xref: /openbmc/linux/drivers/gpu/drm/omapdrm/dss/dispc.c (revision 842ed298)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2009 Nokia Corporation
4  * Author: Tomi Valkeinen <tomi.valkeinen@ti.com>
5  *
6  * Some code and ideas taken from drivers/video/omap/ driver
7  * by Imre Deak.
8  */
9 
10 #define DSS_SUBSYS_NAME "DISPC"
11 
12 #include <linux/kernel.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/vmalloc.h>
15 #include <linux/export.h>
16 #include <linux/clk.h>
17 #include <linux/io.h>
18 #include <linux/jiffies.h>
19 #include <linux/seq_file.h>
20 #include <linux/delay.h>
21 #include <linux/workqueue.h>
22 #include <linux/hardirq.h>
23 #include <linux/platform_device.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/sizes.h>
26 #include <linux/mfd/syscon.h>
27 #include <linux/regmap.h>
28 #include <linux/of.h>
29 #include <linux/of_device.h>
30 #include <linux/component.h>
31 #include <linux/sys_soc.h>
32 #include <drm/drm_fourcc.h>
33 #include <drm/drm_blend.h>
34 
35 #include "omapdss.h"
36 #include "dss.h"
37 #include "dispc.h"
38 
39 struct dispc_device;
40 
41 /* DISPC */
42 #define DISPC_SZ_REGS			SZ_4K
43 
44 enum omap_burst_size {
45 	BURST_SIZE_X2 = 0,
46 	BURST_SIZE_X4 = 1,
47 	BURST_SIZE_X8 = 2,
48 };
49 
50 #define REG_GET(dispc, idx, start, end) \
51 	FLD_GET(dispc_read_reg(dispc, idx), start, end)
52 
53 #define REG_FLD_MOD(dispc, idx, val, start, end)			\
54 	dispc_write_reg(dispc, idx, \
55 			FLD_MOD(dispc_read_reg(dispc, idx), val, start, end))
56 
57 /* DISPC has feature id */
58 enum dispc_feature_id {
59 	FEAT_LCDENABLEPOL,
60 	FEAT_LCDENABLESIGNAL,
61 	FEAT_PCKFREEENABLE,
62 	FEAT_FUNCGATED,
63 	FEAT_MGR_LCD2,
64 	FEAT_MGR_LCD3,
65 	FEAT_LINEBUFFERSPLIT,
66 	FEAT_ROWREPEATENABLE,
67 	FEAT_RESIZECONF,
68 	/* Independent core clk divider */
69 	FEAT_CORE_CLK_DIV,
70 	FEAT_HANDLE_UV_SEPARATE,
71 	FEAT_ATTR2,
72 	FEAT_CPR,
73 	FEAT_PRELOAD,
74 	FEAT_FIR_COEF_V,
75 	FEAT_ALPHA_FIXED_ZORDER,
76 	FEAT_ALPHA_FREE_ZORDER,
77 	FEAT_FIFO_MERGE,
78 	/* An unknown HW bug causing the normal FIFO thresholds not to work */
79 	FEAT_OMAP3_DSI_FIFO_BUG,
80 	FEAT_BURST_2D,
81 	FEAT_MFLAG,
82 };
83 
84 struct dispc_features {
85 	u8 sw_start;
86 	u8 fp_start;
87 	u8 bp_start;
88 	u16 sw_max;
89 	u16 vp_max;
90 	u16 hp_max;
91 	u8 mgr_width_start;
92 	u8 mgr_height_start;
93 	u16 mgr_width_max;
94 	u16 mgr_height_max;
95 	unsigned long max_lcd_pclk;
96 	unsigned long max_tv_pclk;
97 	unsigned int max_downscale;
98 	unsigned int max_line_width;
99 	unsigned int min_pcd;
100 	int (*calc_scaling)(struct dispc_device *dispc,
101 		unsigned long pclk, unsigned long lclk,
102 		const struct videomode *vm,
103 		u16 width, u16 height, u16 out_width, u16 out_height,
104 		u32 fourcc, bool *five_taps,
105 		int *x_predecim, int *y_predecim, int *decim_x, int *decim_y,
106 		u16 pos_x, unsigned long *core_clk, bool mem_to_mem);
107 	unsigned long (*calc_core_clk) (unsigned long pclk,
108 		u16 width, u16 height, u16 out_width, u16 out_height,
109 		bool mem_to_mem);
110 	u8 num_fifos;
111 	const enum dispc_feature_id *features;
112 	unsigned int num_features;
113 	const struct dss_reg_field *reg_fields;
114 	const unsigned int num_reg_fields;
115 	const enum omap_overlay_caps *overlay_caps;
116 	const u32 **supported_color_modes;
117 	const u32 *supported_scaler_color_modes;
118 	unsigned int num_mgrs;
119 	unsigned int num_ovls;
120 	unsigned int buffer_size_unit;
121 	unsigned int burst_size_unit;
122 
123 	/* swap GFX & WB fifos */
124 	bool gfx_fifo_workaround:1;
125 
126 	/* no DISPC_IRQ_FRAMEDONETV on this SoC */
127 	bool no_framedone_tv:1;
128 
129 	/* revert to the OMAP4 mechanism of DISPC Smart Standby operation */
130 	bool mstandby_workaround:1;
131 
132 	bool set_max_preload:1;
133 
134 	/* PIXEL_INC is not added to the last pixel of a line */
135 	bool last_pixel_inc_missing:1;
136 
137 	/* POL_FREQ has ALIGN bit */
138 	bool supports_sync_align:1;
139 
140 	bool has_writeback:1;
141 
142 	bool supports_double_pixel:1;
143 
144 	/*
145 	 * Field order for VENC is different than HDMI. We should handle this in
146 	 * some intelligent manner, but as the SoCs have either HDMI or VENC,
147 	 * never both, we can just use this flag for now.
148 	 */
149 	bool reverse_ilace_field_order:1;
150 
151 	bool has_gamma_table:1;
152 
153 	bool has_gamma_i734_bug:1;
154 };
155 
156 #define DISPC_MAX_NR_FIFOS 5
157 #define DISPC_MAX_CHANNEL_GAMMA 4
158 
159 struct dispc_device {
160 	struct platform_device *pdev;
161 	void __iomem    *base;
162 	struct dss_device *dss;
163 
164 	struct dss_debugfs_entry *debugfs;
165 
166 	int irq;
167 	irq_handler_t user_handler;
168 	void *user_data;
169 
170 	unsigned long core_clk_rate;
171 	unsigned long tv_pclk_rate;
172 
173 	u32 fifo_size[DISPC_MAX_NR_FIFOS];
174 	/* maps which plane is using a fifo. fifo-id -> plane-id */
175 	int fifo_assignment[DISPC_MAX_NR_FIFOS];
176 
177 	bool		ctx_valid;
178 	u32		ctx[DISPC_SZ_REGS / sizeof(u32)];
179 
180 	u32 *gamma_table[DISPC_MAX_CHANNEL_GAMMA];
181 
182 	const struct dispc_features *feat;
183 
184 	bool is_enabled;
185 
186 	struct regmap *syscon_pol;
187 	u32 syscon_pol_offset;
188 };
189 
190 enum omap_color_component {
191 	/* used for all color formats for OMAP3 and earlier
192 	 * and for RGB and Y color component on OMAP4
193 	 */
194 	DISPC_COLOR_COMPONENT_RGB_Y		= 1 << 0,
195 	/* used for UV component for
196 	 * DRM_FORMAT_YUYV, DRM_FORMAT_UYVY, DRM_FORMAT_NV12
197 	 * color formats on OMAP4
198 	 */
199 	DISPC_COLOR_COMPONENT_UV		= 1 << 1,
200 };
201 
202 enum mgr_reg_fields {
203 	DISPC_MGR_FLD_ENABLE,
204 	DISPC_MGR_FLD_STNTFT,
205 	DISPC_MGR_FLD_GO,
206 	DISPC_MGR_FLD_TFTDATALINES,
207 	DISPC_MGR_FLD_STALLMODE,
208 	DISPC_MGR_FLD_TCKENABLE,
209 	DISPC_MGR_FLD_TCKSELECTION,
210 	DISPC_MGR_FLD_CPR,
211 	DISPC_MGR_FLD_FIFOHANDCHECK,
212 	/* used to maintain a count of the above fields */
213 	DISPC_MGR_FLD_NUM,
214 };
215 
216 /* DISPC register field id */
217 enum dispc_feat_reg_field {
218 	FEAT_REG_FIRHINC,
219 	FEAT_REG_FIRVINC,
220 	FEAT_REG_FIFOHIGHTHRESHOLD,
221 	FEAT_REG_FIFOLOWTHRESHOLD,
222 	FEAT_REG_FIFOSIZE,
223 	FEAT_REG_HORIZONTALACCU,
224 	FEAT_REG_VERTICALACCU,
225 };
226 
227 struct dispc_reg_field {
228 	u16 reg;
229 	u8 high;
230 	u8 low;
231 };
232 
233 struct dispc_gamma_desc {
234 	u32 len;
235 	u32 bits;
236 	u16 reg;
237 	bool has_index;
238 };
239 
240 static const struct {
241 	const char *name;
242 	u32 vsync_irq;
243 	u32 framedone_irq;
244 	u32 sync_lost_irq;
245 	struct dispc_gamma_desc gamma;
246 	struct dispc_reg_field reg_desc[DISPC_MGR_FLD_NUM];
247 } mgr_desc[] = {
248 	[OMAP_DSS_CHANNEL_LCD] = {
249 		.name		= "LCD",
250 		.vsync_irq	= DISPC_IRQ_VSYNC,
251 		.framedone_irq	= DISPC_IRQ_FRAMEDONE,
252 		.sync_lost_irq	= DISPC_IRQ_SYNC_LOST,
253 		.gamma		= {
254 			.len	= 256,
255 			.bits	= 8,
256 			.reg	= DISPC_GAMMA_TABLE0,
257 			.has_index = true,
258 		},
259 		.reg_desc	= {
260 			[DISPC_MGR_FLD_ENABLE]		= { DISPC_CONTROL,  0,  0 },
261 			[DISPC_MGR_FLD_STNTFT]		= { DISPC_CONTROL,  3,  3 },
262 			[DISPC_MGR_FLD_GO]		= { DISPC_CONTROL,  5,  5 },
263 			[DISPC_MGR_FLD_TFTDATALINES]	= { DISPC_CONTROL,  9,  8 },
264 			[DISPC_MGR_FLD_STALLMODE]	= { DISPC_CONTROL, 11, 11 },
265 			[DISPC_MGR_FLD_TCKENABLE]	= { DISPC_CONFIG,  10, 10 },
266 			[DISPC_MGR_FLD_TCKSELECTION]	= { DISPC_CONFIG,  11, 11 },
267 			[DISPC_MGR_FLD_CPR]		= { DISPC_CONFIG,  15, 15 },
268 			[DISPC_MGR_FLD_FIFOHANDCHECK]	= { DISPC_CONFIG,  16, 16 },
269 		},
270 	},
271 	[OMAP_DSS_CHANNEL_DIGIT] = {
272 		.name		= "DIGIT",
273 		.vsync_irq	= DISPC_IRQ_EVSYNC_ODD | DISPC_IRQ_EVSYNC_EVEN,
274 		.framedone_irq	= DISPC_IRQ_FRAMEDONETV,
275 		.sync_lost_irq	= DISPC_IRQ_SYNC_LOST_DIGIT,
276 		.gamma		= {
277 			.len	= 1024,
278 			.bits	= 10,
279 			.reg	= DISPC_GAMMA_TABLE2,
280 			.has_index = false,
281 		},
282 		.reg_desc	= {
283 			[DISPC_MGR_FLD_ENABLE]		= { DISPC_CONTROL,  1,  1 },
284 			[DISPC_MGR_FLD_STNTFT]		= { },
285 			[DISPC_MGR_FLD_GO]		= { DISPC_CONTROL,  6,  6 },
286 			[DISPC_MGR_FLD_TFTDATALINES]	= { },
287 			[DISPC_MGR_FLD_STALLMODE]	= { },
288 			[DISPC_MGR_FLD_TCKENABLE]	= { DISPC_CONFIG,  12, 12 },
289 			[DISPC_MGR_FLD_TCKSELECTION]	= { DISPC_CONFIG,  13, 13 },
290 			[DISPC_MGR_FLD_CPR]		= { },
291 			[DISPC_MGR_FLD_FIFOHANDCHECK]	= { DISPC_CONFIG,  16, 16 },
292 		},
293 	},
294 	[OMAP_DSS_CHANNEL_LCD2] = {
295 		.name		= "LCD2",
296 		.vsync_irq	= DISPC_IRQ_VSYNC2,
297 		.framedone_irq	= DISPC_IRQ_FRAMEDONE2,
298 		.sync_lost_irq	= DISPC_IRQ_SYNC_LOST2,
299 		.gamma		= {
300 			.len	= 256,
301 			.bits	= 8,
302 			.reg	= DISPC_GAMMA_TABLE1,
303 			.has_index = true,
304 		},
305 		.reg_desc	= {
306 			[DISPC_MGR_FLD_ENABLE]		= { DISPC_CONTROL2,  0,  0 },
307 			[DISPC_MGR_FLD_STNTFT]		= { DISPC_CONTROL2,  3,  3 },
308 			[DISPC_MGR_FLD_GO]		= { DISPC_CONTROL2,  5,  5 },
309 			[DISPC_MGR_FLD_TFTDATALINES]	= { DISPC_CONTROL2,  9,  8 },
310 			[DISPC_MGR_FLD_STALLMODE]	= { DISPC_CONTROL2, 11, 11 },
311 			[DISPC_MGR_FLD_TCKENABLE]	= { DISPC_CONFIG2,  10, 10 },
312 			[DISPC_MGR_FLD_TCKSELECTION]	= { DISPC_CONFIG2,  11, 11 },
313 			[DISPC_MGR_FLD_CPR]		= { DISPC_CONFIG2,  15, 15 },
314 			[DISPC_MGR_FLD_FIFOHANDCHECK]	= { DISPC_CONFIG2,  16, 16 },
315 		},
316 	},
317 	[OMAP_DSS_CHANNEL_LCD3] = {
318 		.name		= "LCD3",
319 		.vsync_irq	= DISPC_IRQ_VSYNC3,
320 		.framedone_irq	= DISPC_IRQ_FRAMEDONE3,
321 		.sync_lost_irq	= DISPC_IRQ_SYNC_LOST3,
322 		.gamma		= {
323 			.len	= 256,
324 			.bits	= 8,
325 			.reg	= DISPC_GAMMA_TABLE3,
326 			.has_index = true,
327 		},
328 		.reg_desc	= {
329 			[DISPC_MGR_FLD_ENABLE]		= { DISPC_CONTROL3,  0,  0 },
330 			[DISPC_MGR_FLD_STNTFT]		= { DISPC_CONTROL3,  3,  3 },
331 			[DISPC_MGR_FLD_GO]		= { DISPC_CONTROL3,  5,  5 },
332 			[DISPC_MGR_FLD_TFTDATALINES]	= { DISPC_CONTROL3,  9,  8 },
333 			[DISPC_MGR_FLD_STALLMODE]	= { DISPC_CONTROL3, 11, 11 },
334 			[DISPC_MGR_FLD_TCKENABLE]	= { DISPC_CONFIG3,  10, 10 },
335 			[DISPC_MGR_FLD_TCKSELECTION]	= { DISPC_CONFIG3,  11, 11 },
336 			[DISPC_MGR_FLD_CPR]		= { DISPC_CONFIG3,  15, 15 },
337 			[DISPC_MGR_FLD_FIFOHANDCHECK]	= { DISPC_CONFIG3,  16, 16 },
338 		},
339 	},
340 };
341 
342 static unsigned long dispc_fclk_rate(struct dispc_device *dispc);
343 static unsigned long dispc_core_clk_rate(struct dispc_device *dispc);
344 static unsigned long dispc_mgr_lclk_rate(struct dispc_device *dispc,
345 					 enum omap_channel channel);
346 static unsigned long dispc_mgr_pclk_rate(struct dispc_device *dispc,
347 					 enum omap_channel channel);
348 
349 static unsigned long dispc_plane_pclk_rate(struct dispc_device *dispc,
350 					   enum omap_plane_id plane);
351 static unsigned long dispc_plane_lclk_rate(struct dispc_device *dispc,
352 					   enum omap_plane_id plane);
353 
354 static void dispc_clear_irqstatus(struct dispc_device *dispc, u32 mask);
355 
356 static inline void dispc_write_reg(struct dispc_device *dispc, u16 idx, u32 val)
357 {
358 	__raw_writel(val, dispc->base + idx);
359 }
360 
361 static inline u32 dispc_read_reg(struct dispc_device *dispc, u16 idx)
362 {
363 	return __raw_readl(dispc->base + idx);
364 }
365 
366 static u32 mgr_fld_read(struct dispc_device *dispc, enum omap_channel channel,
367 			enum mgr_reg_fields regfld)
368 {
369 	const struct dispc_reg_field *rfld = &mgr_desc[channel].reg_desc[regfld];
370 
371 	return REG_GET(dispc, rfld->reg, rfld->high, rfld->low);
372 }
373 
374 static void mgr_fld_write(struct dispc_device *dispc, enum omap_channel channel,
375 			  enum mgr_reg_fields regfld, int val)
376 {
377 	const struct dispc_reg_field *rfld = &mgr_desc[channel].reg_desc[regfld];
378 
379 	REG_FLD_MOD(dispc, rfld->reg, val, rfld->high, rfld->low);
380 }
381 
382 static int dispc_get_num_ovls(struct dispc_device *dispc)
383 {
384 	return dispc->feat->num_ovls;
385 }
386 
387 static int dispc_get_num_mgrs(struct dispc_device *dispc)
388 {
389 	return dispc->feat->num_mgrs;
390 }
391 
392 static void dispc_get_reg_field(struct dispc_device *dispc,
393 				enum dispc_feat_reg_field id,
394 				u8 *start, u8 *end)
395 {
396 	BUG_ON(id >= dispc->feat->num_reg_fields);
397 
398 	*start = dispc->feat->reg_fields[id].start;
399 	*end = dispc->feat->reg_fields[id].end;
400 }
401 
402 static bool dispc_has_feature(struct dispc_device *dispc,
403 			      enum dispc_feature_id id)
404 {
405 	unsigned int i;
406 
407 	for (i = 0; i < dispc->feat->num_features; i++) {
408 		if (dispc->feat->features[i] == id)
409 			return true;
410 	}
411 
412 	return false;
413 }
414 
415 #define SR(dispc, reg) \
416 	dispc->ctx[DISPC_##reg / sizeof(u32)] = dispc_read_reg(dispc, DISPC_##reg)
417 #define RR(dispc, reg) \
418 	dispc_write_reg(dispc, DISPC_##reg, dispc->ctx[DISPC_##reg / sizeof(u32)])
419 
420 static void dispc_save_context(struct dispc_device *dispc)
421 {
422 	int i, j;
423 
424 	DSSDBG("dispc_save_context\n");
425 
426 	SR(dispc, IRQENABLE);
427 	SR(dispc, CONTROL);
428 	SR(dispc, CONFIG);
429 	SR(dispc, LINE_NUMBER);
430 	if (dispc_has_feature(dispc, FEAT_ALPHA_FIXED_ZORDER) ||
431 			dispc_has_feature(dispc, FEAT_ALPHA_FREE_ZORDER))
432 		SR(dispc, GLOBAL_ALPHA);
433 	if (dispc_has_feature(dispc, FEAT_MGR_LCD2)) {
434 		SR(dispc, CONTROL2);
435 		SR(dispc, CONFIG2);
436 	}
437 	if (dispc_has_feature(dispc, FEAT_MGR_LCD3)) {
438 		SR(dispc, CONTROL3);
439 		SR(dispc, CONFIG3);
440 	}
441 
442 	for (i = 0; i < dispc_get_num_mgrs(dispc); i++) {
443 		SR(dispc, DEFAULT_COLOR(i));
444 		SR(dispc, TRANS_COLOR(i));
445 		SR(dispc, SIZE_MGR(i));
446 		if (i == OMAP_DSS_CHANNEL_DIGIT)
447 			continue;
448 		SR(dispc, TIMING_H(i));
449 		SR(dispc, TIMING_V(i));
450 		SR(dispc, POL_FREQ(i));
451 		SR(dispc, DIVISORo(i));
452 
453 		SR(dispc, DATA_CYCLE1(i));
454 		SR(dispc, DATA_CYCLE2(i));
455 		SR(dispc, DATA_CYCLE3(i));
456 
457 		if (dispc_has_feature(dispc, FEAT_CPR)) {
458 			SR(dispc, CPR_COEF_R(i));
459 			SR(dispc, CPR_COEF_G(i));
460 			SR(dispc, CPR_COEF_B(i));
461 		}
462 	}
463 
464 	for (i = 0; i < dispc_get_num_ovls(dispc); i++) {
465 		SR(dispc, OVL_BA0(i));
466 		SR(dispc, OVL_BA1(i));
467 		SR(dispc, OVL_POSITION(i));
468 		SR(dispc, OVL_SIZE(i));
469 		SR(dispc, OVL_ATTRIBUTES(i));
470 		SR(dispc, OVL_FIFO_THRESHOLD(i));
471 		SR(dispc, OVL_ROW_INC(i));
472 		SR(dispc, OVL_PIXEL_INC(i));
473 		if (dispc_has_feature(dispc, FEAT_PRELOAD))
474 			SR(dispc, OVL_PRELOAD(i));
475 		if (i == OMAP_DSS_GFX) {
476 			SR(dispc, OVL_WINDOW_SKIP(i));
477 			SR(dispc, OVL_TABLE_BA(i));
478 			continue;
479 		}
480 		SR(dispc, OVL_FIR(i));
481 		SR(dispc, OVL_PICTURE_SIZE(i));
482 		SR(dispc, OVL_ACCU0(i));
483 		SR(dispc, OVL_ACCU1(i));
484 
485 		for (j = 0; j < 8; j++)
486 			SR(dispc, OVL_FIR_COEF_H(i, j));
487 
488 		for (j = 0; j < 8; j++)
489 			SR(dispc, OVL_FIR_COEF_HV(i, j));
490 
491 		for (j = 0; j < 5; j++)
492 			SR(dispc, OVL_CONV_COEF(i, j));
493 
494 		if (dispc_has_feature(dispc, FEAT_FIR_COEF_V)) {
495 			for (j = 0; j < 8; j++)
496 				SR(dispc, OVL_FIR_COEF_V(i, j));
497 		}
498 
499 		if (dispc_has_feature(dispc, FEAT_HANDLE_UV_SEPARATE)) {
500 			SR(dispc, OVL_BA0_UV(i));
501 			SR(dispc, OVL_BA1_UV(i));
502 			SR(dispc, OVL_FIR2(i));
503 			SR(dispc, OVL_ACCU2_0(i));
504 			SR(dispc, OVL_ACCU2_1(i));
505 
506 			for (j = 0; j < 8; j++)
507 				SR(dispc, OVL_FIR_COEF_H2(i, j));
508 
509 			for (j = 0; j < 8; j++)
510 				SR(dispc, OVL_FIR_COEF_HV2(i, j));
511 
512 			for (j = 0; j < 8; j++)
513 				SR(dispc, OVL_FIR_COEF_V2(i, j));
514 		}
515 		if (dispc_has_feature(dispc, FEAT_ATTR2))
516 			SR(dispc, OVL_ATTRIBUTES2(i));
517 	}
518 
519 	if (dispc_has_feature(dispc, FEAT_CORE_CLK_DIV))
520 		SR(dispc, DIVISOR);
521 
522 	dispc->ctx_valid = true;
523 
524 	DSSDBG("context saved\n");
525 }
526 
527 static void dispc_restore_context(struct dispc_device *dispc)
528 {
529 	int i, j;
530 
531 	DSSDBG("dispc_restore_context\n");
532 
533 	if (!dispc->ctx_valid)
534 		return;
535 
536 	/*RR(dispc, IRQENABLE);*/
537 	/*RR(dispc, CONTROL);*/
538 	RR(dispc, CONFIG);
539 	RR(dispc, LINE_NUMBER);
540 	if (dispc_has_feature(dispc, FEAT_ALPHA_FIXED_ZORDER) ||
541 			dispc_has_feature(dispc, FEAT_ALPHA_FREE_ZORDER))
542 		RR(dispc, GLOBAL_ALPHA);
543 	if (dispc_has_feature(dispc, FEAT_MGR_LCD2))
544 		RR(dispc, CONFIG2);
545 	if (dispc_has_feature(dispc, FEAT_MGR_LCD3))
546 		RR(dispc, CONFIG3);
547 
548 	for (i = 0; i < dispc_get_num_mgrs(dispc); i++) {
549 		RR(dispc, DEFAULT_COLOR(i));
550 		RR(dispc, TRANS_COLOR(i));
551 		RR(dispc, SIZE_MGR(i));
552 		if (i == OMAP_DSS_CHANNEL_DIGIT)
553 			continue;
554 		RR(dispc, TIMING_H(i));
555 		RR(dispc, TIMING_V(i));
556 		RR(dispc, POL_FREQ(i));
557 		RR(dispc, DIVISORo(i));
558 
559 		RR(dispc, DATA_CYCLE1(i));
560 		RR(dispc, DATA_CYCLE2(i));
561 		RR(dispc, DATA_CYCLE3(i));
562 
563 		if (dispc_has_feature(dispc, FEAT_CPR)) {
564 			RR(dispc, CPR_COEF_R(i));
565 			RR(dispc, CPR_COEF_G(i));
566 			RR(dispc, CPR_COEF_B(i));
567 		}
568 	}
569 
570 	for (i = 0; i < dispc_get_num_ovls(dispc); i++) {
571 		RR(dispc, OVL_BA0(i));
572 		RR(dispc, OVL_BA1(i));
573 		RR(dispc, OVL_POSITION(i));
574 		RR(dispc, OVL_SIZE(i));
575 		RR(dispc, OVL_ATTRIBUTES(i));
576 		RR(dispc, OVL_FIFO_THRESHOLD(i));
577 		RR(dispc, OVL_ROW_INC(i));
578 		RR(dispc, OVL_PIXEL_INC(i));
579 		if (dispc_has_feature(dispc, FEAT_PRELOAD))
580 			RR(dispc, OVL_PRELOAD(i));
581 		if (i == OMAP_DSS_GFX) {
582 			RR(dispc, OVL_WINDOW_SKIP(i));
583 			RR(dispc, OVL_TABLE_BA(i));
584 			continue;
585 		}
586 		RR(dispc, OVL_FIR(i));
587 		RR(dispc, OVL_PICTURE_SIZE(i));
588 		RR(dispc, OVL_ACCU0(i));
589 		RR(dispc, OVL_ACCU1(i));
590 
591 		for (j = 0; j < 8; j++)
592 			RR(dispc, OVL_FIR_COEF_H(i, j));
593 
594 		for (j = 0; j < 8; j++)
595 			RR(dispc, OVL_FIR_COEF_HV(i, j));
596 
597 		for (j = 0; j < 5; j++)
598 			RR(dispc, OVL_CONV_COEF(i, j));
599 
600 		if (dispc_has_feature(dispc, FEAT_FIR_COEF_V)) {
601 			for (j = 0; j < 8; j++)
602 				RR(dispc, OVL_FIR_COEF_V(i, j));
603 		}
604 
605 		if (dispc_has_feature(dispc, FEAT_HANDLE_UV_SEPARATE)) {
606 			RR(dispc, OVL_BA0_UV(i));
607 			RR(dispc, OVL_BA1_UV(i));
608 			RR(dispc, OVL_FIR2(i));
609 			RR(dispc, OVL_ACCU2_0(i));
610 			RR(dispc, OVL_ACCU2_1(i));
611 
612 			for (j = 0; j < 8; j++)
613 				RR(dispc, OVL_FIR_COEF_H2(i, j));
614 
615 			for (j = 0; j < 8; j++)
616 				RR(dispc, OVL_FIR_COEF_HV2(i, j));
617 
618 			for (j = 0; j < 8; j++)
619 				RR(dispc, OVL_FIR_COEF_V2(i, j));
620 		}
621 		if (dispc_has_feature(dispc, FEAT_ATTR2))
622 			RR(dispc, OVL_ATTRIBUTES2(i));
623 	}
624 
625 	if (dispc_has_feature(dispc, FEAT_CORE_CLK_DIV))
626 		RR(dispc, DIVISOR);
627 
628 	/* enable last, because LCD & DIGIT enable are here */
629 	RR(dispc, CONTROL);
630 	if (dispc_has_feature(dispc, FEAT_MGR_LCD2))
631 		RR(dispc, CONTROL2);
632 	if (dispc_has_feature(dispc, FEAT_MGR_LCD3))
633 		RR(dispc, CONTROL3);
634 	/* clear spurious SYNC_LOST_DIGIT interrupts */
635 	dispc_clear_irqstatus(dispc, DISPC_IRQ_SYNC_LOST_DIGIT);
636 
637 	/*
638 	 * enable last so IRQs won't trigger before
639 	 * the context is fully restored
640 	 */
641 	RR(dispc, IRQENABLE);
642 
643 	DSSDBG("context restored\n");
644 }
645 
646 #undef SR
647 #undef RR
648 
649 int dispc_runtime_get(struct dispc_device *dispc)
650 {
651 	int r;
652 
653 	DSSDBG("dispc_runtime_get\n");
654 
655 	r = pm_runtime_get_sync(&dispc->pdev->dev);
656 	if (WARN_ON(r < 0)) {
657 		pm_runtime_put_noidle(&dispc->pdev->dev);
658 		return r;
659 	}
660 	return 0;
661 }
662 
663 void dispc_runtime_put(struct dispc_device *dispc)
664 {
665 	int r;
666 
667 	DSSDBG("dispc_runtime_put\n");
668 
669 	r = pm_runtime_put_sync(&dispc->pdev->dev);
670 	WARN_ON(r < 0 && r != -ENOSYS);
671 }
672 
673 static u32 dispc_mgr_get_vsync_irq(struct dispc_device *dispc,
674 				   enum omap_channel channel)
675 {
676 	return mgr_desc[channel].vsync_irq;
677 }
678 
679 static u32 dispc_mgr_get_framedone_irq(struct dispc_device *dispc,
680 				       enum omap_channel channel)
681 {
682 	if (channel == OMAP_DSS_CHANNEL_DIGIT && dispc->feat->no_framedone_tv)
683 		return 0;
684 
685 	return mgr_desc[channel].framedone_irq;
686 }
687 
688 static u32 dispc_mgr_get_sync_lost_irq(struct dispc_device *dispc,
689 				       enum omap_channel channel)
690 {
691 	return mgr_desc[channel].sync_lost_irq;
692 }
693 
694 static u32 dispc_wb_get_framedone_irq(struct dispc_device *dispc)
695 {
696 	return DISPC_IRQ_FRAMEDONEWB;
697 }
698 
699 static void dispc_mgr_enable(struct dispc_device *dispc,
700 			     enum omap_channel channel, bool enable)
701 {
702 	mgr_fld_write(dispc, channel, DISPC_MGR_FLD_ENABLE, enable);
703 	/* flush posted write */
704 	mgr_fld_read(dispc, channel, DISPC_MGR_FLD_ENABLE);
705 }
706 
707 static bool dispc_mgr_is_enabled(struct dispc_device *dispc,
708 				 enum omap_channel channel)
709 {
710 	return !!mgr_fld_read(dispc, channel, DISPC_MGR_FLD_ENABLE);
711 }
712 
713 static bool dispc_mgr_go_busy(struct dispc_device *dispc,
714 			      enum omap_channel channel)
715 {
716 	return mgr_fld_read(dispc, channel, DISPC_MGR_FLD_GO) == 1;
717 }
718 
719 static void dispc_mgr_go(struct dispc_device *dispc, enum omap_channel channel)
720 {
721 	WARN_ON(!dispc_mgr_is_enabled(dispc, channel));
722 	WARN_ON(dispc_mgr_go_busy(dispc, channel));
723 
724 	DSSDBG("GO %s\n", mgr_desc[channel].name);
725 
726 	mgr_fld_write(dispc, channel, DISPC_MGR_FLD_GO, 1);
727 }
728 
729 static bool dispc_wb_go_busy(struct dispc_device *dispc)
730 {
731 	return REG_GET(dispc, DISPC_CONTROL2, 6, 6) == 1;
732 }
733 
734 static void dispc_wb_go(struct dispc_device *dispc)
735 {
736 	enum omap_plane_id plane = OMAP_DSS_WB;
737 	bool enable, go;
738 
739 	enable = REG_GET(dispc, DISPC_OVL_ATTRIBUTES(plane), 0, 0) == 1;
740 
741 	if (!enable)
742 		return;
743 
744 	go = REG_GET(dispc, DISPC_CONTROL2, 6, 6) == 1;
745 	if (go) {
746 		DSSERR("GO bit not down for WB\n");
747 		return;
748 	}
749 
750 	REG_FLD_MOD(dispc, DISPC_CONTROL2, 1, 6, 6);
751 }
752 
753 static void dispc_ovl_write_firh_reg(struct dispc_device *dispc,
754 				     enum omap_plane_id plane, int reg,
755 				     u32 value)
756 {
757 	dispc_write_reg(dispc, DISPC_OVL_FIR_COEF_H(plane, reg), value);
758 }
759 
760 static void dispc_ovl_write_firhv_reg(struct dispc_device *dispc,
761 				      enum omap_plane_id plane, int reg,
762 				      u32 value)
763 {
764 	dispc_write_reg(dispc, DISPC_OVL_FIR_COEF_HV(plane, reg), value);
765 }
766 
767 static void dispc_ovl_write_firv_reg(struct dispc_device *dispc,
768 				     enum omap_plane_id plane, int reg,
769 				     u32 value)
770 {
771 	dispc_write_reg(dispc, DISPC_OVL_FIR_COEF_V(plane, reg), value);
772 }
773 
774 static void dispc_ovl_write_firh2_reg(struct dispc_device *dispc,
775 				      enum omap_plane_id plane, int reg,
776 				      u32 value)
777 {
778 	BUG_ON(plane == OMAP_DSS_GFX);
779 
780 	dispc_write_reg(dispc, DISPC_OVL_FIR_COEF_H2(plane, reg), value);
781 }
782 
783 static void dispc_ovl_write_firhv2_reg(struct dispc_device *dispc,
784 				       enum omap_plane_id plane, int reg,
785 				       u32 value)
786 {
787 	BUG_ON(plane == OMAP_DSS_GFX);
788 
789 	dispc_write_reg(dispc, DISPC_OVL_FIR_COEF_HV2(plane, reg), value);
790 }
791 
792 static void dispc_ovl_write_firv2_reg(struct dispc_device *dispc,
793 				      enum omap_plane_id plane, int reg,
794 				      u32 value)
795 {
796 	BUG_ON(plane == OMAP_DSS_GFX);
797 
798 	dispc_write_reg(dispc, DISPC_OVL_FIR_COEF_V2(plane, reg), value);
799 }
800 
801 static void dispc_ovl_set_scale_coef(struct dispc_device *dispc,
802 				     enum omap_plane_id plane, int fir_hinc,
803 				     int fir_vinc, int five_taps,
804 				     enum omap_color_component color_comp)
805 {
806 	const struct dispc_coef *h_coef, *v_coef;
807 	int i;
808 
809 	h_coef = dispc_ovl_get_scale_coef(fir_hinc, true);
810 	v_coef = dispc_ovl_get_scale_coef(fir_vinc, five_taps);
811 
812 	if (!h_coef || !v_coef) {
813 		dev_err(&dispc->pdev->dev, "%s: failed to find scale coefs\n",
814 			__func__);
815 		return;
816 	}
817 
818 	for (i = 0; i < 8; i++) {
819 		u32 h, hv;
820 
821 		h = FLD_VAL(h_coef[i].hc0_vc00, 7, 0)
822 			| FLD_VAL(h_coef[i].hc1_vc0, 15, 8)
823 			| FLD_VAL(h_coef[i].hc2_vc1, 23, 16)
824 			| FLD_VAL(h_coef[i].hc3_vc2, 31, 24);
825 		hv = FLD_VAL(h_coef[i].hc4_vc22, 7, 0)
826 			| FLD_VAL(v_coef[i].hc1_vc0, 15, 8)
827 			| FLD_VAL(v_coef[i].hc2_vc1, 23, 16)
828 			| FLD_VAL(v_coef[i].hc3_vc2, 31, 24);
829 
830 		if (color_comp == DISPC_COLOR_COMPONENT_RGB_Y) {
831 			dispc_ovl_write_firh_reg(dispc, plane, i, h);
832 			dispc_ovl_write_firhv_reg(dispc, plane, i, hv);
833 		} else {
834 			dispc_ovl_write_firh2_reg(dispc, plane, i, h);
835 			dispc_ovl_write_firhv2_reg(dispc, plane, i, hv);
836 		}
837 
838 	}
839 
840 	if (five_taps) {
841 		for (i = 0; i < 8; i++) {
842 			u32 v;
843 			v = FLD_VAL(v_coef[i].hc0_vc00, 7, 0)
844 				| FLD_VAL(v_coef[i].hc4_vc22, 15, 8);
845 			if (color_comp == DISPC_COLOR_COMPONENT_RGB_Y)
846 				dispc_ovl_write_firv_reg(dispc, plane, i, v);
847 			else
848 				dispc_ovl_write_firv2_reg(dispc, plane, i, v);
849 		}
850 	}
851 }
852 
853 struct csc_coef_yuv2rgb {
854 	int ry, rcb, rcr, gy, gcb, gcr, by, bcb, bcr;
855 	bool full_range;
856 };
857 
858 struct csc_coef_rgb2yuv {
859 	int yr, yg, yb, cbr, cbg, cbb, crr, crg, crb;
860 	bool full_range;
861 };
862 
863 static void dispc_ovl_write_color_conv_coef(struct dispc_device *dispc,
864 					    enum omap_plane_id plane,
865 					    const struct csc_coef_yuv2rgb *ct)
866 {
867 #define CVAL(x, y) (FLD_VAL(x, 26, 16) | FLD_VAL(y, 10, 0))
868 
869 	dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 0), CVAL(ct->rcr, ct->ry));
870 	dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 1), CVAL(ct->gy,  ct->rcb));
871 	dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 2), CVAL(ct->gcb, ct->gcr));
872 	dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 3), CVAL(ct->bcr, ct->by));
873 	dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 4), CVAL(0, ct->bcb));
874 
875 	REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), ct->full_range, 11, 11);
876 
877 #undef CVAL
878 }
879 
880 static void dispc_wb_write_color_conv_coef(struct dispc_device *dispc,
881 					   const struct csc_coef_rgb2yuv *ct)
882 {
883 	const enum omap_plane_id plane = OMAP_DSS_WB;
884 
885 #define CVAL(x, y) (FLD_VAL(x, 26, 16) | FLD_VAL(y, 10, 0))
886 
887 	dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 0), CVAL(ct->yg,  ct->yr));
888 	dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 1), CVAL(ct->crr, ct->yb));
889 	dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 2), CVAL(ct->crb, ct->crg));
890 	dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 3), CVAL(ct->cbg, ct->cbr));
891 	dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 4), CVAL(0, ct->cbb));
892 
893 	REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), ct->full_range, 11, 11);
894 
895 #undef CVAL
896 }
897 
898 static void dispc_setup_color_conv_coef(struct dispc_device *dispc)
899 {
900 	int i;
901 	int num_ovl = dispc_get_num_ovls(dispc);
902 
903 	/* YUV -> RGB, ITU-R BT.601, limited range */
904 	const struct csc_coef_yuv2rgb coefs_yuv2rgb_bt601_lim = {
905 		298,    0,  409,	/* ry, rcb, rcr */
906 		298, -100, -208,	/* gy, gcb, gcr */
907 		298,  516,    0,	/* by, bcb, bcr */
908 		false,			/* limited range */
909 	};
910 
911 	/* RGB -> YUV, ITU-R BT.601, limited range */
912 	const struct csc_coef_rgb2yuv coefs_rgb2yuv_bt601_lim = {
913 		 66, 129,  25,		/* yr,   yg,  yb */
914 		-38, -74, 112,		/* cbr, cbg, cbb */
915 		112, -94, -18,		/* crr, crg, crb */
916 		false,			/* limited range */
917 	};
918 
919 	for (i = 1; i < num_ovl; i++)
920 		dispc_ovl_write_color_conv_coef(dispc, i, &coefs_yuv2rgb_bt601_lim);
921 
922 	if (dispc->feat->has_writeback)
923 		dispc_wb_write_color_conv_coef(dispc, &coefs_rgb2yuv_bt601_lim);
924 }
925 
926 static void dispc_ovl_set_ba0(struct dispc_device *dispc,
927 			      enum omap_plane_id plane, u32 paddr)
928 {
929 	dispc_write_reg(dispc, DISPC_OVL_BA0(plane), paddr);
930 }
931 
932 static void dispc_ovl_set_ba1(struct dispc_device *dispc,
933 			      enum omap_plane_id plane, u32 paddr)
934 {
935 	dispc_write_reg(dispc, DISPC_OVL_BA1(plane), paddr);
936 }
937 
938 static void dispc_ovl_set_ba0_uv(struct dispc_device *dispc,
939 				 enum omap_plane_id plane, u32 paddr)
940 {
941 	dispc_write_reg(dispc, DISPC_OVL_BA0_UV(plane), paddr);
942 }
943 
944 static void dispc_ovl_set_ba1_uv(struct dispc_device *dispc,
945 				 enum omap_plane_id plane, u32 paddr)
946 {
947 	dispc_write_reg(dispc, DISPC_OVL_BA1_UV(plane), paddr);
948 }
949 
950 static void dispc_ovl_set_pos(struct dispc_device *dispc,
951 			      enum omap_plane_id plane,
952 			      enum omap_overlay_caps caps, int x, int y)
953 {
954 	u32 val;
955 
956 	if ((caps & OMAP_DSS_OVL_CAP_POS) == 0)
957 		return;
958 
959 	val = FLD_VAL(y, 26, 16) | FLD_VAL(x, 10, 0);
960 
961 	dispc_write_reg(dispc, DISPC_OVL_POSITION(plane), val);
962 }
963 
964 static void dispc_ovl_set_input_size(struct dispc_device *dispc,
965 				     enum omap_plane_id plane, int width,
966 				     int height)
967 {
968 	u32 val = FLD_VAL(height - 1, 26, 16) | FLD_VAL(width - 1, 10, 0);
969 
970 	if (plane == OMAP_DSS_GFX || plane == OMAP_DSS_WB)
971 		dispc_write_reg(dispc, DISPC_OVL_SIZE(plane), val);
972 	else
973 		dispc_write_reg(dispc, DISPC_OVL_PICTURE_SIZE(plane), val);
974 }
975 
976 static void dispc_ovl_set_output_size(struct dispc_device *dispc,
977 				      enum omap_plane_id plane, int width,
978 				      int height)
979 {
980 	u32 val;
981 
982 	BUG_ON(plane == OMAP_DSS_GFX);
983 
984 	val = FLD_VAL(height - 1, 26, 16) | FLD_VAL(width - 1, 10, 0);
985 
986 	if (plane == OMAP_DSS_WB)
987 		dispc_write_reg(dispc, DISPC_OVL_PICTURE_SIZE(plane), val);
988 	else
989 		dispc_write_reg(dispc, DISPC_OVL_SIZE(plane), val);
990 }
991 
992 static void dispc_ovl_set_zorder(struct dispc_device *dispc,
993 				 enum omap_plane_id plane,
994 				 enum omap_overlay_caps caps, u8 zorder)
995 {
996 	if ((caps & OMAP_DSS_OVL_CAP_ZORDER) == 0)
997 		return;
998 
999 	REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), zorder, 27, 26);
1000 }
1001 
1002 static void dispc_ovl_enable_zorder_planes(struct dispc_device *dispc)
1003 {
1004 	int i;
1005 
1006 	if (!dispc_has_feature(dispc, FEAT_ALPHA_FREE_ZORDER))
1007 		return;
1008 
1009 	for (i = 0; i < dispc_get_num_ovls(dispc); i++)
1010 		REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(i), 1, 25, 25);
1011 }
1012 
1013 static void dispc_ovl_set_pre_mult_alpha(struct dispc_device *dispc,
1014 					 enum omap_plane_id plane,
1015 					 enum omap_overlay_caps caps,
1016 					 bool enable)
1017 {
1018 	if ((caps & OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA) == 0)
1019 		return;
1020 
1021 	REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), enable ? 1 : 0, 28, 28);
1022 }
1023 
1024 static void dispc_ovl_setup_global_alpha(struct dispc_device *dispc,
1025 					 enum omap_plane_id plane,
1026 					 enum omap_overlay_caps caps,
1027 					 u8 global_alpha)
1028 {
1029 	static const unsigned int shifts[] = { 0, 8, 16, 24, };
1030 	int shift;
1031 
1032 	if ((caps & OMAP_DSS_OVL_CAP_GLOBAL_ALPHA) == 0)
1033 		return;
1034 
1035 	shift = shifts[plane];
1036 	REG_FLD_MOD(dispc, DISPC_GLOBAL_ALPHA, global_alpha, shift + 7, shift);
1037 }
1038 
1039 static void dispc_ovl_set_pix_inc(struct dispc_device *dispc,
1040 				  enum omap_plane_id plane, s32 inc)
1041 {
1042 	dispc_write_reg(dispc, DISPC_OVL_PIXEL_INC(plane), inc);
1043 }
1044 
1045 static void dispc_ovl_set_row_inc(struct dispc_device *dispc,
1046 				  enum omap_plane_id plane, s32 inc)
1047 {
1048 	dispc_write_reg(dispc, DISPC_OVL_ROW_INC(plane), inc);
1049 }
1050 
1051 static void dispc_ovl_set_color_mode(struct dispc_device *dispc,
1052 				     enum omap_plane_id plane, u32 fourcc)
1053 {
1054 	u32 m = 0;
1055 	if (plane != OMAP_DSS_GFX) {
1056 		switch (fourcc) {
1057 		case DRM_FORMAT_NV12:
1058 			m = 0x0; break;
1059 		case DRM_FORMAT_XRGB4444:
1060 			m = 0x1; break;
1061 		case DRM_FORMAT_RGBA4444:
1062 			m = 0x2; break;
1063 		case DRM_FORMAT_RGBX4444:
1064 			m = 0x4; break;
1065 		case DRM_FORMAT_ARGB4444:
1066 			m = 0x5; break;
1067 		case DRM_FORMAT_RGB565:
1068 			m = 0x6; break;
1069 		case DRM_FORMAT_ARGB1555:
1070 			m = 0x7; break;
1071 		case DRM_FORMAT_XRGB8888:
1072 			m = 0x8; break;
1073 		case DRM_FORMAT_RGB888:
1074 			m = 0x9; break;
1075 		case DRM_FORMAT_YUYV:
1076 			m = 0xa; break;
1077 		case DRM_FORMAT_UYVY:
1078 			m = 0xb; break;
1079 		case DRM_FORMAT_ARGB8888:
1080 			m = 0xc; break;
1081 		case DRM_FORMAT_RGBA8888:
1082 			m = 0xd; break;
1083 		case DRM_FORMAT_RGBX8888:
1084 			m = 0xe; break;
1085 		case DRM_FORMAT_XRGB1555:
1086 			m = 0xf; break;
1087 		default:
1088 			BUG(); return;
1089 		}
1090 	} else {
1091 		switch (fourcc) {
1092 		case DRM_FORMAT_RGBX4444:
1093 			m = 0x4; break;
1094 		case DRM_FORMAT_ARGB4444:
1095 			m = 0x5; break;
1096 		case DRM_FORMAT_RGB565:
1097 			m = 0x6; break;
1098 		case DRM_FORMAT_ARGB1555:
1099 			m = 0x7; break;
1100 		case DRM_FORMAT_XRGB8888:
1101 			m = 0x8; break;
1102 		case DRM_FORMAT_RGB888:
1103 			m = 0x9; break;
1104 		case DRM_FORMAT_XRGB4444:
1105 			m = 0xa; break;
1106 		case DRM_FORMAT_RGBA4444:
1107 			m = 0xb; break;
1108 		case DRM_FORMAT_ARGB8888:
1109 			m = 0xc; break;
1110 		case DRM_FORMAT_RGBA8888:
1111 			m = 0xd; break;
1112 		case DRM_FORMAT_RGBX8888:
1113 			m = 0xe; break;
1114 		case DRM_FORMAT_XRGB1555:
1115 			m = 0xf; break;
1116 		default:
1117 			BUG(); return;
1118 		}
1119 	}
1120 
1121 	REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), m, 4, 1);
1122 }
1123 
1124 static void dispc_ovl_configure_burst_type(struct dispc_device *dispc,
1125 					   enum omap_plane_id plane,
1126 					   enum omap_dss_rotation_type rotation)
1127 {
1128 	if (dispc_has_feature(dispc, FEAT_BURST_2D) == 0)
1129 		return;
1130 
1131 	if (rotation == OMAP_DSS_ROT_TILER)
1132 		REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), 1, 29, 29);
1133 	else
1134 		REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), 0, 29, 29);
1135 }
1136 
1137 static void dispc_ovl_set_channel_out(struct dispc_device *dispc,
1138 				      enum omap_plane_id plane,
1139 				      enum omap_channel channel)
1140 {
1141 	int shift;
1142 	u32 val;
1143 	int chan = 0, chan2 = 0;
1144 
1145 	switch (plane) {
1146 	case OMAP_DSS_GFX:
1147 		shift = 8;
1148 		break;
1149 	case OMAP_DSS_VIDEO1:
1150 	case OMAP_DSS_VIDEO2:
1151 	case OMAP_DSS_VIDEO3:
1152 		shift = 16;
1153 		break;
1154 	default:
1155 		BUG();
1156 		return;
1157 	}
1158 
1159 	val = dispc_read_reg(dispc, DISPC_OVL_ATTRIBUTES(plane));
1160 	if (dispc_has_feature(dispc, FEAT_MGR_LCD2)) {
1161 		switch (channel) {
1162 		case OMAP_DSS_CHANNEL_LCD:
1163 			chan = 0;
1164 			chan2 = 0;
1165 			break;
1166 		case OMAP_DSS_CHANNEL_DIGIT:
1167 			chan = 1;
1168 			chan2 = 0;
1169 			break;
1170 		case OMAP_DSS_CHANNEL_LCD2:
1171 			chan = 0;
1172 			chan2 = 1;
1173 			break;
1174 		case OMAP_DSS_CHANNEL_LCD3:
1175 			if (dispc_has_feature(dispc, FEAT_MGR_LCD3)) {
1176 				chan = 0;
1177 				chan2 = 2;
1178 			} else {
1179 				BUG();
1180 				return;
1181 			}
1182 			break;
1183 		case OMAP_DSS_CHANNEL_WB:
1184 			chan = 0;
1185 			chan2 = 3;
1186 			break;
1187 		default:
1188 			BUG();
1189 			return;
1190 		}
1191 
1192 		val = FLD_MOD(val, chan, shift, shift);
1193 		val = FLD_MOD(val, chan2, 31, 30);
1194 	} else {
1195 		val = FLD_MOD(val, channel, shift, shift);
1196 	}
1197 	dispc_write_reg(dispc, DISPC_OVL_ATTRIBUTES(plane), val);
1198 }
1199 
1200 static enum omap_channel dispc_ovl_get_channel_out(struct dispc_device *dispc,
1201 						   enum omap_plane_id plane)
1202 {
1203 	int shift;
1204 	u32 val;
1205 
1206 	switch (plane) {
1207 	case OMAP_DSS_GFX:
1208 		shift = 8;
1209 		break;
1210 	case OMAP_DSS_VIDEO1:
1211 	case OMAP_DSS_VIDEO2:
1212 	case OMAP_DSS_VIDEO3:
1213 		shift = 16;
1214 		break;
1215 	default:
1216 		BUG();
1217 		return 0;
1218 	}
1219 
1220 	val = dispc_read_reg(dispc, DISPC_OVL_ATTRIBUTES(plane));
1221 
1222 	if (FLD_GET(val, shift, shift) == 1)
1223 		return OMAP_DSS_CHANNEL_DIGIT;
1224 
1225 	if (!dispc_has_feature(dispc, FEAT_MGR_LCD2))
1226 		return OMAP_DSS_CHANNEL_LCD;
1227 
1228 	switch (FLD_GET(val, 31, 30)) {
1229 	case 0:
1230 	default:
1231 		return OMAP_DSS_CHANNEL_LCD;
1232 	case 1:
1233 		return OMAP_DSS_CHANNEL_LCD2;
1234 	case 2:
1235 		return OMAP_DSS_CHANNEL_LCD3;
1236 	case 3:
1237 		return OMAP_DSS_CHANNEL_WB;
1238 	}
1239 }
1240 
1241 static void dispc_ovl_set_burst_size(struct dispc_device *dispc,
1242 				     enum omap_plane_id plane,
1243 				     enum omap_burst_size burst_size)
1244 {
1245 	static const unsigned int shifts[] = { 6, 14, 14, 14, 14, };
1246 	int shift;
1247 
1248 	shift = shifts[plane];
1249 	REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), burst_size,
1250 		    shift + 1, shift);
1251 }
1252 
1253 static void dispc_configure_burst_sizes(struct dispc_device *dispc)
1254 {
1255 	int i;
1256 	const int burst_size = BURST_SIZE_X8;
1257 
1258 	/* Configure burst size always to maximum size */
1259 	for (i = 0; i < dispc_get_num_ovls(dispc); ++i)
1260 		dispc_ovl_set_burst_size(dispc, i, burst_size);
1261 	if (dispc->feat->has_writeback)
1262 		dispc_ovl_set_burst_size(dispc, OMAP_DSS_WB, burst_size);
1263 }
1264 
1265 static u32 dispc_ovl_get_burst_size(struct dispc_device *dispc,
1266 				    enum omap_plane_id plane)
1267 {
1268 	/* burst multiplier is always x8 (see dispc_configure_burst_sizes()) */
1269 	return dispc->feat->burst_size_unit * 8;
1270 }
1271 
1272 static bool dispc_ovl_color_mode_supported(struct dispc_device *dispc,
1273 					   enum omap_plane_id plane, u32 fourcc)
1274 {
1275 	const u32 *modes;
1276 	unsigned int i;
1277 
1278 	modes = dispc->feat->supported_color_modes[plane];
1279 
1280 	for (i = 0; modes[i]; ++i) {
1281 		if (modes[i] == fourcc)
1282 			return true;
1283 	}
1284 
1285 	return false;
1286 }
1287 
1288 static const u32 *dispc_ovl_get_color_modes(struct dispc_device *dispc,
1289 					    enum omap_plane_id plane)
1290 {
1291 	return dispc->feat->supported_color_modes[plane];
1292 }
1293 
1294 static void dispc_mgr_enable_cpr(struct dispc_device *dispc,
1295 				 enum omap_channel channel, bool enable)
1296 {
1297 	if (channel == OMAP_DSS_CHANNEL_DIGIT)
1298 		return;
1299 
1300 	mgr_fld_write(dispc, channel, DISPC_MGR_FLD_CPR, enable);
1301 }
1302 
1303 static void dispc_mgr_set_cpr_coef(struct dispc_device *dispc,
1304 				   enum omap_channel channel,
1305 				   const struct omap_dss_cpr_coefs *coefs)
1306 {
1307 	u32 coef_r, coef_g, coef_b;
1308 
1309 	if (!dss_mgr_is_lcd(channel))
1310 		return;
1311 
1312 	coef_r = FLD_VAL(coefs->rr, 31, 22) | FLD_VAL(coefs->rg, 20, 11) |
1313 		FLD_VAL(coefs->rb, 9, 0);
1314 	coef_g = FLD_VAL(coefs->gr, 31, 22) | FLD_VAL(coefs->gg, 20, 11) |
1315 		FLD_VAL(coefs->gb, 9, 0);
1316 	coef_b = FLD_VAL(coefs->br, 31, 22) | FLD_VAL(coefs->bg, 20, 11) |
1317 		FLD_VAL(coefs->bb, 9, 0);
1318 
1319 	dispc_write_reg(dispc, DISPC_CPR_COEF_R(channel), coef_r);
1320 	dispc_write_reg(dispc, DISPC_CPR_COEF_G(channel), coef_g);
1321 	dispc_write_reg(dispc, DISPC_CPR_COEF_B(channel), coef_b);
1322 }
1323 
1324 static void dispc_ovl_set_vid_color_conv(struct dispc_device *dispc,
1325 					 enum omap_plane_id plane, bool enable)
1326 {
1327 	u32 val;
1328 
1329 	BUG_ON(plane == OMAP_DSS_GFX);
1330 
1331 	val = dispc_read_reg(dispc, DISPC_OVL_ATTRIBUTES(plane));
1332 	val = FLD_MOD(val, enable, 9, 9);
1333 	dispc_write_reg(dispc, DISPC_OVL_ATTRIBUTES(plane), val);
1334 }
1335 
1336 static void dispc_ovl_enable_replication(struct dispc_device *dispc,
1337 					 enum omap_plane_id plane,
1338 					 enum omap_overlay_caps caps,
1339 					 bool enable)
1340 {
1341 	static const unsigned int shifts[] = { 5, 10, 10, 10 };
1342 	int shift;
1343 
1344 	if ((caps & OMAP_DSS_OVL_CAP_REPLICATION) == 0)
1345 		return;
1346 
1347 	shift = shifts[plane];
1348 	REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), enable, shift, shift);
1349 }
1350 
1351 static void dispc_mgr_set_size(struct dispc_device *dispc,
1352 			       enum omap_channel channel, u16 width, u16 height)
1353 {
1354 	u32 val;
1355 
1356 	val = FLD_VAL(height - 1, dispc->feat->mgr_height_start, 16) |
1357 		FLD_VAL(width - 1, dispc->feat->mgr_width_start, 0);
1358 
1359 	dispc_write_reg(dispc, DISPC_SIZE_MGR(channel), val);
1360 }
1361 
1362 static void dispc_init_fifos(struct dispc_device *dispc)
1363 {
1364 	u32 size;
1365 	int fifo;
1366 	u8 start, end;
1367 	u32 unit;
1368 	int i;
1369 
1370 	unit = dispc->feat->buffer_size_unit;
1371 
1372 	dispc_get_reg_field(dispc, FEAT_REG_FIFOSIZE, &start, &end);
1373 
1374 	for (fifo = 0; fifo < dispc->feat->num_fifos; ++fifo) {
1375 		size = REG_GET(dispc, DISPC_OVL_FIFO_SIZE_STATUS(fifo),
1376 			       start, end);
1377 		size *= unit;
1378 		dispc->fifo_size[fifo] = size;
1379 
1380 		/*
1381 		 * By default fifos are mapped directly to overlays, fifo 0 to
1382 		 * ovl 0, fifo 1 to ovl 1, etc.
1383 		 */
1384 		dispc->fifo_assignment[fifo] = fifo;
1385 	}
1386 
1387 	/*
1388 	 * The GFX fifo on OMAP4 is smaller than the other fifos. The small fifo
1389 	 * causes problems with certain use cases, like using the tiler in 2D
1390 	 * mode. The below hack swaps the fifos of GFX and WB planes, thus
1391 	 * giving GFX plane a larger fifo. WB but should work fine with a
1392 	 * smaller fifo.
1393 	 */
1394 	if (dispc->feat->gfx_fifo_workaround) {
1395 		u32 v;
1396 
1397 		v = dispc_read_reg(dispc, DISPC_GLOBAL_BUFFER);
1398 
1399 		v = FLD_MOD(v, 4, 2, 0); /* GFX BUF top to WB */
1400 		v = FLD_MOD(v, 4, 5, 3); /* GFX BUF bottom to WB */
1401 		v = FLD_MOD(v, 0, 26, 24); /* WB BUF top to GFX */
1402 		v = FLD_MOD(v, 0, 29, 27); /* WB BUF bottom to GFX */
1403 
1404 		dispc_write_reg(dispc, DISPC_GLOBAL_BUFFER, v);
1405 
1406 		dispc->fifo_assignment[OMAP_DSS_GFX] = OMAP_DSS_WB;
1407 		dispc->fifo_assignment[OMAP_DSS_WB] = OMAP_DSS_GFX;
1408 	}
1409 
1410 	/*
1411 	 * Setup default fifo thresholds.
1412 	 */
1413 	for (i = 0; i < dispc_get_num_ovls(dispc); ++i) {
1414 		u32 low, high;
1415 		const bool use_fifomerge = false;
1416 		const bool manual_update = false;
1417 
1418 		dispc_ovl_compute_fifo_thresholds(dispc, i, &low, &high,
1419 						  use_fifomerge, manual_update);
1420 
1421 		dispc_ovl_set_fifo_threshold(dispc, i, low, high);
1422 	}
1423 
1424 	if (dispc->feat->has_writeback) {
1425 		u32 low, high;
1426 		const bool use_fifomerge = false;
1427 		const bool manual_update = false;
1428 
1429 		dispc_ovl_compute_fifo_thresholds(dispc, OMAP_DSS_WB,
1430 						  &low, &high, use_fifomerge,
1431 						  manual_update);
1432 
1433 		dispc_ovl_set_fifo_threshold(dispc, OMAP_DSS_WB, low, high);
1434 	}
1435 }
1436 
1437 static u32 dispc_ovl_get_fifo_size(struct dispc_device *dispc,
1438 				   enum omap_plane_id plane)
1439 {
1440 	int fifo;
1441 	u32 size = 0;
1442 
1443 	for (fifo = 0; fifo < dispc->feat->num_fifos; ++fifo) {
1444 		if (dispc->fifo_assignment[fifo] == plane)
1445 			size += dispc->fifo_size[fifo];
1446 	}
1447 
1448 	return size;
1449 }
1450 
1451 void dispc_ovl_set_fifo_threshold(struct dispc_device *dispc,
1452 				  enum omap_plane_id plane,
1453 				  u32 low, u32 high)
1454 {
1455 	u8 hi_start, hi_end, lo_start, lo_end;
1456 	u32 unit;
1457 
1458 	unit = dispc->feat->buffer_size_unit;
1459 
1460 	WARN_ON(low % unit != 0);
1461 	WARN_ON(high % unit != 0);
1462 
1463 	low /= unit;
1464 	high /= unit;
1465 
1466 	dispc_get_reg_field(dispc, FEAT_REG_FIFOHIGHTHRESHOLD,
1467 			    &hi_start, &hi_end);
1468 	dispc_get_reg_field(dispc, FEAT_REG_FIFOLOWTHRESHOLD,
1469 			    &lo_start, &lo_end);
1470 
1471 	DSSDBG("fifo(%d) threshold (bytes), old %u/%u, new %u/%u\n",
1472 			plane,
1473 			REG_GET(dispc, DISPC_OVL_FIFO_THRESHOLD(plane),
1474 				lo_start, lo_end) * unit,
1475 			REG_GET(dispc, DISPC_OVL_FIFO_THRESHOLD(plane),
1476 				hi_start, hi_end) * unit,
1477 			low * unit, high * unit);
1478 
1479 	dispc_write_reg(dispc, DISPC_OVL_FIFO_THRESHOLD(plane),
1480 			FLD_VAL(high, hi_start, hi_end) |
1481 			FLD_VAL(low, lo_start, lo_end));
1482 
1483 	/*
1484 	 * configure the preload to the pipeline's high threhold, if HT it's too
1485 	 * large for the preload field, set the threshold to the maximum value
1486 	 * that can be held by the preload register
1487 	 */
1488 	if (dispc_has_feature(dispc, FEAT_PRELOAD) &&
1489 	    dispc->feat->set_max_preload && plane != OMAP_DSS_WB)
1490 		dispc_write_reg(dispc, DISPC_OVL_PRELOAD(plane),
1491 				min(high, 0xfffu));
1492 }
1493 
1494 void dispc_enable_fifomerge(struct dispc_device *dispc, bool enable)
1495 {
1496 	if (!dispc_has_feature(dispc, FEAT_FIFO_MERGE)) {
1497 		WARN_ON(enable);
1498 		return;
1499 	}
1500 
1501 	DSSDBG("FIFO merge %s\n", enable ? "enabled" : "disabled");
1502 	REG_FLD_MOD(dispc, DISPC_CONFIG, enable ? 1 : 0, 14, 14);
1503 }
1504 
1505 void dispc_ovl_compute_fifo_thresholds(struct dispc_device *dispc,
1506 				       enum omap_plane_id plane,
1507 				       u32 *fifo_low, u32 *fifo_high,
1508 				       bool use_fifomerge, bool manual_update)
1509 {
1510 	/*
1511 	 * All sizes are in bytes. Both the buffer and burst are made of
1512 	 * buffer_units, and the fifo thresholds must be buffer_unit aligned.
1513 	 */
1514 	unsigned int buf_unit = dispc->feat->buffer_size_unit;
1515 	unsigned int ovl_fifo_size, total_fifo_size, burst_size;
1516 	int i;
1517 
1518 	burst_size = dispc_ovl_get_burst_size(dispc, plane);
1519 	ovl_fifo_size = dispc_ovl_get_fifo_size(dispc, plane);
1520 
1521 	if (use_fifomerge) {
1522 		total_fifo_size = 0;
1523 		for (i = 0; i < dispc_get_num_ovls(dispc); ++i)
1524 			total_fifo_size += dispc_ovl_get_fifo_size(dispc, i);
1525 	} else {
1526 		total_fifo_size = ovl_fifo_size;
1527 	}
1528 
1529 	/*
1530 	 * We use the same low threshold for both fifomerge and non-fifomerge
1531 	 * cases, but for fifomerge we calculate the high threshold using the
1532 	 * combined fifo size
1533 	 */
1534 
1535 	if (manual_update && dispc_has_feature(dispc, FEAT_OMAP3_DSI_FIFO_BUG)) {
1536 		*fifo_low = ovl_fifo_size - burst_size * 2;
1537 		*fifo_high = total_fifo_size - burst_size;
1538 	} else if (plane == OMAP_DSS_WB) {
1539 		/*
1540 		 * Most optimal configuration for writeback is to push out data
1541 		 * to the interconnect the moment writeback pushes enough pixels
1542 		 * in the FIFO to form a burst
1543 		 */
1544 		*fifo_low = 0;
1545 		*fifo_high = burst_size;
1546 	} else {
1547 		*fifo_low = ovl_fifo_size - burst_size;
1548 		*fifo_high = total_fifo_size - buf_unit;
1549 	}
1550 }
1551 
1552 static void dispc_ovl_set_mflag(struct dispc_device *dispc,
1553 				enum omap_plane_id plane, bool enable)
1554 {
1555 	int bit;
1556 
1557 	if (plane == OMAP_DSS_GFX)
1558 		bit = 14;
1559 	else
1560 		bit = 23;
1561 
1562 	REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), enable, bit, bit);
1563 }
1564 
1565 static void dispc_ovl_set_mflag_threshold(struct dispc_device *dispc,
1566 					  enum omap_plane_id plane,
1567 					  int low, int high)
1568 {
1569 	dispc_write_reg(dispc, DISPC_OVL_MFLAG_THRESHOLD(plane),
1570 		FLD_VAL(high, 31, 16) |	FLD_VAL(low, 15, 0));
1571 }
1572 
1573 static void dispc_init_mflag(struct dispc_device *dispc)
1574 {
1575 	int i;
1576 
1577 	/*
1578 	 * HACK: NV12 color format and MFLAG seem to have problems working
1579 	 * together: using two displays, and having an NV12 overlay on one of
1580 	 * the displays will cause underflows/synclosts when MFLAG_CTRL=2.
1581 	 * Changing MFLAG thresholds and PRELOAD to certain values seem to
1582 	 * remove the errors, but there doesn't seem to be a clear logic on
1583 	 * which values work and which not.
1584 	 *
1585 	 * As a work-around, set force MFLAG to always on.
1586 	 */
1587 	dispc_write_reg(dispc, DISPC_GLOBAL_MFLAG_ATTRIBUTE,
1588 		(1 << 0) |	/* MFLAG_CTRL = force always on */
1589 		(0 << 2));	/* MFLAG_START = disable */
1590 
1591 	for (i = 0; i < dispc_get_num_ovls(dispc); ++i) {
1592 		u32 size = dispc_ovl_get_fifo_size(dispc, i);
1593 		u32 unit = dispc->feat->buffer_size_unit;
1594 		u32 low, high;
1595 
1596 		dispc_ovl_set_mflag(dispc, i, true);
1597 
1598 		/*
1599 		 * Simulation team suggests below thesholds:
1600 		 * HT = fifosize * 5 / 8;
1601 		 * LT = fifosize * 4 / 8;
1602 		 */
1603 
1604 		low = size * 4 / 8 / unit;
1605 		high = size * 5 / 8 / unit;
1606 
1607 		dispc_ovl_set_mflag_threshold(dispc, i, low, high);
1608 	}
1609 
1610 	if (dispc->feat->has_writeback) {
1611 		u32 size = dispc_ovl_get_fifo_size(dispc, OMAP_DSS_WB);
1612 		u32 unit = dispc->feat->buffer_size_unit;
1613 		u32 low, high;
1614 
1615 		dispc_ovl_set_mflag(dispc, OMAP_DSS_WB, true);
1616 
1617 		/*
1618 		 * Simulation team suggests below thesholds:
1619 		 * HT = fifosize * 5 / 8;
1620 		 * LT = fifosize * 4 / 8;
1621 		 */
1622 
1623 		low = size * 4 / 8 / unit;
1624 		high = size * 5 / 8 / unit;
1625 
1626 		dispc_ovl_set_mflag_threshold(dispc, OMAP_DSS_WB, low, high);
1627 	}
1628 }
1629 
1630 static void dispc_ovl_set_fir(struct dispc_device *dispc,
1631 			      enum omap_plane_id plane,
1632 			      int hinc, int vinc,
1633 			      enum omap_color_component color_comp)
1634 {
1635 	u32 val;
1636 
1637 	if (color_comp == DISPC_COLOR_COMPONENT_RGB_Y) {
1638 		u8 hinc_start, hinc_end, vinc_start, vinc_end;
1639 
1640 		dispc_get_reg_field(dispc, FEAT_REG_FIRHINC,
1641 				    &hinc_start, &hinc_end);
1642 		dispc_get_reg_field(dispc, FEAT_REG_FIRVINC,
1643 				    &vinc_start, &vinc_end);
1644 		val = FLD_VAL(vinc, vinc_start, vinc_end) |
1645 				FLD_VAL(hinc, hinc_start, hinc_end);
1646 
1647 		dispc_write_reg(dispc, DISPC_OVL_FIR(plane), val);
1648 	} else {
1649 		val = FLD_VAL(vinc, 28, 16) | FLD_VAL(hinc, 12, 0);
1650 		dispc_write_reg(dispc, DISPC_OVL_FIR2(plane), val);
1651 	}
1652 }
1653 
1654 static void dispc_ovl_set_vid_accu0(struct dispc_device *dispc,
1655 				    enum omap_plane_id plane, int haccu,
1656 				    int vaccu)
1657 {
1658 	u32 val;
1659 	u8 hor_start, hor_end, vert_start, vert_end;
1660 
1661 	dispc_get_reg_field(dispc, FEAT_REG_HORIZONTALACCU,
1662 			    &hor_start, &hor_end);
1663 	dispc_get_reg_field(dispc, FEAT_REG_VERTICALACCU,
1664 			    &vert_start, &vert_end);
1665 
1666 	val = FLD_VAL(vaccu, vert_start, vert_end) |
1667 			FLD_VAL(haccu, hor_start, hor_end);
1668 
1669 	dispc_write_reg(dispc, DISPC_OVL_ACCU0(plane), val);
1670 }
1671 
1672 static void dispc_ovl_set_vid_accu1(struct dispc_device *dispc,
1673 				    enum omap_plane_id plane, int haccu,
1674 				    int vaccu)
1675 {
1676 	u32 val;
1677 	u8 hor_start, hor_end, vert_start, vert_end;
1678 
1679 	dispc_get_reg_field(dispc, FEAT_REG_HORIZONTALACCU,
1680 			    &hor_start, &hor_end);
1681 	dispc_get_reg_field(dispc, FEAT_REG_VERTICALACCU,
1682 			    &vert_start, &vert_end);
1683 
1684 	val = FLD_VAL(vaccu, vert_start, vert_end) |
1685 			FLD_VAL(haccu, hor_start, hor_end);
1686 
1687 	dispc_write_reg(dispc, DISPC_OVL_ACCU1(plane), val);
1688 }
1689 
1690 static void dispc_ovl_set_vid_accu2_0(struct dispc_device *dispc,
1691 				      enum omap_plane_id plane, int haccu,
1692 				      int vaccu)
1693 {
1694 	u32 val;
1695 
1696 	val = FLD_VAL(vaccu, 26, 16) | FLD_VAL(haccu, 10, 0);
1697 	dispc_write_reg(dispc, DISPC_OVL_ACCU2_0(plane), val);
1698 }
1699 
1700 static void dispc_ovl_set_vid_accu2_1(struct dispc_device *dispc,
1701 				      enum omap_plane_id plane, int haccu,
1702 				      int vaccu)
1703 {
1704 	u32 val;
1705 
1706 	val = FLD_VAL(vaccu, 26, 16) | FLD_VAL(haccu, 10, 0);
1707 	dispc_write_reg(dispc, DISPC_OVL_ACCU2_1(plane), val);
1708 }
1709 
1710 static void dispc_ovl_set_scale_param(struct dispc_device *dispc,
1711 				      enum omap_plane_id plane,
1712 				      u16 orig_width, u16 orig_height,
1713 				      u16 out_width, u16 out_height,
1714 				      bool five_taps, u8 rotation,
1715 				      enum omap_color_component color_comp)
1716 {
1717 	int fir_hinc, fir_vinc;
1718 
1719 	fir_hinc = 1024 * orig_width / out_width;
1720 	fir_vinc = 1024 * orig_height / out_height;
1721 
1722 	dispc_ovl_set_scale_coef(dispc, plane, fir_hinc, fir_vinc, five_taps,
1723 				 color_comp);
1724 	dispc_ovl_set_fir(dispc, plane, fir_hinc, fir_vinc, color_comp);
1725 }
1726 
1727 static void dispc_ovl_set_accu_uv(struct dispc_device *dispc,
1728 				  enum omap_plane_id plane,
1729 				  u16 orig_width, u16 orig_height,
1730 				  u16 out_width, u16 out_height,
1731 				  bool ilace, u32 fourcc, u8 rotation)
1732 {
1733 	int h_accu2_0, h_accu2_1;
1734 	int v_accu2_0, v_accu2_1;
1735 	int chroma_hinc, chroma_vinc;
1736 	int idx;
1737 
1738 	struct accu {
1739 		s8 h0_m, h0_n;
1740 		s8 h1_m, h1_n;
1741 		s8 v0_m, v0_n;
1742 		s8 v1_m, v1_n;
1743 	};
1744 
1745 	const struct accu *accu_table;
1746 	const struct accu *accu_val;
1747 
1748 	static const struct accu accu_nv12[4] = {
1749 		{  0, 1,  0, 1 , -1, 2, 0, 1 },
1750 		{  1, 2, -3, 4 ,  0, 1, 0, 1 },
1751 		{ -1, 1,  0, 1 , -1, 2, 0, 1 },
1752 		{ -1, 2, -1, 2 , -1, 1, 0, 1 },
1753 	};
1754 
1755 	static const struct accu accu_nv12_ilace[4] = {
1756 		{  0, 1,  0, 1 , -3, 4, -1, 4 },
1757 		{ -1, 4, -3, 4 ,  0, 1,  0, 1 },
1758 		{ -1, 1,  0, 1 , -1, 4, -3, 4 },
1759 		{ -3, 4, -3, 4 , -1, 1,  0, 1 },
1760 	};
1761 
1762 	static const struct accu accu_yuv[4] = {
1763 		{  0, 1, 0, 1,  0, 1, 0, 1 },
1764 		{  0, 1, 0, 1,  0, 1, 0, 1 },
1765 		{ -1, 1, 0, 1,  0, 1, 0, 1 },
1766 		{  0, 1, 0, 1, -1, 1, 0, 1 },
1767 	};
1768 
1769 	/* Note: DSS HW rotates clockwise, DRM_MODE_ROTATE_* counter-clockwise */
1770 	switch (rotation & DRM_MODE_ROTATE_MASK) {
1771 	default:
1772 	case DRM_MODE_ROTATE_0:
1773 		idx = 0;
1774 		break;
1775 	case DRM_MODE_ROTATE_90:
1776 		idx = 3;
1777 		break;
1778 	case DRM_MODE_ROTATE_180:
1779 		idx = 2;
1780 		break;
1781 	case DRM_MODE_ROTATE_270:
1782 		idx = 1;
1783 		break;
1784 	}
1785 
1786 	switch (fourcc) {
1787 	case DRM_FORMAT_NV12:
1788 		if (ilace)
1789 			accu_table = accu_nv12_ilace;
1790 		else
1791 			accu_table = accu_nv12;
1792 		break;
1793 	case DRM_FORMAT_YUYV:
1794 	case DRM_FORMAT_UYVY:
1795 		accu_table = accu_yuv;
1796 		break;
1797 	default:
1798 		BUG();
1799 		return;
1800 	}
1801 
1802 	accu_val = &accu_table[idx];
1803 
1804 	chroma_hinc = 1024 * orig_width / out_width;
1805 	chroma_vinc = 1024 * orig_height / out_height;
1806 
1807 	h_accu2_0 = (accu_val->h0_m * chroma_hinc / accu_val->h0_n) % 1024;
1808 	h_accu2_1 = (accu_val->h1_m * chroma_hinc / accu_val->h1_n) % 1024;
1809 	v_accu2_0 = (accu_val->v0_m * chroma_vinc / accu_val->v0_n) % 1024;
1810 	v_accu2_1 = (accu_val->v1_m * chroma_vinc / accu_val->v1_n) % 1024;
1811 
1812 	dispc_ovl_set_vid_accu2_0(dispc, plane, h_accu2_0, v_accu2_0);
1813 	dispc_ovl_set_vid_accu2_1(dispc, plane, h_accu2_1, v_accu2_1);
1814 }
1815 
1816 static void dispc_ovl_set_scaling_common(struct dispc_device *dispc,
1817 					 enum omap_plane_id plane,
1818 					 u16 orig_width, u16 orig_height,
1819 					 u16 out_width, u16 out_height,
1820 					 bool ilace, bool five_taps,
1821 					 bool fieldmode, u32 fourcc,
1822 					 u8 rotation)
1823 {
1824 	int accu0 = 0;
1825 	int accu1 = 0;
1826 	u32 l;
1827 
1828 	dispc_ovl_set_scale_param(dispc, plane, orig_width, orig_height,
1829 				  out_width, out_height, five_taps,
1830 				  rotation, DISPC_COLOR_COMPONENT_RGB_Y);
1831 	l = dispc_read_reg(dispc, DISPC_OVL_ATTRIBUTES(plane));
1832 
1833 	/* RESIZEENABLE and VERTICALTAPS */
1834 	l &= ~((0x3 << 5) | (0x1 << 21));
1835 	l |= (orig_width != out_width) ? (1 << 5) : 0;
1836 	l |= (orig_height != out_height) ? (1 << 6) : 0;
1837 	l |= five_taps ? (1 << 21) : 0;
1838 
1839 	/* VRESIZECONF and HRESIZECONF */
1840 	if (dispc_has_feature(dispc, FEAT_RESIZECONF)) {
1841 		l &= ~(0x3 << 7);
1842 		l |= (orig_width <= out_width) ? 0 : (1 << 7);
1843 		l |= (orig_height <= out_height) ? 0 : (1 << 8);
1844 	}
1845 
1846 	/* LINEBUFFERSPLIT */
1847 	if (dispc_has_feature(dispc, FEAT_LINEBUFFERSPLIT)) {
1848 		l &= ~(0x1 << 22);
1849 		l |= five_taps ? (1 << 22) : 0;
1850 	}
1851 
1852 	dispc_write_reg(dispc, DISPC_OVL_ATTRIBUTES(plane), l);
1853 
1854 	/*
1855 	 * field 0 = even field = bottom field
1856 	 * field 1 = odd field = top field
1857 	 */
1858 	if (ilace && !fieldmode) {
1859 		accu1 = 0;
1860 		accu0 = ((1024 * orig_height / out_height) / 2) & 0x3ff;
1861 		if (accu0 >= 1024/2) {
1862 			accu1 = 1024/2;
1863 			accu0 -= accu1;
1864 		}
1865 	}
1866 
1867 	dispc_ovl_set_vid_accu0(dispc, plane, 0, accu0);
1868 	dispc_ovl_set_vid_accu1(dispc, plane, 0, accu1);
1869 }
1870 
1871 static void dispc_ovl_set_scaling_uv(struct dispc_device *dispc,
1872 				     enum omap_plane_id plane,
1873 				     u16 orig_width, u16 orig_height,
1874 				     u16 out_width, u16 out_height,
1875 				     bool ilace, bool five_taps,
1876 				     bool fieldmode, u32 fourcc,
1877 				     u8 rotation)
1878 {
1879 	int scale_x = out_width != orig_width;
1880 	int scale_y = out_height != orig_height;
1881 	bool chroma_upscale = plane != OMAP_DSS_WB;
1882 	const struct drm_format_info *info;
1883 
1884 	info = drm_format_info(fourcc);
1885 
1886 	if (!dispc_has_feature(dispc, FEAT_HANDLE_UV_SEPARATE))
1887 		return;
1888 
1889 	if (!info->is_yuv) {
1890 		/* reset chroma resampling for RGB formats  */
1891 		if (plane != OMAP_DSS_WB)
1892 			REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES2(plane),
1893 				    0, 8, 8);
1894 		return;
1895 	}
1896 
1897 	dispc_ovl_set_accu_uv(dispc, plane, orig_width, orig_height, out_width,
1898 			      out_height, ilace, fourcc, rotation);
1899 
1900 	switch (fourcc) {
1901 	case DRM_FORMAT_NV12:
1902 		if (chroma_upscale) {
1903 			/* UV is subsampled by 2 horizontally and vertically */
1904 			orig_height >>= 1;
1905 			orig_width >>= 1;
1906 		} else {
1907 			/* UV is downsampled by 2 horizontally and vertically */
1908 			orig_height <<= 1;
1909 			orig_width <<= 1;
1910 		}
1911 
1912 		break;
1913 	case DRM_FORMAT_YUYV:
1914 	case DRM_FORMAT_UYVY:
1915 		/* For YUV422 with 90/270 rotation, we don't upsample chroma */
1916 		if (!drm_rotation_90_or_270(rotation)) {
1917 			if (chroma_upscale)
1918 				/* UV is subsampled by 2 horizontally */
1919 				orig_width >>= 1;
1920 			else
1921 				/* UV is downsampled by 2 horizontally */
1922 				orig_width <<= 1;
1923 		}
1924 
1925 		/* must use FIR for YUV422 if rotated */
1926 		if ((rotation & DRM_MODE_ROTATE_MASK) != DRM_MODE_ROTATE_0)
1927 			scale_x = scale_y = true;
1928 
1929 		break;
1930 	default:
1931 		BUG();
1932 		return;
1933 	}
1934 
1935 	if (out_width != orig_width)
1936 		scale_x = true;
1937 	if (out_height != orig_height)
1938 		scale_y = true;
1939 
1940 	dispc_ovl_set_scale_param(dispc, plane, orig_width, orig_height,
1941 				  out_width, out_height, five_taps,
1942 				  rotation, DISPC_COLOR_COMPONENT_UV);
1943 
1944 	if (plane != OMAP_DSS_WB)
1945 		REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES2(plane),
1946 			(scale_x || scale_y) ? 1 : 0, 8, 8);
1947 
1948 	/* set H scaling */
1949 	REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), scale_x ? 1 : 0, 5, 5);
1950 	/* set V scaling */
1951 	REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), scale_y ? 1 : 0, 6, 6);
1952 }
1953 
1954 static void dispc_ovl_set_scaling(struct dispc_device *dispc,
1955 				  enum omap_plane_id plane,
1956 				  u16 orig_width, u16 orig_height,
1957 				  u16 out_width, u16 out_height,
1958 				  bool ilace, bool five_taps,
1959 				  bool fieldmode, u32 fourcc,
1960 				  u8 rotation)
1961 {
1962 	BUG_ON(plane == OMAP_DSS_GFX);
1963 
1964 	dispc_ovl_set_scaling_common(dispc, plane, orig_width, orig_height,
1965 				     out_width, out_height, ilace, five_taps,
1966 				     fieldmode, fourcc, rotation);
1967 
1968 	dispc_ovl_set_scaling_uv(dispc, plane, orig_width, orig_height,
1969 				 out_width, out_height, ilace, five_taps,
1970 				 fieldmode, fourcc, rotation);
1971 }
1972 
1973 static void dispc_ovl_set_rotation_attrs(struct dispc_device *dispc,
1974 					 enum omap_plane_id plane, u8 rotation,
1975 					 enum omap_dss_rotation_type rotation_type,
1976 					 u32 fourcc)
1977 {
1978 	bool row_repeat = false;
1979 	int vidrot = 0;
1980 
1981 	/* Note: DSS HW rotates clockwise, DRM_MODE_ROTATE_* counter-clockwise */
1982 	if (fourcc == DRM_FORMAT_YUYV || fourcc == DRM_FORMAT_UYVY) {
1983 
1984 		if (rotation & DRM_MODE_REFLECT_X) {
1985 			switch (rotation & DRM_MODE_ROTATE_MASK) {
1986 			case DRM_MODE_ROTATE_0:
1987 				vidrot = 2;
1988 				break;
1989 			case DRM_MODE_ROTATE_90:
1990 				vidrot = 1;
1991 				break;
1992 			case DRM_MODE_ROTATE_180:
1993 				vidrot = 0;
1994 				break;
1995 			case DRM_MODE_ROTATE_270:
1996 				vidrot = 3;
1997 				break;
1998 			}
1999 		} else {
2000 			switch (rotation & DRM_MODE_ROTATE_MASK) {
2001 			case DRM_MODE_ROTATE_0:
2002 				vidrot = 0;
2003 				break;
2004 			case DRM_MODE_ROTATE_90:
2005 				vidrot = 3;
2006 				break;
2007 			case DRM_MODE_ROTATE_180:
2008 				vidrot = 2;
2009 				break;
2010 			case DRM_MODE_ROTATE_270:
2011 				vidrot = 1;
2012 				break;
2013 			}
2014 		}
2015 
2016 		if (drm_rotation_90_or_270(rotation))
2017 			row_repeat = true;
2018 		else
2019 			row_repeat = false;
2020 	}
2021 
2022 	/*
2023 	 * OMAP4/5 Errata i631:
2024 	 * NV12 in 1D mode must use ROTATION=1. Otherwise DSS will fetch extra
2025 	 * rows beyond the framebuffer, which may cause OCP error.
2026 	 */
2027 	if (fourcc == DRM_FORMAT_NV12 && rotation_type != OMAP_DSS_ROT_TILER)
2028 		vidrot = 1;
2029 
2030 	REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), vidrot, 13, 12);
2031 	if (dispc_has_feature(dispc, FEAT_ROWREPEATENABLE))
2032 		REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane),
2033 			row_repeat ? 1 : 0, 18, 18);
2034 
2035 	if (dispc_ovl_color_mode_supported(dispc, plane, DRM_FORMAT_NV12)) {
2036 		bool doublestride =
2037 			fourcc == DRM_FORMAT_NV12 &&
2038 			rotation_type == OMAP_DSS_ROT_TILER &&
2039 			!drm_rotation_90_or_270(rotation);
2040 
2041 		/* DOUBLESTRIDE */
2042 		REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane),
2043 			    doublestride, 22, 22);
2044 	}
2045 }
2046 
2047 static int color_mode_to_bpp(u32 fourcc)
2048 {
2049 	switch (fourcc) {
2050 	case DRM_FORMAT_NV12:
2051 		return 8;
2052 	case DRM_FORMAT_RGBX4444:
2053 	case DRM_FORMAT_RGB565:
2054 	case DRM_FORMAT_ARGB4444:
2055 	case DRM_FORMAT_YUYV:
2056 	case DRM_FORMAT_UYVY:
2057 	case DRM_FORMAT_RGBA4444:
2058 	case DRM_FORMAT_XRGB4444:
2059 	case DRM_FORMAT_ARGB1555:
2060 	case DRM_FORMAT_XRGB1555:
2061 		return 16;
2062 	case DRM_FORMAT_RGB888:
2063 		return 24;
2064 	case DRM_FORMAT_XRGB8888:
2065 	case DRM_FORMAT_ARGB8888:
2066 	case DRM_FORMAT_RGBA8888:
2067 	case DRM_FORMAT_RGBX8888:
2068 		return 32;
2069 	default:
2070 		BUG();
2071 		return 0;
2072 	}
2073 }
2074 
2075 static s32 pixinc(int pixels, u8 ps)
2076 {
2077 	if (pixels == 1)
2078 		return 1;
2079 	else if (pixels > 1)
2080 		return 1 + (pixels - 1) * ps;
2081 	else if (pixels < 0)
2082 		return 1 - (-pixels + 1) * ps;
2083 	else
2084 		BUG();
2085 		return 0;
2086 }
2087 
2088 static void calc_offset(u16 screen_width, u16 width,
2089 		u32 fourcc, bool fieldmode, unsigned int field_offset,
2090 		unsigned int *offset0, unsigned int *offset1,
2091 		s32 *row_inc, s32 *pix_inc, int x_predecim, int y_predecim,
2092 		enum omap_dss_rotation_type rotation_type, u8 rotation)
2093 {
2094 	u8 ps;
2095 
2096 	ps = color_mode_to_bpp(fourcc) / 8;
2097 
2098 	DSSDBG("scrw %d, width %d\n", screen_width, width);
2099 
2100 	if (rotation_type == OMAP_DSS_ROT_TILER &&
2101 	    (fourcc == DRM_FORMAT_UYVY || fourcc == DRM_FORMAT_YUYV) &&
2102 	    drm_rotation_90_or_270(rotation)) {
2103 		/*
2104 		 * HACK: ROW_INC needs to be calculated with TILER units.
2105 		 * We get such 'screen_width' that multiplying it with the
2106 		 * YUV422 pixel size gives the correct TILER container width.
2107 		 * However, 'width' is in pixels and multiplying it with YUV422
2108 		 * pixel size gives incorrect result. We thus multiply it here
2109 		 * with 2 to match the 32 bit TILER unit size.
2110 		 */
2111 		width *= 2;
2112 	}
2113 
2114 	/*
2115 	 * field 0 = even field = bottom field
2116 	 * field 1 = odd field = top field
2117 	 */
2118 	*offset0 = field_offset * screen_width * ps;
2119 	*offset1 = 0;
2120 
2121 	*row_inc = pixinc(1 + (y_predecim * screen_width - width * x_predecim) +
2122 			(fieldmode ? screen_width : 0), ps);
2123 	if (fourcc == DRM_FORMAT_YUYV || fourcc == DRM_FORMAT_UYVY)
2124 		*pix_inc = pixinc(x_predecim, 2 * ps);
2125 	else
2126 		*pix_inc = pixinc(x_predecim, ps);
2127 }
2128 
2129 /*
2130  * This function is used to avoid synclosts in OMAP3, because of some
2131  * undocumented horizontal position and timing related limitations.
2132  */
2133 static int check_horiz_timing_omap3(unsigned long pclk, unsigned long lclk,
2134 		const struct videomode *vm, u16 pos_x,
2135 		u16 width, u16 height, u16 out_width, u16 out_height,
2136 		bool five_taps)
2137 {
2138 	const int ds = DIV_ROUND_UP(height, out_height);
2139 	unsigned long nonactive;
2140 	static const u8 limits[3] = { 8, 10, 20 };
2141 	u64 val, blank;
2142 	int i;
2143 
2144 	nonactive = vm->hactive + vm->hfront_porch + vm->hsync_len +
2145 		    vm->hback_porch - out_width;
2146 
2147 	i = 0;
2148 	if (out_height < height)
2149 		i++;
2150 	if (out_width < width)
2151 		i++;
2152 	blank = div_u64((u64)(vm->hback_porch + vm->hsync_len + vm->hfront_porch) *
2153 			lclk, pclk);
2154 	DSSDBG("blanking period + ppl = %llu (limit = %u)\n", blank, limits[i]);
2155 	if (blank <= limits[i])
2156 		return -EINVAL;
2157 
2158 	/* FIXME add checks for 3-tap filter once the limitations are known */
2159 	if (!five_taps)
2160 		return 0;
2161 
2162 	/*
2163 	 * Pixel data should be prepared before visible display point starts.
2164 	 * So, atleast DS-2 lines must have already been fetched by DISPC
2165 	 * during nonactive - pos_x period.
2166 	 */
2167 	val = div_u64((u64)(nonactive - pos_x) * lclk, pclk);
2168 	DSSDBG("(nonactive - pos_x) * pcd = %llu max(0, DS - 2) * width = %d\n",
2169 		val, max(0, ds - 2) * width);
2170 	if (val < max(0, ds - 2) * width)
2171 		return -EINVAL;
2172 
2173 	/*
2174 	 * All lines need to be refilled during the nonactive period of which
2175 	 * only one line can be loaded during the active period. So, atleast
2176 	 * DS - 1 lines should be loaded during nonactive period.
2177 	 */
2178 	val =  div_u64((u64)nonactive * lclk, pclk);
2179 	DSSDBG("nonactive * pcd  = %llu, max(0, DS - 1) * width = %d\n",
2180 		val, max(0, ds - 1) * width);
2181 	if (val < max(0, ds - 1) * width)
2182 		return -EINVAL;
2183 
2184 	return 0;
2185 }
2186 
2187 static unsigned long calc_core_clk_five_taps(unsigned long pclk,
2188 		const struct videomode *vm, u16 width,
2189 		u16 height, u16 out_width, u16 out_height,
2190 		u32 fourcc)
2191 {
2192 	u32 core_clk = 0;
2193 	u64 tmp;
2194 
2195 	if (height <= out_height && width <= out_width)
2196 		return (unsigned long) pclk;
2197 
2198 	if (height > out_height) {
2199 		unsigned int ppl = vm->hactive;
2200 
2201 		tmp = (u64)pclk * height * out_width;
2202 		do_div(tmp, 2 * out_height * ppl);
2203 		core_clk = tmp;
2204 
2205 		if (height > 2 * out_height) {
2206 			if (ppl == out_width)
2207 				return 0;
2208 
2209 			tmp = (u64)pclk * (height - 2 * out_height) * out_width;
2210 			do_div(tmp, 2 * out_height * (ppl - out_width));
2211 			core_clk = max_t(u32, core_clk, tmp);
2212 		}
2213 	}
2214 
2215 	if (width > out_width) {
2216 		tmp = (u64)pclk * width;
2217 		do_div(tmp, out_width);
2218 		core_clk = max_t(u32, core_clk, tmp);
2219 
2220 		if (fourcc == DRM_FORMAT_XRGB8888)
2221 			core_clk <<= 1;
2222 	}
2223 
2224 	return core_clk;
2225 }
2226 
2227 static unsigned long calc_core_clk_24xx(unsigned long pclk, u16 width,
2228 		u16 height, u16 out_width, u16 out_height, bool mem_to_mem)
2229 {
2230 	if (height > out_height && width > out_width)
2231 		return pclk * 4;
2232 	else
2233 		return pclk * 2;
2234 }
2235 
2236 static unsigned long calc_core_clk_34xx(unsigned long pclk, u16 width,
2237 		u16 height, u16 out_width, u16 out_height, bool mem_to_mem)
2238 {
2239 	unsigned int hf, vf;
2240 
2241 	/*
2242 	 * FIXME how to determine the 'A' factor
2243 	 * for the no downscaling case ?
2244 	 */
2245 
2246 	if (width > 3 * out_width)
2247 		hf = 4;
2248 	else if (width > 2 * out_width)
2249 		hf = 3;
2250 	else if (width > out_width)
2251 		hf = 2;
2252 	else
2253 		hf = 1;
2254 	if (height > out_height)
2255 		vf = 2;
2256 	else
2257 		vf = 1;
2258 
2259 	return pclk * vf * hf;
2260 }
2261 
2262 static unsigned long calc_core_clk_44xx(unsigned long pclk, u16 width,
2263 		u16 height, u16 out_width, u16 out_height, bool mem_to_mem)
2264 {
2265 	/*
2266 	 * If the overlay/writeback is in mem to mem mode, there are no
2267 	 * downscaling limitations with respect to pixel clock, return 1 as
2268 	 * required core clock to represent that we have sufficient enough
2269 	 * core clock to do maximum downscaling
2270 	 */
2271 	if (mem_to_mem)
2272 		return 1;
2273 
2274 	if (width > out_width)
2275 		return DIV_ROUND_UP(pclk, out_width) * width;
2276 	else
2277 		return pclk;
2278 }
2279 
2280 static int dispc_ovl_calc_scaling_24xx(struct dispc_device *dispc,
2281 				       unsigned long pclk, unsigned long lclk,
2282 				       const struct videomode *vm,
2283 				       u16 width, u16 height,
2284 				       u16 out_width, u16 out_height,
2285 				       u32 fourcc, bool *five_taps,
2286 				       int *x_predecim, int *y_predecim,
2287 				       int *decim_x, int *decim_y,
2288 				       u16 pos_x, unsigned long *core_clk,
2289 				       bool mem_to_mem)
2290 {
2291 	int error;
2292 	u16 in_width, in_height;
2293 	int min_factor = min(*decim_x, *decim_y);
2294 	const int maxsinglelinewidth = dispc->feat->max_line_width;
2295 
2296 	*five_taps = false;
2297 
2298 	do {
2299 		in_height = height / *decim_y;
2300 		in_width = width / *decim_x;
2301 		*core_clk = dispc->feat->calc_core_clk(pclk, in_width,
2302 				in_height, out_width, out_height, mem_to_mem);
2303 		error = (in_width > maxsinglelinewidth || !*core_clk ||
2304 			*core_clk > dispc_core_clk_rate(dispc));
2305 		if (error) {
2306 			if (*decim_x == *decim_y) {
2307 				*decim_x = min_factor;
2308 				++*decim_y;
2309 			} else {
2310 				swap(*decim_x, *decim_y);
2311 				if (*decim_x < *decim_y)
2312 					++*decim_x;
2313 			}
2314 		}
2315 	} while (*decim_x <= *x_predecim && *decim_y <= *y_predecim && error);
2316 
2317 	if (error) {
2318 		DSSERR("failed to find scaling settings\n");
2319 		return -EINVAL;
2320 	}
2321 
2322 	if (in_width > maxsinglelinewidth) {
2323 		DSSERR("Cannot scale max input width exceeded\n");
2324 		return -EINVAL;
2325 	}
2326 	return 0;
2327 }
2328 
2329 static int dispc_ovl_calc_scaling_34xx(struct dispc_device *dispc,
2330 				       unsigned long pclk, unsigned long lclk,
2331 				       const struct videomode *vm,
2332 				       u16 width, u16 height,
2333 				       u16 out_width, u16 out_height,
2334 				       u32 fourcc, bool *five_taps,
2335 				       int *x_predecim, int *y_predecim,
2336 				       int *decim_x, int *decim_y,
2337 				       u16 pos_x, unsigned long *core_clk,
2338 				       bool mem_to_mem)
2339 {
2340 	int error;
2341 	u16 in_width, in_height;
2342 	const int maxsinglelinewidth = dispc->feat->max_line_width;
2343 
2344 	do {
2345 		in_height = height / *decim_y;
2346 		in_width = width / *decim_x;
2347 		*five_taps = in_height > out_height;
2348 
2349 		if (in_width > maxsinglelinewidth)
2350 			if (in_height > out_height &&
2351 						in_height < out_height * 2)
2352 				*five_taps = false;
2353 again:
2354 		if (*five_taps)
2355 			*core_clk = calc_core_clk_five_taps(pclk, vm,
2356 						in_width, in_height, out_width,
2357 						out_height, fourcc);
2358 		else
2359 			*core_clk = dispc->feat->calc_core_clk(pclk, in_width,
2360 					in_height, out_width, out_height,
2361 					mem_to_mem);
2362 
2363 		error = check_horiz_timing_omap3(pclk, lclk, vm,
2364 				pos_x, in_width, in_height, out_width,
2365 				out_height, *five_taps);
2366 		if (error && *five_taps) {
2367 			*five_taps = false;
2368 			goto again;
2369 		}
2370 
2371 		error = (error || in_width > maxsinglelinewidth * 2 ||
2372 			(in_width > maxsinglelinewidth && *five_taps) ||
2373 			!*core_clk || *core_clk > dispc_core_clk_rate(dispc));
2374 
2375 		if (!error) {
2376 			/* verify that we're inside the limits of scaler */
2377 			if (in_width / 4 > out_width)
2378 					error = 1;
2379 
2380 			if (*five_taps) {
2381 				if (in_height / 4 > out_height)
2382 					error = 1;
2383 			} else {
2384 				if (in_height / 2 > out_height)
2385 					error = 1;
2386 			}
2387 		}
2388 
2389 		if (error)
2390 			++*decim_y;
2391 	} while (*decim_x <= *x_predecim && *decim_y <= *y_predecim && error);
2392 
2393 	if (error) {
2394 		DSSERR("failed to find scaling settings\n");
2395 		return -EINVAL;
2396 	}
2397 
2398 	if (check_horiz_timing_omap3(pclk, lclk, vm, pos_x, in_width,
2399 				in_height, out_width, out_height, *five_taps)) {
2400 			DSSERR("horizontal timing too tight\n");
2401 			return -EINVAL;
2402 	}
2403 
2404 	if (in_width > (maxsinglelinewidth * 2)) {
2405 		DSSERR("Cannot setup scaling\n");
2406 		DSSERR("width exceeds maximum width possible\n");
2407 		return -EINVAL;
2408 	}
2409 
2410 	if (in_width > maxsinglelinewidth && *five_taps) {
2411 		DSSERR("cannot setup scaling with five taps\n");
2412 		return -EINVAL;
2413 	}
2414 	return 0;
2415 }
2416 
2417 static int dispc_ovl_calc_scaling_44xx(struct dispc_device *dispc,
2418 				       unsigned long pclk, unsigned long lclk,
2419 				       const struct videomode *vm,
2420 				       u16 width, u16 height,
2421 				       u16 out_width, u16 out_height,
2422 				       u32 fourcc, bool *five_taps,
2423 				       int *x_predecim, int *y_predecim,
2424 				       int *decim_x, int *decim_y,
2425 				       u16 pos_x, unsigned long *core_clk,
2426 				       bool mem_to_mem)
2427 {
2428 	u16 in_width, in_width_max;
2429 	int decim_x_min = *decim_x;
2430 	u16 in_height = height / *decim_y;
2431 	const int maxsinglelinewidth = dispc->feat->max_line_width;
2432 	const int maxdownscale = dispc->feat->max_downscale;
2433 
2434 	if (mem_to_mem) {
2435 		in_width_max = out_width * maxdownscale;
2436 	} else {
2437 		in_width_max = dispc_core_clk_rate(dispc)
2438 			     / DIV_ROUND_UP(pclk, out_width);
2439 	}
2440 
2441 	*decim_x = DIV_ROUND_UP(width, in_width_max);
2442 
2443 	*decim_x = *decim_x > decim_x_min ? *decim_x : decim_x_min;
2444 	if (*decim_x > *x_predecim)
2445 		return -EINVAL;
2446 
2447 	do {
2448 		in_width = width / *decim_x;
2449 	} while (*decim_x <= *x_predecim &&
2450 			in_width > maxsinglelinewidth && ++*decim_x);
2451 
2452 	if (in_width > maxsinglelinewidth) {
2453 		DSSERR("Cannot scale width exceeds max line width\n");
2454 		return -EINVAL;
2455 	}
2456 
2457 	if (*decim_x > 4 && fourcc != DRM_FORMAT_NV12) {
2458 		/*
2459 		 * Let's disable all scaling that requires horizontal
2460 		 * decimation with higher factor than 4, until we have
2461 		 * better estimates of what we can and can not
2462 		 * do. However, NV12 color format appears to work Ok
2463 		 * with all decimation factors.
2464 		 *
2465 		 * When decimating horizontally by more that 4 the dss
2466 		 * is not able to fetch the data in burst mode. When
2467 		 * this happens it is hard to tell if there enough
2468 		 * bandwidth. Despite what theory says this appears to
2469 		 * be true also for 16-bit color formats.
2470 		 */
2471 		DSSERR("Not enough bandwidth, too much downscaling (x-decimation factor %d > 4)\n", *decim_x);
2472 
2473 		return -EINVAL;
2474 	}
2475 
2476 	*core_clk = dispc->feat->calc_core_clk(pclk, in_width, in_height,
2477 				out_width, out_height, mem_to_mem);
2478 	return 0;
2479 }
2480 
2481 #define DIV_FRAC(dividend, divisor) \
2482 	((dividend) * 100 / (divisor) - ((dividend) / (divisor) * 100))
2483 
2484 static int dispc_ovl_calc_scaling(struct dispc_device *dispc,
2485 				  enum omap_plane_id plane,
2486 				  unsigned long pclk, unsigned long lclk,
2487 				  enum omap_overlay_caps caps,
2488 				  const struct videomode *vm,
2489 				  u16 width, u16 height,
2490 				  u16 out_width, u16 out_height,
2491 				  u32 fourcc, bool *five_taps,
2492 				  int *x_predecim, int *y_predecim, u16 pos_x,
2493 				  enum omap_dss_rotation_type rotation_type,
2494 				  bool mem_to_mem)
2495 {
2496 	int maxhdownscale = dispc->feat->max_downscale;
2497 	int maxvdownscale = dispc->feat->max_downscale;
2498 	const int max_decim_limit = 16;
2499 	unsigned long core_clk = 0;
2500 	int decim_x, decim_y, ret;
2501 
2502 	if (width == out_width && height == out_height)
2503 		return 0;
2504 
2505 	if (dispc->feat->supported_scaler_color_modes) {
2506 		const u32 *modes = dispc->feat->supported_scaler_color_modes;
2507 		unsigned int i;
2508 
2509 		for (i = 0; modes[i]; ++i) {
2510 			if (modes[i] == fourcc)
2511 				break;
2512 		}
2513 
2514 		if (modes[i] == 0)
2515 			return -EINVAL;
2516 	}
2517 
2518 	if (plane == OMAP_DSS_WB) {
2519 		switch (fourcc) {
2520 		case DRM_FORMAT_NV12:
2521 			maxhdownscale = maxvdownscale = 2;
2522 			break;
2523 		case DRM_FORMAT_YUYV:
2524 		case DRM_FORMAT_UYVY:
2525 			maxhdownscale = 2;
2526 			maxvdownscale = 4;
2527 			break;
2528 		default:
2529 			break;
2530 		}
2531 	}
2532 	if (!mem_to_mem && (pclk == 0 || vm->pixelclock == 0)) {
2533 		DSSERR("cannot calculate scaling settings: pclk is zero\n");
2534 		return -EINVAL;
2535 	}
2536 
2537 	if ((caps & OMAP_DSS_OVL_CAP_SCALE) == 0)
2538 		return -EINVAL;
2539 
2540 	if (mem_to_mem) {
2541 		*x_predecim = *y_predecim = 1;
2542 	} else {
2543 		*x_predecim = max_decim_limit;
2544 		*y_predecim = (rotation_type == OMAP_DSS_ROT_TILER &&
2545 				dispc_has_feature(dispc, FEAT_BURST_2D)) ?
2546 				2 : max_decim_limit;
2547 	}
2548 
2549 	decim_x = DIV_ROUND_UP(DIV_ROUND_UP(width, out_width), maxhdownscale);
2550 	decim_y = DIV_ROUND_UP(DIV_ROUND_UP(height, out_height), maxvdownscale);
2551 
2552 	if (decim_x > *x_predecim || out_width > width * 8)
2553 		return -EINVAL;
2554 
2555 	if (decim_y > *y_predecim || out_height > height * 8)
2556 		return -EINVAL;
2557 
2558 	ret = dispc->feat->calc_scaling(dispc, pclk, lclk, vm, width, height,
2559 					out_width, out_height, fourcc,
2560 					five_taps, x_predecim, y_predecim,
2561 					&decim_x, &decim_y, pos_x, &core_clk,
2562 					mem_to_mem);
2563 	if (ret)
2564 		return ret;
2565 
2566 	DSSDBG("%dx%d -> %dx%d (%d.%02d x %d.%02d), decim %dx%d %dx%d (%d.%02d x %d.%02d), taps %d, req clk %lu, cur clk %lu\n",
2567 		width, height,
2568 		out_width, out_height,
2569 		out_width / width, DIV_FRAC(out_width, width),
2570 		out_height / height, DIV_FRAC(out_height, height),
2571 
2572 		decim_x, decim_y,
2573 		width / decim_x, height / decim_y,
2574 		out_width / (width / decim_x), DIV_FRAC(out_width, width / decim_x),
2575 		out_height / (height / decim_y), DIV_FRAC(out_height, height / decim_y),
2576 
2577 		*five_taps ? 5 : 3,
2578 		core_clk, dispc_core_clk_rate(dispc));
2579 
2580 	if (!core_clk || core_clk > dispc_core_clk_rate(dispc)) {
2581 		DSSERR("failed to set up scaling, "
2582 			"required core clk rate = %lu Hz, "
2583 			"current core clk rate = %lu Hz\n",
2584 			core_clk, dispc_core_clk_rate(dispc));
2585 		return -EINVAL;
2586 	}
2587 
2588 	*x_predecim = decim_x;
2589 	*y_predecim = decim_y;
2590 	return 0;
2591 }
2592 
2593 static int dispc_ovl_setup_common(struct dispc_device *dispc,
2594 				  enum omap_plane_id plane,
2595 				  enum omap_overlay_caps caps,
2596 				  u32 paddr, u32 p_uv_addr,
2597 				  u16 screen_width, int pos_x, int pos_y,
2598 				  u16 width, u16 height,
2599 				  u16 out_width, u16 out_height,
2600 				  u32 fourcc, u8 rotation, u8 zorder,
2601 				  u8 pre_mult_alpha, u8 global_alpha,
2602 				  enum omap_dss_rotation_type rotation_type,
2603 				  bool replication, const struct videomode *vm,
2604 				  bool mem_to_mem)
2605 {
2606 	bool five_taps = true;
2607 	bool fieldmode = false;
2608 	int r, cconv = 0;
2609 	unsigned int offset0, offset1;
2610 	s32 row_inc;
2611 	s32 pix_inc;
2612 	u16 frame_width;
2613 	unsigned int field_offset = 0;
2614 	u16 in_height = height;
2615 	u16 in_width = width;
2616 	int x_predecim = 1, y_predecim = 1;
2617 	bool ilace = !!(vm->flags & DISPLAY_FLAGS_INTERLACED);
2618 	unsigned long pclk = dispc_plane_pclk_rate(dispc, plane);
2619 	unsigned long lclk = dispc_plane_lclk_rate(dispc, plane);
2620 	const struct drm_format_info *info;
2621 
2622 	info = drm_format_info(fourcc);
2623 
2624 	/* when setting up WB, dispc_plane_pclk_rate() returns 0 */
2625 	if (plane == OMAP_DSS_WB)
2626 		pclk = vm->pixelclock;
2627 
2628 	if (paddr == 0 && rotation_type != OMAP_DSS_ROT_TILER)
2629 		return -EINVAL;
2630 
2631 	if (info->is_yuv && (in_width & 1)) {
2632 		DSSERR("input width %d is not even for YUV format\n", in_width);
2633 		return -EINVAL;
2634 	}
2635 
2636 	out_width = out_width == 0 ? width : out_width;
2637 	out_height = out_height == 0 ? height : out_height;
2638 
2639 	if (plane != OMAP_DSS_WB) {
2640 		if (ilace && height == out_height)
2641 			fieldmode = true;
2642 
2643 		if (ilace) {
2644 			if (fieldmode)
2645 				in_height /= 2;
2646 			pos_y /= 2;
2647 			out_height /= 2;
2648 
2649 			DSSDBG("adjusting for ilace: height %d, pos_y %d, out_height %d\n",
2650 				in_height, pos_y, out_height);
2651 		}
2652 	}
2653 
2654 	if (!dispc_ovl_color_mode_supported(dispc, plane, fourcc))
2655 		return -EINVAL;
2656 
2657 	r = dispc_ovl_calc_scaling(dispc, plane, pclk, lclk, caps, vm, in_width,
2658 				   in_height, out_width, out_height, fourcc,
2659 				   &five_taps, &x_predecim, &y_predecim, pos_x,
2660 				   rotation_type, mem_to_mem);
2661 	if (r)
2662 		return r;
2663 
2664 	in_width = in_width / x_predecim;
2665 	in_height = in_height / y_predecim;
2666 
2667 	if (x_predecim > 1 || y_predecim > 1)
2668 		DSSDBG("predecimation %d x %x, new input size %d x %d\n",
2669 			x_predecim, y_predecim, in_width, in_height);
2670 
2671 	if (info->is_yuv && (in_width & 1)) {
2672 		DSSDBG("predecimated input width is not even for YUV format\n");
2673 		DSSDBG("adjusting input width %d -> %d\n",
2674 			in_width, in_width & ~1);
2675 
2676 		in_width &= ~1;
2677 	}
2678 
2679 	if (info->is_yuv)
2680 		cconv = 1;
2681 
2682 	if (ilace && !fieldmode) {
2683 		/*
2684 		 * when downscaling the bottom field may have to start several
2685 		 * source lines below the top field. Unfortunately ACCUI
2686 		 * registers will only hold the fractional part of the offset
2687 		 * so the integer part must be added to the base address of the
2688 		 * bottom field.
2689 		 */
2690 		if (!in_height || in_height == out_height)
2691 			field_offset = 0;
2692 		else
2693 			field_offset = in_height / out_height / 2;
2694 	}
2695 
2696 	/* Fields are independent but interleaved in memory. */
2697 	if (fieldmode)
2698 		field_offset = 1;
2699 
2700 	offset0 = 0;
2701 	offset1 = 0;
2702 	row_inc = 0;
2703 	pix_inc = 0;
2704 
2705 	if (plane == OMAP_DSS_WB)
2706 		frame_width = out_width;
2707 	else
2708 		frame_width = in_width;
2709 
2710 	calc_offset(screen_width, frame_width,
2711 			fourcc, fieldmode, field_offset,
2712 			&offset0, &offset1, &row_inc, &pix_inc,
2713 			x_predecim, y_predecim,
2714 			rotation_type, rotation);
2715 
2716 	DSSDBG("offset0 %u, offset1 %u, row_inc %d, pix_inc %d\n",
2717 			offset0, offset1, row_inc, pix_inc);
2718 
2719 	dispc_ovl_set_color_mode(dispc, plane, fourcc);
2720 
2721 	dispc_ovl_configure_burst_type(dispc, plane, rotation_type);
2722 
2723 	if (dispc->feat->reverse_ilace_field_order)
2724 		swap(offset0, offset1);
2725 
2726 	dispc_ovl_set_ba0(dispc, plane, paddr + offset0);
2727 	dispc_ovl_set_ba1(dispc, plane, paddr + offset1);
2728 
2729 	if (fourcc == DRM_FORMAT_NV12) {
2730 		dispc_ovl_set_ba0_uv(dispc, plane, p_uv_addr + offset0);
2731 		dispc_ovl_set_ba1_uv(dispc, plane, p_uv_addr + offset1);
2732 	}
2733 
2734 	if (dispc->feat->last_pixel_inc_missing)
2735 		row_inc += pix_inc - 1;
2736 
2737 	dispc_ovl_set_row_inc(dispc, plane, row_inc);
2738 	dispc_ovl_set_pix_inc(dispc, plane, pix_inc);
2739 
2740 	DSSDBG("%d,%d %dx%d -> %dx%d\n", pos_x, pos_y, in_width,
2741 			in_height, out_width, out_height);
2742 
2743 	dispc_ovl_set_pos(dispc, plane, caps, pos_x, pos_y);
2744 
2745 	dispc_ovl_set_input_size(dispc, plane, in_width, in_height);
2746 
2747 	if (caps & OMAP_DSS_OVL_CAP_SCALE) {
2748 		dispc_ovl_set_scaling(dispc, plane, in_width, in_height,
2749 				      out_width, out_height, ilace, five_taps,
2750 				      fieldmode, fourcc, rotation);
2751 		dispc_ovl_set_output_size(dispc, plane, out_width, out_height);
2752 		dispc_ovl_set_vid_color_conv(dispc, plane, cconv);
2753 	}
2754 
2755 	dispc_ovl_set_rotation_attrs(dispc, plane, rotation, rotation_type,
2756 				     fourcc);
2757 
2758 	dispc_ovl_set_zorder(dispc, plane, caps, zorder);
2759 	dispc_ovl_set_pre_mult_alpha(dispc, plane, caps, pre_mult_alpha);
2760 	dispc_ovl_setup_global_alpha(dispc, plane, caps, global_alpha);
2761 
2762 	dispc_ovl_enable_replication(dispc, plane, caps, replication);
2763 
2764 	return 0;
2765 }
2766 
2767 static int dispc_ovl_setup(struct dispc_device *dispc,
2768 			   enum omap_plane_id plane,
2769 			   const struct omap_overlay_info *oi,
2770 			   const struct videomode *vm, bool mem_to_mem,
2771 			   enum omap_channel channel)
2772 {
2773 	int r;
2774 	enum omap_overlay_caps caps = dispc->feat->overlay_caps[plane];
2775 	const bool replication = true;
2776 
2777 	DSSDBG("dispc_ovl_setup %d, pa %pad, pa_uv %pad, sw %d, %d,%d, %dx%d ->"
2778 		" %dx%d, cmode %x, rot %d, chan %d repl %d\n",
2779 		plane, &oi->paddr, &oi->p_uv_addr, oi->screen_width, oi->pos_x,
2780 		oi->pos_y, oi->width, oi->height, oi->out_width, oi->out_height,
2781 		oi->fourcc, oi->rotation, channel, replication);
2782 
2783 	dispc_ovl_set_channel_out(dispc, plane, channel);
2784 
2785 	r = dispc_ovl_setup_common(dispc, plane, caps, oi->paddr, oi->p_uv_addr,
2786 		oi->screen_width, oi->pos_x, oi->pos_y, oi->width, oi->height,
2787 		oi->out_width, oi->out_height, oi->fourcc, oi->rotation,
2788 		oi->zorder, oi->pre_mult_alpha, oi->global_alpha,
2789 		oi->rotation_type, replication, vm, mem_to_mem);
2790 
2791 	return r;
2792 }
2793 
2794 static int dispc_wb_setup(struct dispc_device *dispc,
2795 		   const struct omap_dss_writeback_info *wi,
2796 		   bool mem_to_mem, const struct videomode *vm,
2797 		   enum dss_writeback_channel channel_in)
2798 {
2799 	int r;
2800 	u32 l;
2801 	enum omap_plane_id plane = OMAP_DSS_WB;
2802 	const int pos_x = 0, pos_y = 0;
2803 	const u8 zorder = 0, global_alpha = 0;
2804 	const bool replication = true;
2805 	bool truncation;
2806 	int in_width = vm->hactive;
2807 	int in_height = vm->vactive;
2808 	enum omap_overlay_caps caps =
2809 		OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA;
2810 
2811 	if (vm->flags & DISPLAY_FLAGS_INTERLACED)
2812 		in_height /= 2;
2813 
2814 	DSSDBG("dispc_wb_setup, pa %x, pa_uv %x, %d,%d -> %dx%d, cmode %x, "
2815 		"rot %d\n", wi->paddr, wi->p_uv_addr, in_width,
2816 		in_height, wi->width, wi->height, wi->fourcc, wi->rotation);
2817 
2818 	r = dispc_ovl_setup_common(dispc, plane, caps, wi->paddr, wi->p_uv_addr,
2819 		wi->buf_width, pos_x, pos_y, in_width, in_height, wi->width,
2820 		wi->height, wi->fourcc, wi->rotation, zorder,
2821 		wi->pre_mult_alpha, global_alpha, wi->rotation_type,
2822 		replication, vm, mem_to_mem);
2823 	if (r)
2824 		return r;
2825 
2826 	switch (wi->fourcc) {
2827 	case DRM_FORMAT_RGB565:
2828 	case DRM_FORMAT_RGB888:
2829 	case DRM_FORMAT_ARGB4444:
2830 	case DRM_FORMAT_RGBA4444:
2831 	case DRM_FORMAT_RGBX4444:
2832 	case DRM_FORMAT_ARGB1555:
2833 	case DRM_FORMAT_XRGB1555:
2834 	case DRM_FORMAT_XRGB4444:
2835 		truncation = true;
2836 		break;
2837 	default:
2838 		truncation = false;
2839 		break;
2840 	}
2841 
2842 	/* setup extra DISPC_WB_ATTRIBUTES */
2843 	l = dispc_read_reg(dispc, DISPC_OVL_ATTRIBUTES(plane));
2844 	l = FLD_MOD(l, truncation, 10, 10);	/* TRUNCATIONENABLE */
2845 	l = FLD_MOD(l, channel_in, 18, 16);	/* CHANNELIN */
2846 	l = FLD_MOD(l, mem_to_mem, 19, 19);	/* WRITEBACKMODE */
2847 	if (mem_to_mem)
2848 		l = FLD_MOD(l, 1, 26, 24);	/* CAPTUREMODE */
2849 	else
2850 		l = FLD_MOD(l, 0, 26, 24);	/* CAPTUREMODE */
2851 	dispc_write_reg(dispc, DISPC_OVL_ATTRIBUTES(plane), l);
2852 
2853 	if (mem_to_mem) {
2854 		/* WBDELAYCOUNT */
2855 		REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES2(plane), 0, 7, 0);
2856 	} else {
2857 		u32 wbdelay;
2858 
2859 		if (channel_in == DSS_WB_TV_MGR)
2860 			wbdelay = vm->vsync_len + vm->vback_porch;
2861 		else
2862 			wbdelay = vm->vfront_porch + vm->vsync_len +
2863 				vm->vback_porch;
2864 
2865 		if (vm->flags & DISPLAY_FLAGS_INTERLACED)
2866 			wbdelay /= 2;
2867 
2868 		wbdelay = min(wbdelay, 255u);
2869 
2870 		/* WBDELAYCOUNT */
2871 		REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES2(plane), wbdelay, 7, 0);
2872 	}
2873 
2874 	return 0;
2875 }
2876 
2877 static bool dispc_has_writeback(struct dispc_device *dispc)
2878 {
2879 	return dispc->feat->has_writeback;
2880 }
2881 
2882 static int dispc_ovl_enable(struct dispc_device *dispc,
2883 			    enum omap_plane_id plane, bool enable)
2884 {
2885 	DSSDBG("dispc_enable_plane %d, %d\n", plane, enable);
2886 
2887 	REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), enable ? 1 : 0, 0, 0);
2888 
2889 	return 0;
2890 }
2891 
2892 static void dispc_lcd_enable_signal_polarity(struct dispc_device *dispc,
2893 					     bool act_high)
2894 {
2895 	if (!dispc_has_feature(dispc, FEAT_LCDENABLEPOL))
2896 		return;
2897 
2898 	REG_FLD_MOD(dispc, DISPC_CONTROL, act_high ? 1 : 0, 29, 29);
2899 }
2900 
2901 void dispc_lcd_enable_signal(struct dispc_device *dispc, bool enable)
2902 {
2903 	if (!dispc_has_feature(dispc, FEAT_LCDENABLESIGNAL))
2904 		return;
2905 
2906 	REG_FLD_MOD(dispc, DISPC_CONTROL, enable ? 1 : 0, 28, 28);
2907 }
2908 
2909 void dispc_pck_free_enable(struct dispc_device *dispc, bool enable)
2910 {
2911 	if (!dispc_has_feature(dispc, FEAT_PCKFREEENABLE))
2912 		return;
2913 
2914 	REG_FLD_MOD(dispc, DISPC_CONTROL, enable ? 1 : 0, 27, 27);
2915 }
2916 
2917 static void dispc_mgr_enable_fifohandcheck(struct dispc_device *dispc,
2918 					   enum omap_channel channel,
2919 					   bool enable)
2920 {
2921 	mgr_fld_write(dispc, channel, DISPC_MGR_FLD_FIFOHANDCHECK, enable);
2922 }
2923 
2924 
2925 static void dispc_mgr_set_lcd_type_tft(struct dispc_device *dispc,
2926 				       enum omap_channel channel)
2927 {
2928 	mgr_fld_write(dispc, channel, DISPC_MGR_FLD_STNTFT, 1);
2929 }
2930 
2931 static void dispc_set_loadmode(struct dispc_device *dispc,
2932 			       enum omap_dss_load_mode mode)
2933 {
2934 	REG_FLD_MOD(dispc, DISPC_CONFIG, mode, 2, 1);
2935 }
2936 
2937 
2938 static void dispc_mgr_set_default_color(struct dispc_device *dispc,
2939 					enum omap_channel channel, u32 color)
2940 {
2941 	dispc_write_reg(dispc, DISPC_DEFAULT_COLOR(channel), color);
2942 }
2943 
2944 static void dispc_mgr_set_trans_key(struct dispc_device *dispc,
2945 				    enum omap_channel ch,
2946 				    enum omap_dss_trans_key_type type,
2947 				    u32 trans_key)
2948 {
2949 	mgr_fld_write(dispc, ch, DISPC_MGR_FLD_TCKSELECTION, type);
2950 
2951 	dispc_write_reg(dispc, DISPC_TRANS_COLOR(ch), trans_key);
2952 }
2953 
2954 static void dispc_mgr_enable_trans_key(struct dispc_device *dispc,
2955 				       enum omap_channel ch, bool enable)
2956 {
2957 	mgr_fld_write(dispc, ch, DISPC_MGR_FLD_TCKENABLE, enable);
2958 }
2959 
2960 static void dispc_mgr_enable_alpha_fixed_zorder(struct dispc_device *dispc,
2961 						enum omap_channel ch,
2962 						bool enable)
2963 {
2964 	if (!dispc_has_feature(dispc, FEAT_ALPHA_FIXED_ZORDER))
2965 		return;
2966 
2967 	if (ch == OMAP_DSS_CHANNEL_LCD)
2968 		REG_FLD_MOD(dispc, DISPC_CONFIG, enable, 18, 18);
2969 	else if (ch == OMAP_DSS_CHANNEL_DIGIT)
2970 		REG_FLD_MOD(dispc, DISPC_CONFIG, enable, 19, 19);
2971 }
2972 
2973 static void dispc_mgr_setup(struct dispc_device *dispc,
2974 			    enum omap_channel channel,
2975 			    const struct omap_overlay_manager_info *info)
2976 {
2977 	dispc_mgr_set_default_color(dispc, channel, info->default_color);
2978 	dispc_mgr_set_trans_key(dispc, channel, info->trans_key_type,
2979 				info->trans_key);
2980 	dispc_mgr_enable_trans_key(dispc, channel, info->trans_enabled);
2981 	dispc_mgr_enable_alpha_fixed_zorder(dispc, channel,
2982 			info->partial_alpha_enabled);
2983 	if (dispc_has_feature(dispc, FEAT_CPR)) {
2984 		dispc_mgr_enable_cpr(dispc, channel, info->cpr_enable);
2985 		dispc_mgr_set_cpr_coef(dispc, channel, &info->cpr_coefs);
2986 	}
2987 }
2988 
2989 static void dispc_mgr_set_tft_data_lines(struct dispc_device *dispc,
2990 					 enum omap_channel channel,
2991 					 u8 data_lines)
2992 {
2993 	int code;
2994 
2995 	switch (data_lines) {
2996 	case 12:
2997 		code = 0;
2998 		break;
2999 	case 16:
3000 		code = 1;
3001 		break;
3002 	case 18:
3003 		code = 2;
3004 		break;
3005 	case 24:
3006 		code = 3;
3007 		break;
3008 	default:
3009 		BUG();
3010 		return;
3011 	}
3012 
3013 	mgr_fld_write(dispc, channel, DISPC_MGR_FLD_TFTDATALINES, code);
3014 }
3015 
3016 static void dispc_mgr_set_io_pad_mode(struct dispc_device *dispc,
3017 				      enum dss_io_pad_mode mode)
3018 {
3019 	u32 l;
3020 	int gpout0, gpout1;
3021 
3022 	switch (mode) {
3023 	case DSS_IO_PAD_MODE_RESET:
3024 		gpout0 = 0;
3025 		gpout1 = 0;
3026 		break;
3027 	case DSS_IO_PAD_MODE_RFBI:
3028 		gpout0 = 1;
3029 		gpout1 = 0;
3030 		break;
3031 	case DSS_IO_PAD_MODE_BYPASS:
3032 		gpout0 = 1;
3033 		gpout1 = 1;
3034 		break;
3035 	default:
3036 		BUG();
3037 		return;
3038 	}
3039 
3040 	l = dispc_read_reg(dispc, DISPC_CONTROL);
3041 	l = FLD_MOD(l, gpout0, 15, 15);
3042 	l = FLD_MOD(l, gpout1, 16, 16);
3043 	dispc_write_reg(dispc, DISPC_CONTROL, l);
3044 }
3045 
3046 static void dispc_mgr_enable_stallmode(struct dispc_device *dispc,
3047 				       enum omap_channel channel, bool enable)
3048 {
3049 	mgr_fld_write(dispc, channel, DISPC_MGR_FLD_STALLMODE, enable);
3050 }
3051 
3052 static void dispc_mgr_set_lcd_config(struct dispc_device *dispc,
3053 				     enum omap_channel channel,
3054 				     const struct dss_lcd_mgr_config *config)
3055 {
3056 	dispc_mgr_set_io_pad_mode(dispc, config->io_pad_mode);
3057 
3058 	dispc_mgr_enable_stallmode(dispc, channel, config->stallmode);
3059 	dispc_mgr_enable_fifohandcheck(dispc, channel, config->fifohandcheck);
3060 
3061 	dispc_mgr_set_clock_div(dispc, channel, &config->clock_info);
3062 
3063 	dispc_mgr_set_tft_data_lines(dispc, channel, config->video_port_width);
3064 
3065 	dispc_lcd_enable_signal_polarity(dispc, config->lcden_sig_polarity);
3066 
3067 	dispc_mgr_set_lcd_type_tft(dispc, channel);
3068 }
3069 
3070 static bool _dispc_mgr_size_ok(struct dispc_device *dispc,
3071 			       u16 width, u16 height)
3072 {
3073 	return width <= dispc->feat->mgr_width_max &&
3074 		height <= dispc->feat->mgr_height_max;
3075 }
3076 
3077 static bool _dispc_lcd_timings_ok(struct dispc_device *dispc,
3078 				  int hsync_len, int hfp, int hbp,
3079 				  int vsw, int vfp, int vbp)
3080 {
3081 	if (hsync_len < 1 || hsync_len > dispc->feat->sw_max ||
3082 	    hfp < 1 || hfp > dispc->feat->hp_max ||
3083 	    hbp < 1 || hbp > dispc->feat->hp_max ||
3084 	    vsw < 1 || vsw > dispc->feat->sw_max ||
3085 	    vfp < 0 || vfp > dispc->feat->vp_max ||
3086 	    vbp < 0 || vbp > dispc->feat->vp_max)
3087 		return false;
3088 	return true;
3089 }
3090 
3091 static bool _dispc_mgr_pclk_ok(struct dispc_device *dispc,
3092 			       enum omap_channel channel,
3093 			       unsigned long pclk)
3094 {
3095 	if (dss_mgr_is_lcd(channel))
3096 		return pclk <= dispc->feat->max_lcd_pclk;
3097 	else
3098 		return pclk <= dispc->feat->max_tv_pclk;
3099 }
3100 
3101 static int dispc_mgr_check_timings(struct dispc_device *dispc,
3102 				   enum omap_channel channel,
3103 				   const struct videomode *vm)
3104 {
3105 	if (!_dispc_mgr_size_ok(dispc, vm->hactive, vm->vactive))
3106 		return MODE_BAD;
3107 
3108 	if (!_dispc_mgr_pclk_ok(dispc, channel, vm->pixelclock))
3109 		return MODE_BAD;
3110 
3111 	if (dss_mgr_is_lcd(channel)) {
3112 		/* TODO: OMAP4+ supports interlace for LCD outputs */
3113 		if (vm->flags & DISPLAY_FLAGS_INTERLACED)
3114 			return MODE_BAD;
3115 
3116 		if (!_dispc_lcd_timings_ok(dispc, vm->hsync_len,
3117 				vm->hfront_porch, vm->hback_porch,
3118 				vm->vsync_len, vm->vfront_porch,
3119 				vm->vback_porch))
3120 			return MODE_BAD;
3121 	}
3122 
3123 	return MODE_OK;
3124 }
3125 
3126 static void _dispc_mgr_set_lcd_timings(struct dispc_device *dispc,
3127 				       enum omap_channel channel,
3128 				       const struct videomode *vm)
3129 {
3130 	u32 timing_h, timing_v, l;
3131 	bool onoff, rf, ipc, vs, hs, de;
3132 
3133 	timing_h = FLD_VAL(vm->hsync_len - 1, dispc->feat->sw_start, 0) |
3134 		   FLD_VAL(vm->hfront_porch - 1, dispc->feat->fp_start, 8) |
3135 		   FLD_VAL(vm->hback_porch - 1, dispc->feat->bp_start, 20);
3136 	timing_v = FLD_VAL(vm->vsync_len - 1, dispc->feat->sw_start, 0) |
3137 		   FLD_VAL(vm->vfront_porch, dispc->feat->fp_start, 8) |
3138 		   FLD_VAL(vm->vback_porch, dispc->feat->bp_start, 20);
3139 
3140 	dispc_write_reg(dispc, DISPC_TIMING_H(channel), timing_h);
3141 	dispc_write_reg(dispc, DISPC_TIMING_V(channel), timing_v);
3142 
3143 	vs = !!(vm->flags & DISPLAY_FLAGS_VSYNC_LOW);
3144 	hs = !!(vm->flags & DISPLAY_FLAGS_HSYNC_LOW);
3145 	de = !!(vm->flags & DISPLAY_FLAGS_DE_LOW);
3146 	ipc = !!(vm->flags & DISPLAY_FLAGS_PIXDATA_NEGEDGE);
3147 	onoff = true; /* always use the 'rf' setting */
3148 	rf = !!(vm->flags & DISPLAY_FLAGS_SYNC_POSEDGE);
3149 
3150 	l = FLD_VAL(onoff, 17, 17) |
3151 		FLD_VAL(rf, 16, 16) |
3152 		FLD_VAL(de, 15, 15) |
3153 		FLD_VAL(ipc, 14, 14) |
3154 		FLD_VAL(hs, 13, 13) |
3155 		FLD_VAL(vs, 12, 12);
3156 
3157 	/* always set ALIGN bit when available */
3158 	if (dispc->feat->supports_sync_align)
3159 		l |= (1 << 18);
3160 
3161 	dispc_write_reg(dispc, DISPC_POL_FREQ(channel), l);
3162 
3163 	if (dispc->syscon_pol) {
3164 		const int shifts[] = {
3165 			[OMAP_DSS_CHANNEL_LCD] = 0,
3166 			[OMAP_DSS_CHANNEL_LCD2] = 1,
3167 			[OMAP_DSS_CHANNEL_LCD3] = 2,
3168 		};
3169 
3170 		u32 mask, val;
3171 
3172 		mask = (1 << 0) | (1 << 3) | (1 << 6);
3173 		val = (rf << 0) | (ipc << 3) | (onoff << 6);
3174 
3175 		mask <<= 16 + shifts[channel];
3176 		val <<= 16 + shifts[channel];
3177 
3178 		regmap_update_bits(dispc->syscon_pol, dispc->syscon_pol_offset,
3179 				   mask, val);
3180 	}
3181 }
3182 
3183 static int vm_flag_to_int(enum display_flags flags, enum display_flags high,
3184 	enum display_flags low)
3185 {
3186 	if (flags & high)
3187 		return 1;
3188 	if (flags & low)
3189 		return -1;
3190 	return 0;
3191 }
3192 
3193 /* change name to mode? */
3194 static void dispc_mgr_set_timings(struct dispc_device *dispc,
3195 				  enum omap_channel channel,
3196 				  const struct videomode *vm)
3197 {
3198 	unsigned int xtot, ytot;
3199 	unsigned long ht, vt;
3200 	struct videomode t = *vm;
3201 
3202 	DSSDBG("channel %d xres %u yres %u\n", channel, t.hactive, t.vactive);
3203 
3204 	if (dispc_mgr_check_timings(dispc, channel, &t)) {
3205 		BUG();
3206 		return;
3207 	}
3208 
3209 	if (dss_mgr_is_lcd(channel)) {
3210 		_dispc_mgr_set_lcd_timings(dispc, channel, &t);
3211 
3212 		xtot = t.hactive + t.hfront_porch + t.hsync_len + t.hback_porch;
3213 		ytot = t.vactive + t.vfront_porch + t.vsync_len + t.vback_porch;
3214 
3215 		ht = vm->pixelclock / xtot;
3216 		vt = vm->pixelclock / xtot / ytot;
3217 
3218 		DSSDBG("pck %lu\n", vm->pixelclock);
3219 		DSSDBG("hsync_len %d hfp %d hbp %d vsw %d vfp %d vbp %d\n",
3220 			t.hsync_len, t.hfront_porch, t.hback_porch,
3221 			t.vsync_len, t.vfront_porch, t.vback_porch);
3222 		DSSDBG("vsync_level %d hsync_level %d data_pclk_edge %d de_level %d sync_pclk_edge %d\n",
3223 			vm_flag_to_int(t.flags, DISPLAY_FLAGS_VSYNC_HIGH, DISPLAY_FLAGS_VSYNC_LOW),
3224 			vm_flag_to_int(t.flags, DISPLAY_FLAGS_HSYNC_HIGH, DISPLAY_FLAGS_HSYNC_LOW),
3225 			vm_flag_to_int(t.flags, DISPLAY_FLAGS_PIXDATA_POSEDGE, DISPLAY_FLAGS_PIXDATA_NEGEDGE),
3226 			vm_flag_to_int(t.flags, DISPLAY_FLAGS_DE_HIGH, DISPLAY_FLAGS_DE_LOW),
3227 			vm_flag_to_int(t.flags, DISPLAY_FLAGS_SYNC_POSEDGE, DISPLAY_FLAGS_SYNC_NEGEDGE));
3228 
3229 		DSSDBG("hsync %luHz, vsync %luHz\n", ht, vt);
3230 	} else {
3231 		if (t.flags & DISPLAY_FLAGS_INTERLACED)
3232 			t.vactive /= 2;
3233 
3234 		if (dispc->feat->supports_double_pixel)
3235 			REG_FLD_MOD(dispc, DISPC_CONTROL,
3236 				    !!(t.flags & DISPLAY_FLAGS_DOUBLECLK),
3237 				    19, 17);
3238 	}
3239 
3240 	dispc_mgr_set_size(dispc, channel, t.hactive, t.vactive);
3241 }
3242 
3243 static void dispc_mgr_set_lcd_divisor(struct dispc_device *dispc,
3244 				      enum omap_channel channel, u16 lck_div,
3245 				      u16 pck_div)
3246 {
3247 	BUG_ON(lck_div < 1);
3248 	BUG_ON(pck_div < 1);
3249 
3250 	dispc_write_reg(dispc, DISPC_DIVISORo(channel),
3251 			FLD_VAL(lck_div, 23, 16) | FLD_VAL(pck_div, 7, 0));
3252 
3253 	if (!dispc_has_feature(dispc, FEAT_CORE_CLK_DIV) &&
3254 			channel == OMAP_DSS_CHANNEL_LCD)
3255 		dispc->core_clk_rate = dispc_fclk_rate(dispc) / lck_div;
3256 }
3257 
3258 static void dispc_mgr_get_lcd_divisor(struct dispc_device *dispc,
3259 				      enum omap_channel channel, int *lck_div,
3260 				      int *pck_div)
3261 {
3262 	u32 l;
3263 	l = dispc_read_reg(dispc, DISPC_DIVISORo(channel));
3264 	*lck_div = FLD_GET(l, 23, 16);
3265 	*pck_div = FLD_GET(l, 7, 0);
3266 }
3267 
3268 static unsigned long dispc_fclk_rate(struct dispc_device *dispc)
3269 {
3270 	unsigned long r;
3271 	enum dss_clk_source src;
3272 
3273 	src = dss_get_dispc_clk_source(dispc->dss);
3274 
3275 	if (src == DSS_CLK_SRC_FCK) {
3276 		r = dss_get_dispc_clk_rate(dispc->dss);
3277 	} else {
3278 		struct dss_pll *pll;
3279 		unsigned int clkout_idx;
3280 
3281 		pll = dss_pll_find_by_src(dispc->dss, src);
3282 		clkout_idx = dss_pll_get_clkout_idx_for_src(src);
3283 
3284 		r = pll->cinfo.clkout[clkout_idx];
3285 	}
3286 
3287 	return r;
3288 }
3289 
3290 static unsigned long dispc_mgr_lclk_rate(struct dispc_device *dispc,
3291 					 enum omap_channel channel)
3292 {
3293 	int lcd;
3294 	unsigned long r;
3295 	enum dss_clk_source src;
3296 
3297 	/* for TV, LCLK rate is the FCLK rate */
3298 	if (!dss_mgr_is_lcd(channel))
3299 		return dispc_fclk_rate(dispc);
3300 
3301 	src = dss_get_lcd_clk_source(dispc->dss, channel);
3302 
3303 	if (src == DSS_CLK_SRC_FCK) {
3304 		r = dss_get_dispc_clk_rate(dispc->dss);
3305 	} else {
3306 		struct dss_pll *pll;
3307 		unsigned int clkout_idx;
3308 
3309 		pll = dss_pll_find_by_src(dispc->dss, src);
3310 		clkout_idx = dss_pll_get_clkout_idx_for_src(src);
3311 
3312 		r = pll->cinfo.clkout[clkout_idx];
3313 	}
3314 
3315 	lcd = REG_GET(dispc, DISPC_DIVISORo(channel), 23, 16);
3316 
3317 	return r / lcd;
3318 }
3319 
3320 static unsigned long dispc_mgr_pclk_rate(struct dispc_device *dispc,
3321 					 enum omap_channel channel)
3322 {
3323 	unsigned long r;
3324 
3325 	if (dss_mgr_is_lcd(channel)) {
3326 		int pcd;
3327 		u32 l;
3328 
3329 		l = dispc_read_reg(dispc, DISPC_DIVISORo(channel));
3330 
3331 		pcd = FLD_GET(l, 7, 0);
3332 
3333 		r = dispc_mgr_lclk_rate(dispc, channel);
3334 
3335 		return r / pcd;
3336 	} else {
3337 		return dispc->tv_pclk_rate;
3338 	}
3339 }
3340 
3341 void dispc_set_tv_pclk(struct dispc_device *dispc, unsigned long pclk)
3342 {
3343 	dispc->tv_pclk_rate = pclk;
3344 }
3345 
3346 static unsigned long dispc_core_clk_rate(struct dispc_device *dispc)
3347 {
3348 	return dispc->core_clk_rate;
3349 }
3350 
3351 static unsigned long dispc_plane_pclk_rate(struct dispc_device *dispc,
3352 					   enum omap_plane_id plane)
3353 {
3354 	enum omap_channel channel;
3355 
3356 	if (plane == OMAP_DSS_WB)
3357 		return 0;
3358 
3359 	channel = dispc_ovl_get_channel_out(dispc, plane);
3360 
3361 	return dispc_mgr_pclk_rate(dispc, channel);
3362 }
3363 
3364 static unsigned long dispc_plane_lclk_rate(struct dispc_device *dispc,
3365 					   enum omap_plane_id plane)
3366 {
3367 	enum omap_channel channel;
3368 
3369 	if (plane == OMAP_DSS_WB)
3370 		return 0;
3371 
3372 	channel	= dispc_ovl_get_channel_out(dispc, plane);
3373 
3374 	return dispc_mgr_lclk_rate(dispc, channel);
3375 }
3376 
3377 static void dispc_dump_clocks_channel(struct dispc_device *dispc,
3378 				      struct seq_file *s,
3379 				      enum omap_channel channel)
3380 {
3381 	int lcd, pcd;
3382 	enum dss_clk_source lcd_clk_src;
3383 
3384 	seq_printf(s, "- %s -\n", mgr_desc[channel].name);
3385 
3386 	lcd_clk_src = dss_get_lcd_clk_source(dispc->dss, channel);
3387 
3388 	seq_printf(s, "%s clk source = %s\n", mgr_desc[channel].name,
3389 		dss_get_clk_source_name(lcd_clk_src));
3390 
3391 	dispc_mgr_get_lcd_divisor(dispc, channel, &lcd, &pcd);
3392 
3393 	seq_printf(s, "lck\t\t%-16lulck div\t%u\n",
3394 		dispc_mgr_lclk_rate(dispc, channel), lcd);
3395 	seq_printf(s, "pck\t\t%-16lupck div\t%u\n",
3396 		dispc_mgr_pclk_rate(dispc, channel), pcd);
3397 }
3398 
3399 void dispc_dump_clocks(struct dispc_device *dispc, struct seq_file *s)
3400 {
3401 	enum dss_clk_source dispc_clk_src;
3402 	int lcd;
3403 	u32 l;
3404 
3405 	if (dispc_runtime_get(dispc))
3406 		return;
3407 
3408 	seq_printf(s, "- DISPC -\n");
3409 
3410 	dispc_clk_src = dss_get_dispc_clk_source(dispc->dss);
3411 	seq_printf(s, "dispc fclk source = %s\n",
3412 			dss_get_clk_source_name(dispc_clk_src));
3413 
3414 	seq_printf(s, "fck\t\t%-16lu\n", dispc_fclk_rate(dispc));
3415 
3416 	if (dispc_has_feature(dispc, FEAT_CORE_CLK_DIV)) {
3417 		seq_printf(s, "- DISPC-CORE-CLK -\n");
3418 		l = dispc_read_reg(dispc, DISPC_DIVISOR);
3419 		lcd = FLD_GET(l, 23, 16);
3420 
3421 		seq_printf(s, "lck\t\t%-16lulck div\t%u\n",
3422 				(dispc_fclk_rate(dispc)/lcd), lcd);
3423 	}
3424 
3425 	dispc_dump_clocks_channel(dispc, s, OMAP_DSS_CHANNEL_LCD);
3426 
3427 	if (dispc_has_feature(dispc, FEAT_MGR_LCD2))
3428 		dispc_dump_clocks_channel(dispc, s, OMAP_DSS_CHANNEL_LCD2);
3429 	if (dispc_has_feature(dispc, FEAT_MGR_LCD3))
3430 		dispc_dump_clocks_channel(dispc, s, OMAP_DSS_CHANNEL_LCD3);
3431 
3432 	dispc_runtime_put(dispc);
3433 }
3434 
3435 static int dispc_dump_regs(struct seq_file *s, void *p)
3436 {
3437 	struct dispc_device *dispc = s->private;
3438 	int i, j;
3439 	const char *mgr_names[] = {
3440 		[OMAP_DSS_CHANNEL_LCD]		= "LCD",
3441 		[OMAP_DSS_CHANNEL_DIGIT]	= "TV",
3442 		[OMAP_DSS_CHANNEL_LCD2]		= "LCD2",
3443 		[OMAP_DSS_CHANNEL_LCD3]		= "LCD3",
3444 	};
3445 	const char *ovl_names[] = {
3446 		[OMAP_DSS_GFX]		= "GFX",
3447 		[OMAP_DSS_VIDEO1]	= "VID1",
3448 		[OMAP_DSS_VIDEO2]	= "VID2",
3449 		[OMAP_DSS_VIDEO3]	= "VID3",
3450 		[OMAP_DSS_WB]		= "WB",
3451 	};
3452 	const char **p_names;
3453 
3454 #define DUMPREG(dispc, r) \
3455 	seq_printf(s, "%-50s %08x\n", #r, dispc_read_reg(dispc, r))
3456 
3457 	if (dispc_runtime_get(dispc))
3458 		return 0;
3459 
3460 	/* DISPC common registers */
3461 	DUMPREG(dispc, DISPC_REVISION);
3462 	DUMPREG(dispc, DISPC_SYSCONFIG);
3463 	DUMPREG(dispc, DISPC_SYSSTATUS);
3464 	DUMPREG(dispc, DISPC_IRQSTATUS);
3465 	DUMPREG(dispc, DISPC_IRQENABLE);
3466 	DUMPREG(dispc, DISPC_CONTROL);
3467 	DUMPREG(dispc, DISPC_CONFIG);
3468 	DUMPREG(dispc, DISPC_CAPABLE);
3469 	DUMPREG(dispc, DISPC_LINE_STATUS);
3470 	DUMPREG(dispc, DISPC_LINE_NUMBER);
3471 	if (dispc_has_feature(dispc, FEAT_ALPHA_FIXED_ZORDER) ||
3472 			dispc_has_feature(dispc, FEAT_ALPHA_FREE_ZORDER))
3473 		DUMPREG(dispc, DISPC_GLOBAL_ALPHA);
3474 	if (dispc_has_feature(dispc, FEAT_MGR_LCD2)) {
3475 		DUMPREG(dispc, DISPC_CONTROL2);
3476 		DUMPREG(dispc, DISPC_CONFIG2);
3477 	}
3478 	if (dispc_has_feature(dispc, FEAT_MGR_LCD3)) {
3479 		DUMPREG(dispc, DISPC_CONTROL3);
3480 		DUMPREG(dispc, DISPC_CONFIG3);
3481 	}
3482 	if (dispc_has_feature(dispc, FEAT_MFLAG))
3483 		DUMPREG(dispc, DISPC_GLOBAL_MFLAG_ATTRIBUTE);
3484 
3485 #undef DUMPREG
3486 
3487 #define DISPC_REG(i, name) name(i)
3488 #define DUMPREG(dispc, i, r) seq_printf(s, "%s(%s)%*s %08x\n", #r, p_names[i], \
3489 	(int)(48 - strlen(#r) - strlen(p_names[i])), " ", \
3490 	dispc_read_reg(dispc, DISPC_REG(i, r)))
3491 
3492 	p_names = mgr_names;
3493 
3494 	/* DISPC channel specific registers */
3495 	for (i = 0; i < dispc_get_num_mgrs(dispc); i++) {
3496 		DUMPREG(dispc, i, DISPC_DEFAULT_COLOR);
3497 		DUMPREG(dispc, i, DISPC_TRANS_COLOR);
3498 		DUMPREG(dispc, i, DISPC_SIZE_MGR);
3499 
3500 		if (i == OMAP_DSS_CHANNEL_DIGIT)
3501 			continue;
3502 
3503 		DUMPREG(dispc, i, DISPC_TIMING_H);
3504 		DUMPREG(dispc, i, DISPC_TIMING_V);
3505 		DUMPREG(dispc, i, DISPC_POL_FREQ);
3506 		DUMPREG(dispc, i, DISPC_DIVISORo);
3507 
3508 		DUMPREG(dispc, i, DISPC_DATA_CYCLE1);
3509 		DUMPREG(dispc, i, DISPC_DATA_CYCLE2);
3510 		DUMPREG(dispc, i, DISPC_DATA_CYCLE3);
3511 
3512 		if (dispc_has_feature(dispc, FEAT_CPR)) {
3513 			DUMPREG(dispc, i, DISPC_CPR_COEF_R);
3514 			DUMPREG(dispc, i, DISPC_CPR_COEF_G);
3515 			DUMPREG(dispc, i, DISPC_CPR_COEF_B);
3516 		}
3517 	}
3518 
3519 	p_names = ovl_names;
3520 
3521 	for (i = 0; i < dispc_get_num_ovls(dispc); i++) {
3522 		DUMPREG(dispc, i, DISPC_OVL_BA0);
3523 		DUMPREG(dispc, i, DISPC_OVL_BA1);
3524 		DUMPREG(dispc, i, DISPC_OVL_POSITION);
3525 		DUMPREG(dispc, i, DISPC_OVL_SIZE);
3526 		DUMPREG(dispc, i, DISPC_OVL_ATTRIBUTES);
3527 		DUMPREG(dispc, i, DISPC_OVL_FIFO_THRESHOLD);
3528 		DUMPREG(dispc, i, DISPC_OVL_FIFO_SIZE_STATUS);
3529 		DUMPREG(dispc, i, DISPC_OVL_ROW_INC);
3530 		DUMPREG(dispc, i, DISPC_OVL_PIXEL_INC);
3531 
3532 		if (dispc_has_feature(dispc, FEAT_PRELOAD))
3533 			DUMPREG(dispc, i, DISPC_OVL_PRELOAD);
3534 		if (dispc_has_feature(dispc, FEAT_MFLAG))
3535 			DUMPREG(dispc, i, DISPC_OVL_MFLAG_THRESHOLD);
3536 
3537 		if (i == OMAP_DSS_GFX) {
3538 			DUMPREG(dispc, i, DISPC_OVL_WINDOW_SKIP);
3539 			DUMPREG(dispc, i, DISPC_OVL_TABLE_BA);
3540 			continue;
3541 		}
3542 
3543 		DUMPREG(dispc, i, DISPC_OVL_FIR);
3544 		DUMPREG(dispc, i, DISPC_OVL_PICTURE_SIZE);
3545 		DUMPREG(dispc, i, DISPC_OVL_ACCU0);
3546 		DUMPREG(dispc, i, DISPC_OVL_ACCU1);
3547 		if (dispc_has_feature(dispc, FEAT_HANDLE_UV_SEPARATE)) {
3548 			DUMPREG(dispc, i, DISPC_OVL_BA0_UV);
3549 			DUMPREG(dispc, i, DISPC_OVL_BA1_UV);
3550 			DUMPREG(dispc, i, DISPC_OVL_FIR2);
3551 			DUMPREG(dispc, i, DISPC_OVL_ACCU2_0);
3552 			DUMPREG(dispc, i, DISPC_OVL_ACCU2_1);
3553 		}
3554 		if (dispc_has_feature(dispc, FEAT_ATTR2))
3555 			DUMPREG(dispc, i, DISPC_OVL_ATTRIBUTES2);
3556 	}
3557 
3558 	if (dispc->feat->has_writeback) {
3559 		i = OMAP_DSS_WB;
3560 		DUMPREG(dispc, i, DISPC_OVL_BA0);
3561 		DUMPREG(dispc, i, DISPC_OVL_BA1);
3562 		DUMPREG(dispc, i, DISPC_OVL_SIZE);
3563 		DUMPREG(dispc, i, DISPC_OVL_ATTRIBUTES);
3564 		DUMPREG(dispc, i, DISPC_OVL_FIFO_THRESHOLD);
3565 		DUMPREG(dispc, i, DISPC_OVL_FIFO_SIZE_STATUS);
3566 		DUMPREG(dispc, i, DISPC_OVL_ROW_INC);
3567 		DUMPREG(dispc, i, DISPC_OVL_PIXEL_INC);
3568 
3569 		if (dispc_has_feature(dispc, FEAT_MFLAG))
3570 			DUMPREG(dispc, i, DISPC_OVL_MFLAG_THRESHOLD);
3571 
3572 		DUMPREG(dispc, i, DISPC_OVL_FIR);
3573 		DUMPREG(dispc, i, DISPC_OVL_PICTURE_SIZE);
3574 		DUMPREG(dispc, i, DISPC_OVL_ACCU0);
3575 		DUMPREG(dispc, i, DISPC_OVL_ACCU1);
3576 		if (dispc_has_feature(dispc, FEAT_HANDLE_UV_SEPARATE)) {
3577 			DUMPREG(dispc, i, DISPC_OVL_BA0_UV);
3578 			DUMPREG(dispc, i, DISPC_OVL_BA1_UV);
3579 			DUMPREG(dispc, i, DISPC_OVL_FIR2);
3580 			DUMPREG(dispc, i, DISPC_OVL_ACCU2_0);
3581 			DUMPREG(dispc, i, DISPC_OVL_ACCU2_1);
3582 		}
3583 		if (dispc_has_feature(dispc, FEAT_ATTR2))
3584 			DUMPREG(dispc, i, DISPC_OVL_ATTRIBUTES2);
3585 	}
3586 
3587 #undef DISPC_REG
3588 #undef DUMPREG
3589 
3590 #define DISPC_REG(plane, name, i) name(plane, i)
3591 #define DUMPREG(dispc, plane, name, i) \
3592 	seq_printf(s, "%s_%d(%s)%*s %08x\n", #name, i, p_names[plane], \
3593 	(int)(46 - strlen(#name) - strlen(p_names[plane])), " ", \
3594 	dispc_read_reg(dispc, DISPC_REG(plane, name, i)))
3595 
3596 	/* Video pipeline coefficient registers */
3597 
3598 	/* start from OMAP_DSS_VIDEO1 */
3599 	for (i = 1; i < dispc_get_num_ovls(dispc); i++) {
3600 		for (j = 0; j < 8; j++)
3601 			DUMPREG(dispc, i, DISPC_OVL_FIR_COEF_H, j);
3602 
3603 		for (j = 0; j < 8; j++)
3604 			DUMPREG(dispc, i, DISPC_OVL_FIR_COEF_HV, j);
3605 
3606 		for (j = 0; j < 5; j++)
3607 			DUMPREG(dispc, i, DISPC_OVL_CONV_COEF, j);
3608 
3609 		if (dispc_has_feature(dispc, FEAT_FIR_COEF_V)) {
3610 			for (j = 0; j < 8; j++)
3611 				DUMPREG(dispc, i, DISPC_OVL_FIR_COEF_V, j);
3612 		}
3613 
3614 		if (dispc_has_feature(dispc, FEAT_HANDLE_UV_SEPARATE)) {
3615 			for (j = 0; j < 8; j++)
3616 				DUMPREG(dispc, i, DISPC_OVL_FIR_COEF_H2, j);
3617 
3618 			for (j = 0; j < 8; j++)
3619 				DUMPREG(dispc, i, DISPC_OVL_FIR_COEF_HV2, j);
3620 
3621 			for (j = 0; j < 8; j++)
3622 				DUMPREG(dispc, i, DISPC_OVL_FIR_COEF_V2, j);
3623 		}
3624 	}
3625 
3626 	dispc_runtime_put(dispc);
3627 
3628 #undef DISPC_REG
3629 #undef DUMPREG
3630 
3631 	return 0;
3632 }
3633 
3634 /* calculate clock rates using dividers in cinfo */
3635 int dispc_calc_clock_rates(struct dispc_device *dispc,
3636 			   unsigned long dispc_fclk_rate,
3637 			   struct dispc_clock_info *cinfo)
3638 {
3639 	if (cinfo->lck_div > 255 || cinfo->lck_div == 0)
3640 		return -EINVAL;
3641 	if (cinfo->pck_div < 1 || cinfo->pck_div > 255)
3642 		return -EINVAL;
3643 
3644 	cinfo->lck = dispc_fclk_rate / cinfo->lck_div;
3645 	cinfo->pck = cinfo->lck / cinfo->pck_div;
3646 
3647 	return 0;
3648 }
3649 
3650 bool dispc_div_calc(struct dispc_device *dispc, unsigned long dispc_freq,
3651 		    unsigned long pck_min, unsigned long pck_max,
3652 		    dispc_div_calc_func func, void *data)
3653 {
3654 	int lckd, lckd_start, lckd_stop;
3655 	int pckd, pckd_start, pckd_stop;
3656 	unsigned long pck, lck;
3657 	unsigned long lck_max;
3658 	unsigned long pckd_hw_min, pckd_hw_max;
3659 	unsigned int min_fck_per_pck;
3660 	unsigned long fck;
3661 
3662 #ifdef CONFIG_OMAP2_DSS_MIN_FCK_PER_PCK
3663 	min_fck_per_pck = CONFIG_OMAP2_DSS_MIN_FCK_PER_PCK;
3664 #else
3665 	min_fck_per_pck = 0;
3666 #endif
3667 
3668 	pckd_hw_min = dispc->feat->min_pcd;
3669 	pckd_hw_max = 255;
3670 
3671 	lck_max = dss_get_max_fck_rate(dispc->dss);
3672 
3673 	pck_min = pck_min ? pck_min : 1;
3674 	pck_max = pck_max ? pck_max : ULONG_MAX;
3675 
3676 	lckd_start = max(DIV_ROUND_UP(dispc_freq, lck_max), 1ul);
3677 	lckd_stop = min(dispc_freq / pck_min, 255ul);
3678 
3679 	for (lckd = lckd_start; lckd <= lckd_stop; ++lckd) {
3680 		lck = dispc_freq / lckd;
3681 
3682 		pckd_start = max(DIV_ROUND_UP(lck, pck_max), pckd_hw_min);
3683 		pckd_stop = min(lck / pck_min, pckd_hw_max);
3684 
3685 		for (pckd = pckd_start; pckd <= pckd_stop; ++pckd) {
3686 			pck = lck / pckd;
3687 
3688 			/*
3689 			 * For OMAP2/3 the DISPC fclk is the same as LCD's logic
3690 			 * clock, which means we're configuring DISPC fclk here
3691 			 * also. Thus we need to use the calculated lck. For
3692 			 * OMAP4+ the DISPC fclk is a separate clock.
3693 			 */
3694 			if (dispc_has_feature(dispc, FEAT_CORE_CLK_DIV))
3695 				fck = dispc_core_clk_rate(dispc);
3696 			else
3697 				fck = lck;
3698 
3699 			if (fck < pck * min_fck_per_pck)
3700 				continue;
3701 
3702 			if (func(lckd, pckd, lck, pck, data))
3703 				return true;
3704 		}
3705 	}
3706 
3707 	return false;
3708 }
3709 
3710 void dispc_mgr_set_clock_div(struct dispc_device *dispc,
3711 			     enum omap_channel channel,
3712 			     const struct dispc_clock_info *cinfo)
3713 {
3714 	DSSDBG("lck = %lu (%u)\n", cinfo->lck, cinfo->lck_div);
3715 	DSSDBG("pck = %lu (%u)\n", cinfo->pck, cinfo->pck_div);
3716 
3717 	dispc_mgr_set_lcd_divisor(dispc, channel, cinfo->lck_div,
3718 				  cinfo->pck_div);
3719 }
3720 
3721 int dispc_mgr_get_clock_div(struct dispc_device *dispc,
3722 			    enum omap_channel channel,
3723 			    struct dispc_clock_info *cinfo)
3724 {
3725 	unsigned long fck;
3726 
3727 	fck = dispc_fclk_rate(dispc);
3728 
3729 	cinfo->lck_div = REG_GET(dispc, DISPC_DIVISORo(channel), 23, 16);
3730 	cinfo->pck_div = REG_GET(dispc, DISPC_DIVISORo(channel), 7, 0);
3731 
3732 	cinfo->lck = fck / cinfo->lck_div;
3733 	cinfo->pck = cinfo->lck / cinfo->pck_div;
3734 
3735 	return 0;
3736 }
3737 
3738 static u32 dispc_read_irqstatus(struct dispc_device *dispc)
3739 {
3740 	return dispc_read_reg(dispc, DISPC_IRQSTATUS);
3741 }
3742 
3743 static void dispc_clear_irqstatus(struct dispc_device *dispc, u32 mask)
3744 {
3745 	dispc_write_reg(dispc, DISPC_IRQSTATUS, mask);
3746 }
3747 
3748 static void dispc_write_irqenable(struct dispc_device *dispc, u32 mask)
3749 {
3750 	u32 old_mask = dispc_read_reg(dispc, DISPC_IRQENABLE);
3751 
3752 	/* clear the irqstatus for newly enabled irqs */
3753 	dispc_clear_irqstatus(dispc, (mask ^ old_mask) & mask);
3754 
3755 	dispc_write_reg(dispc, DISPC_IRQENABLE, mask);
3756 
3757 	/* flush posted write */
3758 	dispc_read_reg(dispc, DISPC_IRQENABLE);
3759 }
3760 
3761 void dispc_enable_sidle(struct dispc_device *dispc)
3762 {
3763 	/* SIDLEMODE: smart idle */
3764 	REG_FLD_MOD(dispc, DISPC_SYSCONFIG, 2, 4, 3);
3765 }
3766 
3767 void dispc_disable_sidle(struct dispc_device *dispc)
3768 {
3769 	REG_FLD_MOD(dispc, DISPC_SYSCONFIG, 1, 4, 3);	/* SIDLEMODE: no idle */
3770 }
3771 
3772 static u32 dispc_mgr_gamma_size(struct dispc_device *dispc,
3773 				enum omap_channel channel)
3774 {
3775 	const struct dispc_gamma_desc *gdesc = &mgr_desc[channel].gamma;
3776 
3777 	if (!dispc->feat->has_gamma_table)
3778 		return 0;
3779 
3780 	return gdesc->len;
3781 }
3782 
3783 static void dispc_mgr_write_gamma_table(struct dispc_device *dispc,
3784 					enum omap_channel channel)
3785 {
3786 	const struct dispc_gamma_desc *gdesc = &mgr_desc[channel].gamma;
3787 	u32 *table = dispc->gamma_table[channel];
3788 	unsigned int i;
3789 
3790 	DSSDBG("%s: channel %d\n", __func__, channel);
3791 
3792 	for (i = 0; i < gdesc->len; ++i) {
3793 		u32 v = table[i];
3794 
3795 		if (gdesc->has_index)
3796 			v |= i << 24;
3797 		else if (i == 0)
3798 			v |= 1 << 31;
3799 
3800 		dispc_write_reg(dispc, gdesc->reg, v);
3801 	}
3802 }
3803 
3804 static void dispc_restore_gamma_tables(struct dispc_device *dispc)
3805 {
3806 	DSSDBG("%s()\n", __func__);
3807 
3808 	if (!dispc->feat->has_gamma_table)
3809 		return;
3810 
3811 	dispc_mgr_write_gamma_table(dispc, OMAP_DSS_CHANNEL_LCD);
3812 
3813 	dispc_mgr_write_gamma_table(dispc, OMAP_DSS_CHANNEL_DIGIT);
3814 
3815 	if (dispc_has_feature(dispc, FEAT_MGR_LCD2))
3816 		dispc_mgr_write_gamma_table(dispc, OMAP_DSS_CHANNEL_LCD2);
3817 
3818 	if (dispc_has_feature(dispc, FEAT_MGR_LCD3))
3819 		dispc_mgr_write_gamma_table(dispc, OMAP_DSS_CHANNEL_LCD3);
3820 }
3821 
3822 static const struct drm_color_lut dispc_mgr_gamma_default_lut[] = {
3823 	{ .red = 0, .green = 0, .blue = 0, },
3824 	{ .red = U16_MAX, .green = U16_MAX, .blue = U16_MAX, },
3825 };
3826 
3827 static void dispc_mgr_set_gamma(struct dispc_device *dispc,
3828 				enum omap_channel channel,
3829 				const struct drm_color_lut *lut,
3830 				unsigned int length)
3831 {
3832 	const struct dispc_gamma_desc *gdesc = &mgr_desc[channel].gamma;
3833 	u32 *table = dispc->gamma_table[channel];
3834 	uint i;
3835 
3836 	DSSDBG("%s: channel %d, lut len %u, hw len %u\n", __func__,
3837 	       channel, length, gdesc->len);
3838 
3839 	if (!dispc->feat->has_gamma_table)
3840 		return;
3841 
3842 	if (lut == NULL || length < 2) {
3843 		lut = dispc_mgr_gamma_default_lut;
3844 		length = ARRAY_SIZE(dispc_mgr_gamma_default_lut);
3845 	}
3846 
3847 	for (i = 0; i < length - 1; ++i) {
3848 		uint first = i * (gdesc->len - 1) / (length - 1);
3849 		uint last = (i + 1) * (gdesc->len - 1) / (length - 1);
3850 		uint w = last - first;
3851 		u16 r, g, b;
3852 		uint j;
3853 
3854 		if (w == 0)
3855 			continue;
3856 
3857 		for (j = 0; j <= w; j++) {
3858 			r = (lut[i].red * (w - j) + lut[i+1].red * j) / w;
3859 			g = (lut[i].green * (w - j) + lut[i+1].green * j) / w;
3860 			b = (lut[i].blue * (w - j) + lut[i+1].blue * j) / w;
3861 
3862 			r >>= 16 - gdesc->bits;
3863 			g >>= 16 - gdesc->bits;
3864 			b >>= 16 - gdesc->bits;
3865 
3866 			table[first + j] = (r << (gdesc->bits * 2)) |
3867 				(g << gdesc->bits) | b;
3868 		}
3869 	}
3870 
3871 	if (dispc->is_enabled)
3872 		dispc_mgr_write_gamma_table(dispc, channel);
3873 }
3874 
3875 static int dispc_init_gamma_tables(struct dispc_device *dispc)
3876 {
3877 	int channel;
3878 
3879 	if (!dispc->feat->has_gamma_table)
3880 		return 0;
3881 
3882 	for (channel = 0; channel < ARRAY_SIZE(dispc->gamma_table); channel++) {
3883 		const struct dispc_gamma_desc *gdesc = &mgr_desc[channel].gamma;
3884 		u32 *gt;
3885 
3886 		if (channel == OMAP_DSS_CHANNEL_LCD2 &&
3887 		    !dispc_has_feature(dispc, FEAT_MGR_LCD2))
3888 			continue;
3889 
3890 		if (channel == OMAP_DSS_CHANNEL_LCD3 &&
3891 		    !dispc_has_feature(dispc, FEAT_MGR_LCD3))
3892 			continue;
3893 
3894 		gt = devm_kmalloc_array(&dispc->pdev->dev, gdesc->len,
3895 					sizeof(u32), GFP_KERNEL);
3896 		if (!gt)
3897 			return -ENOMEM;
3898 
3899 		dispc->gamma_table[channel] = gt;
3900 
3901 		dispc_mgr_set_gamma(dispc, channel, NULL, 0);
3902 	}
3903 	return 0;
3904 }
3905 
3906 static void _omap_dispc_initial_config(struct dispc_device *dispc)
3907 {
3908 	u32 l;
3909 
3910 	/* Exclusively enable DISPC_CORE_CLK and set divider to 1 */
3911 	if (dispc_has_feature(dispc, FEAT_CORE_CLK_DIV)) {
3912 		l = dispc_read_reg(dispc, DISPC_DIVISOR);
3913 		/* Use DISPC_DIVISOR.LCD, instead of DISPC_DIVISOR1.LCD */
3914 		l = FLD_MOD(l, 1, 0, 0);
3915 		l = FLD_MOD(l, 1, 23, 16);
3916 		dispc_write_reg(dispc, DISPC_DIVISOR, l);
3917 
3918 		dispc->core_clk_rate = dispc_fclk_rate(dispc);
3919 	}
3920 
3921 	/* Use gamma table mode, instead of palette mode */
3922 	if (dispc->feat->has_gamma_table)
3923 		REG_FLD_MOD(dispc, DISPC_CONFIG, 1, 3, 3);
3924 
3925 	/* For older DSS versions (FEAT_FUNCGATED) this enables
3926 	 * func-clock auto-gating. For newer versions
3927 	 * (dispc->feat->has_gamma_table) this enables tv-out gamma tables.
3928 	 */
3929 	if (dispc_has_feature(dispc, FEAT_FUNCGATED) ||
3930 	    dispc->feat->has_gamma_table)
3931 		REG_FLD_MOD(dispc, DISPC_CONFIG, 1, 9, 9);
3932 
3933 	dispc_setup_color_conv_coef(dispc);
3934 
3935 	dispc_set_loadmode(dispc, OMAP_DSS_LOAD_FRAME_ONLY);
3936 
3937 	dispc_init_fifos(dispc);
3938 
3939 	dispc_configure_burst_sizes(dispc);
3940 
3941 	dispc_ovl_enable_zorder_planes(dispc);
3942 
3943 	if (dispc->feat->mstandby_workaround)
3944 		REG_FLD_MOD(dispc, DISPC_MSTANDBY_CTRL, 1, 0, 0);
3945 
3946 	if (dispc_has_feature(dispc, FEAT_MFLAG))
3947 		dispc_init_mflag(dispc);
3948 }
3949 
3950 static const enum dispc_feature_id omap2_dispc_features_list[] = {
3951 	FEAT_LCDENABLEPOL,
3952 	FEAT_LCDENABLESIGNAL,
3953 	FEAT_PCKFREEENABLE,
3954 	FEAT_FUNCGATED,
3955 	FEAT_ROWREPEATENABLE,
3956 	FEAT_RESIZECONF,
3957 };
3958 
3959 static const enum dispc_feature_id omap3_dispc_features_list[] = {
3960 	FEAT_LCDENABLEPOL,
3961 	FEAT_LCDENABLESIGNAL,
3962 	FEAT_PCKFREEENABLE,
3963 	FEAT_FUNCGATED,
3964 	FEAT_LINEBUFFERSPLIT,
3965 	FEAT_ROWREPEATENABLE,
3966 	FEAT_RESIZECONF,
3967 	FEAT_CPR,
3968 	FEAT_PRELOAD,
3969 	FEAT_FIR_COEF_V,
3970 	FEAT_ALPHA_FIXED_ZORDER,
3971 	FEAT_FIFO_MERGE,
3972 	FEAT_OMAP3_DSI_FIFO_BUG,
3973 };
3974 
3975 static const enum dispc_feature_id am43xx_dispc_features_list[] = {
3976 	FEAT_LCDENABLEPOL,
3977 	FEAT_LCDENABLESIGNAL,
3978 	FEAT_PCKFREEENABLE,
3979 	FEAT_FUNCGATED,
3980 	FEAT_LINEBUFFERSPLIT,
3981 	FEAT_ROWREPEATENABLE,
3982 	FEAT_RESIZECONF,
3983 	FEAT_CPR,
3984 	FEAT_PRELOAD,
3985 	FEAT_FIR_COEF_V,
3986 	FEAT_ALPHA_FIXED_ZORDER,
3987 	FEAT_FIFO_MERGE,
3988 };
3989 
3990 static const enum dispc_feature_id omap4_dispc_features_list[] = {
3991 	FEAT_MGR_LCD2,
3992 	FEAT_CORE_CLK_DIV,
3993 	FEAT_HANDLE_UV_SEPARATE,
3994 	FEAT_ATTR2,
3995 	FEAT_CPR,
3996 	FEAT_PRELOAD,
3997 	FEAT_FIR_COEF_V,
3998 	FEAT_ALPHA_FREE_ZORDER,
3999 	FEAT_FIFO_MERGE,
4000 	FEAT_BURST_2D,
4001 };
4002 
4003 static const enum dispc_feature_id omap5_dispc_features_list[] = {
4004 	FEAT_MGR_LCD2,
4005 	FEAT_MGR_LCD3,
4006 	FEAT_CORE_CLK_DIV,
4007 	FEAT_HANDLE_UV_SEPARATE,
4008 	FEAT_ATTR2,
4009 	FEAT_CPR,
4010 	FEAT_PRELOAD,
4011 	FEAT_FIR_COEF_V,
4012 	FEAT_ALPHA_FREE_ZORDER,
4013 	FEAT_FIFO_MERGE,
4014 	FEAT_BURST_2D,
4015 	FEAT_MFLAG,
4016 };
4017 
4018 static const struct dss_reg_field omap2_dispc_reg_fields[] = {
4019 	[FEAT_REG_FIRHINC]			= { 11, 0 },
4020 	[FEAT_REG_FIRVINC]			= { 27, 16 },
4021 	[FEAT_REG_FIFOLOWTHRESHOLD]		= { 8, 0 },
4022 	[FEAT_REG_FIFOHIGHTHRESHOLD]		= { 24, 16 },
4023 	[FEAT_REG_FIFOSIZE]			= { 8, 0 },
4024 	[FEAT_REG_HORIZONTALACCU]		= { 9, 0 },
4025 	[FEAT_REG_VERTICALACCU]			= { 25, 16 },
4026 };
4027 
4028 static const struct dss_reg_field omap3_dispc_reg_fields[] = {
4029 	[FEAT_REG_FIRHINC]			= { 12, 0 },
4030 	[FEAT_REG_FIRVINC]			= { 28, 16 },
4031 	[FEAT_REG_FIFOLOWTHRESHOLD]		= { 11, 0 },
4032 	[FEAT_REG_FIFOHIGHTHRESHOLD]		= { 27, 16 },
4033 	[FEAT_REG_FIFOSIZE]			= { 10, 0 },
4034 	[FEAT_REG_HORIZONTALACCU]		= { 9, 0 },
4035 	[FEAT_REG_VERTICALACCU]			= { 25, 16 },
4036 };
4037 
4038 static const struct dss_reg_field omap4_dispc_reg_fields[] = {
4039 	[FEAT_REG_FIRHINC]			= { 12, 0 },
4040 	[FEAT_REG_FIRVINC]			= { 28, 16 },
4041 	[FEAT_REG_FIFOLOWTHRESHOLD]		= { 15, 0 },
4042 	[FEAT_REG_FIFOHIGHTHRESHOLD]		= { 31, 16 },
4043 	[FEAT_REG_FIFOSIZE]			= { 15, 0 },
4044 	[FEAT_REG_HORIZONTALACCU]		= { 10, 0 },
4045 	[FEAT_REG_VERTICALACCU]			= { 26, 16 },
4046 };
4047 
4048 static const enum omap_overlay_caps omap2_dispc_overlay_caps[] = {
4049 	/* OMAP_DSS_GFX */
4050 	OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION,
4051 
4052 	/* OMAP_DSS_VIDEO1 */
4053 	OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_POS |
4054 		OMAP_DSS_OVL_CAP_REPLICATION,
4055 
4056 	/* OMAP_DSS_VIDEO2 */
4057 	OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_POS |
4058 		OMAP_DSS_OVL_CAP_REPLICATION,
4059 };
4060 
4061 static const enum omap_overlay_caps omap3430_dispc_overlay_caps[] = {
4062 	/* OMAP_DSS_GFX */
4063 	OMAP_DSS_OVL_CAP_GLOBAL_ALPHA | OMAP_DSS_OVL_CAP_POS |
4064 		OMAP_DSS_OVL_CAP_REPLICATION,
4065 
4066 	/* OMAP_DSS_VIDEO1 */
4067 	OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_POS |
4068 		OMAP_DSS_OVL_CAP_REPLICATION,
4069 
4070 	/* OMAP_DSS_VIDEO2 */
4071 	OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_GLOBAL_ALPHA |
4072 		OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION,
4073 };
4074 
4075 static const enum omap_overlay_caps omap3630_dispc_overlay_caps[] = {
4076 	/* OMAP_DSS_GFX */
4077 	OMAP_DSS_OVL_CAP_GLOBAL_ALPHA | OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA |
4078 		OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION,
4079 
4080 	/* OMAP_DSS_VIDEO1 */
4081 	OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_POS |
4082 		OMAP_DSS_OVL_CAP_REPLICATION,
4083 
4084 	/* OMAP_DSS_VIDEO2 */
4085 	OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_GLOBAL_ALPHA |
4086 		OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA | OMAP_DSS_OVL_CAP_POS |
4087 		OMAP_DSS_OVL_CAP_REPLICATION,
4088 };
4089 
4090 static const enum omap_overlay_caps omap4_dispc_overlay_caps[] = {
4091 	/* OMAP_DSS_GFX */
4092 	OMAP_DSS_OVL_CAP_GLOBAL_ALPHA | OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA |
4093 		OMAP_DSS_OVL_CAP_ZORDER | OMAP_DSS_OVL_CAP_POS |
4094 		OMAP_DSS_OVL_CAP_REPLICATION,
4095 
4096 	/* OMAP_DSS_VIDEO1 */
4097 	OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_GLOBAL_ALPHA |
4098 		OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA | OMAP_DSS_OVL_CAP_ZORDER |
4099 		OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION,
4100 
4101 	/* OMAP_DSS_VIDEO2 */
4102 	OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_GLOBAL_ALPHA |
4103 		OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA | OMAP_DSS_OVL_CAP_ZORDER |
4104 		OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION,
4105 
4106 	/* OMAP_DSS_VIDEO3 */
4107 	OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_GLOBAL_ALPHA |
4108 		OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA | OMAP_DSS_OVL_CAP_ZORDER |
4109 		OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION,
4110 };
4111 
4112 #define COLOR_ARRAY(arr...) (const u32[]) { arr, 0 }
4113 
4114 static const u32 *omap2_dispc_supported_color_modes[] = {
4115 
4116 	/* OMAP_DSS_GFX */
4117 	COLOR_ARRAY(
4118 	DRM_FORMAT_RGBX4444, DRM_FORMAT_RGB565,
4119 	DRM_FORMAT_XRGB8888, DRM_FORMAT_RGB888),
4120 
4121 	/* OMAP_DSS_VIDEO1 */
4122 	COLOR_ARRAY(
4123 	DRM_FORMAT_RGB565, DRM_FORMAT_XRGB8888,
4124 	DRM_FORMAT_RGB888, DRM_FORMAT_YUYV,
4125 	DRM_FORMAT_UYVY),
4126 
4127 	/* OMAP_DSS_VIDEO2 */
4128 	COLOR_ARRAY(
4129 	DRM_FORMAT_RGB565, DRM_FORMAT_XRGB8888,
4130 	DRM_FORMAT_RGB888, DRM_FORMAT_YUYV,
4131 	DRM_FORMAT_UYVY),
4132 };
4133 
4134 static const u32 *omap3_dispc_supported_color_modes[] = {
4135 	/* OMAP_DSS_GFX */
4136 	COLOR_ARRAY(
4137 	DRM_FORMAT_RGBX4444, DRM_FORMAT_ARGB4444,
4138 	DRM_FORMAT_RGB565, DRM_FORMAT_XRGB8888,
4139 	DRM_FORMAT_RGB888, DRM_FORMAT_ARGB8888,
4140 	DRM_FORMAT_RGBA8888, DRM_FORMAT_RGBX8888),
4141 
4142 	/* OMAP_DSS_VIDEO1 */
4143 	COLOR_ARRAY(
4144 	DRM_FORMAT_XRGB8888, DRM_FORMAT_RGB888,
4145 	DRM_FORMAT_RGBX4444, DRM_FORMAT_RGB565,
4146 	DRM_FORMAT_YUYV, DRM_FORMAT_UYVY),
4147 
4148 	/* OMAP_DSS_VIDEO2 */
4149 	COLOR_ARRAY(
4150 	DRM_FORMAT_RGBX4444, DRM_FORMAT_ARGB4444,
4151 	DRM_FORMAT_RGB565, DRM_FORMAT_XRGB8888,
4152 	DRM_FORMAT_RGB888, DRM_FORMAT_YUYV,
4153 	DRM_FORMAT_UYVY, DRM_FORMAT_ARGB8888,
4154 	DRM_FORMAT_RGBA8888, DRM_FORMAT_RGBX8888),
4155 };
4156 
4157 static const u32 *omap4_dispc_supported_color_modes[] = {
4158 	/* OMAP_DSS_GFX */
4159 	COLOR_ARRAY(
4160 	DRM_FORMAT_RGBX4444, DRM_FORMAT_ARGB4444,
4161 	DRM_FORMAT_RGB565, DRM_FORMAT_XRGB8888,
4162 	DRM_FORMAT_RGB888, DRM_FORMAT_ARGB8888,
4163 	DRM_FORMAT_RGBA8888, DRM_FORMAT_RGBX8888,
4164 	DRM_FORMAT_ARGB1555, DRM_FORMAT_XRGB4444,
4165 	DRM_FORMAT_RGBA4444, DRM_FORMAT_XRGB1555),
4166 
4167 	/* OMAP_DSS_VIDEO1 */
4168 	COLOR_ARRAY(
4169 	DRM_FORMAT_RGB565, DRM_FORMAT_RGBX4444,
4170 	DRM_FORMAT_YUYV, DRM_FORMAT_ARGB1555,
4171 	DRM_FORMAT_RGBA8888, DRM_FORMAT_NV12,
4172 	DRM_FORMAT_RGBA4444, DRM_FORMAT_XRGB8888,
4173 	DRM_FORMAT_RGB888, DRM_FORMAT_UYVY,
4174 	DRM_FORMAT_ARGB4444, DRM_FORMAT_XRGB1555,
4175 	DRM_FORMAT_ARGB8888, DRM_FORMAT_XRGB4444,
4176 	DRM_FORMAT_RGBX8888),
4177 
4178        /* OMAP_DSS_VIDEO2 */
4179 	COLOR_ARRAY(
4180 	DRM_FORMAT_RGB565, DRM_FORMAT_RGBX4444,
4181 	DRM_FORMAT_YUYV, DRM_FORMAT_ARGB1555,
4182 	DRM_FORMAT_RGBA8888, DRM_FORMAT_NV12,
4183 	DRM_FORMAT_RGBA4444, DRM_FORMAT_XRGB8888,
4184 	DRM_FORMAT_RGB888, DRM_FORMAT_UYVY,
4185 	DRM_FORMAT_ARGB4444, DRM_FORMAT_XRGB1555,
4186 	DRM_FORMAT_ARGB8888, DRM_FORMAT_XRGB4444,
4187 	DRM_FORMAT_RGBX8888),
4188 
4189 	/* OMAP_DSS_VIDEO3 */
4190 	COLOR_ARRAY(
4191 	DRM_FORMAT_RGB565, DRM_FORMAT_RGBX4444,
4192 	DRM_FORMAT_YUYV, DRM_FORMAT_ARGB1555,
4193 	DRM_FORMAT_RGBA8888, DRM_FORMAT_NV12,
4194 	DRM_FORMAT_RGBA4444, DRM_FORMAT_XRGB8888,
4195 	DRM_FORMAT_RGB888, DRM_FORMAT_UYVY,
4196 	DRM_FORMAT_ARGB4444, DRM_FORMAT_XRGB1555,
4197 	DRM_FORMAT_ARGB8888, DRM_FORMAT_XRGB4444,
4198 	DRM_FORMAT_RGBX8888),
4199 
4200 	/* OMAP_DSS_WB */
4201 	COLOR_ARRAY(
4202 	DRM_FORMAT_RGB565, DRM_FORMAT_RGBX4444,
4203 	DRM_FORMAT_YUYV, DRM_FORMAT_ARGB1555,
4204 	DRM_FORMAT_RGBA8888, DRM_FORMAT_NV12,
4205 	DRM_FORMAT_RGBA4444, DRM_FORMAT_XRGB8888,
4206 	DRM_FORMAT_RGB888, DRM_FORMAT_UYVY,
4207 	DRM_FORMAT_ARGB4444, DRM_FORMAT_XRGB1555,
4208 	DRM_FORMAT_ARGB8888, DRM_FORMAT_XRGB4444,
4209 	DRM_FORMAT_RGBX8888),
4210 };
4211 
4212 static const u32 omap3_dispc_supported_scaler_color_modes[] = {
4213 	DRM_FORMAT_XRGB8888, DRM_FORMAT_RGB565, DRM_FORMAT_YUYV,
4214 	DRM_FORMAT_UYVY,
4215 	0,
4216 };
4217 
4218 static const struct dispc_features omap24xx_dispc_feats = {
4219 	.sw_start		=	5,
4220 	.fp_start		=	15,
4221 	.bp_start		=	27,
4222 	.sw_max			=	64,
4223 	.vp_max			=	255,
4224 	.hp_max			=	256,
4225 	.mgr_width_start	=	10,
4226 	.mgr_height_start	=	26,
4227 	.mgr_width_max		=	2048,
4228 	.mgr_height_max		=	2048,
4229 	.max_lcd_pclk		=	66500000,
4230 	.max_downscale		=	2,
4231 	/*
4232 	 * Assume the line width buffer to be 768 pixels as OMAP2 DISPC scaler
4233 	 * cannot scale an image width larger than 768.
4234 	 */
4235 	.max_line_width		=	768,
4236 	.min_pcd		=	2,
4237 	.calc_scaling		=	dispc_ovl_calc_scaling_24xx,
4238 	.calc_core_clk		=	calc_core_clk_24xx,
4239 	.num_fifos		=	3,
4240 	.features		=	omap2_dispc_features_list,
4241 	.num_features		=	ARRAY_SIZE(omap2_dispc_features_list),
4242 	.reg_fields		=	omap2_dispc_reg_fields,
4243 	.num_reg_fields		=	ARRAY_SIZE(omap2_dispc_reg_fields),
4244 	.overlay_caps		=	omap2_dispc_overlay_caps,
4245 	.supported_color_modes	=	omap2_dispc_supported_color_modes,
4246 	.supported_scaler_color_modes = COLOR_ARRAY(DRM_FORMAT_XRGB8888),
4247 	.num_mgrs		=	2,
4248 	.num_ovls		=	3,
4249 	.buffer_size_unit	=	1,
4250 	.burst_size_unit	=	8,
4251 	.no_framedone_tv	=	true,
4252 	.set_max_preload	=	false,
4253 	.last_pixel_inc_missing	=	true,
4254 };
4255 
4256 static const struct dispc_features omap34xx_rev1_0_dispc_feats = {
4257 	.sw_start		=	5,
4258 	.fp_start		=	15,
4259 	.bp_start		=	27,
4260 	.sw_max			=	64,
4261 	.vp_max			=	255,
4262 	.hp_max			=	256,
4263 	.mgr_width_start	=	10,
4264 	.mgr_height_start	=	26,
4265 	.mgr_width_max		=	2048,
4266 	.mgr_height_max		=	2048,
4267 	.max_lcd_pclk		=	173000000,
4268 	.max_tv_pclk		=	59000000,
4269 	.max_downscale		=	4,
4270 	.max_line_width		=	1024,
4271 	.min_pcd		=	1,
4272 	.calc_scaling		=	dispc_ovl_calc_scaling_34xx,
4273 	.calc_core_clk		=	calc_core_clk_34xx,
4274 	.num_fifos		=	3,
4275 	.features		=	omap3_dispc_features_list,
4276 	.num_features		=	ARRAY_SIZE(omap3_dispc_features_list),
4277 	.reg_fields		=	omap3_dispc_reg_fields,
4278 	.num_reg_fields		=	ARRAY_SIZE(omap3_dispc_reg_fields),
4279 	.overlay_caps		=	omap3430_dispc_overlay_caps,
4280 	.supported_color_modes	=	omap3_dispc_supported_color_modes,
4281 	.supported_scaler_color_modes = omap3_dispc_supported_scaler_color_modes,
4282 	.num_mgrs		=	2,
4283 	.num_ovls		=	3,
4284 	.buffer_size_unit	=	1,
4285 	.burst_size_unit	=	8,
4286 	.no_framedone_tv	=	true,
4287 	.set_max_preload	=	false,
4288 	.last_pixel_inc_missing	=	true,
4289 };
4290 
4291 static const struct dispc_features omap34xx_rev3_0_dispc_feats = {
4292 	.sw_start		=	7,
4293 	.fp_start		=	19,
4294 	.bp_start		=	31,
4295 	.sw_max			=	256,
4296 	.vp_max			=	4095,
4297 	.hp_max			=	4096,
4298 	.mgr_width_start	=	10,
4299 	.mgr_height_start	=	26,
4300 	.mgr_width_max		=	2048,
4301 	.mgr_height_max		=	2048,
4302 	.max_lcd_pclk		=	173000000,
4303 	.max_tv_pclk		=	59000000,
4304 	.max_downscale		=	4,
4305 	.max_line_width		=	1024,
4306 	.min_pcd		=	1,
4307 	.calc_scaling		=	dispc_ovl_calc_scaling_34xx,
4308 	.calc_core_clk		=	calc_core_clk_34xx,
4309 	.num_fifos		=	3,
4310 	.features		=	omap3_dispc_features_list,
4311 	.num_features		=	ARRAY_SIZE(omap3_dispc_features_list),
4312 	.reg_fields		=	omap3_dispc_reg_fields,
4313 	.num_reg_fields		=	ARRAY_SIZE(omap3_dispc_reg_fields),
4314 	.overlay_caps		=	omap3430_dispc_overlay_caps,
4315 	.supported_color_modes	=	omap3_dispc_supported_color_modes,
4316 	.supported_scaler_color_modes = omap3_dispc_supported_scaler_color_modes,
4317 	.num_mgrs		=	2,
4318 	.num_ovls		=	3,
4319 	.buffer_size_unit	=	1,
4320 	.burst_size_unit	=	8,
4321 	.no_framedone_tv	=	true,
4322 	.set_max_preload	=	false,
4323 	.last_pixel_inc_missing	=	true,
4324 };
4325 
4326 static const struct dispc_features omap36xx_dispc_feats = {
4327 	.sw_start		=	7,
4328 	.fp_start		=	19,
4329 	.bp_start		=	31,
4330 	.sw_max			=	256,
4331 	.vp_max			=	4095,
4332 	.hp_max			=	4096,
4333 	.mgr_width_start	=	10,
4334 	.mgr_height_start	=	26,
4335 	.mgr_width_max		=	2048,
4336 	.mgr_height_max		=	2048,
4337 	.max_lcd_pclk		=	173000000,
4338 	.max_tv_pclk		=	59000000,
4339 	.max_downscale		=	4,
4340 	.max_line_width		=	1024,
4341 	.min_pcd		=	1,
4342 	.calc_scaling		=	dispc_ovl_calc_scaling_34xx,
4343 	.calc_core_clk		=	calc_core_clk_34xx,
4344 	.num_fifos		=	3,
4345 	.features		=	omap3_dispc_features_list,
4346 	.num_features		=	ARRAY_SIZE(omap3_dispc_features_list),
4347 	.reg_fields		=	omap3_dispc_reg_fields,
4348 	.num_reg_fields		=	ARRAY_SIZE(omap3_dispc_reg_fields),
4349 	.overlay_caps		=	omap3630_dispc_overlay_caps,
4350 	.supported_color_modes	=	omap3_dispc_supported_color_modes,
4351 	.supported_scaler_color_modes = omap3_dispc_supported_scaler_color_modes,
4352 	.num_mgrs		=	2,
4353 	.num_ovls		=	3,
4354 	.buffer_size_unit	=	1,
4355 	.burst_size_unit	=	8,
4356 	.no_framedone_tv	=	true,
4357 	.set_max_preload	=	false,
4358 	.last_pixel_inc_missing	=	true,
4359 };
4360 
4361 static const struct dispc_features am43xx_dispc_feats = {
4362 	.sw_start		=	7,
4363 	.fp_start		=	19,
4364 	.bp_start		=	31,
4365 	.sw_max			=	256,
4366 	.vp_max			=	4095,
4367 	.hp_max			=	4096,
4368 	.mgr_width_start	=	10,
4369 	.mgr_height_start	=	26,
4370 	.mgr_width_max		=	2048,
4371 	.mgr_height_max		=	2048,
4372 	.max_lcd_pclk		=	173000000,
4373 	.max_tv_pclk		=	59000000,
4374 	.max_downscale		=	4,
4375 	.max_line_width		=	1024,
4376 	.min_pcd		=	1,
4377 	.calc_scaling		=	dispc_ovl_calc_scaling_34xx,
4378 	.calc_core_clk		=	calc_core_clk_34xx,
4379 	.num_fifos		=	3,
4380 	.features		=	am43xx_dispc_features_list,
4381 	.num_features		=	ARRAY_SIZE(am43xx_dispc_features_list),
4382 	.reg_fields		=	omap3_dispc_reg_fields,
4383 	.num_reg_fields		=	ARRAY_SIZE(omap3_dispc_reg_fields),
4384 	.overlay_caps		=	omap3430_dispc_overlay_caps,
4385 	.supported_color_modes	=	omap3_dispc_supported_color_modes,
4386 	.supported_scaler_color_modes = omap3_dispc_supported_scaler_color_modes,
4387 	.num_mgrs		=	1,
4388 	.num_ovls		=	3,
4389 	.buffer_size_unit	=	1,
4390 	.burst_size_unit	=	8,
4391 	.no_framedone_tv	=	true,
4392 	.set_max_preload	=	false,
4393 	.last_pixel_inc_missing	=	true,
4394 };
4395 
4396 static const struct dispc_features omap44xx_dispc_feats = {
4397 	.sw_start		=	7,
4398 	.fp_start		=	19,
4399 	.bp_start		=	31,
4400 	.sw_max			=	256,
4401 	.vp_max			=	4095,
4402 	.hp_max			=	4096,
4403 	.mgr_width_start	=	10,
4404 	.mgr_height_start	=	26,
4405 	.mgr_width_max		=	2048,
4406 	.mgr_height_max		=	2048,
4407 	.max_lcd_pclk		=	170000000,
4408 	.max_tv_pclk		=	185625000,
4409 	.max_downscale		=	4,
4410 	.max_line_width		=	2048,
4411 	.min_pcd		=	1,
4412 	.calc_scaling		=	dispc_ovl_calc_scaling_44xx,
4413 	.calc_core_clk		=	calc_core_clk_44xx,
4414 	.num_fifos		=	5,
4415 	.features		=	omap4_dispc_features_list,
4416 	.num_features		=	ARRAY_SIZE(omap4_dispc_features_list),
4417 	.reg_fields		=	omap4_dispc_reg_fields,
4418 	.num_reg_fields		=	ARRAY_SIZE(omap4_dispc_reg_fields),
4419 	.overlay_caps		=	omap4_dispc_overlay_caps,
4420 	.supported_color_modes	=	omap4_dispc_supported_color_modes,
4421 	.num_mgrs		=	3,
4422 	.num_ovls		=	4,
4423 	.buffer_size_unit	=	16,
4424 	.burst_size_unit	=	16,
4425 	.gfx_fifo_workaround	=	true,
4426 	.set_max_preload	=	true,
4427 	.supports_sync_align	=	true,
4428 	.has_writeback		=	true,
4429 	.supports_double_pixel	=	true,
4430 	.reverse_ilace_field_order =	true,
4431 	.has_gamma_table	=	true,
4432 	.has_gamma_i734_bug	=	true,
4433 };
4434 
4435 static const struct dispc_features omap54xx_dispc_feats = {
4436 	.sw_start		=	7,
4437 	.fp_start		=	19,
4438 	.bp_start		=	31,
4439 	.sw_max			=	256,
4440 	.vp_max			=	4095,
4441 	.hp_max			=	4096,
4442 	.mgr_width_start	=	11,
4443 	.mgr_height_start	=	27,
4444 	.mgr_width_max		=	4096,
4445 	.mgr_height_max		=	4096,
4446 	.max_lcd_pclk		=	170000000,
4447 	.max_tv_pclk		=	186000000,
4448 	.max_downscale		=	4,
4449 	.max_line_width		=	2048,
4450 	.min_pcd		=	1,
4451 	.calc_scaling		=	dispc_ovl_calc_scaling_44xx,
4452 	.calc_core_clk		=	calc_core_clk_44xx,
4453 	.num_fifos		=	5,
4454 	.features		=	omap5_dispc_features_list,
4455 	.num_features		=	ARRAY_SIZE(omap5_dispc_features_list),
4456 	.reg_fields		=	omap4_dispc_reg_fields,
4457 	.num_reg_fields		=	ARRAY_SIZE(omap4_dispc_reg_fields),
4458 	.overlay_caps		=	omap4_dispc_overlay_caps,
4459 	.supported_color_modes	=	omap4_dispc_supported_color_modes,
4460 	.num_mgrs		=	4,
4461 	.num_ovls		=	4,
4462 	.buffer_size_unit	=	16,
4463 	.burst_size_unit	=	16,
4464 	.gfx_fifo_workaround	=	true,
4465 	.mstandby_workaround	=	true,
4466 	.set_max_preload	=	true,
4467 	.supports_sync_align	=	true,
4468 	.has_writeback		=	true,
4469 	.supports_double_pixel	=	true,
4470 	.reverse_ilace_field_order =	true,
4471 	.has_gamma_table	=	true,
4472 	.has_gamma_i734_bug	=	true,
4473 };
4474 
4475 static irqreturn_t dispc_irq_handler(int irq, void *arg)
4476 {
4477 	struct dispc_device *dispc = arg;
4478 
4479 	if (!dispc->is_enabled)
4480 		return IRQ_NONE;
4481 
4482 	return dispc->user_handler(irq, dispc->user_data);
4483 }
4484 
4485 static int dispc_request_irq(struct dispc_device *dispc, irq_handler_t handler,
4486 			     void *dev_id)
4487 {
4488 	int r;
4489 
4490 	if (dispc->user_handler != NULL)
4491 		return -EBUSY;
4492 
4493 	dispc->user_handler = handler;
4494 	dispc->user_data = dev_id;
4495 
4496 	/* ensure the dispc_irq_handler sees the values above */
4497 	smp_wmb();
4498 
4499 	r = devm_request_irq(&dispc->pdev->dev, dispc->irq, dispc_irq_handler,
4500 			     IRQF_SHARED, "OMAP DISPC", dispc);
4501 	if (r) {
4502 		dispc->user_handler = NULL;
4503 		dispc->user_data = NULL;
4504 	}
4505 
4506 	return r;
4507 }
4508 
4509 static void dispc_free_irq(struct dispc_device *dispc, void *dev_id)
4510 {
4511 	devm_free_irq(&dispc->pdev->dev, dispc->irq, dispc);
4512 
4513 	dispc->user_handler = NULL;
4514 	dispc->user_data = NULL;
4515 }
4516 
4517 static u32 dispc_get_memory_bandwidth_limit(struct dispc_device *dispc)
4518 {
4519 	u32 limit = 0;
4520 
4521 	/* Optional maximum memory bandwidth */
4522 	of_property_read_u32(dispc->pdev->dev.of_node, "max-memory-bandwidth",
4523 			     &limit);
4524 
4525 	return limit;
4526 }
4527 
4528 /*
4529  * Workaround for errata i734 in DSS dispc
4530  *  - LCD1 Gamma Correction Is Not Working When GFX Pipe Is Disabled
4531  *
4532  * For gamma tables to work on LCD1 the GFX plane has to be used at
4533  * least once after DSS HW has come out of reset. The workaround
4534  * sets up a minimal LCD setup with GFX plane and waits for one
4535  * vertical sync irq before disabling the setup and continuing with
4536  * the context restore. The physical outputs are gated during the
4537  * operation. This workaround requires that gamma table's LOADMODE
4538  * is set to 0x2 in DISPC_CONTROL1 register.
4539  *
4540  * For details see:
4541  * OMAP543x Multimedia Device Silicon Revision 2.0 Silicon Errata
4542  * Literature Number: SWPZ037E
4543  * Or some other relevant errata document for the DSS IP version.
4544  */
4545 
4546 static const struct dispc_errata_i734_data {
4547 	struct videomode vm;
4548 	struct omap_overlay_info ovli;
4549 	struct omap_overlay_manager_info mgri;
4550 	struct dss_lcd_mgr_config lcd_conf;
4551 } i734 = {
4552 	.vm = {
4553 		.hactive = 8, .vactive = 1,
4554 		.pixelclock = 16000000,
4555 		.hsync_len = 8, .hfront_porch = 4, .hback_porch = 4,
4556 		.vsync_len = 1, .vfront_porch = 1, .vback_porch = 1,
4557 
4558 		.flags = DISPLAY_FLAGS_HSYNC_LOW | DISPLAY_FLAGS_VSYNC_LOW |
4559 			 DISPLAY_FLAGS_DE_HIGH | DISPLAY_FLAGS_SYNC_POSEDGE |
4560 			 DISPLAY_FLAGS_PIXDATA_POSEDGE,
4561 	},
4562 	.ovli = {
4563 		.screen_width = 1,
4564 		.width = 1, .height = 1,
4565 		.fourcc = DRM_FORMAT_XRGB8888,
4566 		.rotation = DRM_MODE_ROTATE_0,
4567 		.rotation_type = OMAP_DSS_ROT_NONE,
4568 		.pos_x = 0, .pos_y = 0,
4569 		.out_width = 0, .out_height = 0,
4570 		.global_alpha = 0xff,
4571 		.pre_mult_alpha = 0,
4572 		.zorder = 0,
4573 	},
4574 	.mgri = {
4575 		.default_color = 0,
4576 		.trans_enabled = false,
4577 		.partial_alpha_enabled = false,
4578 		.cpr_enable = false,
4579 	},
4580 	.lcd_conf = {
4581 		.io_pad_mode = DSS_IO_PAD_MODE_BYPASS,
4582 		.stallmode = false,
4583 		.fifohandcheck = false,
4584 		.clock_info = {
4585 			.lck_div = 1,
4586 			.pck_div = 2,
4587 		},
4588 		.video_port_width = 24,
4589 		.lcden_sig_polarity = 0,
4590 	},
4591 };
4592 
4593 static struct i734_buf {
4594 	size_t size;
4595 	dma_addr_t paddr;
4596 	void *vaddr;
4597 } i734_buf;
4598 
4599 static int dispc_errata_i734_wa_init(struct dispc_device *dispc)
4600 {
4601 	if (!dispc->feat->has_gamma_i734_bug)
4602 		return 0;
4603 
4604 	i734_buf.size = i734.ovli.width * i734.ovli.height *
4605 		color_mode_to_bpp(i734.ovli.fourcc) / 8;
4606 
4607 	i734_buf.vaddr = dma_alloc_wc(&dispc->pdev->dev, i734_buf.size,
4608 				      &i734_buf.paddr, GFP_KERNEL);
4609 	if (!i734_buf.vaddr) {
4610 		dev_err(&dispc->pdev->dev, "%s: dma_alloc_wc failed\n",
4611 			__func__);
4612 		return -ENOMEM;
4613 	}
4614 
4615 	return 0;
4616 }
4617 
4618 static void dispc_errata_i734_wa_fini(struct dispc_device *dispc)
4619 {
4620 	if (!dispc->feat->has_gamma_i734_bug)
4621 		return;
4622 
4623 	dma_free_wc(&dispc->pdev->dev, i734_buf.size, i734_buf.vaddr,
4624 		    i734_buf.paddr);
4625 }
4626 
4627 static void dispc_errata_i734_wa(struct dispc_device *dispc)
4628 {
4629 	u32 framedone_irq = dispc_mgr_get_framedone_irq(dispc,
4630 							OMAP_DSS_CHANNEL_LCD);
4631 	struct omap_overlay_info ovli;
4632 	struct dss_lcd_mgr_config lcd_conf;
4633 	u32 gatestate;
4634 	unsigned int count;
4635 
4636 	if (!dispc->feat->has_gamma_i734_bug)
4637 		return;
4638 
4639 	gatestate = REG_GET(dispc, DISPC_CONFIG, 8, 4);
4640 
4641 	ovli = i734.ovli;
4642 	ovli.paddr = i734_buf.paddr;
4643 	lcd_conf = i734.lcd_conf;
4644 
4645 	/* Gate all LCD1 outputs */
4646 	REG_FLD_MOD(dispc, DISPC_CONFIG, 0x1f, 8, 4);
4647 
4648 	/* Setup and enable GFX plane */
4649 	dispc_ovl_setup(dispc, OMAP_DSS_GFX, &ovli, &i734.vm, false,
4650 			OMAP_DSS_CHANNEL_LCD);
4651 	dispc_ovl_enable(dispc, OMAP_DSS_GFX, true);
4652 
4653 	/* Set up and enable display manager for LCD1 */
4654 	dispc_mgr_setup(dispc, OMAP_DSS_CHANNEL_LCD, &i734.mgri);
4655 	dispc_calc_clock_rates(dispc, dss_get_dispc_clk_rate(dispc->dss),
4656 			       &lcd_conf.clock_info);
4657 	dispc_mgr_set_lcd_config(dispc, OMAP_DSS_CHANNEL_LCD, &lcd_conf);
4658 	dispc_mgr_set_timings(dispc, OMAP_DSS_CHANNEL_LCD, &i734.vm);
4659 
4660 	dispc_clear_irqstatus(dispc, framedone_irq);
4661 
4662 	/* Enable and shut the channel to produce just one frame */
4663 	dispc_mgr_enable(dispc, OMAP_DSS_CHANNEL_LCD, true);
4664 	dispc_mgr_enable(dispc, OMAP_DSS_CHANNEL_LCD, false);
4665 
4666 	/* Busy wait for framedone. We can't fiddle with irq handlers
4667 	 * in PM resume. Typically the loop runs less than 5 times and
4668 	 * waits less than a micro second.
4669 	 */
4670 	count = 0;
4671 	while (!(dispc_read_irqstatus(dispc) & framedone_irq)) {
4672 		if (count++ > 10000) {
4673 			dev_err(&dispc->pdev->dev, "%s: framedone timeout\n",
4674 				__func__);
4675 			break;
4676 		}
4677 	}
4678 	dispc_ovl_enable(dispc, OMAP_DSS_GFX, false);
4679 
4680 	/* Clear all irq bits before continuing */
4681 	dispc_clear_irqstatus(dispc, 0xffffffff);
4682 
4683 	/* Restore the original state to LCD1 output gates */
4684 	REG_FLD_MOD(dispc, DISPC_CONFIG, gatestate, 8, 4);
4685 }
4686 
4687 static const struct dispc_ops dispc_ops = {
4688 	.read_irqstatus = dispc_read_irqstatus,
4689 	.clear_irqstatus = dispc_clear_irqstatus,
4690 	.write_irqenable = dispc_write_irqenable,
4691 
4692 	.request_irq = dispc_request_irq,
4693 	.free_irq = dispc_free_irq,
4694 
4695 	.runtime_get = dispc_runtime_get,
4696 	.runtime_put = dispc_runtime_put,
4697 
4698 	.get_num_ovls = dispc_get_num_ovls,
4699 	.get_num_mgrs = dispc_get_num_mgrs,
4700 
4701 	.get_memory_bandwidth_limit = dispc_get_memory_bandwidth_limit,
4702 
4703 	.mgr_enable = dispc_mgr_enable,
4704 	.mgr_is_enabled = dispc_mgr_is_enabled,
4705 	.mgr_get_vsync_irq = dispc_mgr_get_vsync_irq,
4706 	.mgr_get_framedone_irq = dispc_mgr_get_framedone_irq,
4707 	.mgr_get_sync_lost_irq = dispc_mgr_get_sync_lost_irq,
4708 	.mgr_go_busy = dispc_mgr_go_busy,
4709 	.mgr_go = dispc_mgr_go,
4710 	.mgr_set_lcd_config = dispc_mgr_set_lcd_config,
4711 	.mgr_check_timings = dispc_mgr_check_timings,
4712 	.mgr_set_timings = dispc_mgr_set_timings,
4713 	.mgr_setup = dispc_mgr_setup,
4714 	.mgr_gamma_size = dispc_mgr_gamma_size,
4715 	.mgr_set_gamma = dispc_mgr_set_gamma,
4716 
4717 	.ovl_enable = dispc_ovl_enable,
4718 	.ovl_setup = dispc_ovl_setup,
4719 	.ovl_get_color_modes = dispc_ovl_get_color_modes,
4720 
4721 	.wb_get_framedone_irq = dispc_wb_get_framedone_irq,
4722 	.wb_setup = dispc_wb_setup,
4723 	.has_writeback = dispc_has_writeback,
4724 	.wb_go_busy = dispc_wb_go_busy,
4725 	.wb_go = dispc_wb_go,
4726 };
4727 
4728 /* DISPC HW IP initialisation */
4729 static const struct of_device_id dispc_of_match[] = {
4730 	{ .compatible = "ti,omap2-dispc", .data = &omap24xx_dispc_feats },
4731 	{ .compatible = "ti,omap3-dispc", .data = &omap36xx_dispc_feats },
4732 	{ .compatible = "ti,omap4-dispc", .data = &omap44xx_dispc_feats },
4733 	{ .compatible = "ti,omap5-dispc", .data = &omap54xx_dispc_feats },
4734 	{ .compatible = "ti,dra7-dispc",  .data = &omap54xx_dispc_feats },
4735 	{},
4736 };
4737 
4738 static const struct soc_device_attribute dispc_soc_devices[] = {
4739 	{ .machine = "OMAP3[45]*",
4740 	  .revision = "ES[12].?",	.data = &omap34xx_rev1_0_dispc_feats },
4741 	{ .machine = "OMAP3[45]*",	.data = &omap34xx_rev3_0_dispc_feats },
4742 	{ .machine = "AM35*",		.data = &omap34xx_rev3_0_dispc_feats },
4743 	{ .machine = "AM43*",		.data = &am43xx_dispc_feats },
4744 	{ /* sentinel */ }
4745 };
4746 
4747 static int dispc_bind(struct device *dev, struct device *master, void *data)
4748 {
4749 	struct platform_device *pdev = to_platform_device(dev);
4750 	const struct soc_device_attribute *soc;
4751 	struct dss_device *dss = dss_get_device(master);
4752 	struct dispc_device *dispc;
4753 	u32 rev;
4754 	int r = 0;
4755 	struct resource *dispc_mem;
4756 	struct device_node *np = pdev->dev.of_node;
4757 
4758 	dispc = kzalloc(sizeof(*dispc), GFP_KERNEL);
4759 	if (!dispc)
4760 		return -ENOMEM;
4761 
4762 	dispc->pdev = pdev;
4763 	platform_set_drvdata(pdev, dispc);
4764 	dispc->dss = dss;
4765 
4766 	/*
4767 	 * The OMAP3-based models can't be told apart using the compatible
4768 	 * string, use SoC device matching.
4769 	 */
4770 	soc = soc_device_match(dispc_soc_devices);
4771 	if (soc)
4772 		dispc->feat = soc->data;
4773 	else
4774 		dispc->feat = of_match_device(dispc_of_match, &pdev->dev)->data;
4775 
4776 	r = dispc_errata_i734_wa_init(dispc);
4777 	if (r)
4778 		goto err_free;
4779 
4780 	dispc_mem = platform_get_resource(dispc->pdev, IORESOURCE_MEM, 0);
4781 	dispc->base = devm_ioremap_resource(&pdev->dev, dispc_mem);
4782 	if (IS_ERR(dispc->base)) {
4783 		r = PTR_ERR(dispc->base);
4784 		goto err_free;
4785 	}
4786 
4787 	dispc->irq = platform_get_irq(dispc->pdev, 0);
4788 	if (dispc->irq < 0) {
4789 		DSSERR("platform_get_irq failed\n");
4790 		r = -ENODEV;
4791 		goto err_free;
4792 	}
4793 
4794 	if (np && of_property_read_bool(np, "syscon-pol")) {
4795 		dispc->syscon_pol = syscon_regmap_lookup_by_phandle(np, "syscon-pol");
4796 		if (IS_ERR(dispc->syscon_pol)) {
4797 			dev_err(&pdev->dev, "failed to get syscon-pol regmap\n");
4798 			r = PTR_ERR(dispc->syscon_pol);
4799 			goto err_free;
4800 		}
4801 
4802 		if (of_property_read_u32_index(np, "syscon-pol", 1,
4803 				&dispc->syscon_pol_offset)) {
4804 			dev_err(&pdev->dev, "failed to get syscon-pol offset\n");
4805 			r = -EINVAL;
4806 			goto err_free;
4807 		}
4808 	}
4809 
4810 	r = dispc_init_gamma_tables(dispc);
4811 	if (r)
4812 		goto err_free;
4813 
4814 	pm_runtime_enable(&pdev->dev);
4815 
4816 	r = dispc_runtime_get(dispc);
4817 	if (r)
4818 		goto err_runtime_get;
4819 
4820 	_omap_dispc_initial_config(dispc);
4821 
4822 	rev = dispc_read_reg(dispc, DISPC_REVISION);
4823 	dev_dbg(&pdev->dev, "OMAP DISPC rev %d.%d\n",
4824 	       FLD_GET(rev, 7, 4), FLD_GET(rev, 3, 0));
4825 
4826 	dispc_runtime_put(dispc);
4827 
4828 	dss->dispc = dispc;
4829 	dss->dispc_ops = &dispc_ops;
4830 
4831 	dispc->debugfs = dss_debugfs_create_file(dss, "dispc", dispc_dump_regs,
4832 						 dispc);
4833 
4834 	return 0;
4835 
4836 err_runtime_get:
4837 	pm_runtime_disable(&pdev->dev);
4838 err_free:
4839 	kfree(dispc);
4840 	return r;
4841 }
4842 
4843 static void dispc_unbind(struct device *dev, struct device *master, void *data)
4844 {
4845 	struct dispc_device *dispc = dev_get_drvdata(dev);
4846 	struct dss_device *dss = dispc->dss;
4847 
4848 	dss_debugfs_remove_file(dispc->debugfs);
4849 
4850 	dss->dispc = NULL;
4851 	dss->dispc_ops = NULL;
4852 
4853 	pm_runtime_disable(dev);
4854 
4855 	dispc_errata_i734_wa_fini(dispc);
4856 
4857 	kfree(dispc);
4858 }
4859 
4860 static const struct component_ops dispc_component_ops = {
4861 	.bind	= dispc_bind,
4862 	.unbind	= dispc_unbind,
4863 };
4864 
4865 static int dispc_probe(struct platform_device *pdev)
4866 {
4867 	return component_add(&pdev->dev, &dispc_component_ops);
4868 }
4869 
4870 static int dispc_remove(struct platform_device *pdev)
4871 {
4872 	component_del(&pdev->dev, &dispc_component_ops);
4873 	return 0;
4874 }
4875 
4876 static int dispc_runtime_suspend(struct device *dev)
4877 {
4878 	struct dispc_device *dispc = dev_get_drvdata(dev);
4879 
4880 	dispc->is_enabled = false;
4881 	/* ensure the dispc_irq_handler sees the is_enabled value */
4882 	smp_wmb();
4883 	/* wait for current handler to finish before turning the DISPC off */
4884 	synchronize_irq(dispc->irq);
4885 
4886 	dispc_save_context(dispc);
4887 
4888 	return 0;
4889 }
4890 
4891 static int dispc_runtime_resume(struct device *dev)
4892 {
4893 	struct dispc_device *dispc = dev_get_drvdata(dev);
4894 
4895 	/*
4896 	 * The reset value for load mode is 0 (OMAP_DSS_LOAD_CLUT_AND_FRAME)
4897 	 * but we always initialize it to 2 (OMAP_DSS_LOAD_FRAME_ONLY) in
4898 	 * _omap_dispc_initial_config(). We can thus use it to detect if
4899 	 * we have lost register context.
4900 	 */
4901 	if (REG_GET(dispc, DISPC_CONFIG, 2, 1) != OMAP_DSS_LOAD_FRAME_ONLY) {
4902 		_omap_dispc_initial_config(dispc);
4903 
4904 		dispc_errata_i734_wa(dispc);
4905 
4906 		dispc_restore_context(dispc);
4907 
4908 		dispc_restore_gamma_tables(dispc);
4909 	}
4910 
4911 	dispc->is_enabled = true;
4912 	/* ensure the dispc_irq_handler sees the is_enabled value */
4913 	smp_wmb();
4914 
4915 	return 0;
4916 }
4917 
4918 static const struct dev_pm_ops dispc_pm_ops = {
4919 	.runtime_suspend = dispc_runtime_suspend,
4920 	.runtime_resume = dispc_runtime_resume,
4921 	SET_LATE_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, pm_runtime_force_resume)
4922 };
4923 
4924 struct platform_driver omap_dispchw_driver = {
4925 	.probe		= dispc_probe,
4926 	.remove         = dispc_remove,
4927 	.driver         = {
4928 		.name   = "omapdss_dispc",
4929 		.pm	= &dispc_pm_ops,
4930 		.of_match_table = dispc_of_match,
4931 		.suppress_bind_attrs = true,
4932 	},
4933 };
4934