispc_dump_regs(struct seq_file *s, void *p)
3463 {
3464 	struct dispc_device *dispc = s->private;
3465 	int i, j;
3466 	const char *mgr_names[] = {
3467 		[OMAP_DSS_CHANNEL_LCD]		= "LCD",
3468 		[OMAP_DSS_CHANNEL_DIGIT]	= "TV",
3469 		[OMAP_DSS_CHANNEL_LCD2]		= "LCD2",
3470 		[OMAP_DSS_CHANNEL_LCD3]		= "LCD3",
3471 	};
3472 	const char *ovl_names[] = {
3473 		[OMAP_DSS_GFX]		= "GFX",
3474 		[OMAP_DSS_VIDEO1]	= "VID1",
3475 		[OMAP_DSS_VIDEO2]	= "VID2",
3476 		[OMAP_DSS_VIDEO3]	= "VID3",
3477 		[OMAP_DSS_WB]		= "WB",
3478 	};
3479 	const char **p_names;
3480 
3481 #define DUMPREG(dispc, r) \
3482 	seq_printf(s, "%-50s %08x\n", #r, dispc_read_reg(dispc, r))
3483 
3484 	if (dispc_runtime_get(dispc))
3485 		return 0;
3486 
3487 	/* DISPC common registers */
3488 	DUMPREG(dispc, DISPC_REVISION);
3489 	DUMPREG(dispc, DISPC_SYSCONFIG);
3490 	DUMPREG(dispc, DISPC_SYSSTATUS);
3491 	DUMPREG(dispc, DISPC_IRQSTATUS);
3492 	DUMPREG(dispc, DISPC_IRQENABLE);
3493 	DUMPREG(dispc, DISPC_CONTROL);
3494 	DUMPREG(dispc, DISPC_CONFIG);
3495 	DUMPREG(dispc, DISPC_CAPABLE);
3496 	DUMPREG(dispc, DISPC_LINE_STATUS);
3497 	DUMPREG(dispc, DISPC_LINE_NUMBER);
3498 	if (dispc_has_feature(dispc, FEAT_ALPHA_FIXED_ZORDER) ||
3499 			dispc_has_feature(dispc, FEAT_ALPHA_FREE_ZORDER))
3500 		DUMPREG(dispc, DISPC_GLOBAL_ALPHA);
3501 	if (dispc_has_feature(dispc, FEAT_MGR_LCD2)) {
3502 		DUMPREG(dispc, DISPC_CONTROL2);
3503 		DUMPREG(dispc, DISPC_CONFIG2);
3504 	}
3505 	if (dispc_has_feature(dispc, FEAT_MGR_LCD3)) {
3506 		DUMPREG(dispc, DISPC_CONTROL3);
3507 		DUMPREG(dispc, DISPC_CONFIG3);
3508 	}
3509 	if (dispc_has_feature(dispc, FEAT_MFLAG))
3510 		DUMPREG(dispc, DISPC_GLOBAL_MFLAG_ATTRIBUTE);
3511 
3512 #undef DUMPREG
3513 
3514 #define DISPC_REG(i, name) name(i)
3515 #define DUMPREG(dispc, i, r) seq_printf(s, "%s(%s)%*s %08x\n", #r, p_names[i], \
3516 	(int)(48 - strlen(#r) - strlen(p_names[i])), " ", \
3517 	dispc_read_reg(dispc, DISPC_REG(i, r)))
3518 
3519 	p_names = mgr_names;
3520 
3521 	/* DISPC channel specific registers */
3522 	for (i = 0; i < dispc_get_num_mgrs(dispc); i++) {
3523 		DUMPREG(dispc, i, DISPC_DEFAULT_COLOR);
3524 		DUMPREG(dispc, i, DISPC_TRANS_COLOR);
3525 		DUMPREG(dispc, i, DISPC_SIZE_MGR);
3526 
3527 		if (i == OMAP_DSS_CHANNEL_DIGIT)
3528 			continue;
3529 
3530 		DUMPREG(dispc, i, DISPC_TIMING_H);
3531 		DUMPREG(dispc, i, DISPC_TIMING_V);
3532 		DUMPREG(dispc, i, DISPC_POL_FREQ);
3533 		DUMPREG(dispc, i, DISPC_DIVISORo);
3534 
3535 		DUMPREG(dispc, i, DISPC_DATA_CYCLE1);
3536 		DUMPREG(dispc, i, DISPC_DATA_CYCLE2);
3537 		DUMPREG(dispc, i, DISPC_DATA_CYCLE3);
3538 
3539 		if (dispc_has_feature(dispc, FEAT_CPR)) {
3540 			DUMPREG(dispc, i, DISPC_CPR_COEF_R);
3541 			DUMPREG(dispc, i, DISPC_CPR_COEF_G);
3542 			DUMPREG(dispc, i, DISPC_CPR_COEF_B);
3543 		}
3544 	}
3545 
3546 	p_names = ovl_names;
3547 
3548 	for (i = 0; i < dispc_get_num_ovls(dispc); i++) {
3549 		DUMPREG(dispc, i, DISPC_OVL_BA0);
3550 		DUMPREG(dispc, i, DISPC_OVL_BA1);
3551 		DUMPREG(dispc, i, DISPC_OVL_POSITION);
3552 		DUMPREG(dispc, i, DISPC_OVL_SIZE);
3553 		DUMPREG(dispc, i, DISPC_OVL_ATTRIBUTES);
3554 		DUMPREG(dispc, i, DISPC_OVL_FIFO_THRESHOLD);
3555 		DUMPREG(dispc, i, DISPC_OVL_FIFO_SIZE_STATUS);
3556 		DUMPREG(dispc, i, DISPC_OVL_ROW_INC);
3557 		DUMPREG(dispc, i, DISPC_OVL_PIXEL_INC);
3558 
3559 		if (dispc_has_feature(dispc, FEAT_PRELOAD))
3560 			DUMPREG(dispc, i, DISPC_OVL_PRELOAD);
3561 		if (dispc_has_feature(dispc, FEAT_MFLAG))
3562 			DUMPREG(dispc, i, DISPC_OVL_MFLAG_THRESHOLD);
3563 
3564 		if (i == OMAP_DSS_GFX) {
3565 			DUMPREG(dispc, i, DISPC_OVL_WINDOW_SKIP);
3566 			DUMPREG(dispc, i, DISPC_OVL_TABLE_BA);
3567 			continue;
3568 		}
3569 
3570 		DUMPREG(dispc, i, DISPC_OVL_FIR);
3571 		DUMPREG(dispc, i, DISPC_OVL_PICTURE_SIZE);
3572 		DUMPREG(dispc, i, DISPC_OVL_ACCU0);
3573 		DUMPREG(dispc, i, DISPC_OVL_ACCU1);
3574 		if (dispc_has_feature(dispc, FEAT_HANDLE_UV_SEPARATE)) {
3575 			DUMPREG(dispc, i, DISPC_OVL_BA0_UV);
3576 			DUMPREG(dispc, i, DISPC_OVL_BA1_UV);
3577 			DUMPREG(dispc, i, DISPC_OVL_FIR2);
3578 			DUMPREG(dispc, i, DISPC_OVL_ACCU2_0);
3579 			DUMPREG(dispc, i, DISPC_OVL_ACCU2_1);
3580 		}
3581 		if (dispc_has_feature(dispc, FEAT_ATTR2))
3582 			DUMPREG(dispc, i, DISPC_OVL_ATTRIBUTES2);
3583 	}
3584 
3585 	if (dispc->feat->has_writeback) {
3586 		i = OMAP_DSS_WB;
3587 		DUMPREG(dispc, i, DISPC_OVL_BA0);
3588 		DUMPREG(dispc, i, DISPC_OVL_BA1);
3589 		DUMPREG(dispc, i, DISPC_OVL_SIZE);
3590 		DUMPREG(dispc, i, DISPC_OVL_ATTRIBUTES);
3591 		DUMPREG(dispc, i, DISPC_OVL_FIFO_THRESHOLD);
3592 		DUMPREG(dispc, i, DISPC_OVL_FIFO_SIZE_STATUS);
3593 		DUMPREG(dispc, i, DISPC_OVL_ROW_INC);
3594 		DUMPREG(dispc, i, DISPC_OVL_PIXEL_INC);
3595 
3596 		if (dispc_has_feature(dispc, FEAT_MFLAG))
3597 			DUMPREG(dispc, i, DISPC_OVL_MFLAG_THRESHOLD);
3598 
3599 		DUMPREG(dispc, i, DISPC_OVL_FIR);
3600 		DUMPREG(dispc, i, DISPC_OVL_PICTURE_SIZE);
3601 		DUMPREG(dispc, i, DISPC_OVL_ACCU0);
3602 		DUMPREG(dispc, i, DISPC_OVL_ACCU1);
3603 		if (dispc_has_feature(dispc, FEAT_HANDLE_UV_SEPARATE)) {
3604 			DUMPREG(dispc, i, DISPC_OVL_BA0_UV);
3605 			DUMPREG(dispc, i, DISPC_OVL_BA1_UV);
3606 			DUMPREG(dispc, i, DISPC_OVL_FIR2);
3607 			DUMPREG(dispc, i, DISPC_OVL_ACCU2_0);
3608 			DUMPREG(dispc, i, DISPC_OVL_ACCU2_1);
3609 		}
3610 		if (dispc_has_feature(dispc, FEAT_ATTR2))
3611 			DUMPREG(dispc, i, DISPC_OVL_ATTRIBUTES2);
3612 	}
3613 
3614 #undef DISPC_REG
3615 #undef DUMPREG
3616 
3617 #define DISPC_REG(plane, name, i) name(plane, i)
3618 #define DUMPREG(dispc, plane, name, i) \
3619 	seq_printf(s, "%s_%d(%s)%*s %08x\n", #name, i, p_names[plane], \
3620 	(int)(46 - strlen(#name) - strlen(p_names[plane])), " ", \
3621 	dispc_read_reg(dispc, DISPC_REG(plane, name, i)))
3622 
3623 	/* Video pipeline coefficient registers */
3624 
3625 	/* start from OMAP_DSS_VIDEO1 */
3626 	for (i = 1; i < dispc_get_num_ovls(dispc); i++) {
3627 		for (j = 0; j < 8; j++)
3628 			DUMPREG(dispc, i, DISPC_OVL_FIR_COEF_H, j);
3629 
3630 		for (j = 0; j < 8; j++)
3631 			DUMPREG(dispc, i, DISPC_OVL_FIR_COEF_HV, j);
3632 
3633 		for (j = 0; j < 5; j++)
3634 			DUMPREG(dispc, i, DISPC_OVL_CONV_COEF, j);
3635 
3636 		if (dispc_has_feature(dispc, FEAT_FIR_COEF_V)) {
3637 			for (j = 0; j < 8; j++)
3638 				DUMPREG(dispc, i, DISPC_OVL_FIR_COEF_V, j);
3639 		}
3640 
3641 		if (dispc_has_feature(dispc, FEAT_HANDLE_UV_SEPARATE)) {
3642 			for (j = 0; j < 8; j++)
3643 				DUMPREG(dispc, i, DISPC_OVL_FIR_COEF_H2, j);
3644 
3645 			for (j = 0; j < 8; j++)
3646 				DUMPREG(dispc, i, DISPC_OVL_FIR_COEF_HV2, j);
3647 
3648 			for (j = 0; j < 8; j++)
3649 				DUMPREG(dispc, i, DISPC_OVL_FIR_COEF_V2, j);
3650 		}
3651 	}
3652 
3653 	dispc_runtime_put(dispc);
3654 
3655 #undef DISPC_REG
3656 #undef DUMPREG
3657 
3658 	return 0;
3659 }
3660 
3661 /* calculate clock rates using dividers in cinfo */
3662 int dispc_calc_clock_rates(struct dispc_device *dispc,
3663 			   unsigned long dispc_fclk_rate,
3664 			   struct dispc_clock_info *cinfo)
3665 {
3666 	if (cinfo->lck_div > 255 || cinfo->lck_div == 0)
3667 		return -EINVAL;
3668 	if (cinfo->pck_div < 1 || cinfo->pck_div > 255)
3669 		return -EINVAL;
3670 
3671 	cinfo->lck = dispc_fclk_rate / cinfo->lck_div;
3672 	cinfo->pck = cinfo->lck / cinfo->pck_div;
3673 
3674 	return 0;
3675 }
3676 
3677 bool dispc_div_calc(struct dispc_device *dispc, unsigned long dispc_freq,
3678 		    unsigned long pck_min, unsigned long pck_max,
3679 		    dispc_div_calc_func func, void *data)
3680 {
3681 	int lckd, lckd_start, lckd_stop;
3682 	int pckd, pckd_start, pckd_stop;
3683 	unsigned long pck, lck;
3684 	unsigned long lck_max;
3685 	unsigned long pckd_hw_min, pckd_hw_max;
3686 	unsigned int min_fck_per_pck;
3687 	unsigned long fck;
3688 
3689 #ifdef CONFIG_OMAP2_DSS_MIN_FCK_PER_PCK
3690 	min_fck_per_pck = CONFIG_OMAP2_DSS_MIN_FCK_PER_PCK;
3691 #else
3692 	min_fck_per_pck = 0;
3693 #endif
3694 
3695 	pckd_hw_min = dispc->feat->min_pcd;
3696 	pckd_hw_max = 255;
3697 
3698 	lck_max = dss_get_max_fck_rate(dispc->dss);
3699 
3700 	pck_min = pck_min ? pck_min : 1;
3701 	pck_max = pck_max ? pck_max : ULONG_MAX;
3702 
3703 	lckd_start = max(DIV_ROUND_UP(dispc_freq, lck_max), 1ul);
3704 	lckd_stop = min(dispc_freq / pck_min, 255ul);
3705 
3706 	for (lckd = lckd_start; lckd <= lckd_stop; ++lckd) {
3707 		lck = dispc_freq / lckd;
3708 
3709 		pckd_start = max(DIV_ROUND_UP(lck, pck_max), pckd_hw_min);
3710 		pckd_stop = min(lck / pck_min, pckd_hw_max);
3711 
3712 		for (pckd = pckd_start; pckd <= pckd_stop; ++pckd) {
3713 			pck = lck / pckd;
3714 
3715 			/*
3716 			 * For OMAP2/3 the DISPC fclk is the same as LCD's logic
3717 			 * clock, which means we're configuring DISPC fclk here
3718 			 * also. Thus we need to use the calculated lck. For
3719 			 * OMAP4+ the DISPC fclk is a separate clock.
3720 			 */
3721 			if (dispc_has_feature(dispc, FEAT_CORE_CLK_DIV))
3722 				fck = dispc_core_clk_rate(dispc);
3723 			else
3724 				fck = lck;
3725 
3726 			if (fck < pck * min_fck_per_pck)
3727 				continue;
3728 
3729 			if (func(lckd, pckd, lck, pck, data))
3730 				return true;
3731 		}
3732 	}
3733 
3734 	return false;
3735 }
3736 
3737 void dispc_mgr_set_clock_div(struct dispc_device *dispc,
3738 			     enum omap_channel channel,
3739 			     const struct dispc_clock_info *cinfo)
3740 {
3741 	DSSDBG("lck = %lu (%u)\n", cinfo->lck, cinfo->lck_div);
3742 	DSSDBG("pck = %lu (%u)\n", cinfo->pck, cinfo->pck_div);
3743 
3744 	dispc_mgr_set_lcd_divisor(dispc, channel, cinfo->lck_div,
3745 				  cinfo->pck_div);
3746 }
3747 
3748 int dispc_mgr_get_clock_div(struct dispc_device *dispc,
3749 			    enum omap_channel channel,
3750 			    struct dispc_clock_info *cinfo)
3751 {
3752 	unsigned long fck;
3753 
3754 	fck = dispc_fclk_rate(dispc);
3755 
3756 	cinfo->lck_div = REG_GET(dispc, DISPC_DIVISORo(channel), 23, 16);
3757 	cinfo->pck_div = REG_GET(dispc, DISPC_DIVISORo(channel), 7, 0);
3758 
3759 	cinfo->lck = fck / cinfo->lck_div;
3760 	cinfo->pck = cinfo->lck / cinfo->pck_div;
3761 
3762 	return 0;
3763 }
3764 
3765 static u32 dispc_read_irqstatus(struct dispc_device *dispc)
3766 {
3767 	return dispc_read_reg(dispc, DISPC_IRQSTATUS);
3768 }
3769 
3770 static void dispc_clear_irqstatus(struct dispc_device *dispc, u32 mask)
3771 {
3772 	dispc_write_reg(dispc, DISPC_IRQSTATUS, mask);
3773 }
3774 
3775 static void dispc_write_irqenable(struct dispc_device *dispc, u32 mask)
3776 {
3777 	u32 old_mask = dispc_read_reg(dispc, DISPC_IRQENABLE);
3778 
3779 	/* clear the irqstatus for newly enabled irqs */
3780 	dispc_clear_irqstatus(dispc, (mask ^ old_mask) & mask);
3781 
3782 	dispc_write_reg(dispc, DISPC_IRQENABLE, mask);
3783 
3784 	/* flush posted write */
3785 	dispc_read_reg(dispc, DISPC_IRQENABLE);
3786 }
3787 
3788 void dispc_enable_sidle(struct dispc_device *dispc)
3789 {
3790 	/* SIDLEMODE: smart idle */
3791 	REG_FLD_MOD(dispc, DISPC_SYSCONFIG, 2, 4, 3);
3792 }
3793 
3794 void dispc_disable_sidle(struct dispc_device *dispc)
3795 {
3796 	REG_FLD_MOD(dispc, DISPC_SYSCONFIG, 1, 4, 3);	/* SIDLEMODE: no idle */
3797 }
3798 
3799 static u32 dispc_mgr_gamma_size(struct dispc_device *dispc,
3800 				enum omap_channel channel)
3801 {
3802 	const struct dispc_gamma_desc *gdesc = &mgr_desc[channel].gamma;
3803 
3804 	if (!dispc->feat->has_gamma_table)
3805 		return 0;
3806 
3807 	return gdesc->len;
3808 }
3809 
3810 static void dispc_mgr_write_gamma_table(struct dispc_device *dispc,
3811 					enum omap_channel channel)
3812 {
3813 	const struct dispc_gamma_desc *gdesc = &mgr_desc[channel].gamma;
3814 	u32 *table = dispc->gamma_table[channel];
3815 	unsigned int i;
3816 
3817 	DSSDBG("%s: channel %d\n", __func__, channel);
3818 
3819 	for (i = 0; i < gdesc->len; ++i) {
3820 		u32 v = table[i];
3821 
3822 		if (gdesc->has_index)
3823 			v |= i << 24;
3824 		else if (i == 0)
3825 			v |= 1 << 31;
3826 
3827 		dispc_write_reg(dispc, gdesc->reg, v);
3828 	}
3829 }
3830 
3831 static void dispc_restore_gamma_tables(struct dispc_device *dispc)
3832 {
3833 	DSSDBG("%s()\n", __func__);
3834 
3835 	if (!dispc->feat->has_gamma_table)
3836 		return;
3837 
3838 	dispc_mgr_write_gamma_table(dispc, OMAP_DSS_CHANNEL_LCD);
3839 
3840 	dispc_mgr_write_gamma_table(dispc, OMAP_DSS_CHANNEL_DIGIT);
3841 
3842 	if (dispc_has_feature(dispc, FEAT_MGR_LCD2))
3843 		dispc_mgr_write_gamma_table(dispc, OMAP_DSS_CHANNEL_LCD2);
3844 
3845 	if (dispc_has_feature(dispc, FEAT_MGR_LCD3))
3846 		dispc_mgr_write_gamma_table(dispc, OMAP_DSS_CHANNEL_LCD3);
3847 }
3848 
3849 static const struct drm_color_lut dispc_mgr_gamma_default_lut[] = {
3850 	{ .red = 0, .green = 0, .blue = 0, },
3851 	{ .red = U16_MAX, .green = U16_MAX, .blue = U16_MAX, },
3852 };
3853 
3854 static void dispc_mgr_set_gamma(struct dispc_device *dispc,
3855 				enum omap_channel channel,
3856 				const struct drm_color_lut *lut,
3857 				unsigned int length)
3858 {
3859 	const struct dispc_gamma_desc *gdesc = &mgr_desc[channel].gamma;
3860 	u32 *table = dispc->gamma_table[channel];
3861 	uint i;
3862 
3863 	DSSDBG("%s: channel %d, lut len %u, hw len %u\n", __func__,
3864 	       channel, length, gdesc->len);
3865 
3866 	if (!dispc->feat->has_gamma_table)
3867 		return;
3868 
3869 	if (lut == NULL || length < 2) {
3870 		lut = dispc_mgr_gamma_default_lut;
3871 		length = ARRAY_SIZE(dispc_mgr_gamma_default_lut);
3872 	}
3873 
3874 	for (i = 0; i < length - 1; ++i) {
3875 		uint first = i * (gdesc->len - 1) / (length - 1);
3876 		uint last = (i + 1) * (gdesc->len - 1) / (length - 1);
3877 		uint w = last - first;
3878 		u16 r, g, b;
3879 		uint j;
3880 
3881 		if (w == 0)
3882 			continue;
3883 
3884 		for (j = 0; j <= w; j++) {
3885 			r = (lut[i].red * (w - j) + lut[i+1].red * j) / w;
3886 			g = (lut[i].green * (w - j) + lut[i+1].green * j) / w;
3887 			b = (lut[i].blue * (w - j) + lut[i+1].blue * j) / w;
3888 
3889 			r >>= 16 - gdesc->bits;
3890 			g >>= 16 - gdesc->bits;
3891 			b >>= 16 - gdesc->bits;
3892 
3893 			table[first + j] = (r << (gdesc->bits * 2)) |
3894 				(g << gdesc->bits) | b;
3895 		}
3896 	}
3897 
3898 	if (dispc->is_enabled)
3899 		dispc_mgr_write_gamma_table(dispc, channel);
3900 }
3901 
3902 static int dispc_init_gamma_tables(struct dispc_device *dispc)
3903 {
3904 	int channel;
3905 
3906 	if (!dispc->feat->has_gamma_table)
3907 		return 0;
3908 
3909 	for (channel = 0; channel < ARRAY_SIZE(dispc->gamma_table); channel++) {
3910 		const struct dispc_gamma_desc *gdesc = &mgr_desc[channel].gamma;
3911 		u32 *gt;
3912 
3913 		if (channel == OMAP_DSS_CHANNEL_LCD2 &&
3914 		    !dispc_has_feature(dispc, FEAT_MGR_LCD2))
3915 			continue;
3916 
3917 		if (channel == OMAP_DSS_CHANNEL_LCD3 &&
3918 		    !dispc_has_feature(dispc, FEAT_MGR_LCD3))
3919 			continue;
3920 
3921 		gt = devm_kmalloc_array(&dispc->pdev->dev, gdesc->len,
3922 					sizeof(u32), GFP_KERNEL);
3923 		if (!gt)
3924 			return -ENOMEM;
3925 
3926 		dispc->gamma_table[channel] = gt;
3927 
3928 		dispc_mgr_set_gamma(dispc, channel, NULL, 0);
3929 	}
3930 	return 0;
3931 }
3932 
3933 static void _omap_dispc_initial_config(struct dispc_device *dispc)
3934 {
3935 	u32 l;
3936 
3937 	/* Exclusively enable DISPC_CORE_CLK and set divider to 1 */
3938 	if (dispc_has_feature(dispc, FEAT_CORE_CLK_DIV)) {
3939 		l = dispc_read_reg(dispc, DISPC_DIVISOR);
3940 		/* Use DISPC_DIVISOR.LCD, instead of DISPC_DIVISOR1.LCD */
3941 		l = FLD_MOD(l, 1, 0, 0);
3942 		l = FLD_MOD(l, 1, 23, 16);
3943 		dispc_write_reg(dispc, DISPC_DIVISOR, l);
3944 
3945 		dispc->core_clk_rate = dispc_fclk_rate(dispc);
3946 	}
3947 
3948 	/* Use gamma table mode, instead of palette mode */
3949 	if (dispc->feat->has_gamma_table)
3950 		REG_FLD_MOD(dispc, DISPC_CONFIG, 1, 3, 3);
3951 
3952 	/* For older DSS versions (FEAT_FUNCGATED) this enables
3953 	 * func-clock auto-gating. For newer versions
3954 	 * (dispc->feat->has_gamma_table) this enables tv-out gamma tables.
3955 	 */
3956 	if (dispc_has_feature(dispc, FEAT_FUNCGATED) ||
3957 	    dispc->feat->has_gamma_table)
3958 		REG_FLD_MOD(dispc, DISPC_CONFIG, 1, 9, 9);
3959 
3960 	dispc_setup_color_conv_coef(dispc);
3961 
3962 	dispc_set_loadmode(dispc, OMAP_DSS_LOAD_FRAME_ONLY);
3963 
3964 	dispc_init_fifos(dispc);
3965 
3966 	dispc_configure_burst_sizes(dispc);
3967 
3968 	dispc_ovl_enable_zorder_planes(dispc);
3969 
3970 	if (dispc->feat->mstandby_workaround)
3971 		REG_FLD_MOD(dispc, DISPC_MSTANDBY_CTRL, 1, 0, 0);
3972 
3973 	if (dispc_has_feature(dispc, FEAT_MFLAG))
3974 		dispc_init_mflag(dispc);
3975 }
3976 
3977 static const enum dispc_feature_id omap2_dispc_features_list[] = {
3978 	FEAT_LCDENABLEPOL,
3979 	FEAT_LCDENABLESIGNAL,
3980 	FEAT_PCKFREEENABLE,
3981 	FEAT_FUNCGATED,
3982 	FEAT_ROWREPEATENABLE,
3983 	FEAT_RESIZECONF,
3984 };
3985 
3986 static const enum dispc_feature_id omap3_dispc_features_list[] = {
3987 	FEAT_LCDENABLEPOL,
3988 	FEAT_LCDENABLESIGNAL,
3989 	FEAT_PCKFREEENABLE,
3990 	FEAT_FUNCGATED,
3991 	FEAT_LINEBUFFERSPLIT,
3992 	FEAT_ROWREPEATENABLE,
3993 	FEAT_RESIZECONF,
3994 	FEAT_CPR,
3995 	FEAT_PRELOAD,
3996 	FEAT_FIR_COEF_V,
3997 	FEAT_ALPHA_FIXED_ZORDER,
3998 	FEAT_FIFO_MERGE,
3999 	FEAT_OMAP3_DSI_FIFO_BUG,
4000 };
4001 
4002 static const enum dispc_feature_id am43xx_dispc_features_list[] = {
4003 	FEAT_LCDENABLEPOL,
4004 	FEAT_LCDENABLESIGNAL,
4005 	FEAT_PCKFREEENABLE,
4006 	FEAT_FUNCGATED,
4007 	FEAT_LINEBUFFERSPLIT,
4008 	FEAT_ROWREPEATENABLE,
4009 	FEAT_RESIZECONF,
4010 	FEAT_CPR,
4011 	FEAT_PRELOAD,
4012 	FEAT_FIR_COEF_V,
4013 	FEAT_ALPHA_FIXED_ZORDER,
4014 	FEAT_FIFO_MERGE,
4015 };
4016 
4017 static const enum dispc_feature_id omap4_dispc_features_list[] = {
4018 	FEAT_MGR_LCD2,
4019 	FEAT_CORE_CLK_DIV,
4020 	FEAT_HANDLE_UV_SEPARATE,
4021 	FEAT_ATTR2,
4022 	FEAT_CPR,
4023 	FEAT_PRELOAD,
4024 	FEAT_FIR_COEF_V,
4025 	FEAT_ALPHA_FREE_ZORDER,
4026 	FEAT_FIFO_MERGE,
4027 	FEAT_BURST_2D,
4028 };
4029 
4030 static const enum dispc_feature_id omap5_dispc_features_list[] = {
4031 	FEAT_MGR_LCD2,
4032 	FEAT_MGR_LCD3,
4033 	FEAT_CORE_CLK_DIV,
4034 	FEAT_HANDLE_UV_SEPARATE,
4035 	FEAT_ATTR2,
4036 	FEAT_CPR,
4037 	FEAT_PRELOAD,
4038 	FEAT_FIR_COEF_V,
4039 	FEAT_ALPHA_FREE_ZORDER,
4040 	FEAT_FIFO_MERGE,
4041 	FEAT_BURST_2D,
4042 	FEAT_MFLAG,
4043 };
4044 
4045 static const struct dss_reg_field omap2_dispc_reg_fields[] = {
4046 	[FEAT_REG_FIRHINC]			= { 11, 0 },
4047 	[FEAT_REG_FIRVINC]			= { 27, 16 },
4048 	[FEAT_REG_FIFOLOWTHRESHOLD]		= { 8, 0 },
4049 	[FEAT_REG_FIFOHIGHTHRESHOLD]		= { 24, 16 },
4050 	[FEAT_REG_FIFOSIZE]			= { 8, 0 },
4051 	[FEAT_REG_HORIZONTALACCU]		= { 9, 0 },
4052 	[FEAT_REG_VERTICALACCU]			= { 25, 16 },
4053 };
4054 
4055 static const struct dss_reg_field omap3_dispc_reg_fields[] = {
4056 	[FEAT_REG_FIRHINC]			= { 12, 0 },
4057 	[FEAT_REG_FIRVINC]			= { 28, 16 },
4058 	[FEAT_REG_FIFOLOWTHRESHOLD]		= { 11, 0 },
4059 	[FEAT_REG_FIFOHIGHTHRESHOLD]		= { 27, 16 },
4060 	[FEAT_REG_FIFOSIZE]			= { 10, 0 },
4061 	[FEAT_REG_HORIZONTALACCU]		= { 9, 0 },
4062 	[FEAT_REG_VERTICALACCU]			= { 25, 16 },
4063 };
4064 
4065 static const struct dss_reg_field omap4_dispc_reg_fields[] = {
4066 	[FEAT_REG_FIRHINC]			= { 12, 0 },
4067 	[FEAT_REG_FIRVINC]			= { 28, 16 },
4068 	[FEAT_REG_FIFOLOWTHRESHOLD]		= { 15, 0 },
4069 	[FEAT_REG_FIFOHIGHTHRESHOLD]		= { 31, 16 },
4070 	[FEAT_REG_FIFOSIZE]			= { 15, 0 },
4071 	[FEAT_REG_HORIZONTALACCU]		= { 10, 0 },
4072 	[FEAT_REG_VERTICALACCU]			= { 26, 16 },
4073 };
4074 
4075 static const enum omap_overlay_caps omap2_dispc_overlay_caps[] = {
4076 	/* OMAP_DSS_GFX */
4077 	OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION,
4078 
4079 	/* OMAP_DSS_VIDEO1 */
4080 	OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_POS |
4081 		OMAP_DSS_OVL_CAP_REPLICATION,
4082 
4083 	/* OMAP_DSS_VIDEO2 */
4084 	OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_POS |
4085 		OMAP_DSS_OVL_CAP_REPLICATION,
4086 };
4087 
4088 static const enum omap_overlay_caps omap3430_dispc_overlay_caps[] = {
4089 	/* OMAP_DSS_GFX */
4090 	OMAP_DSS_OVL_CAP_GLOBAL_ALPHA | OMAP_DSS_OVL_CAP_POS |
4091 		OMAP_DSS_OVL_CAP_REPLICATION,
4092 
4093 	/* OMAP_DSS_VIDEO1 */
4094 	OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_POS |
4095 		OMAP_DSS_OVL_CAP_REPLICATION,
4096 
4097 	/* OMAP_DSS_VIDEO2 */
4098 	OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_GLOBAL_ALPHA |
4099 		OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION,
4100 };
4101 
4102 static const enum omap_overlay_caps omap3630_dispc_overlay_caps[] = {
4103 	/* OMAP_DSS_GFX */
4104 	OMAP_DSS_OVL_CAP_GLOBAL_ALPHA | OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA |
4105 		OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION,
4106 
4107 	/* OMAP_DSS_VIDEO1 */
4108 	OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_POS |
4109 		OMAP_DSS_OVL_CAP_REPLICATION,
4110 
4111 	/* OMAP_DSS_VIDEO2 */
4112 	OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_GLOBAL_ALPHA |
4113 		OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA | OMAP_DSS_OVL_CAP_POS |
4114 		OMAP_DSS_OVL_CAP_REPLICATION,
4115 };
4116 
4117 static const enum omap_overlay_caps omap4_dispc_overlay_caps[] = {
4118 	/* OMAP_DSS_GFX */
4119 	OMAP_DSS_OVL_CAP_GLOBAL_ALPHA | OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA |
4120 		OMAP_DSS_OVL_CAP_ZORDER | OMAP_DSS_OVL_CAP_POS |
4121 		OMAP_DSS_OVL_CAP_REPLICATION,
4122 
4123 	/* OMAP_DSS_VIDEO1 */
4124 	OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_GLOBAL_ALPHA |
4125 		OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA | OMAP_DSS_OVL_CAP_ZORDER |
4126 		OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION,
4127 
4128 	/* OMAP_DSS_VIDEO2 */
4129 	OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_GLOBAL_ALPHA |
4130 		OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA | OMAP_DSS_OVL_CAP_ZORDER |
4131 		OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION,
4132 
4133 	/* OMAP_DSS_VIDEO3 */
4134 	OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_GLOBAL_ALPHA |
4135 		OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA | OMAP_DSS_OVL_CAP_ZORDER |
4136 		OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION,
4137 };
4138 
4139 #define COLOR_ARRAY(arr...) (const u32[]) { arr, 0 }
4140 
4141 static const u32 *omap2_dispc_supported_color_modes[] = {
4142 
4143 	/* OMAP_DSS_GFX */
4144 	COLOR_ARRAY(
4145 	DRM_FORMAT_RGBX4444, DRM_FORMAT_RGB565,
4146 	DRM_FORMAT_XRGB8888, DRM_FORMAT_RGB888),
4147 
4148 	/* OMAP_DSS_VIDEO1 */
4149 	COLOR_ARRAY(
4150 	DRM_FORMAT_RGB565, DRM_FORMAT_XRGB8888,
4151 	DRM_FORMAT_RGB888, DRM_FORMAT_YUYV,
4152 	DRM_FORMAT_UYVY),
4153 
4154 	/* OMAP_DSS_VIDEO2 */
4155 	COLOR_ARRAY(
4156 	DRM_FORMAT_RGB565, DRM_FORMAT_XRGB8888,
4157 	DRM_FORMAT_RGB888, DRM_FORMAT_YUYV,
4158 	DRM_FORMAT_UYVY),
4159 };
4160 
4161 static const u32 *omap3_dispc_supported_color_modes[] = {
4162 	/* OMAP_DSS_GFX */
4163 	COLOR_ARRAY(
4164 	DRM_FORMAT_RGBX4444, DRM_FORMAT_ARGB4444,
4165 	DRM_FORMAT_RGB565, DRM_FORMAT_XRGB8888,
4166 	DRM_FORMAT_RGB888, DRM_FORMAT_ARGB8888,
4167 	DRM_FORMAT_RGBA8888, DRM_FORMAT_RGBX8888),
4168 
4169 	/* OMAP_DSS_VIDEO1 */
4170 	COLOR_ARRAY(
4171 	DRM_FORMAT_XRGB8888, DRM_FORMAT_RGB888,
4172 	DRM_FORMAT_RGBX4444, DRM_FORMAT_RGB565,
4173 	DRM_FORMAT_YUYV, DRM_FORMAT_UYVY),
4174 
4175 	/* OMAP_DSS_VIDEO2 */
4176 	COLOR_ARRAY(
4177 	DRM_FORMAT_RGBX4444, DRM_FORMAT_ARGB4444,
4178 	DRM_FORMAT_RGB565, DRM_FORMAT_XRGB8888,
4179 	DRM_FORMAT_RGB888, DRM_FORMAT_YUYV,
4180 	DRM_FORMAT_UYVY, DRM_FORMAT_ARGB8888,
4181 	DRM_FORMAT_RGBA8888, DRM_FORMAT_RGBX8888),
4182 };
4183 
4184 static const u32 *omap4_dispc_supported_color_modes[] = {
4185 	/* OMAP_DSS_GFX */
4186 	COLOR_ARRAY(
4187 	DRM_FORMAT_RGBX4444, DRM_FORMAT_ARGB4444,
4188 	DRM_FORMAT_RGB565, DRM_FORMAT_XRGB8888,
4189 	DRM_FORMAT_RGB888, DRM_FORMAT_ARGB8888,
4190 	DRM_FORMAT_RGBA8888, DRM_FORMAT_RGBX8888,
4191 	DRM_FORMAT_ARGB1555, DRM_FORMAT_XRGB4444,
4192 	DRM_FORMAT_RGBA4444, DRM_FORMAT_XRGB1555),
4193 
4194 	/* OMAP_DSS_VIDEO1 */
4195 	COLOR_ARRAY(
4196 	DRM_FORMAT_RGB565, DRM_FORMAT_RGBX4444,
4197 	DRM_FORMAT_YUYV, DRM_FORMAT_ARGB1555,
4198 	DRM_FORMAT_RGBA8888, DRM_FORMAT_NV12,
4199 	DRM_FORMAT_RGBA4444, DRM_FORMAT_XRGB8888,
4200 	DRM_FORMAT_RGB888, DRM_FORMAT_UYVY,
4201 	DRM_FORMAT_ARGB4444, DRM_FORMAT_XRGB1555,
4202 	DRM_FORMAT_ARGB8888, DRM_FORMAT_XRGB4444,
4203 	DRM_FORMAT_RGBX8888),
4204 
4205        /* OMAP_DSS_VIDEO2 */
4206 	COLOR_ARRAY(
4207 	DRM_FORMAT_RGB565, DRM_FORMAT_RGBX4444,
4208 	DRM_FORMAT_YUYV, DRM_FORMAT_ARGB1555,
4209 	DRM_FORMAT_RGBA8888, DRM_FORMAT_NV12,
4210 	DRM_FORMAT_RGBA4444, DRM_FORMAT_XRGB8888,
4211 	DRM_FORMAT_RGB888, DRM_FORMAT_UYVY,
4212 	DRM_FORMAT_ARGB4444, DRM_FORMAT_XRGB1555,
4213 	DRM_FORMAT_ARGB8888, DRM_FORMAT_XRGB4444,
4214 	DRM_FORMAT_RGBX8888),
4215 
4216 	/* OMAP_DSS_VIDEO3 */
4217 	COLOR_ARRAY(
4218 	DRM_FORMAT_RGB565, DRM_FORMAT_RGBX4444,
4219 	DRM_FORMAT_YUYV, DRM_FORMAT_ARGB1555,
4220 	DRM_FORMAT_RGBA8888, DRM_FORMAT_NV12,
4221 	DRM_FORMAT_RGBA4444, DRM_FORMAT_XRGB8888,
4222 	DRM_FORMAT_RGB888, DRM_FORMAT_UYVY,
4223 	DRM_FORMAT_ARGB4444, DRM_FORMAT_XRGB1555,
4224 	DRM_FORMAT_ARGB8888, DRM_FORMAT_XRGB4444,
4225 	DRM_FORMAT_RGBX8888),
4226 
4227 	/* OMAP_DSS_WB */
4228 	COLOR_ARRAY(
4229 	DRM_FORMAT_RGB565, DRM_FORMAT_RGBX4444,
4230 	DRM_FORMAT_YUYV, DRM_FORMAT_ARGB1555,
4231 	DRM_FORMAT_RGBA8888, DRM_FORMAT_NV12,
4232 	DRM_FORMAT_RGBA4444, DRM_FORMAT_XRGB8888,
4233 	DRM_FORMAT_RGB888, DRM_FORMAT_UYVY,
4234 	DRM_FORMAT_ARGB4444, DRM_FORMAT_XRGB1555,
4235 	DRM_FORMAT_ARGB8888, DRM_FORMAT_XRGB4444,
4236 	DRM_FORMAT_RGBX8888),
4237 };
4238 
4239 static const struct dispc_features omap24xx_dispc_feats = {
4240 	.sw_start		=	5,
4241 	.fp_start		=	15,
4242 	.bp_start		=	27,
4243 	.sw_max			=	64,
4244 	.vp_max			=	255,
4245 	.hp_max			=	256,
4246 	.mgr_width_start	=	10,
4247 	.mgr_height_start	=	26,
4248 	.mgr_width_max		=	2048,
4249 	.mgr_height_max		=	2048,
4250 	.max_lcd_pclk		=	66500000,
4251 	.max_downscale		=	2,
4252 	/*
4253 	 * Assume the line width buffer to be 768 pixels as OMAP2 DISPC scaler
4254 	 * cannot scale an image width larger than 768.
4255 	 */
4256 	.max_line_width		=	768,
4257 	.min_pcd		=	2,
4258 	.calc_scaling		=	dispc_ovl_calc_scaling_24xx,
4259 	.calc_core_clk		=	calc_core_clk_24xx,
4260 	.num_fifos		=	3,
4261 	.features		=	omap2_dispc_features_list,
4262 	.num_features		=	ARRAY_SIZE(omap2_dispc_features_list),
4263 	.reg_fields		=	omap2_dispc_reg_fields,
4264 	.num_reg_fields		=	ARRAY_SIZE(omap2_dispc_reg_fields),
4265 	.overlay_caps		=	omap2_dispc_overlay_caps,
4266 	.supported_color_modes	=	omap2_dispc_supported_color_modes,
4267 	.num_mgrs		=	2,
4268 	.num_ovls		=	3,
4269 	.buffer_size_unit	=	1,
4270 	.burst_size_unit	=	8,
4271 	.no_framedone_tv	=	true,
4272 	.set_max_preload	=	false,
4273 	.last_pixel_inc_missing	=	true,
4274 };
4275 
4276 static const struct dispc_features omap34xx_rev1_0_dispc_feats = {
4277 	.sw_start		=	5,
4278 	.fp_start		=	15,
4279 	.bp_start		=	27,
4280 	.sw_max			=	64,
4281 	.vp_max			=	255,
4282 	.hp_max			=	256,
4283 	.mgr_width_start	=	10,
4284 	.mgr_height_start	=	26,
4285 	.mgr_width_max		=	2048,
4286 	.mgr_height_max		=	2048,
4287 	.max_lcd_pclk		=	173000000,
4288 	.max_tv_pclk		=	59000000,
4289 	.max_downscale		=	4,
4290 	.max_line_width		=	1024,
4291 	.min_pcd		=	1,
4292 	.calc_scaling		=	dispc_ovl_calc_scaling_34xx,
4293 	.calc_core_clk		=	calc_core_clk_34xx,
4294 	.num_fifos		=	3,
4295 	.features		=	omap3_dispc_features_list,
4296 	.num_features		=	ARRAY_SIZE(omap3_dispc_features_list),
4297 	.reg_fields		=	omap3_dispc_reg_fields,
4298 	.num_reg_fields		=	ARRAY_SIZE(omap3_dispc_reg_fields),
4299 	.overlay_caps		=	omap3430_dispc_overlay_caps,
4300 	.supported_color_modes	=	omap3_dispc_supported_color_modes,
4301 	.num_mgrs		=	2,
4302 	.num_ovls		=	3,
4303 	.buffer_size_unit	=	1,
4304 	.burst_size_unit	=	8,
4305 	.no_framedone_tv	=	true,
4306 	.set_max_preload	=	false,
4307 	.last_pixel_inc_missing	=	true,
4308 };
4309 
4310 static const struct dispc_features omap34xx_rev3_0_dispc_feats = {
4311 	.sw_start		=	7,
4312 	.fp_start		=	19,
4313 	.bp_start		=	31,
4314 	.sw_max			=	256,
4315 	.vp_max			=	4095,
4316 	.hp_max			=	4096,
4317 	.mgr_width_start	=	10,
4318 	.mgr_height_start	=	26,
4319 	.mgr_width_max		=	2048,
4320 	.mgr_height_max		=	2048,
4321 	.max_lcd_pclk		=	173000000,
4322 	.max_tv_pclk		=	59000000,
4323 	.max_downscale		=	4,
4324 	.max_line_width		=	1024,
4325 	.min_pcd		=	1,
4326 	.calc_scaling		=	dispc_ovl_calc_scaling_34xx,
4327 	.calc_core_clk		=	calc_core_clk_34xx,
4328 	.num_fifos		=	3,
4329 	.features		=	omap3_dispc_features_list,
4330 	.num_features		=	ARRAY_SIZE(omap3_dispc_features_list),
4331 	.reg_fields		=	omap3_dispc_reg_fields,
4332 	.num_reg_fields		=	ARRAY_SIZE(omap3_dispc_reg_fields),
4333 	.overlay_caps		=	omap3430_dispc_overlay_caps,
4334 	.supported_color_modes	=	omap3_dispc_supported_color_modes,
4335 	.num_mgrs		=	2,
4336 	.num_ovls		=	3,
4337 	.buffer_size_unit	=	1,
4338 	.burst_size_unit	=	8,
4339 	.no_framedone_tv	=	true,
4340 	.set_max_preload	=	false,
4341 	.last_pixel_inc_missing	=	true,
4342 };
4343 
4344 static const struct dispc_features omap36xx_dispc_feats = {
4345 	.sw_start		=	7,
4346 	.fp_start		=	19,
4347 	.bp_start		=	31,
4348 	.sw_max			=	256,
4349 	.vp_max			=	4095,
4350 	.hp_max			=	4096,
4351 	.mgr_width_start	=	10,
4352 	.mgr_height_start	=	26,
4353 	.mgr_width_max		=	2048,
4354 	.mgr_height_max		=	2048,
4355 	.max_lcd_pclk		=	173000000,
4356 	.max_tv_pclk		=	59000000,
4357 	.max_downscale		=	4,
4358 	.max_line_width		=	1024,
4359 	.min_pcd		=	1,
4360 	.calc_scaling		=	dispc_ovl_calc_scaling_34xx,
4361 	.calc_core_clk		=	calc_core_clk_34xx,
4362 	.num_fifos		=	3,
4363 	.features		=	omap3_dispc_features_list,
4364 	.num_features		=	ARRAY_SIZE(omap3_dispc_features_list),
4365 	.reg_fields		=	omap3_dispc_reg_fields,
4366 	.num_reg_fields		=	ARRAY_SIZE(omap3_dispc_reg_fields),
4367 	.overlay_caps		=	omap3630_dispc_overlay_caps,
4368 	.supported_color_modes	=	omap3_dispc_supported_color_modes,
4369 	.num_mgrs		=	2,
4370 	.num_ovls		=	3,
4371 	.buffer_size_unit	=	1,
4372 	.burst_size_unit	=	8,
4373 	.no_framedone_tv	=	true,
4374 	.set_max_preload	=	false,
4375 	.last_pixel_inc_missing	=	true,
4376 };
4377 
4378 static const struct dispc_features am43xx_dispc_feats = {
4379 	.sw_start		=	7,
4380 	.fp_start		=	19,
4381 	.bp_start		=	31,
4382 	.sw_max			=	256,
4383 	.vp_max			=	4095,
4384 	.hp_max			=	4096,
4385 	.mgr_width_start	=	10,
4386 	.mgr_height_start	=	26,
4387 	.mgr_width_max		=	2048,
4388 	.mgr_height_max		=	2048,
4389 	.max_lcd_pclk		=	173000000,
4390 	.max_tv_pclk		=	59000000,
4391 	.max_downscale		=	4,
4392 	.max_line_width		=	1024,
4393 	.min_pcd		=	1,
4394 	.calc_scaling		=	dispc_ovl_calc_scaling_34xx,
4395 	.calc_core_clk		=	calc_core_clk_34xx,
4396 	.num_fifos		=	3,
4397 	.features		=	am43xx_dispc_features_list,
4398 	.num_features		=	ARRAY_SIZE(am43xx_dispc_features_list),
4399 	.reg_fields		=	omap3_dispc_reg_fields,
4400 	.num_reg_fields		=	ARRAY_SIZE(omap3_dispc_reg_fields),
4401 	.overlay_caps		=	omap3430_dispc_overlay_caps,
4402 	.supported_color_modes	=	omap3_dispc_supported_color_modes,
4403 	.num_mgrs		=	1,
4404 	.num_ovls		=	3,
4405 	.buffer_size_unit	=	1,
4406 	.burst_size_unit	=	8,
4407 	.no_framedone_tv	=	true,
4408 	.set_max_preload	=	false,
4409 	.last_pixel_inc_missing	=	true,
4410 };
4411 
4412 static const struct dispc_features omap44xx_dispc_feats = {
4413 	.sw_start		=	7,
4414 	.fp_start		=	19,
4415 	.bp_start		=	31,
4416 	.sw_max			=	256,
4417 	.vp_max			=	4095,
4418 	.hp_max			=	4096,
4419 	.mgr_width_start	=	10,
4420 	.mgr_height_start	=	26,
4421 	.mgr_width_max		=	2048,
4422 	.mgr_height_max		=	2048,
4423 	.max_lcd_pclk		=	170000000,
4424 	.max_tv_pclk		=	185625000,
4425 	.max_downscale		=	4,
4426 	.max_line_width		=	2048,
4427 	.min_pcd		=	1,
4428 	.calc_scaling		=	dispc_ovl_calc_scaling_44xx,
4429 	.calc_core_clk		=	calc_core_clk_44xx,
4430 	.num_fifos		=	5,
4431 	.features		=	omap4_dispc_features_list,
4432 	.num_features		=	ARRAY_SIZE(omap4_dispc_features_list),
4433 	.reg_fields		=	omap4_dispc_reg_fields,
4434 	.num_reg_fields		=	ARRAY_SIZE(omap4_dispc_reg_fields),
4435 	.overlay_caps		=	omap4_dispc_overlay_caps,
4436 	.supported_color_modes	=	omap4_dispc_supported_color_modes,
4437 	.num_mgrs		=	3,
4438 	.num_ovls		=	4,
4439 	.buffer_size_unit	=	16,
4440 	.burst_size_unit	=	16,
4441 	.gfx_fifo_workaround	=	true,
4442 	.set_max_preload	=	true,
4443 	.supports_sync_align	=	true,
4444 	.has_writeback		=	true,
4445 	.supports_double_pixel	=	true,
4446 	.reverse_ilace_field_order =	true,
4447 	.has_gamma_table	=	true,
4448 	.has_gamma_i734_bug	=	true,
4449 };
4450 
4451 static const struct dispc_features omap54xx_dispc_feats = {
4452 	.sw_start		=	7,
4453 	.fp_start		=	19,
4454 	.bp_start		=	31,
4455 	.sw_max			=	256,
4456 	.vp_max			=	4095,
4457 	.hp_max			=	4096,
4458 	.mgr_width_start	=	11,
4459 	.mgr_height_start	=	27,
4460 	.mgr_width_max		=	4096,
4461 	.mgr_height_max		=	4096,
4462 	.max_lcd_pclk		=	170000000,
4463 	.max_tv_pclk		=	186000000,
4464 	.max_downscale		=	4,
4465 	.max_line_width		=	2048,
4466 	.min_pcd		=	1,
4467 	.calc_scaling		=	dispc_ovl_calc_scaling_44xx,
4468 	.calc_core_clk		=	calc_core_clk_44xx,
4469 	.num_fifos		=	5,
4470 	.features		=	omap5_dispc_features_list,
4471 	.num_features		=	ARRAY_SIZE(omap5_dispc_features_list),
4472 	.reg_fields		=	omap4_dispc_reg_fields,
4473 	.num_reg_fields		=	ARRAY_SIZE(omap4_dispc_reg_fields),
4474 	.overlay_caps		=	omap4_dispc_overlay_caps,
4475 	.supported_color_modes	=	omap4_dispc_supported_color_modes,
4476 	.num_mgrs		=	4,
4477 	.num_ovls		=	4,
4478 	.buffer_size_unit	=	16,
4479 	.burst_size_unit	=	16,
4480 	.gfx_fifo_workaround	=	true,
4481 	.mstandby_workaround	=	true,
4482 	.set_max_preload	=	true,
4483 	.supports_sync_align	=	true,
4484 	.has_writeback		=	true,
4485 	.supports_double_pixel	=	true,
4486 	.reverse_ilace_field_order =	true,
4487 	.has_gamma_table	=	true,
4488 	.has_gamma_i734_bug	=	true,
4489 };
4490 
4491 static irqreturn_t dispc_irq_handler(int irq, void *arg)
4492 {
4493 	struct dispc_device *dispc = arg;
4494 
4495 	if (!dispc->is_enabled)
4496 		return IRQ_NONE;
4497 
4498 	return dispc->user_handler(irq, dispc->user_data);
4499 }
4500 
4501 static int dispc_request_irq(struct dispc_device *dispc, irq_handler_t handler,
4502 			     void *dev_id)
4503 {
4504 	int r;
4505 
4506 	if (dispc->user_handler != NULL)
4507 		return -EBUSY;
4508 
4509 	dispc->user_handler = handler;
4510 	dispc->user_data = dev_id;
4511 
4512 	/* ensure the dispc_irq_handler sees the values above */
4513 	smp_wmb();
4514 
4515 	r = devm_request_irq(&dispc->pdev->dev, dispc->irq, dispc_irq_handler,
4516 			     IRQF_SHARED, "OMAP DISPC", dispc);
4517 	if (r) {
4518 		dispc->user_handler = NULL;
4519 		dispc->user_data = NULL;
4520 	}
4521 
4522 	return r;
4523 }
4524 
4525 static void dispc_free_irq(struct dispc_device *dispc, void *dev_id)
4526 {
4527 	devm_free_irq(&dispc->pdev->dev, dispc->irq, dispc);
4528 
4529 	dispc->user_handler = NULL;
4530 	dispc->user_data = NULL;
4531 }
4532 
4533 static u32 dispc_get_memory_bandwidth_limit(struct dispc_device *dispc)
4534 {
4535 	u32 limit = 0;
4536 
4537 	/* Optional maximum memory bandwidth */
4538 	of_property_read_u32(dispc->pdev->dev.of_node, "max-memory-bandwidth",
4539 			     &limit);
4540 
4541 	return limit;
4542 }
4543 
4544 /*
4545  * Workaround for errata i734 in DSS dispc
4546  *  - LCD1 Gamma Correction Is Not Working When GFX Pipe Is Disabled
4547  *
4548  * For gamma tables to work on LCD1 the GFX plane has to be used at
4549  * least once after DSS HW has come out of reset. The workaround
4550  * sets up a minimal LCD setup with GFX plane and waits for one
4551  * vertical sync irq before disabling the setup and continuing with
4552  * the context restore. The physical outputs are gated during the
4553  * operation. This workaround requires that gamma table's LOADMODE
4554  * is set to 0x2 in DISPC_CONTROL1 register.
4555  *
4556  * For details see:
4557  * OMAP543x Multimedia Device Silicon Revision 2.0 Silicon Errata
4558  * Literature Number: SWPZ037E
4559  * Or some other relevant errata document for the DSS IP version.
4560  */
4561 
4562 static const struct dispc_errata_i734_data {
4563 	struct videomode vm;
4564 	struct omap_overlay_info ovli;
4565 	struct omap_overlay_manager_info mgri;
4566 	struct dss_lcd_mgr_config lcd_conf;
4567 } i734 = {
4568 	.vm = {
4569 		.hactive = 8, .vactive = 1,
4570 		.pixelclock = 16000000,
4571 		.hsync_len = 8, .hfront_porch = 4, .hback_porch = 4,
4572 		.vsync_len = 1, .vfront_porch = 1, .vback_porch = 1,
4573 
4574 		.flags = DISPLAY_FLAGS_HSYNC_LOW | DISPLAY_FLAGS_VSYNC_LOW |
4575 			 DISPLAY_FLAGS_DE_HIGH | DISPLAY_FLAGS_SYNC_POSEDGE |
4576 			 DISPLAY_FLAGS_PIXDATA_POSEDGE,
4577 	},
4578 	.ovli = {
4579 		.screen_width = 1,
4580 		.width = 1, .height = 1,
4581 		.fourcc = DRM_FORMAT_XRGB8888,
4582 		.rotation = DRM_MODE_ROTATE_0,
4583 		.rotation_type = OMAP_DSS_ROT_NONE,
4584 		.pos_x = 0, .pos_y = 0,
4585 		.out_width = 0, .out_height = 0,
4586 		.global_alpha = 0xff,
4587 		.pre_mult_alpha = 0,
4588 		.zorder = 0,
4589 	},
4590 	.mgri = {
4591 		.default_color = 0,
4592 		.trans_enabled = false,
4593 		.partial_alpha_enabled = false,
4594 		.cpr_enable = false,
4595 	},
4596 	.lcd_conf = {
4597 		.io_pad_mode = DSS_IO_PAD_MODE_BYPASS,
4598 		.stallmode = false,
4599 		.fifohandcheck = false,
4600 		.clock_info = {
4601 			.lck_div = 1,
4602 			.pck_div = 2,
4603 		},
4604 		.video_port_width = 24,
4605 		.lcden_sig_polarity = 0,
4606 	},
4607 };
4608 
4609 static struct i734_buf {
4610 	size_t size;
4611 	dma_addr_t paddr;
4612 	void *vaddr;
4613 } i734_buf;
4614 
4615 static int dispc_errata_i734_wa_init(struct dispc_device *dispc)
4616 {
4617 	if (!dispc->feat->has_gamma_i734_bug)
4618 		return 0;
4619 
4620 	i734_buf.size = i734.ovli.width * i734.ovli.height *
4621 		color_mode_to_bpp(i734.ovli.fourcc) / 8;
4622 
4623 	i734_buf.vaddr = dma_alloc_writecombine(&dispc->pdev->dev,
4624 						i734_buf.size, &i734_buf.paddr,
4625 						GFP_KERNEL);
4626 	if (!i734_buf.vaddr) {
4627 		dev_err(&dispc->pdev->dev, "%s: dma_alloc_writecombine failed\n",
4628 			__func__);
4629 		return -ENOMEM;
4630 	}
4631 
4632 	return 0;
4633 }
4634 
4635 static void dispc_errata_i734_wa_fini(struct dispc_device *dispc)
4636 {
4637 	if (!dispc->feat->has_gamma_i734_bug)
4638 		return;
4639 
4640 	dma_free_writecombine(&dispc->pdev->dev, i734_buf.size, i734_buf.vaddr,
4641 			      i734_buf.paddr);
4642 }
4643 
4644 static void dispc_errata_i734_wa(struct dispc_device *dispc)
4645 {
4646 	u32 framedone_irq = dispc_mgr_get_framedone_irq(dispc,
4647 							OMAP_DSS_CHANNEL_LCD);
4648 	struct omap_overlay_info ovli;
4649 	struct dss_lcd_mgr_config lcd_conf;
4650 	u32 gatestate;
4651 	unsigned int count;
4652 
4653 	if (!dispc->feat->has_gamma_i734_bug)
4654 		return;
4655 
4656 	gatestate = REG_GET(dispc, DISPC_CONFIG, 8, 4);
4657 
4658 	ovli = i734.ovli;
4659 	ovli.paddr = i734_buf.paddr;
4660 	lcd_conf = i734.lcd_conf;
4661 
4662 	/* Gate all LCD1 outputs */
4663 	REG_FLD_MOD(dispc, DISPC_CONFIG, 0x1f, 8, 4);
4664 
4665 	/* Setup and enable GFX plane */
4666 	dispc_ovl_setup(dispc, OMAP_DSS_GFX, &ovli, &i734.vm, false,
4667 			OMAP_DSS_CHANNEL_LCD);
4668 	dispc_ovl_enable(dispc, OMAP_DSS_GFX, true);
4669 
4670 	/* Set up and enable display manager for LCD1 */
4671 	dispc_mgr_setup(dispc, OMAP_DSS_CHANNEL_LCD, &i734.mgri);
4672 	dispc_calc_clock_rates(dispc, dss_get_dispc_clk_rate(dispc->dss),
4673 			       &lcd_conf.clock_info);
4674 	dispc_mgr_set_lcd_config(dispc, OMAP_DSS_CHANNEL_LCD, &lcd_conf);
4675 	dispc_mgr_set_timings(dispc, OMAP_DSS_CHANNEL_LCD, &i734.vm);
4676 
4677 	dispc_clear_irqstatus(dispc, framedone_irq);
4678 
4679 	/* Enable and shut the channel to produce just one frame */
4680 	dispc_mgr_enable(dispc, OMAP_DSS_CHANNEL_LCD, true);
4681 	dispc_mgr_enable(dispc, OMAP_DSS_CHANNEL_LCD, false);
4682 
4683 	/* Busy wait for framedone. We can't fiddle with irq handlers
4684 	 * in PM resume. Typically the loop runs less than 5 times and
4685 	 * waits less than a micro second.
4686 	 */
4687 	count = 0;
4688 	while (!(dispc_read_irqstatus(dispc) & framedone_irq)) {
4689 		if (count++ > 10000) {
4690 			dev_err(&dispc->pdev->dev, "%s: framedone timeout\n",
4691 				__func__);
4692 			break;
4693 		}
4694 	}
4695 	dispc_ovl_enable(dispc, OMAP_DSS_GFX, false);
4696 
4697 	/* Clear all irq bits before continuing */
4698 	dispc_clear_irqstatus(dispc, 0xffffffff);
4699 
4700 	/* Restore the original state to LCD1 output gates */
4701 	REG_FLD_MOD(dispc, DISPC_CONFIG, gatestate, 8, 4);
4702 }
4703 
4704 static const struct dispc_ops dispc_ops = {
4705 	.read_irqstatus = dispc_read_irqstatus,
4706 	.clear_irqstatus = dispc_clear_irqstatus,
4707 	.write_irqenable = dispc_write_irqenable,
4708 
4709 	.request_irq = dispc_request_irq,
4710 	.free_irq = dispc_free_irq,
4711 
4712 	.runtime_get = dispc_runtime_get,
4713 	.runtime_put = dispc_runtime_put,
4714 
4715 	.get_num_ovls = dispc_get_num_ovls,
4716 	.get_num_mgrs = dispc_get_num_mgrs,
4717 
4718 	.get_memory_bandwidth_limit = dispc_get_memory_bandwidth_limit,
4719 
4720 	.mgr_enable = dispc_mgr_enable,
4721 	.mgr_is_enabled = dispc_mgr_is_enabled,
4722 	.mgr_get_vsync_irq = dispc_mgr_get_vsync_irq,
4723 	.mgr_get_framedone_irq = dispc_mgr_get_framedone_irq,
4724 	.mgr_get_sync_lost_irq = dispc_mgr_get_sync_lost_irq,
4725 	.mgr_go_busy = dispc_mgr_go_busy,
4726 	.mgr_go = dispc_mgr_go,
4727 	.mgr_set_lcd_config = dispc_mgr_set_lcd_config,
4728 	.mgr_check_timings = dispc_mgr_check_timings,
4729 	.mgr_set_timings = dispc_mgr_set_timings,
4730 	.mgr_setup = dispc_mgr_setup,
4731 	.mgr_gamma_size = dispc_mgr_gamma_size,
4732 	.mgr_set_gamma = dispc_mgr_set_gamma,
4733 
4734 	.ovl_enable = dispc_ovl_enable,
4735 	.ovl_setup = dispc_ovl_setup,
4736 	.ovl_get_color_modes = dispc_ovl_get_color_modes,
4737 
4738 	.wb_get_framedone_irq = dispc_wb_get_framedone_irq,
4739 	.wb_setup = dispc_wb_setup,
4740 	.has_writeback = dispc_has_writeback,
4741 	.wb_go_busy = dispc_wb_go_busy,
4742 	.wb_go = dispc_wb_go,
4743 };
4744 
4745 /* DISPC HW IP initialisation */
4746 static const struct of_device_id dispc_of_match[] = {
4747 	{ .compatible = "ti,omap2-dispc", .data = &omap24xx_dispc_feats },
4748 	{ .compatible = "ti,omap3-dispc", .data = &omap36xx_dispc_feats },
4749 	{ .compatible = "ti,omap4-dispc", .data = &omap44xx_dispc_feats },
4750 	{ .compatible = "ti,omap5-dispc", .data = &omap54xx_dispc_feats },
4751 	{ .compatible = "ti,dra7-dispc",  .data = &omap54xx_dispc_feats },
4752 	{},
4753 };
4754 
4755 static const struct soc_device_attribute dispc_soc_devices[] = {
4756 	{ .machine = "OMAP3[45]*",
4757 	  .revision = "ES[12].?",	.data = &omap34xx_rev1_0_dispc_feats },
4758 	{ .machine = "OMAP3[45]*",	.data = &omap34xx_rev3_0_dispc_feats },
4759 	{ .machine = "AM35*",		.data = &omap34xx_rev3_0_dispc_feats },
4760 	{ .machine = "AM43*",		.data = &am43xx_dispc_feats },
4761 	{ /* sentinel */ }
4762 };
4763 
4764 static int dispc_bind(struct device *dev, struct device *master, void *data)
4765 {
4766 	struct platform_device *pdev = to_platform_device(dev);
4767 	const struct soc_device_attribute *soc;
4768 	struct dss_device *dss = dss_get_device(master);
4769 	struct dispc_device *dispc;
4770 	u32 rev;
4771 	int r = 0;
4772 	struct resource *dispc_mem;
4773 	struct device_node *np = pdev->dev.of_node;
4774 
4775 	dispc = kzalloc(sizeof(*dispc), GFP_KERNEL);
4776 	if (!dispc)
4777 		return -ENOMEM;
4778 
4779 	dispc->pdev = pdev;
4780 	platform_set_drvdata(pdev, dispc);
4781 	dispc->dss = dss;
4782 
4783 	spin_lock_init(&dispc->control_lock);
4784 
4785 	/*
4786 	 * The OMAP3-based models can't be told apart using the compatible
4787 	 * string, use SoC device matching.
4788 	 */
4789 	soc = soc_device_match(dispc_soc_devices);
4790 	if (soc)
4791 		dispc->feat = soc->data;
4792 	else
4793 		dispc->feat = of_match_device(dispc_of_match, &pdev->dev)->data;
4794 
4795 	r = dispc_errata_i734_wa_init(dispc);
4796 	if (r)
4797 		goto err_free;
4798 
4799 	dispc_mem = platform_get_resource(dispc->pdev, IORESOURCE_MEM, 0);
4800 	dispc->base = devm_ioremap_resource(&pdev->dev, dispc_mem);
4801 	if (IS_ERR(dispc->base)) {
4802 		r = PTR_ERR(dispc->base);
4803 		goto err_free;
4804 	}
4805 
4806 	dispc->irq = platform_get_irq(dispc->pdev, 0);
4807 	if (dispc->irq < 0) {
4808 		DSSERR("platform_get_irq failed\n");
4809 		r = -ENODEV;
4810 		goto err_free;
4811 	}
4812 
4813 	if (np && of_property_read_bool(np, "syscon-pol")) {
4814 		dispc->syscon_pol = syscon_regmap_lookup_by_phandle(np, "syscon-pol");
4815 		if (IS_ERR(dispc->syscon_pol)) {
4816 			dev_err(&pdev->dev, "failed to get syscon-pol regmap\n");
4817 			r = PTR_ERR(dispc->syscon_pol);
4818 			goto err_free;
4819 		}
4820 
4821 		if (of_property_read_u32_index(np, "syscon-pol", 1,
4822 				&dispc->syscon_pol_offset)) {
4823 			dev_err(&pdev->dev, "failed to get syscon-pol offset\n");
4824 			r = -EINVAL;
4825 			goto err_free;
4826 		}
4827 	}
4828 
4829 	r = dispc_init_gamma_tables(dispc);
4830 	if (r)
4831 		goto err_free;
4832 
4833 	pm_runtime_enable(&pdev->dev);
4834 
4835 	r = dispc_runtime_get(dispc);
4836 	if (r)
4837 		goto err_runtime_get;
4838 
4839 	_omap_dispc_initial_config(dispc);
4840 
4841 	rev = dispc_read_reg(dispc, DISPC_REVISION);
4842 	dev_dbg(&pdev->dev, "OMAP DISPC rev %d.%d\n",
4843 	       FLD_GET(rev, 7, 4), FLD_GET(rev, 3, 0));
4844 
4845 	dispc_runtime_put(dispc);
4846 
4847 	dss->dispc = dispc;
4848 	dss->dispc_ops = &dispc_ops;
4849 
4850 	dispc->debugfs = dss_debugfs_create_file(dss, "dispc", dispc_dump_regs,
4851 						 dispc);
4852 
4853 	return 0;
4854 
4855 err_runtime_get:
4856 	pm_runtime_disable(&pdev->dev);
4857 err_free:
4858 	kfree(dispc);
4859 	return r;
4860 }
4861 
4862 static void dispc_unbind(struct device *dev, struct device *master, void *data)
4863 {
4864 	struct dispc_device *dispc = dev_get_drvdata(dev);
4865 	struct dss_device *dss = dispc->dss;
4866 
4867 	dss_debugfs_remove_file(dispc->debugfs);
4868 
4869 	dss->dispc = NULL;
4870 	dss->dispc_ops = NULL;
4871 
4872 	pm_runtime_disable(dev);
4873 
4874 	dispc_errata_i734_wa_fini(dispc);
4875 
4876 	kfree(dispc);
4877 }
4878 
4879 static const struct component_ops dispc_component_ops = {
4880 	.bind	= dispc_bind,
4881 	.unbind	= dispc_unbind,
4882 };
4883 
4884 static int dispc_probe(struct platform_device *pdev)
4885 {
4886 	return component_add(&pdev->dev, &dispc_component_ops);
4887 }
4888 
4889 static int dispc_remove(struct platform_device *pdev)
4890 {
4891 	component_del(&pdev->dev, &dispc_component_ops);
4892 	return 0;
4893 }
4894 
4895 static int dispc_runtime_suspend(struct device *dev)
4896 {
4897 	struct dispc_device *dispc = dev_get_drvdata(dev);
4898 
4899 	dispc->is_enabled = false;
4900 	/* ensure the dispc_irq_handler sees the is_enabled value */
4901 	smp_wmb();
4902 	/* wait for current handler to finish before turning the DISPC off */
4903 	synchronize_irq(dispc->irq);
4904 
4905 	dispc_save_context(dispc);
4906 
4907 	return 0;
4908 }
4909 
4910 static int dispc_runtime_resume(struct device *dev)
4911 {
4912 	struct dispc_device *dispc = dev_get_drvdata(dev);
4913 
4914 	/*
4915 	 * The reset value for load mode is 0 (OMAP_DSS_LOAD_CLUT_AND_FRAME)
4916 	 * but we always initialize it to 2 (OMAP_DSS_LOAD_FRAME_ONLY) in
4917 	 * _omap_dispc_initial_config(). We can thus use it to detect if
4918 	 * we have lost register context.
4919 	 */
4920 	if (REG_GET(dispc, DISPC_CONFIG, 2, 1) != OMAP_DSS_LOAD_FRAME_ONLY) {
4921 		_omap_dispc_initial_config(dispc);
4922 
4923 		dispc_errata_i734_wa(dispc);
4924 
4925 		dispc_restore_context(dispc);
4926 
4927 		dispc_restore_gamma_tables(dispc);
4928 	}
4929 
4930 	dispc->is_enabled = true;
4931 	/* ensure the dispc_irq_handler sees the is_enabled value */
4932 	smp_wmb();
4933 
4934 	return 0;
4935 }
4936 
4937 static const struct dev_pm_ops dispc_pm_ops = {
4938 	.runtime_suspend = dispc_runtime_suspend,
4939 	.runtime_resume = dispc_runtime_resume,
4940 };
4941 
4942 struct platform_driver omap_dispchw_driver = {
4943 	.probe		= dispc_probe,
4944 	.remove         = dispc_remove,
4945 	.driver         = {
4946 		.name   = "omapdss_dispc",
4947 		.pm	= &dispc_pm_ops,
4948 		.of_match_table = dispc_of_match,
4949 		.suppress_bind_attrs = true,
4950 	},
4951 };
4952