xref: /openbmc/linux/drivers/gpu/drm/omapdrm/dss/dispc.c (revision 7587cdef)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2009 Nokia Corporation
4  * Author: Tomi Valkeinen <tomi.valkeinen@ti.com>
5  *
6  * Some code and ideas taken from drivers/video/omap/ driver
7  * by Imre Deak.
8  */
9 
10 #define DSS_SUBSYS_NAME "DISPC"
11 
12 #include <linux/kernel.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/vmalloc.h>
15 #include <linux/export.h>
16 #include <linux/clk.h>
17 #include <linux/io.h>
18 #include <linux/jiffies.h>
19 #include <linux/seq_file.h>
20 #include <linux/delay.h>
21 #include <linux/workqueue.h>
22 #include <linux/hardirq.h>
23 #include <linux/platform_device.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/sizes.h>
26 #include <linux/mfd/syscon.h>
27 #include <linux/regmap.h>
28 #include <linux/of.h>
29 #include <linux/of_device.h>
30 #include <linux/component.h>
31 #include <linux/sys_soc.h>
32 #include <drm/drm_fourcc.h>
33 #include <drm/drm_blend.h>
34 
35 #include "omapdss.h"
36 #include "dss.h"
37 #include "dispc.h"
38 
39 struct dispc_device;
40 
41 /* DISPC */
42 #define DISPC_SZ_REGS			SZ_4K
43 
44 enum omap_burst_size {
45 	BURST_SIZE_X2 = 0,
46 	BURST_SIZE_X4 = 1,
47 	BURST_SIZE_X8 = 2,
48 };
49 
50 #define REG_GET(dispc, idx, start, end) \
51 	FLD_GET(dispc_read_reg(dispc, idx), start, end)
52 
53 #define REG_FLD_MOD(dispc, idx, val, start, end)			\
54 	dispc_write_reg(dispc, idx, \
55 			FLD_MOD(dispc_read_reg(dispc, idx), val, start, end))
56 
57 /* DISPC has feature id */
58 enum dispc_feature_id {
59 	FEAT_LCDENABLEPOL,
60 	FEAT_LCDENABLESIGNAL,
61 	FEAT_PCKFREEENABLE,
62 	FEAT_FUNCGATED,
63 	FEAT_MGR_LCD2,
64 	FEAT_MGR_LCD3,
65 	FEAT_LINEBUFFERSPLIT,
66 	FEAT_ROWREPEATENABLE,
67 	FEAT_RESIZECONF,
68 	/* Independent core clk divider */
69 	FEAT_CORE_CLK_DIV,
70 	FEAT_HANDLE_UV_SEPARATE,
71 	FEAT_ATTR2,
72 	FEAT_CPR,
73 	FEAT_PRELOAD,
74 	FEAT_FIR_COEF_V,
75 	FEAT_ALPHA_FIXED_ZORDER,
76 	FEAT_ALPHA_FREE_ZORDER,
77 	FEAT_FIFO_MERGE,
78 	/* An unknown HW bug causing the normal FIFO thresholds not to work */
79 	FEAT_OMAP3_DSI_FIFO_BUG,
80 	FEAT_BURST_2D,
81 	FEAT_MFLAG,
82 };
83 
84 struct dispc_features {
85 	u8 sw_start;
86 	u8 fp_start;
87 	u8 bp_start;
88 	u16 sw_max;
89 	u16 vp_max;
90 	u16 hp_max;
91 	u8 mgr_width_start;
92 	u8 mgr_height_start;
93 	u16 mgr_width_max;
94 	u16 mgr_height_max;
95 	u16 ovl_width_max;
96 	u16 ovl_height_max;
97 	unsigned long max_lcd_pclk;
98 	unsigned long max_tv_pclk;
99 	unsigned int max_downscale;
100 	unsigned int max_line_width;
101 	unsigned int min_pcd;
102 	int (*calc_scaling)(struct dispc_device *dispc,
103 		unsigned long pclk, unsigned long lclk,
104 		const struct videomode *vm,
105 		u16 width, u16 height, u16 out_width, u16 out_height,
106 		u32 fourcc, bool *five_taps,
107 		int *x_predecim, int *y_predecim, int *decim_x, int *decim_y,
108 		u16 pos_x, unsigned long *core_clk, bool mem_to_mem);
109 	unsigned long (*calc_core_clk) (unsigned long pclk,
110 		u16 width, u16 height, u16 out_width, u16 out_height,
111 		bool mem_to_mem);
112 	u8 num_fifos;
113 	const enum dispc_feature_id *features;
114 	unsigned int num_features;
115 	const struct dss_reg_field *reg_fields;
116 	const unsigned int num_reg_fields;
117 	const enum omap_overlay_caps *overlay_caps;
118 	const u32 **supported_color_modes;
119 	const u32 *supported_scaler_color_modes;
120 	unsigned int num_mgrs;
121 	unsigned int num_ovls;
122 	unsigned int buffer_size_unit;
123 	unsigned int burst_size_unit;
124 
125 	/* swap GFX & WB fifos */
126 	bool gfx_fifo_workaround:1;
127 
128 	/* no DISPC_IRQ_FRAMEDONETV on this SoC */
129 	bool no_framedone_tv:1;
130 
131 	/* revert to the OMAP4 mechanism of DISPC Smart Standby operation */
132 	bool mstandby_workaround:1;
133 
134 	bool set_max_preload:1;
135 
136 	/* PIXEL_INC is not added to the last pixel of a line */
137 	bool last_pixel_inc_missing:1;
138 
139 	/* POL_FREQ has ALIGN bit */
140 	bool supports_sync_align:1;
141 
142 	bool has_writeback:1;
143 
144 	bool supports_double_pixel:1;
145 
146 	/*
147 	 * Field order for VENC is different than HDMI. We should handle this in
148 	 * some intelligent manner, but as the SoCs have either HDMI or VENC,
149 	 * never both, we can just use this flag for now.
150 	 */
151 	bool reverse_ilace_field_order:1;
152 
153 	bool has_gamma_table:1;
154 
155 	bool has_gamma_i734_bug:1;
156 };
157 
158 #define DISPC_MAX_NR_FIFOS 5
159 #define DISPC_MAX_CHANNEL_GAMMA 4
160 
161 struct dispc_device {
162 	struct platform_device *pdev;
163 	void __iomem    *base;
164 	struct dss_device *dss;
165 
166 	struct dss_debugfs_entry *debugfs;
167 
168 	int irq;
169 	irq_handler_t user_handler;
170 	void *user_data;
171 
172 	unsigned long core_clk_rate;
173 	unsigned long tv_pclk_rate;
174 
175 	u32 fifo_size[DISPC_MAX_NR_FIFOS];
176 	/* maps which plane is using a fifo. fifo-id -> plane-id */
177 	int fifo_assignment[DISPC_MAX_NR_FIFOS];
178 
179 	bool		ctx_valid;
180 	u32		ctx[DISPC_SZ_REGS / sizeof(u32)];
181 
182 	u32 *gamma_table[DISPC_MAX_CHANNEL_GAMMA];
183 
184 	const struct dispc_features *feat;
185 
186 	bool is_enabled;
187 
188 	struct regmap *syscon_pol;
189 	u32 syscon_pol_offset;
190 };
191 
192 enum omap_color_component {
193 	/* used for all color formats for OMAP3 and earlier
194 	 * and for RGB and Y color component on OMAP4
195 	 */
196 	DISPC_COLOR_COMPONENT_RGB_Y		= 1 << 0,
197 	/* used for UV component for
198 	 * DRM_FORMAT_YUYV, DRM_FORMAT_UYVY, DRM_FORMAT_NV12
199 	 * color formats on OMAP4
200 	 */
201 	DISPC_COLOR_COMPONENT_UV		= 1 << 1,
202 };
203 
204 enum mgr_reg_fields {
205 	DISPC_MGR_FLD_ENABLE,
206 	DISPC_MGR_FLD_STNTFT,
207 	DISPC_MGR_FLD_GO,
208 	DISPC_MGR_FLD_TFTDATALINES,
209 	DISPC_MGR_FLD_STALLMODE,
210 	DISPC_MGR_FLD_TCKENABLE,
211 	DISPC_MGR_FLD_TCKSELECTION,
212 	DISPC_MGR_FLD_CPR,
213 	DISPC_MGR_FLD_FIFOHANDCHECK,
214 	/* used to maintain a count of the above fields */
215 	DISPC_MGR_FLD_NUM,
216 };
217 
218 /* DISPC register field id */
219 enum dispc_feat_reg_field {
220 	FEAT_REG_FIRHINC,
221 	FEAT_REG_FIRVINC,
222 	FEAT_REG_FIFOHIGHTHRESHOLD,
223 	FEAT_REG_FIFOLOWTHRESHOLD,
224 	FEAT_REG_FIFOSIZE,
225 	FEAT_REG_HORIZONTALACCU,
226 	FEAT_REG_VERTICALACCU,
227 };
228 
229 struct dispc_reg_field {
230 	u16 reg;
231 	u8 high;
232 	u8 low;
233 };
234 
235 struct dispc_gamma_desc {
236 	u32 len;
237 	u32 bits;
238 	u16 reg;
239 	bool has_index;
240 };
241 
242 static const struct {
243 	const char *name;
244 	u32 vsync_irq;
245 	u32 framedone_irq;
246 	u32 sync_lost_irq;
247 	struct dispc_gamma_desc gamma;
248 	struct dispc_reg_field reg_desc[DISPC_MGR_FLD_NUM];
249 } mgr_desc[] = {
250 	[OMAP_DSS_CHANNEL_LCD] = {
251 		.name		= "LCD",
252 		.vsync_irq	= DISPC_IRQ_VSYNC,
253 		.framedone_irq	= DISPC_IRQ_FRAMEDONE,
254 		.sync_lost_irq	= DISPC_IRQ_SYNC_LOST,
255 		.gamma		= {
256 			.len	= 256,
257 			.bits	= 8,
258 			.reg	= DISPC_GAMMA_TABLE0,
259 			.has_index = true,
260 		},
261 		.reg_desc	= {
262 			[DISPC_MGR_FLD_ENABLE]		= { DISPC_CONTROL,  0,  0 },
263 			[DISPC_MGR_FLD_STNTFT]		= { DISPC_CONTROL,  3,  3 },
264 			[DISPC_MGR_FLD_GO]		= { DISPC_CONTROL,  5,  5 },
265 			[DISPC_MGR_FLD_TFTDATALINES]	= { DISPC_CONTROL,  9,  8 },
266 			[DISPC_MGR_FLD_STALLMODE]	= { DISPC_CONTROL, 11, 11 },
267 			[DISPC_MGR_FLD_TCKENABLE]	= { DISPC_CONFIG,  10, 10 },
268 			[DISPC_MGR_FLD_TCKSELECTION]	= { DISPC_CONFIG,  11, 11 },
269 			[DISPC_MGR_FLD_CPR]		= { DISPC_CONFIG,  15, 15 },
270 			[DISPC_MGR_FLD_FIFOHANDCHECK]	= { DISPC_CONFIG,  16, 16 },
271 		},
272 	},
273 	[OMAP_DSS_CHANNEL_DIGIT] = {
274 		.name		= "DIGIT",
275 		.vsync_irq	= DISPC_IRQ_EVSYNC_ODD | DISPC_IRQ_EVSYNC_EVEN,
276 		.framedone_irq	= DISPC_IRQ_FRAMEDONETV,
277 		.sync_lost_irq	= DISPC_IRQ_SYNC_LOST_DIGIT,
278 		.gamma		= {
279 			.len	= 1024,
280 			.bits	= 10,
281 			.reg	= DISPC_GAMMA_TABLE2,
282 			.has_index = false,
283 		},
284 		.reg_desc	= {
285 			[DISPC_MGR_FLD_ENABLE]		= { DISPC_CONTROL,  1,  1 },
286 			[DISPC_MGR_FLD_STNTFT]		= { },
287 			[DISPC_MGR_FLD_GO]		= { DISPC_CONTROL,  6,  6 },
288 			[DISPC_MGR_FLD_TFTDATALINES]	= { },
289 			[DISPC_MGR_FLD_STALLMODE]	= { },
290 			[DISPC_MGR_FLD_TCKENABLE]	= { DISPC_CONFIG,  12, 12 },
291 			[DISPC_MGR_FLD_TCKSELECTION]	= { DISPC_CONFIG,  13, 13 },
292 			[DISPC_MGR_FLD_CPR]		= { },
293 			[DISPC_MGR_FLD_FIFOHANDCHECK]	= { DISPC_CONFIG,  16, 16 },
294 		},
295 	},
296 	[OMAP_DSS_CHANNEL_LCD2] = {
297 		.name		= "LCD2",
298 		.vsync_irq	= DISPC_IRQ_VSYNC2,
299 		.framedone_irq	= DISPC_IRQ_FRAMEDONE2,
300 		.sync_lost_irq	= DISPC_IRQ_SYNC_LOST2,
301 		.gamma		= {
302 			.len	= 256,
303 			.bits	= 8,
304 			.reg	= DISPC_GAMMA_TABLE1,
305 			.has_index = true,
306 		},
307 		.reg_desc	= {
308 			[DISPC_MGR_FLD_ENABLE]		= { DISPC_CONTROL2,  0,  0 },
309 			[DISPC_MGR_FLD_STNTFT]		= { DISPC_CONTROL2,  3,  3 },
310 			[DISPC_MGR_FLD_GO]		= { DISPC_CONTROL2,  5,  5 },
311 			[DISPC_MGR_FLD_TFTDATALINES]	= { DISPC_CONTROL2,  9,  8 },
312 			[DISPC_MGR_FLD_STALLMODE]	= { DISPC_CONTROL2, 11, 11 },
313 			[DISPC_MGR_FLD_TCKENABLE]	= { DISPC_CONFIG2,  10, 10 },
314 			[DISPC_MGR_FLD_TCKSELECTION]	= { DISPC_CONFIG2,  11, 11 },
315 			[DISPC_MGR_FLD_CPR]		= { DISPC_CONFIG2,  15, 15 },
316 			[DISPC_MGR_FLD_FIFOHANDCHECK]	= { DISPC_CONFIG2,  16, 16 },
317 		},
318 	},
319 	[OMAP_DSS_CHANNEL_LCD3] = {
320 		.name		= "LCD3",
321 		.vsync_irq	= DISPC_IRQ_VSYNC3,
322 		.framedone_irq	= DISPC_IRQ_FRAMEDONE3,
323 		.sync_lost_irq	= DISPC_IRQ_SYNC_LOST3,
324 		.gamma		= {
325 			.len	= 256,
326 			.bits	= 8,
327 			.reg	= DISPC_GAMMA_TABLE3,
328 			.has_index = true,
329 		},
330 		.reg_desc	= {
331 			[DISPC_MGR_FLD_ENABLE]		= { DISPC_CONTROL3,  0,  0 },
332 			[DISPC_MGR_FLD_STNTFT]		= { DISPC_CONTROL3,  3,  3 },
333 			[DISPC_MGR_FLD_GO]		= { DISPC_CONTROL3,  5,  5 },
334 			[DISPC_MGR_FLD_TFTDATALINES]	= { DISPC_CONTROL3,  9,  8 },
335 			[DISPC_MGR_FLD_STALLMODE]	= { DISPC_CONTROL3, 11, 11 },
336 			[DISPC_MGR_FLD_TCKENABLE]	= { DISPC_CONFIG3,  10, 10 },
337 			[DISPC_MGR_FLD_TCKSELECTION]	= { DISPC_CONFIG3,  11, 11 },
338 			[DISPC_MGR_FLD_CPR]		= { DISPC_CONFIG3,  15, 15 },
339 			[DISPC_MGR_FLD_FIFOHANDCHECK]	= { DISPC_CONFIG3,  16, 16 },
340 		},
341 	},
342 };
343 
344 static unsigned long dispc_fclk_rate(struct dispc_device *dispc);
345 static unsigned long dispc_core_clk_rate(struct dispc_device *dispc);
346 static unsigned long dispc_mgr_lclk_rate(struct dispc_device *dispc,
347 					 enum omap_channel channel);
348 static unsigned long dispc_mgr_pclk_rate(struct dispc_device *dispc,
349 					 enum omap_channel channel);
350 
351 static unsigned long dispc_plane_pclk_rate(struct dispc_device *dispc,
352 					   enum omap_plane_id plane);
353 static unsigned long dispc_plane_lclk_rate(struct dispc_device *dispc,
354 					   enum omap_plane_id plane);
355 
356 static inline void dispc_write_reg(struct dispc_device *dispc, u16 idx, u32 val)
357 {
358 	__raw_writel(val, dispc->base + idx);
359 }
360 
361 static inline u32 dispc_read_reg(struct dispc_device *dispc, u16 idx)
362 {
363 	return __raw_readl(dispc->base + idx);
364 }
365 
366 static u32 mgr_fld_read(struct dispc_device *dispc, enum omap_channel channel,
367 			enum mgr_reg_fields regfld)
368 {
369 	const struct dispc_reg_field *rfld = &mgr_desc[channel].reg_desc[regfld];
370 
371 	return REG_GET(dispc, rfld->reg, rfld->high, rfld->low);
372 }
373 
374 static void mgr_fld_write(struct dispc_device *dispc, enum omap_channel channel,
375 			  enum mgr_reg_fields regfld, int val)
376 {
377 	const struct dispc_reg_field *rfld = &mgr_desc[channel].reg_desc[regfld];
378 
379 	REG_FLD_MOD(dispc, rfld->reg, val, rfld->high, rfld->low);
380 }
381 
382 int dispc_get_num_ovls(struct dispc_device *dispc)
383 {
384 	return dispc->feat->num_ovls;
385 }
386 
387 int dispc_get_num_mgrs(struct dispc_device *dispc)
388 {
389 	return dispc->feat->num_mgrs;
390 }
391 
392 static void dispc_get_reg_field(struct dispc_device *dispc,
393 				enum dispc_feat_reg_field id,
394 				u8 *start, u8 *end)
395 {
396 	BUG_ON(id >= dispc->feat->num_reg_fields);
397 
398 	*start = dispc->feat->reg_fields[id].start;
399 	*end = dispc->feat->reg_fields[id].end;
400 }
401 
402 static bool dispc_has_feature(struct dispc_device *dispc,
403 			      enum dispc_feature_id id)
404 {
405 	unsigned int i;
406 
407 	for (i = 0; i < dispc->feat->num_features; i++) {
408 		if (dispc->feat->features[i] == id)
409 			return true;
410 	}
411 
412 	return false;
413 }
414 
415 #define SR(dispc, reg) \
416 	dispc->ctx[DISPC_##reg / sizeof(u32)] = dispc_read_reg(dispc, DISPC_##reg)
417 #define RR(dispc, reg) \
418 	dispc_write_reg(dispc, DISPC_##reg, dispc->ctx[DISPC_##reg / sizeof(u32)])
419 
420 static void dispc_save_context(struct dispc_device *dispc)
421 {
422 	int i, j;
423 
424 	DSSDBG("dispc_save_context\n");
425 
426 	SR(dispc, IRQENABLE);
427 	SR(dispc, CONTROL);
428 	SR(dispc, CONFIG);
429 	SR(dispc, LINE_NUMBER);
430 	if (dispc_has_feature(dispc, FEAT_ALPHA_FIXED_ZORDER) ||
431 			dispc_has_feature(dispc, FEAT_ALPHA_FREE_ZORDER))
432 		SR(dispc, GLOBAL_ALPHA);
433 	if (dispc_has_feature(dispc, FEAT_MGR_LCD2)) {
434 		SR(dispc, CONTROL2);
435 		SR(dispc, CONFIG2);
436 	}
437 	if (dispc_has_feature(dispc, FEAT_MGR_LCD3)) {
438 		SR(dispc, CONTROL3);
439 		SR(dispc, CONFIG3);
440 	}
441 
442 	for (i = 0; i < dispc_get_num_mgrs(dispc); i++) {
443 		SR(dispc, DEFAULT_COLOR(i));
444 		SR(dispc, TRANS_COLOR(i));
445 		SR(dispc, SIZE_MGR(i));
446 		if (i == OMAP_DSS_CHANNEL_DIGIT)
447 			continue;
448 		SR(dispc, TIMING_H(i));
449 		SR(dispc, TIMING_V(i));
450 		SR(dispc, POL_FREQ(i));
451 		SR(dispc, DIVISORo(i));
452 
453 		SR(dispc, DATA_CYCLE1(i));
454 		SR(dispc, DATA_CYCLE2(i));
455 		SR(dispc, DATA_CYCLE3(i));
456 
457 		if (dispc_has_feature(dispc, FEAT_CPR)) {
458 			SR(dispc, CPR_COEF_R(i));
459 			SR(dispc, CPR_COEF_G(i));
460 			SR(dispc, CPR_COEF_B(i));
461 		}
462 	}
463 
464 	for (i = 0; i < dispc_get_num_ovls(dispc); i++) {
465 		SR(dispc, OVL_BA0(i));
466 		SR(dispc, OVL_BA1(i));
467 		SR(dispc, OVL_POSITION(i));
468 		SR(dispc, OVL_SIZE(i));
469 		SR(dispc, OVL_ATTRIBUTES(i));
470 		SR(dispc, OVL_FIFO_THRESHOLD(i));
471 		SR(dispc, OVL_ROW_INC(i));
472 		SR(dispc, OVL_PIXEL_INC(i));
473 		if (dispc_has_feature(dispc, FEAT_PRELOAD))
474 			SR(dispc, OVL_PRELOAD(i));
475 		if (i == OMAP_DSS_GFX) {
476 			SR(dispc, OVL_WINDOW_SKIP(i));
477 			SR(dispc, OVL_TABLE_BA(i));
478 			continue;
479 		}
480 		SR(dispc, OVL_FIR(i));
481 		SR(dispc, OVL_PICTURE_SIZE(i));
482 		SR(dispc, OVL_ACCU0(i));
483 		SR(dispc, OVL_ACCU1(i));
484 
485 		for (j = 0; j < 8; j++)
486 			SR(dispc, OVL_FIR_COEF_H(i, j));
487 
488 		for (j = 0; j < 8; j++)
489 			SR(dispc, OVL_FIR_COEF_HV(i, j));
490 
491 		for (j = 0; j < 5; j++)
492 			SR(dispc, OVL_CONV_COEF(i, j));
493 
494 		if (dispc_has_feature(dispc, FEAT_FIR_COEF_V)) {
495 			for (j = 0; j < 8; j++)
496 				SR(dispc, OVL_FIR_COEF_V(i, j));
497 		}
498 
499 		if (dispc_has_feature(dispc, FEAT_HANDLE_UV_SEPARATE)) {
500 			SR(dispc, OVL_BA0_UV(i));
501 			SR(dispc, OVL_BA1_UV(i));
502 			SR(dispc, OVL_FIR2(i));
503 			SR(dispc, OVL_ACCU2_0(i));
504 			SR(dispc, OVL_ACCU2_1(i));
505 
506 			for (j = 0; j < 8; j++)
507 				SR(dispc, OVL_FIR_COEF_H2(i, j));
508 
509 			for (j = 0; j < 8; j++)
510 				SR(dispc, OVL_FIR_COEF_HV2(i, j));
511 
512 			for (j = 0; j < 8; j++)
513 				SR(dispc, OVL_FIR_COEF_V2(i, j));
514 		}
515 		if (dispc_has_feature(dispc, FEAT_ATTR2))
516 			SR(dispc, OVL_ATTRIBUTES2(i));
517 	}
518 
519 	if (dispc_has_feature(dispc, FEAT_CORE_CLK_DIV))
520 		SR(dispc, DIVISOR);
521 
522 	dispc->ctx_valid = true;
523 
524 	DSSDBG("context saved\n");
525 }
526 
527 static void dispc_restore_context(struct dispc_device *dispc)
528 {
529 	int i, j;
530 
531 	DSSDBG("dispc_restore_context\n");
532 
533 	if (!dispc->ctx_valid)
534 		return;
535 
536 	/*RR(dispc, IRQENABLE);*/
537 	/*RR(dispc, CONTROL);*/
538 	RR(dispc, CONFIG);
539 	RR(dispc, LINE_NUMBER);
540 	if (dispc_has_feature(dispc, FEAT_ALPHA_FIXED_ZORDER) ||
541 			dispc_has_feature(dispc, FEAT_ALPHA_FREE_ZORDER))
542 		RR(dispc, GLOBAL_ALPHA);
543 	if (dispc_has_feature(dispc, FEAT_MGR_LCD2))
544 		RR(dispc, CONFIG2);
545 	if (dispc_has_feature(dispc, FEAT_MGR_LCD3))
546 		RR(dispc, CONFIG3);
547 
548 	for (i = 0; i < dispc_get_num_mgrs(dispc); i++) {
549 		RR(dispc, DEFAULT_COLOR(i));
550 		RR(dispc, TRANS_COLOR(i));
551 		RR(dispc, SIZE_MGR(i));
552 		if (i == OMAP_DSS_CHANNEL_DIGIT)
553 			continue;
554 		RR(dispc, TIMING_H(i));
555 		RR(dispc, TIMING_V(i));
556 		RR(dispc, POL_FREQ(i));
557 		RR(dispc, DIVISORo(i));
558 
559 		RR(dispc, DATA_CYCLE1(i));
560 		RR(dispc, DATA_CYCLE2(i));
561 		RR(dispc, DATA_CYCLE3(i));
562 
563 		if (dispc_has_feature(dispc, FEAT_CPR)) {
564 			RR(dispc, CPR_COEF_R(i));
565 			RR(dispc, CPR_COEF_G(i));
566 			RR(dispc, CPR_COEF_B(i));
567 		}
568 	}
569 
570 	for (i = 0; i < dispc_get_num_ovls(dispc); i++) {
571 		RR(dispc, OVL_BA0(i));
572 		RR(dispc, OVL_BA1(i));
573 		RR(dispc, OVL_POSITION(i));
574 		RR(dispc, OVL_SIZE(i));
575 		RR(dispc, OVL_ATTRIBUTES(i));
576 		RR(dispc, OVL_FIFO_THRESHOLD(i));
577 		RR(dispc, OVL_ROW_INC(i));
578 		RR(dispc, OVL_PIXEL_INC(i));
579 		if (dispc_has_feature(dispc, FEAT_PRELOAD))
580 			RR(dispc, OVL_PRELOAD(i));
581 		if (i == OMAP_DSS_GFX) {
582 			RR(dispc, OVL_WINDOW_SKIP(i));
583 			RR(dispc, OVL_TABLE_BA(i));
584 			continue;
585 		}
586 		RR(dispc, OVL_FIR(i));
587 		RR(dispc, OVL_PICTURE_SIZE(i));
588 		RR(dispc, OVL_ACCU0(i));
589 		RR(dispc, OVL_ACCU1(i));
590 
591 		for (j = 0; j < 8; j++)
592 			RR(dispc, OVL_FIR_COEF_H(i, j));
593 
594 		for (j = 0; j < 8; j++)
595 			RR(dispc, OVL_FIR_COEF_HV(i, j));
596 
597 		for (j = 0; j < 5; j++)
598 			RR(dispc, OVL_CONV_COEF(i, j));
599 
600 		if (dispc_has_feature(dispc, FEAT_FIR_COEF_V)) {
601 			for (j = 0; j < 8; j++)
602 				RR(dispc, OVL_FIR_COEF_V(i, j));
603 		}
604 
605 		if (dispc_has_feature(dispc, FEAT_HANDLE_UV_SEPARATE)) {
606 			RR(dispc, OVL_BA0_UV(i));
607 			RR(dispc, OVL_BA1_UV(i));
608 			RR(dispc, OVL_FIR2(i));
609 			RR(dispc, OVL_ACCU2_0(i));
610 			RR(dispc, OVL_ACCU2_1(i));
611 
612 			for (j = 0; j < 8; j++)
613 				RR(dispc, OVL_FIR_COEF_H2(i, j));
614 
615 			for (j = 0; j < 8; j++)
616 				RR(dispc, OVL_FIR_COEF_HV2(i, j));
617 
618 			for (j = 0; j < 8; j++)
619 				RR(dispc, OVL_FIR_COEF_V2(i, j));
620 		}
621 		if (dispc_has_feature(dispc, FEAT_ATTR2))
622 			RR(dispc, OVL_ATTRIBUTES2(i));
623 	}
624 
625 	if (dispc_has_feature(dispc, FEAT_CORE_CLK_DIV))
626 		RR(dispc, DIVISOR);
627 
628 	/* enable last, because LCD & DIGIT enable are here */
629 	RR(dispc, CONTROL);
630 	if (dispc_has_feature(dispc, FEAT_MGR_LCD2))
631 		RR(dispc, CONTROL2);
632 	if (dispc_has_feature(dispc, FEAT_MGR_LCD3))
633 		RR(dispc, CONTROL3);
634 	/* clear spurious SYNC_LOST_DIGIT interrupts */
635 	dispc_clear_irqstatus(dispc, DISPC_IRQ_SYNC_LOST_DIGIT);
636 
637 	/*
638 	 * enable last so IRQs won't trigger before
639 	 * the context is fully restored
640 	 */
641 	RR(dispc, IRQENABLE);
642 
643 	DSSDBG("context restored\n");
644 }
645 
646 #undef SR
647 #undef RR
648 
649 int dispc_runtime_get(struct dispc_device *dispc)
650 {
651 	int r;
652 
653 	DSSDBG("dispc_runtime_get\n");
654 
655 	r = pm_runtime_get_sync(&dispc->pdev->dev);
656 	if (WARN_ON(r < 0)) {
657 		pm_runtime_put_noidle(&dispc->pdev->dev);
658 		return r;
659 	}
660 	return 0;
661 }
662 
663 void dispc_runtime_put(struct dispc_device *dispc)
664 {
665 	int r;
666 
667 	DSSDBG("dispc_runtime_put\n");
668 
669 	r = pm_runtime_put_sync(&dispc->pdev->dev);
670 	WARN_ON(r < 0 && r != -ENOSYS);
671 }
672 
673 u32 dispc_mgr_get_vsync_irq(struct dispc_device *dispc,
674 				   enum omap_channel channel)
675 {
676 	return mgr_desc[channel].vsync_irq;
677 }
678 
679 u32 dispc_mgr_get_framedone_irq(struct dispc_device *dispc,
680 				       enum omap_channel channel)
681 {
682 	if (channel == OMAP_DSS_CHANNEL_DIGIT && dispc->feat->no_framedone_tv)
683 		return 0;
684 
685 	return mgr_desc[channel].framedone_irq;
686 }
687 
688 u32 dispc_mgr_get_sync_lost_irq(struct dispc_device *dispc,
689 				       enum omap_channel channel)
690 {
691 	return mgr_desc[channel].sync_lost_irq;
692 }
693 
694 u32 dispc_wb_get_framedone_irq(struct dispc_device *dispc)
695 {
696 	return DISPC_IRQ_FRAMEDONEWB;
697 }
698 
699 void dispc_mgr_enable(struct dispc_device *dispc,
700 			     enum omap_channel channel, bool enable)
701 {
702 	mgr_fld_write(dispc, channel, DISPC_MGR_FLD_ENABLE, enable);
703 	/* flush posted write */
704 	mgr_fld_read(dispc, channel, DISPC_MGR_FLD_ENABLE);
705 }
706 
707 static bool dispc_mgr_is_enabled(struct dispc_device *dispc,
708 				 enum omap_channel channel)
709 {
710 	return !!mgr_fld_read(dispc, channel, DISPC_MGR_FLD_ENABLE);
711 }
712 
713 bool dispc_mgr_go_busy(struct dispc_device *dispc,
714 			      enum omap_channel channel)
715 {
716 	return mgr_fld_read(dispc, channel, DISPC_MGR_FLD_GO) == 1;
717 }
718 
719 void dispc_mgr_go(struct dispc_device *dispc, enum omap_channel channel)
720 {
721 	WARN_ON(!dispc_mgr_is_enabled(dispc, channel));
722 	WARN_ON(dispc_mgr_go_busy(dispc, channel));
723 
724 	DSSDBG("GO %s\n", mgr_desc[channel].name);
725 
726 	mgr_fld_write(dispc, channel, DISPC_MGR_FLD_GO, 1);
727 }
728 
729 bool dispc_wb_go_busy(struct dispc_device *dispc)
730 {
731 	return REG_GET(dispc, DISPC_CONTROL2, 6, 6) == 1;
732 }
733 
734 void dispc_wb_go(struct dispc_device *dispc)
735 {
736 	enum omap_plane_id plane = OMAP_DSS_WB;
737 	bool enable, go;
738 
739 	enable = REG_GET(dispc, DISPC_OVL_ATTRIBUTES(plane), 0, 0) == 1;
740 
741 	if (!enable)
742 		return;
743 
744 	go = REG_GET(dispc, DISPC_CONTROL2, 6, 6) == 1;
745 	if (go) {
746 		DSSERR("GO bit not down for WB\n");
747 		return;
748 	}
749 
750 	REG_FLD_MOD(dispc, DISPC_CONTROL2, 1, 6, 6);
751 }
752 
753 static void dispc_ovl_write_firh_reg(struct dispc_device *dispc,
754 				     enum omap_plane_id plane, int reg,
755 				     u32 value)
756 {
757 	dispc_write_reg(dispc, DISPC_OVL_FIR_COEF_H(plane, reg), value);
758 }
759 
760 static void dispc_ovl_write_firhv_reg(struct dispc_device *dispc,
761 				      enum omap_plane_id plane, int reg,
762 				      u32 value)
763 {
764 	dispc_write_reg(dispc, DISPC_OVL_FIR_COEF_HV(plane, reg), value);
765 }
766 
767 static void dispc_ovl_write_firv_reg(struct dispc_device *dispc,
768 				     enum omap_plane_id plane, int reg,
769 				     u32 value)
770 {
771 	dispc_write_reg(dispc, DISPC_OVL_FIR_COEF_V(plane, reg), value);
772 }
773 
774 static void dispc_ovl_write_firh2_reg(struct dispc_device *dispc,
775 				      enum omap_plane_id plane, int reg,
776 				      u32 value)
777 {
778 	BUG_ON(plane == OMAP_DSS_GFX);
779 
780 	dispc_write_reg(dispc, DISPC_OVL_FIR_COEF_H2(plane, reg), value);
781 }
782 
783 static void dispc_ovl_write_firhv2_reg(struct dispc_device *dispc,
784 				       enum omap_plane_id plane, int reg,
785 				       u32 value)
786 {
787 	BUG_ON(plane == OMAP_DSS_GFX);
788 
789 	dispc_write_reg(dispc, DISPC_OVL_FIR_COEF_HV2(plane, reg), value);
790 }
791 
792 static void dispc_ovl_write_firv2_reg(struct dispc_device *dispc,
793 				      enum omap_plane_id plane, int reg,
794 				      u32 value)
795 {
796 	BUG_ON(plane == OMAP_DSS_GFX);
797 
798 	dispc_write_reg(dispc, DISPC_OVL_FIR_COEF_V2(plane, reg), value);
799 }
800 
801 static void dispc_ovl_set_scale_coef(struct dispc_device *dispc,
802 				     enum omap_plane_id plane, int fir_hinc,
803 				     int fir_vinc, int five_taps,
804 				     enum omap_color_component color_comp)
805 {
806 	const struct dispc_coef *h_coef, *v_coef;
807 	int i;
808 
809 	h_coef = dispc_ovl_get_scale_coef(fir_hinc, true);
810 	v_coef = dispc_ovl_get_scale_coef(fir_vinc, five_taps);
811 
812 	if (!h_coef || !v_coef) {
813 		dev_err(&dispc->pdev->dev, "%s: failed to find scale coefs\n",
814 			__func__);
815 		return;
816 	}
817 
818 	for (i = 0; i < 8; i++) {
819 		u32 h, hv;
820 
821 		h = FLD_VAL(h_coef[i].hc0_vc00, 7, 0)
822 			| FLD_VAL(h_coef[i].hc1_vc0, 15, 8)
823 			| FLD_VAL(h_coef[i].hc2_vc1, 23, 16)
824 			| FLD_VAL(h_coef[i].hc3_vc2, 31, 24);
825 		hv = FLD_VAL(h_coef[i].hc4_vc22, 7, 0)
826 			| FLD_VAL(v_coef[i].hc1_vc0, 15, 8)
827 			| FLD_VAL(v_coef[i].hc2_vc1, 23, 16)
828 			| FLD_VAL(v_coef[i].hc3_vc2, 31, 24);
829 
830 		if (color_comp == DISPC_COLOR_COMPONENT_RGB_Y) {
831 			dispc_ovl_write_firh_reg(dispc, plane, i, h);
832 			dispc_ovl_write_firhv_reg(dispc, plane, i, hv);
833 		} else {
834 			dispc_ovl_write_firh2_reg(dispc, plane, i, h);
835 			dispc_ovl_write_firhv2_reg(dispc, plane, i, hv);
836 		}
837 
838 	}
839 
840 	if (five_taps) {
841 		for (i = 0; i < 8; i++) {
842 			u32 v;
843 			v = FLD_VAL(v_coef[i].hc0_vc00, 7, 0)
844 				| FLD_VAL(v_coef[i].hc4_vc22, 15, 8);
845 			if (color_comp == DISPC_COLOR_COMPONENT_RGB_Y)
846 				dispc_ovl_write_firv_reg(dispc, plane, i, v);
847 			else
848 				dispc_ovl_write_firv2_reg(dispc, plane, i, v);
849 		}
850 	}
851 }
852 
853 struct csc_coef_yuv2rgb {
854 	int ry, rcb, rcr, gy, gcb, gcr, by, bcb, bcr;
855 	bool full_range;
856 };
857 
858 struct csc_coef_rgb2yuv {
859 	int yr, yg, yb, cbr, cbg, cbb, crr, crg, crb;
860 	bool full_range;
861 };
862 
863 static void dispc_ovl_write_color_conv_coef(struct dispc_device *dispc,
864 					    enum omap_plane_id plane,
865 					    const struct csc_coef_yuv2rgb *ct)
866 {
867 #define CVAL(x, y) (FLD_VAL(x, 26, 16) | FLD_VAL(y, 10, 0))
868 
869 	dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 0), CVAL(ct->rcr, ct->ry));
870 	dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 1), CVAL(ct->gy,  ct->rcb));
871 	dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 2), CVAL(ct->gcb, ct->gcr));
872 	dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 3), CVAL(ct->bcr, ct->by));
873 	dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 4), CVAL(0, ct->bcb));
874 
875 	REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), ct->full_range, 11, 11);
876 
877 #undef CVAL
878 }
879 
880 /* YUV -> RGB, ITU-R BT.601, full range */
881 static const struct csc_coef_yuv2rgb coefs_yuv2rgb_bt601_full = {
882 	256,   0,  358,		/* ry, rcb, rcr |1.000  0.000  1.402|*/
883 	256, -88, -182,		/* gy, gcb, gcr |1.000 -0.344 -0.714|*/
884 	256, 452,    0,		/* by, bcb, bcr |1.000  1.772  0.000|*/
885 	true,			/* full range */
886 };
887 
888 /* YUV -> RGB, ITU-R BT.601, limited range */
889 static const struct csc_coef_yuv2rgb coefs_yuv2rgb_bt601_lim = {
890 	298,    0,  409,	/* ry, rcb, rcr |1.164  0.000  1.596|*/
891 	298, -100, -208,	/* gy, gcb, gcr |1.164 -0.392 -0.813|*/
892 	298,  516,    0,	/* by, bcb, bcr |1.164  2.017  0.000|*/
893 	false,			/* limited range */
894 };
895 
896 /* YUV -> RGB, ITU-R BT.709, full range */
897 static const struct csc_coef_yuv2rgb coefs_yuv2rgb_bt709_full = {
898 	256,    0,  402,        /* ry, rcb, rcr |1.000  0.000  1.570|*/
899 	256,  -48, -120,        /* gy, gcb, gcr |1.000 -0.187 -0.467|*/
900 	256,  475,    0,        /* by, bcb, bcr |1.000  1.856  0.000|*/
901 	true,                   /* full range */
902 };
903 
904 /* YUV -> RGB, ITU-R BT.709, limited range */
905 static const struct csc_coef_yuv2rgb coefs_yuv2rgb_bt709_lim = {
906 	298,    0,  459,	/* ry, rcb, rcr |1.164  0.000  1.793|*/
907 	298,  -55, -136,	/* gy, gcb, gcr |1.164 -0.213 -0.533|*/
908 	298,  541,    0,	/* by, bcb, bcr |1.164  2.112  0.000|*/
909 	false,			/* limited range */
910 };
911 
912 static void dispc_ovl_set_csc(struct dispc_device *dispc,
913 			      enum omap_plane_id plane,
914 			      enum drm_color_encoding color_encoding,
915 			      enum drm_color_range color_range)
916 {
917 	const struct csc_coef_yuv2rgb *csc;
918 
919 	switch (color_encoding) {
920 	default:
921 	case DRM_COLOR_YCBCR_BT601:
922 		if (color_range == DRM_COLOR_YCBCR_FULL_RANGE)
923 			csc = &coefs_yuv2rgb_bt601_full;
924 		else
925 			csc = &coefs_yuv2rgb_bt601_lim;
926 		break;
927 	case DRM_COLOR_YCBCR_BT709:
928 		if (color_range == DRM_COLOR_YCBCR_FULL_RANGE)
929 			csc = &coefs_yuv2rgb_bt709_full;
930 		else
931 			csc = &coefs_yuv2rgb_bt709_lim;
932 		break;
933 	}
934 
935 	dispc_ovl_write_color_conv_coef(dispc, plane, csc);
936 }
937 
938 static void dispc_ovl_set_ba0(struct dispc_device *dispc,
939 			      enum omap_plane_id plane, u32 paddr)
940 {
941 	dispc_write_reg(dispc, DISPC_OVL_BA0(plane), paddr);
942 }
943 
944 static void dispc_ovl_set_ba1(struct dispc_device *dispc,
945 			      enum omap_plane_id plane, u32 paddr)
946 {
947 	dispc_write_reg(dispc, DISPC_OVL_BA1(plane), paddr);
948 }
949 
950 static void dispc_ovl_set_ba0_uv(struct dispc_device *dispc,
951 				 enum omap_plane_id plane, u32 paddr)
952 {
953 	dispc_write_reg(dispc, DISPC_OVL_BA0_UV(plane), paddr);
954 }
955 
956 static void dispc_ovl_set_ba1_uv(struct dispc_device *dispc,
957 				 enum omap_plane_id plane, u32 paddr)
958 {
959 	dispc_write_reg(dispc, DISPC_OVL_BA1_UV(plane), paddr);
960 }
961 
962 static void dispc_ovl_set_pos(struct dispc_device *dispc,
963 			      enum omap_plane_id plane,
964 			      enum omap_overlay_caps caps, int x, int y)
965 {
966 	u32 val;
967 
968 	if ((caps & OMAP_DSS_OVL_CAP_POS) == 0)
969 		return;
970 
971 	val = FLD_VAL(y, 26, 16) | FLD_VAL(x, 10, 0);
972 
973 	dispc_write_reg(dispc, DISPC_OVL_POSITION(plane), val);
974 }
975 
976 static void dispc_ovl_set_input_size(struct dispc_device *dispc,
977 				     enum omap_plane_id plane, int width,
978 				     int height)
979 {
980 	u32 val = FLD_VAL(height - 1, 26, 16) | FLD_VAL(width - 1, 10, 0);
981 
982 	if (plane == OMAP_DSS_GFX || plane == OMAP_DSS_WB)
983 		dispc_write_reg(dispc, DISPC_OVL_SIZE(plane), val);
984 	else
985 		dispc_write_reg(dispc, DISPC_OVL_PICTURE_SIZE(plane), val);
986 }
987 
988 static void dispc_ovl_set_output_size(struct dispc_device *dispc,
989 				      enum omap_plane_id plane, int width,
990 				      int height)
991 {
992 	u32 val;
993 
994 	BUG_ON(plane == OMAP_DSS_GFX);
995 
996 	val = FLD_VAL(height - 1, 26, 16) | FLD_VAL(width - 1, 10, 0);
997 
998 	if (plane == OMAP_DSS_WB)
999 		dispc_write_reg(dispc, DISPC_OVL_PICTURE_SIZE(plane), val);
1000 	else
1001 		dispc_write_reg(dispc, DISPC_OVL_SIZE(plane), val);
1002 }
1003 
1004 static void dispc_ovl_set_zorder(struct dispc_device *dispc,
1005 				 enum omap_plane_id plane,
1006 				 enum omap_overlay_caps caps, u8 zorder)
1007 {
1008 	if ((caps & OMAP_DSS_OVL_CAP_ZORDER) == 0)
1009 		return;
1010 
1011 	REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), zorder, 27, 26);
1012 }
1013 
1014 static void dispc_ovl_enable_zorder_planes(struct dispc_device *dispc)
1015 {
1016 	int i;
1017 
1018 	if (!dispc_has_feature(dispc, FEAT_ALPHA_FREE_ZORDER))
1019 		return;
1020 
1021 	for (i = 0; i < dispc_get_num_ovls(dispc); i++)
1022 		REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(i), 1, 25, 25);
1023 }
1024 
1025 static void dispc_ovl_set_pre_mult_alpha(struct dispc_device *dispc,
1026 					 enum omap_plane_id plane,
1027 					 enum omap_overlay_caps caps,
1028 					 bool enable)
1029 {
1030 	if ((caps & OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA) == 0)
1031 		return;
1032 
1033 	REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), enable ? 1 : 0, 28, 28);
1034 }
1035 
1036 static void dispc_ovl_setup_global_alpha(struct dispc_device *dispc,
1037 					 enum omap_plane_id plane,
1038 					 enum omap_overlay_caps caps,
1039 					 u8 global_alpha)
1040 {
1041 	static const unsigned int shifts[] = { 0, 8, 16, 24, };
1042 	int shift;
1043 
1044 	if ((caps & OMAP_DSS_OVL_CAP_GLOBAL_ALPHA) == 0)
1045 		return;
1046 
1047 	shift = shifts[plane];
1048 	REG_FLD_MOD(dispc, DISPC_GLOBAL_ALPHA, global_alpha, shift + 7, shift);
1049 }
1050 
1051 static void dispc_ovl_set_pix_inc(struct dispc_device *dispc,
1052 				  enum omap_plane_id plane, s32 inc)
1053 {
1054 	dispc_write_reg(dispc, DISPC_OVL_PIXEL_INC(plane), inc);
1055 }
1056 
1057 static void dispc_ovl_set_row_inc(struct dispc_device *dispc,
1058 				  enum omap_plane_id plane, s32 inc)
1059 {
1060 	dispc_write_reg(dispc, DISPC_OVL_ROW_INC(plane), inc);
1061 }
1062 
1063 static void dispc_ovl_set_color_mode(struct dispc_device *dispc,
1064 				     enum omap_plane_id plane, u32 fourcc)
1065 {
1066 	u32 m = 0;
1067 	if (plane != OMAP_DSS_GFX) {
1068 		switch (fourcc) {
1069 		case DRM_FORMAT_NV12:
1070 			m = 0x0; break;
1071 		case DRM_FORMAT_XRGB4444:
1072 			m = 0x1; break;
1073 		case DRM_FORMAT_RGBA4444:
1074 			m = 0x2; break;
1075 		case DRM_FORMAT_RGBX4444:
1076 			m = 0x4; break;
1077 		case DRM_FORMAT_ARGB4444:
1078 			m = 0x5; break;
1079 		case DRM_FORMAT_RGB565:
1080 			m = 0x6; break;
1081 		case DRM_FORMAT_ARGB1555:
1082 			m = 0x7; break;
1083 		case DRM_FORMAT_XRGB8888:
1084 			m = 0x8; break;
1085 		case DRM_FORMAT_RGB888:
1086 			m = 0x9; break;
1087 		case DRM_FORMAT_YUYV:
1088 			m = 0xa; break;
1089 		case DRM_FORMAT_UYVY:
1090 			m = 0xb; break;
1091 		case DRM_FORMAT_ARGB8888:
1092 			m = 0xc; break;
1093 		case DRM_FORMAT_RGBA8888:
1094 			m = 0xd; break;
1095 		case DRM_FORMAT_RGBX8888:
1096 			m = 0xe; break;
1097 		case DRM_FORMAT_XRGB1555:
1098 			m = 0xf; break;
1099 		default:
1100 			BUG(); return;
1101 		}
1102 	} else {
1103 		switch (fourcc) {
1104 		case DRM_FORMAT_RGBX4444:
1105 			m = 0x4; break;
1106 		case DRM_FORMAT_ARGB4444:
1107 			m = 0x5; break;
1108 		case DRM_FORMAT_RGB565:
1109 			m = 0x6; break;
1110 		case DRM_FORMAT_ARGB1555:
1111 			m = 0x7; break;
1112 		case DRM_FORMAT_XRGB8888:
1113 			m = 0x8; break;
1114 		case DRM_FORMAT_RGB888:
1115 			m = 0x9; break;
1116 		case DRM_FORMAT_XRGB4444:
1117 			m = 0xa; break;
1118 		case DRM_FORMAT_RGBA4444:
1119 			m = 0xb; break;
1120 		case DRM_FORMAT_ARGB8888:
1121 			m = 0xc; break;
1122 		case DRM_FORMAT_RGBA8888:
1123 			m = 0xd; break;
1124 		case DRM_FORMAT_RGBX8888:
1125 			m = 0xe; break;
1126 		case DRM_FORMAT_XRGB1555:
1127 			m = 0xf; break;
1128 		default:
1129 			BUG(); return;
1130 		}
1131 	}
1132 
1133 	REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), m, 4, 1);
1134 }
1135 
1136 static void dispc_ovl_configure_burst_type(struct dispc_device *dispc,
1137 					   enum omap_plane_id plane,
1138 					   enum omap_dss_rotation_type rotation)
1139 {
1140 	if (dispc_has_feature(dispc, FEAT_BURST_2D) == 0)
1141 		return;
1142 
1143 	if (rotation == OMAP_DSS_ROT_TILER)
1144 		REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), 1, 29, 29);
1145 	else
1146 		REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), 0, 29, 29);
1147 }
1148 
1149 static void dispc_ovl_set_channel_out(struct dispc_device *dispc,
1150 				      enum omap_plane_id plane,
1151 				      enum omap_channel channel)
1152 {
1153 	int shift;
1154 	u32 val;
1155 	int chan = 0, chan2 = 0;
1156 
1157 	switch (plane) {
1158 	case OMAP_DSS_GFX:
1159 		shift = 8;
1160 		break;
1161 	case OMAP_DSS_VIDEO1:
1162 	case OMAP_DSS_VIDEO2:
1163 	case OMAP_DSS_VIDEO3:
1164 		shift = 16;
1165 		break;
1166 	default:
1167 		BUG();
1168 		return;
1169 	}
1170 
1171 	val = dispc_read_reg(dispc, DISPC_OVL_ATTRIBUTES(plane));
1172 	if (dispc_has_feature(dispc, FEAT_MGR_LCD2)) {
1173 		switch (channel) {
1174 		case OMAP_DSS_CHANNEL_LCD:
1175 			chan = 0;
1176 			chan2 = 0;
1177 			break;
1178 		case OMAP_DSS_CHANNEL_DIGIT:
1179 			chan = 1;
1180 			chan2 = 0;
1181 			break;
1182 		case OMAP_DSS_CHANNEL_LCD2:
1183 			chan = 0;
1184 			chan2 = 1;
1185 			break;
1186 		case OMAP_DSS_CHANNEL_LCD3:
1187 			if (dispc_has_feature(dispc, FEAT_MGR_LCD3)) {
1188 				chan = 0;
1189 				chan2 = 2;
1190 			} else {
1191 				BUG();
1192 				return;
1193 			}
1194 			break;
1195 		case OMAP_DSS_CHANNEL_WB:
1196 			chan = 0;
1197 			chan2 = 3;
1198 			break;
1199 		default:
1200 			BUG();
1201 			return;
1202 		}
1203 
1204 		val = FLD_MOD(val, chan, shift, shift);
1205 		val = FLD_MOD(val, chan2, 31, 30);
1206 	} else {
1207 		val = FLD_MOD(val, channel, shift, shift);
1208 	}
1209 	dispc_write_reg(dispc, DISPC_OVL_ATTRIBUTES(plane), val);
1210 }
1211 
1212 static enum omap_channel dispc_ovl_get_channel_out(struct dispc_device *dispc,
1213 						   enum omap_plane_id plane)
1214 {
1215 	int shift;
1216 	u32 val;
1217 
1218 	switch (plane) {
1219 	case OMAP_DSS_GFX:
1220 		shift = 8;
1221 		break;
1222 	case OMAP_DSS_VIDEO1:
1223 	case OMAP_DSS_VIDEO2:
1224 	case OMAP_DSS_VIDEO3:
1225 		shift = 16;
1226 		break;
1227 	default:
1228 		BUG();
1229 		return 0;
1230 	}
1231 
1232 	val = dispc_read_reg(dispc, DISPC_OVL_ATTRIBUTES(plane));
1233 
1234 	if (FLD_GET(val, shift, shift) == 1)
1235 		return OMAP_DSS_CHANNEL_DIGIT;
1236 
1237 	if (!dispc_has_feature(dispc, FEAT_MGR_LCD2))
1238 		return OMAP_DSS_CHANNEL_LCD;
1239 
1240 	switch (FLD_GET(val, 31, 30)) {
1241 	case 0:
1242 	default:
1243 		return OMAP_DSS_CHANNEL_LCD;
1244 	case 1:
1245 		return OMAP_DSS_CHANNEL_LCD2;
1246 	case 2:
1247 		return OMAP_DSS_CHANNEL_LCD3;
1248 	case 3:
1249 		return OMAP_DSS_CHANNEL_WB;
1250 	}
1251 }
1252 
1253 static void dispc_ovl_set_burst_size(struct dispc_device *dispc,
1254 				     enum omap_plane_id plane,
1255 				     enum omap_burst_size burst_size)
1256 {
1257 	static const unsigned int shifts[] = { 6, 14, 14, 14, 14, };
1258 	int shift;
1259 
1260 	shift = shifts[plane];
1261 	REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), burst_size,
1262 		    shift + 1, shift);
1263 }
1264 
1265 static void dispc_configure_burst_sizes(struct dispc_device *dispc)
1266 {
1267 	int i;
1268 	const int burst_size = BURST_SIZE_X8;
1269 
1270 	/* Configure burst size always to maximum size */
1271 	for (i = 0; i < dispc_get_num_ovls(dispc); ++i)
1272 		dispc_ovl_set_burst_size(dispc, i, burst_size);
1273 	if (dispc->feat->has_writeback)
1274 		dispc_ovl_set_burst_size(dispc, OMAP_DSS_WB, burst_size);
1275 }
1276 
1277 static u32 dispc_ovl_get_burst_size(struct dispc_device *dispc,
1278 				    enum omap_plane_id plane)
1279 {
1280 	/* burst multiplier is always x8 (see dispc_configure_burst_sizes()) */
1281 	return dispc->feat->burst_size_unit * 8;
1282 }
1283 
1284 bool dispc_ovl_color_mode_supported(struct dispc_device *dispc,
1285 				    enum omap_plane_id plane, u32 fourcc)
1286 {
1287 	const u32 *modes;
1288 	unsigned int i;
1289 
1290 	modes = dispc->feat->supported_color_modes[plane];
1291 
1292 	for (i = 0; modes[i]; ++i) {
1293 		if (modes[i] == fourcc)
1294 			return true;
1295 	}
1296 
1297 	return false;
1298 }
1299 
1300 const u32 *dispc_ovl_get_color_modes(struct dispc_device *dispc,
1301 					    enum omap_plane_id plane)
1302 {
1303 	return dispc->feat->supported_color_modes[plane];
1304 }
1305 
1306 static void dispc_mgr_enable_cpr(struct dispc_device *dispc,
1307 				 enum omap_channel channel, bool enable)
1308 {
1309 	if (channel == OMAP_DSS_CHANNEL_DIGIT)
1310 		return;
1311 
1312 	mgr_fld_write(dispc, channel, DISPC_MGR_FLD_CPR, enable);
1313 }
1314 
1315 static void dispc_mgr_set_cpr_coef(struct dispc_device *dispc,
1316 				   enum omap_channel channel,
1317 				   const struct omap_dss_cpr_coefs *coefs)
1318 {
1319 	u32 coef_r, coef_g, coef_b;
1320 
1321 	if (!dss_mgr_is_lcd(channel))
1322 		return;
1323 
1324 	coef_r = FLD_VAL(coefs->rr, 31, 22) | FLD_VAL(coefs->rg, 20, 11) |
1325 		FLD_VAL(coefs->rb, 9, 0);
1326 	coef_g = FLD_VAL(coefs->gr, 31, 22) | FLD_VAL(coefs->gg, 20, 11) |
1327 		FLD_VAL(coefs->gb, 9, 0);
1328 	coef_b = FLD_VAL(coefs->br, 31, 22) | FLD_VAL(coefs->bg, 20, 11) |
1329 		FLD_VAL(coefs->bb, 9, 0);
1330 
1331 	dispc_write_reg(dispc, DISPC_CPR_COEF_R(channel), coef_r);
1332 	dispc_write_reg(dispc, DISPC_CPR_COEF_G(channel), coef_g);
1333 	dispc_write_reg(dispc, DISPC_CPR_COEF_B(channel), coef_b);
1334 }
1335 
1336 static void dispc_ovl_set_vid_color_conv(struct dispc_device *dispc,
1337 					 enum omap_plane_id plane, bool enable)
1338 {
1339 	u32 val;
1340 
1341 	BUG_ON(plane == OMAP_DSS_GFX);
1342 
1343 	val = dispc_read_reg(dispc, DISPC_OVL_ATTRIBUTES(plane));
1344 	val = FLD_MOD(val, enable, 9, 9);
1345 	dispc_write_reg(dispc, DISPC_OVL_ATTRIBUTES(plane), val);
1346 }
1347 
1348 static void dispc_ovl_enable_replication(struct dispc_device *dispc,
1349 					 enum omap_plane_id plane,
1350 					 enum omap_overlay_caps caps,
1351 					 bool enable)
1352 {
1353 	static const unsigned int shifts[] = { 5, 10, 10, 10 };
1354 	int shift;
1355 
1356 	if ((caps & OMAP_DSS_OVL_CAP_REPLICATION) == 0)
1357 		return;
1358 
1359 	shift = shifts[plane];
1360 	REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), enable, shift, shift);
1361 }
1362 
1363 static void dispc_mgr_set_size(struct dispc_device *dispc,
1364 			       enum omap_channel channel, u16 width, u16 height)
1365 {
1366 	u32 val;
1367 
1368 	val = FLD_VAL(height - 1, dispc->feat->mgr_height_start, 16) |
1369 		FLD_VAL(width - 1, dispc->feat->mgr_width_start, 0);
1370 
1371 	dispc_write_reg(dispc, DISPC_SIZE_MGR(channel), val);
1372 }
1373 
1374 static void dispc_init_fifos(struct dispc_device *dispc)
1375 {
1376 	u32 size;
1377 	int fifo;
1378 	u8 start, end;
1379 	u32 unit;
1380 	int i;
1381 
1382 	unit = dispc->feat->buffer_size_unit;
1383 
1384 	dispc_get_reg_field(dispc, FEAT_REG_FIFOSIZE, &start, &end);
1385 
1386 	for (fifo = 0; fifo < dispc->feat->num_fifos; ++fifo) {
1387 		size = REG_GET(dispc, DISPC_OVL_FIFO_SIZE_STATUS(fifo),
1388 			       start, end);
1389 		size *= unit;
1390 		dispc->fifo_size[fifo] = size;
1391 
1392 		/*
1393 		 * By default fifos are mapped directly to overlays, fifo 0 to
1394 		 * ovl 0, fifo 1 to ovl 1, etc.
1395 		 */
1396 		dispc->fifo_assignment[fifo] = fifo;
1397 	}
1398 
1399 	/*
1400 	 * The GFX fifo on OMAP4 is smaller than the other fifos. The small fifo
1401 	 * causes problems with certain use cases, like using the tiler in 2D
1402 	 * mode. The below hack swaps the fifos of GFX and WB planes, thus
1403 	 * giving GFX plane a larger fifo. WB but should work fine with a
1404 	 * smaller fifo.
1405 	 */
1406 	if (dispc->feat->gfx_fifo_workaround) {
1407 		u32 v;
1408 
1409 		v = dispc_read_reg(dispc, DISPC_GLOBAL_BUFFER);
1410 
1411 		v = FLD_MOD(v, 4, 2, 0); /* GFX BUF top to WB */
1412 		v = FLD_MOD(v, 4, 5, 3); /* GFX BUF bottom to WB */
1413 		v = FLD_MOD(v, 0, 26, 24); /* WB BUF top to GFX */
1414 		v = FLD_MOD(v, 0, 29, 27); /* WB BUF bottom to GFX */
1415 
1416 		dispc_write_reg(dispc, DISPC_GLOBAL_BUFFER, v);
1417 
1418 		dispc->fifo_assignment[OMAP_DSS_GFX] = OMAP_DSS_WB;
1419 		dispc->fifo_assignment[OMAP_DSS_WB] = OMAP_DSS_GFX;
1420 	}
1421 
1422 	/*
1423 	 * Setup default fifo thresholds.
1424 	 */
1425 	for (i = 0; i < dispc_get_num_ovls(dispc); ++i) {
1426 		u32 low, high;
1427 		const bool use_fifomerge = false;
1428 		const bool manual_update = false;
1429 
1430 		dispc_ovl_compute_fifo_thresholds(dispc, i, &low, &high,
1431 						  use_fifomerge, manual_update);
1432 
1433 		dispc_ovl_set_fifo_threshold(dispc, i, low, high);
1434 	}
1435 
1436 	if (dispc->feat->has_writeback) {
1437 		u32 low, high;
1438 		const bool use_fifomerge = false;
1439 		const bool manual_update = false;
1440 
1441 		dispc_ovl_compute_fifo_thresholds(dispc, OMAP_DSS_WB,
1442 						  &low, &high, use_fifomerge,
1443 						  manual_update);
1444 
1445 		dispc_ovl_set_fifo_threshold(dispc, OMAP_DSS_WB, low, high);
1446 	}
1447 }
1448 
1449 static u32 dispc_ovl_get_fifo_size(struct dispc_device *dispc,
1450 				   enum omap_plane_id plane)
1451 {
1452 	int fifo;
1453 	u32 size = 0;
1454 
1455 	for (fifo = 0; fifo < dispc->feat->num_fifos; ++fifo) {
1456 		if (dispc->fifo_assignment[fifo] == plane)
1457 			size += dispc->fifo_size[fifo];
1458 	}
1459 
1460 	return size;
1461 }
1462 
1463 void dispc_ovl_set_fifo_threshold(struct dispc_device *dispc,
1464 				  enum omap_plane_id plane,
1465 				  u32 low, u32 high)
1466 {
1467 	u8 hi_start, hi_end, lo_start, lo_end;
1468 	u32 unit;
1469 
1470 	unit = dispc->feat->buffer_size_unit;
1471 
1472 	WARN_ON(low % unit != 0);
1473 	WARN_ON(high % unit != 0);
1474 
1475 	low /= unit;
1476 	high /= unit;
1477 
1478 	dispc_get_reg_field(dispc, FEAT_REG_FIFOHIGHTHRESHOLD,
1479 			    &hi_start, &hi_end);
1480 	dispc_get_reg_field(dispc, FEAT_REG_FIFOLOWTHRESHOLD,
1481 			    &lo_start, &lo_end);
1482 
1483 	DSSDBG("fifo(%d) threshold (bytes), old %u/%u, new %u/%u\n",
1484 			plane,
1485 			REG_GET(dispc, DISPC_OVL_FIFO_THRESHOLD(plane),
1486 				lo_start, lo_end) * unit,
1487 			REG_GET(dispc, DISPC_OVL_FIFO_THRESHOLD(plane),
1488 				hi_start, hi_end) * unit,
1489 			low * unit, high * unit);
1490 
1491 	dispc_write_reg(dispc, DISPC_OVL_FIFO_THRESHOLD(plane),
1492 			FLD_VAL(high, hi_start, hi_end) |
1493 			FLD_VAL(low, lo_start, lo_end));
1494 
1495 	/*
1496 	 * configure the preload to the pipeline's high threhold, if HT it's too
1497 	 * large for the preload field, set the threshold to the maximum value
1498 	 * that can be held by the preload register
1499 	 */
1500 	if (dispc_has_feature(dispc, FEAT_PRELOAD) &&
1501 	    dispc->feat->set_max_preload && plane != OMAP_DSS_WB)
1502 		dispc_write_reg(dispc, DISPC_OVL_PRELOAD(plane),
1503 				min(high, 0xfffu));
1504 }
1505 
1506 void dispc_enable_fifomerge(struct dispc_device *dispc, bool enable)
1507 {
1508 	if (!dispc_has_feature(dispc, FEAT_FIFO_MERGE)) {
1509 		WARN_ON(enable);
1510 		return;
1511 	}
1512 
1513 	DSSDBG("FIFO merge %s\n", enable ? "enabled" : "disabled");
1514 	REG_FLD_MOD(dispc, DISPC_CONFIG, enable ? 1 : 0, 14, 14);
1515 }
1516 
1517 void dispc_ovl_compute_fifo_thresholds(struct dispc_device *dispc,
1518 				       enum omap_plane_id plane,
1519 				       u32 *fifo_low, u32 *fifo_high,
1520 				       bool use_fifomerge, bool manual_update)
1521 {
1522 	/*
1523 	 * All sizes are in bytes. Both the buffer and burst are made of
1524 	 * buffer_units, and the fifo thresholds must be buffer_unit aligned.
1525 	 */
1526 	unsigned int buf_unit = dispc->feat->buffer_size_unit;
1527 	unsigned int ovl_fifo_size, total_fifo_size, burst_size;
1528 	int i;
1529 
1530 	burst_size = dispc_ovl_get_burst_size(dispc, plane);
1531 	ovl_fifo_size = dispc_ovl_get_fifo_size(dispc, plane);
1532 
1533 	if (use_fifomerge) {
1534 		total_fifo_size = 0;
1535 		for (i = 0; i < dispc_get_num_ovls(dispc); ++i)
1536 			total_fifo_size += dispc_ovl_get_fifo_size(dispc, i);
1537 	} else {
1538 		total_fifo_size = ovl_fifo_size;
1539 	}
1540 
1541 	/*
1542 	 * We use the same low threshold for both fifomerge and non-fifomerge
1543 	 * cases, but for fifomerge we calculate the high threshold using the
1544 	 * combined fifo size
1545 	 */
1546 
1547 	if (manual_update && dispc_has_feature(dispc, FEAT_OMAP3_DSI_FIFO_BUG)) {
1548 		*fifo_low = ovl_fifo_size - burst_size * 2;
1549 		*fifo_high = total_fifo_size - burst_size;
1550 	} else if (plane == OMAP_DSS_WB) {
1551 		/*
1552 		 * Most optimal configuration for writeback is to push out data
1553 		 * to the interconnect the moment writeback pushes enough pixels
1554 		 * in the FIFO to form a burst
1555 		 */
1556 		*fifo_low = 0;
1557 		*fifo_high = burst_size;
1558 	} else {
1559 		*fifo_low = ovl_fifo_size - burst_size;
1560 		*fifo_high = total_fifo_size - buf_unit;
1561 	}
1562 }
1563 
1564 static void dispc_ovl_set_mflag(struct dispc_device *dispc,
1565 				enum omap_plane_id plane, bool enable)
1566 {
1567 	int bit;
1568 
1569 	if (plane == OMAP_DSS_GFX)
1570 		bit = 14;
1571 	else
1572 		bit = 23;
1573 
1574 	REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), enable, bit, bit);
1575 }
1576 
1577 static void dispc_ovl_set_mflag_threshold(struct dispc_device *dispc,
1578 					  enum omap_plane_id plane,
1579 					  int low, int high)
1580 {
1581 	dispc_write_reg(dispc, DISPC_OVL_MFLAG_THRESHOLD(plane),
1582 		FLD_VAL(high, 31, 16) |	FLD_VAL(low, 15, 0));
1583 }
1584 
1585 static void dispc_init_mflag(struct dispc_device *dispc)
1586 {
1587 	int i;
1588 
1589 	/*
1590 	 * HACK: NV12 color format and MFLAG seem to have problems working
1591 	 * together: using two displays, and having an NV12 overlay on one of
1592 	 * the displays will cause underflows/synclosts when MFLAG_CTRL=2.
1593 	 * Changing MFLAG thresholds and PRELOAD to certain values seem to
1594 	 * remove the errors, but there doesn't seem to be a clear logic on
1595 	 * which values work and which not.
1596 	 *
1597 	 * As a work-around, set force MFLAG to always on.
1598 	 */
1599 	dispc_write_reg(dispc, DISPC_GLOBAL_MFLAG_ATTRIBUTE,
1600 		(1 << 0) |	/* MFLAG_CTRL = force always on */
1601 		(0 << 2));	/* MFLAG_START = disable */
1602 
1603 	for (i = 0; i < dispc_get_num_ovls(dispc); ++i) {
1604 		u32 size = dispc_ovl_get_fifo_size(dispc, i);
1605 		u32 unit = dispc->feat->buffer_size_unit;
1606 		u32 low, high;
1607 
1608 		dispc_ovl_set_mflag(dispc, i, true);
1609 
1610 		/*
1611 		 * Simulation team suggests below thesholds:
1612 		 * HT = fifosize * 5 / 8;
1613 		 * LT = fifosize * 4 / 8;
1614 		 */
1615 
1616 		low = size * 4 / 8 / unit;
1617 		high = size * 5 / 8 / unit;
1618 
1619 		dispc_ovl_set_mflag_threshold(dispc, i, low, high);
1620 	}
1621 
1622 	if (dispc->feat->has_writeback) {
1623 		u32 size = dispc_ovl_get_fifo_size(dispc, OMAP_DSS_WB);
1624 		u32 unit = dispc->feat->buffer_size_unit;
1625 		u32 low, high;
1626 
1627 		dispc_ovl_set_mflag(dispc, OMAP_DSS_WB, true);
1628 
1629 		/*
1630 		 * Simulation team suggests below thesholds:
1631 		 * HT = fifosize * 5 / 8;
1632 		 * LT = fifosize * 4 / 8;
1633 		 */
1634 
1635 		low = size * 4 / 8 / unit;
1636 		high = size * 5 / 8 / unit;
1637 
1638 		dispc_ovl_set_mflag_threshold(dispc, OMAP_DSS_WB, low, high);
1639 	}
1640 }
1641 
1642 static void dispc_ovl_set_fir(struct dispc_device *dispc,
1643 			      enum omap_plane_id plane,
1644 			      int hinc, int vinc,
1645 			      enum omap_color_component color_comp)
1646 {
1647 	u32 val;
1648 
1649 	if (color_comp == DISPC_COLOR_COMPONENT_RGB_Y) {
1650 		u8 hinc_start, hinc_end, vinc_start, vinc_end;
1651 
1652 		dispc_get_reg_field(dispc, FEAT_REG_FIRHINC,
1653 				    &hinc_start, &hinc_end);
1654 		dispc_get_reg_field(dispc, FEAT_REG_FIRVINC,
1655 				    &vinc_start, &vinc_end);
1656 		val = FLD_VAL(vinc, vinc_start, vinc_end) |
1657 				FLD_VAL(hinc, hinc_start, hinc_end);
1658 
1659 		dispc_write_reg(dispc, DISPC_OVL_FIR(plane), val);
1660 	} else {
1661 		val = FLD_VAL(vinc, 28, 16) | FLD_VAL(hinc, 12, 0);
1662 		dispc_write_reg(dispc, DISPC_OVL_FIR2(plane), val);
1663 	}
1664 }
1665 
1666 static void dispc_ovl_set_vid_accu0(struct dispc_device *dispc,
1667 				    enum omap_plane_id plane, int haccu,
1668 				    int vaccu)
1669 {
1670 	u32 val;
1671 	u8 hor_start, hor_end, vert_start, vert_end;
1672 
1673 	dispc_get_reg_field(dispc, FEAT_REG_HORIZONTALACCU,
1674 			    &hor_start, &hor_end);
1675 	dispc_get_reg_field(dispc, FEAT_REG_VERTICALACCU,
1676 			    &vert_start, &vert_end);
1677 
1678 	val = FLD_VAL(vaccu, vert_start, vert_end) |
1679 			FLD_VAL(haccu, hor_start, hor_end);
1680 
1681 	dispc_write_reg(dispc, DISPC_OVL_ACCU0(plane), val);
1682 }
1683 
1684 static void dispc_ovl_set_vid_accu1(struct dispc_device *dispc,
1685 				    enum omap_plane_id plane, int haccu,
1686 				    int vaccu)
1687 {
1688 	u32 val;
1689 	u8 hor_start, hor_end, vert_start, vert_end;
1690 
1691 	dispc_get_reg_field(dispc, FEAT_REG_HORIZONTALACCU,
1692 			    &hor_start, &hor_end);
1693 	dispc_get_reg_field(dispc, FEAT_REG_VERTICALACCU,
1694 			    &vert_start, &vert_end);
1695 
1696 	val = FLD_VAL(vaccu, vert_start, vert_end) |
1697 			FLD_VAL(haccu, hor_start, hor_end);
1698 
1699 	dispc_write_reg(dispc, DISPC_OVL_ACCU1(plane), val);
1700 }
1701 
1702 static void dispc_ovl_set_vid_accu2_0(struct dispc_device *dispc,
1703 				      enum omap_plane_id plane, int haccu,
1704 				      int vaccu)
1705 {
1706 	u32 val;
1707 
1708 	val = FLD_VAL(vaccu, 26, 16) | FLD_VAL(haccu, 10, 0);
1709 	dispc_write_reg(dispc, DISPC_OVL_ACCU2_0(plane), val);
1710 }
1711 
1712 static void dispc_ovl_set_vid_accu2_1(struct dispc_device *dispc,
1713 				      enum omap_plane_id plane, int haccu,
1714 				      int vaccu)
1715 {
1716 	u32 val;
1717 
1718 	val = FLD_VAL(vaccu, 26, 16) | FLD_VAL(haccu, 10, 0);
1719 	dispc_write_reg(dispc, DISPC_OVL_ACCU2_1(plane), val);
1720 }
1721 
1722 static void dispc_ovl_set_scale_param(struct dispc_device *dispc,
1723 				      enum omap_plane_id plane,
1724 				      u16 orig_width, u16 orig_height,
1725 				      u16 out_width, u16 out_height,
1726 				      bool five_taps, u8 rotation,
1727 				      enum omap_color_component color_comp)
1728 {
1729 	int fir_hinc, fir_vinc;
1730 
1731 	fir_hinc = 1024 * orig_width / out_width;
1732 	fir_vinc = 1024 * orig_height / out_height;
1733 
1734 	dispc_ovl_set_scale_coef(dispc, plane, fir_hinc, fir_vinc, five_taps,
1735 				 color_comp);
1736 	dispc_ovl_set_fir(dispc, plane, fir_hinc, fir_vinc, color_comp);
1737 }
1738 
1739 static void dispc_ovl_set_accu_uv(struct dispc_device *dispc,
1740 				  enum omap_plane_id plane,
1741 				  u16 orig_width, u16 orig_height,
1742 				  u16 out_width, u16 out_height,
1743 				  bool ilace, u32 fourcc, u8 rotation)
1744 {
1745 	int h_accu2_0, h_accu2_1;
1746 	int v_accu2_0, v_accu2_1;
1747 	int chroma_hinc, chroma_vinc;
1748 	int idx;
1749 
1750 	struct accu {
1751 		s8 h0_m, h0_n;
1752 		s8 h1_m, h1_n;
1753 		s8 v0_m, v0_n;
1754 		s8 v1_m, v1_n;
1755 	};
1756 
1757 	const struct accu *accu_table;
1758 	const struct accu *accu_val;
1759 
1760 	static const struct accu accu_nv12[4] = {
1761 		{  0, 1,  0, 1 , -1, 2, 0, 1 },
1762 		{  1, 2, -3, 4 ,  0, 1, 0, 1 },
1763 		{ -1, 1,  0, 1 , -1, 2, 0, 1 },
1764 		{ -1, 2, -1, 2 , -1, 1, 0, 1 },
1765 	};
1766 
1767 	static const struct accu accu_nv12_ilace[4] = {
1768 		{  0, 1,  0, 1 , -3, 4, -1, 4 },
1769 		{ -1, 4, -3, 4 ,  0, 1,  0, 1 },
1770 		{ -1, 1,  0, 1 , -1, 4, -3, 4 },
1771 		{ -3, 4, -3, 4 , -1, 1,  0, 1 },
1772 	};
1773 
1774 	static const struct accu accu_yuv[4] = {
1775 		{  0, 1, 0, 1,  0, 1, 0, 1 },
1776 		{  0, 1, 0, 1,  0, 1, 0, 1 },
1777 		{ -1, 1, 0, 1,  0, 1, 0, 1 },
1778 		{  0, 1, 0, 1, -1, 1, 0, 1 },
1779 	};
1780 
1781 	/* Note: DSS HW rotates clockwise, DRM_MODE_ROTATE_* counter-clockwise */
1782 	switch (rotation & DRM_MODE_ROTATE_MASK) {
1783 	default:
1784 	case DRM_MODE_ROTATE_0:
1785 		idx = 0;
1786 		break;
1787 	case DRM_MODE_ROTATE_90:
1788 		idx = 3;
1789 		break;
1790 	case DRM_MODE_ROTATE_180:
1791 		idx = 2;
1792 		break;
1793 	case DRM_MODE_ROTATE_270:
1794 		idx = 1;
1795 		break;
1796 	}
1797 
1798 	switch (fourcc) {
1799 	case DRM_FORMAT_NV12:
1800 		if (ilace)
1801 			accu_table = accu_nv12_ilace;
1802 		else
1803 			accu_table = accu_nv12;
1804 		break;
1805 	case DRM_FORMAT_YUYV:
1806 	case DRM_FORMAT_UYVY:
1807 		accu_table = accu_yuv;
1808 		break;
1809 	default:
1810 		BUG();
1811 		return;
1812 	}
1813 
1814 	accu_val = &accu_table[idx];
1815 
1816 	chroma_hinc = 1024 * orig_width / out_width;
1817 	chroma_vinc = 1024 * orig_height / out_height;
1818 
1819 	h_accu2_0 = (accu_val->h0_m * chroma_hinc / accu_val->h0_n) % 1024;
1820 	h_accu2_1 = (accu_val->h1_m * chroma_hinc / accu_val->h1_n) % 1024;
1821 	v_accu2_0 = (accu_val->v0_m * chroma_vinc / accu_val->v0_n) % 1024;
1822 	v_accu2_1 = (accu_val->v1_m * chroma_vinc / accu_val->v1_n) % 1024;
1823 
1824 	dispc_ovl_set_vid_accu2_0(dispc, plane, h_accu2_0, v_accu2_0);
1825 	dispc_ovl_set_vid_accu2_1(dispc, plane, h_accu2_1, v_accu2_1);
1826 }
1827 
1828 static void dispc_ovl_set_scaling_common(struct dispc_device *dispc,
1829 					 enum omap_plane_id plane,
1830 					 u16 orig_width, u16 orig_height,
1831 					 u16 out_width, u16 out_height,
1832 					 bool ilace, bool five_taps,
1833 					 bool fieldmode, u32 fourcc,
1834 					 u8 rotation)
1835 {
1836 	int accu0 = 0;
1837 	int accu1 = 0;
1838 	u32 l;
1839 
1840 	dispc_ovl_set_scale_param(dispc, plane, orig_width, orig_height,
1841 				  out_width, out_height, five_taps,
1842 				  rotation, DISPC_COLOR_COMPONENT_RGB_Y);
1843 	l = dispc_read_reg(dispc, DISPC_OVL_ATTRIBUTES(plane));
1844 
1845 	/* RESIZEENABLE and VERTICALTAPS */
1846 	l &= ~((0x3 << 5) | (0x1 << 21));
1847 	l |= (orig_width != out_width) ? (1 << 5) : 0;
1848 	l |= (orig_height != out_height) ? (1 << 6) : 0;
1849 	l |= five_taps ? (1 << 21) : 0;
1850 
1851 	/* VRESIZECONF and HRESIZECONF */
1852 	if (dispc_has_feature(dispc, FEAT_RESIZECONF)) {
1853 		l &= ~(0x3 << 7);
1854 		l |= (orig_width <= out_width) ? 0 : (1 << 7);
1855 		l |= (orig_height <= out_height) ? 0 : (1 << 8);
1856 	}
1857 
1858 	/* LINEBUFFERSPLIT */
1859 	if (dispc_has_feature(dispc, FEAT_LINEBUFFERSPLIT)) {
1860 		l &= ~(0x1 << 22);
1861 		l |= five_taps ? (1 << 22) : 0;
1862 	}
1863 
1864 	dispc_write_reg(dispc, DISPC_OVL_ATTRIBUTES(plane), l);
1865 
1866 	/*
1867 	 * field 0 = even field = bottom field
1868 	 * field 1 = odd field = top field
1869 	 */
1870 	if (ilace && !fieldmode) {
1871 		accu1 = 0;
1872 		accu0 = ((1024 * orig_height / out_height) / 2) & 0x3ff;
1873 		if (accu0 >= 1024/2) {
1874 			accu1 = 1024/2;
1875 			accu0 -= accu1;
1876 		}
1877 	}
1878 
1879 	dispc_ovl_set_vid_accu0(dispc, plane, 0, accu0);
1880 	dispc_ovl_set_vid_accu1(dispc, plane, 0, accu1);
1881 }
1882 
1883 static void dispc_ovl_set_scaling_uv(struct dispc_device *dispc,
1884 				     enum omap_plane_id plane,
1885 				     u16 orig_width, u16 orig_height,
1886 				     u16 out_width, u16 out_height,
1887 				     bool ilace, bool five_taps,
1888 				     bool fieldmode, u32 fourcc,
1889 				     u8 rotation)
1890 {
1891 	int scale_x = out_width != orig_width;
1892 	int scale_y = out_height != orig_height;
1893 	bool chroma_upscale = plane != OMAP_DSS_WB;
1894 	const struct drm_format_info *info;
1895 
1896 	info = drm_format_info(fourcc);
1897 
1898 	if (!dispc_has_feature(dispc, FEAT_HANDLE_UV_SEPARATE))
1899 		return;
1900 
1901 	if (!info->is_yuv) {
1902 		/* reset chroma resampling for RGB formats  */
1903 		if (plane != OMAP_DSS_WB)
1904 			REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES2(plane),
1905 				    0, 8, 8);
1906 		return;
1907 	}
1908 
1909 	dispc_ovl_set_accu_uv(dispc, plane, orig_width, orig_height, out_width,
1910 			      out_height, ilace, fourcc, rotation);
1911 
1912 	switch (fourcc) {
1913 	case DRM_FORMAT_NV12:
1914 		if (chroma_upscale) {
1915 			/* UV is subsampled by 2 horizontally and vertically */
1916 			orig_height >>= 1;
1917 			orig_width >>= 1;
1918 		} else {
1919 			/* UV is downsampled by 2 horizontally and vertically */
1920 			orig_height <<= 1;
1921 			orig_width <<= 1;
1922 		}
1923 
1924 		break;
1925 	case DRM_FORMAT_YUYV:
1926 	case DRM_FORMAT_UYVY:
1927 		/* For YUV422 with 90/270 rotation, we don't upsample chroma */
1928 		if (!drm_rotation_90_or_270(rotation)) {
1929 			if (chroma_upscale)
1930 				/* UV is subsampled by 2 horizontally */
1931 				orig_width >>= 1;
1932 			else
1933 				/* UV is downsampled by 2 horizontally */
1934 				orig_width <<= 1;
1935 		}
1936 
1937 		/* must use FIR for YUV422 if rotated */
1938 		if ((rotation & DRM_MODE_ROTATE_MASK) != DRM_MODE_ROTATE_0)
1939 			scale_x = scale_y = true;
1940 
1941 		break;
1942 	default:
1943 		BUG();
1944 		return;
1945 	}
1946 
1947 	if (out_width != orig_width)
1948 		scale_x = true;
1949 	if (out_height != orig_height)
1950 		scale_y = true;
1951 
1952 	dispc_ovl_set_scale_param(dispc, plane, orig_width, orig_height,
1953 				  out_width, out_height, five_taps,
1954 				  rotation, DISPC_COLOR_COMPONENT_UV);
1955 
1956 	if (plane != OMAP_DSS_WB)
1957 		REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES2(plane),
1958 			(scale_x || scale_y) ? 1 : 0, 8, 8);
1959 
1960 	/* set H scaling */
1961 	REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), scale_x ? 1 : 0, 5, 5);
1962 	/* set V scaling */
1963 	REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), scale_y ? 1 : 0, 6, 6);
1964 }
1965 
1966 static void dispc_ovl_set_scaling(struct dispc_device *dispc,
1967 				  enum omap_plane_id plane,
1968 				  u16 orig_width, u16 orig_height,
1969 				  u16 out_width, u16 out_height,
1970 				  bool ilace, bool five_taps,
1971 				  bool fieldmode, u32 fourcc,
1972 				  u8 rotation)
1973 {
1974 	BUG_ON(plane == OMAP_DSS_GFX);
1975 
1976 	dispc_ovl_set_scaling_common(dispc, plane, orig_width, orig_height,
1977 				     out_width, out_height, ilace, five_taps,
1978 				     fieldmode, fourcc, rotation);
1979 
1980 	dispc_ovl_set_scaling_uv(dispc, plane, orig_width, orig_height,
1981 				 out_width, out_height, ilace, five_taps,
1982 				 fieldmode, fourcc, rotation);
1983 }
1984 
1985 static void dispc_ovl_set_rotation_attrs(struct dispc_device *dispc,
1986 					 enum omap_plane_id plane, u8 rotation,
1987 					 enum omap_dss_rotation_type rotation_type,
1988 					 u32 fourcc)
1989 {
1990 	bool row_repeat = false;
1991 	int vidrot = 0;
1992 
1993 	/* Note: DSS HW rotates clockwise, DRM_MODE_ROTATE_* counter-clockwise */
1994 	if (fourcc == DRM_FORMAT_YUYV || fourcc == DRM_FORMAT_UYVY) {
1995 
1996 		if (rotation & DRM_MODE_REFLECT_X) {
1997 			switch (rotation & DRM_MODE_ROTATE_MASK) {
1998 			case DRM_MODE_ROTATE_0:
1999 				vidrot = 2;
2000 				break;
2001 			case DRM_MODE_ROTATE_90:
2002 				vidrot = 1;
2003 				break;
2004 			case DRM_MODE_ROTATE_180:
2005 				vidrot = 0;
2006 				break;
2007 			case DRM_MODE_ROTATE_270:
2008 				vidrot = 3;
2009 				break;
2010 			}
2011 		} else {
2012 			switch (rotation & DRM_MODE_ROTATE_MASK) {
2013 			case DRM_MODE_ROTATE_0:
2014 				vidrot = 0;
2015 				break;
2016 			case DRM_MODE_ROTATE_90:
2017 				vidrot = 3;
2018 				break;
2019 			case DRM_MODE_ROTATE_180:
2020 				vidrot = 2;
2021 				break;
2022 			case DRM_MODE_ROTATE_270:
2023 				vidrot = 1;
2024 				break;
2025 			}
2026 		}
2027 
2028 		if (drm_rotation_90_or_270(rotation))
2029 			row_repeat = true;
2030 		else
2031 			row_repeat = false;
2032 	}
2033 
2034 	/*
2035 	 * OMAP4/5 Errata i631:
2036 	 * NV12 in 1D mode must use ROTATION=1. Otherwise DSS will fetch extra
2037 	 * rows beyond the framebuffer, which may cause OCP error.
2038 	 */
2039 	if (fourcc == DRM_FORMAT_NV12 && rotation_type != OMAP_DSS_ROT_TILER)
2040 		vidrot = 1;
2041 
2042 	REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), vidrot, 13, 12);
2043 	if (dispc_has_feature(dispc, FEAT_ROWREPEATENABLE))
2044 		REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane),
2045 			row_repeat ? 1 : 0, 18, 18);
2046 
2047 	if (dispc_ovl_color_mode_supported(dispc, plane, DRM_FORMAT_NV12)) {
2048 		bool doublestride =
2049 			fourcc == DRM_FORMAT_NV12 &&
2050 			rotation_type == OMAP_DSS_ROT_TILER &&
2051 			!drm_rotation_90_or_270(rotation);
2052 
2053 		/* DOUBLESTRIDE */
2054 		REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane),
2055 			    doublestride, 22, 22);
2056 	}
2057 }
2058 
2059 static int color_mode_to_bpp(u32 fourcc)
2060 {
2061 	switch (fourcc) {
2062 	case DRM_FORMAT_NV12:
2063 		return 8;
2064 	case DRM_FORMAT_RGBX4444:
2065 	case DRM_FORMAT_RGB565:
2066 	case DRM_FORMAT_ARGB4444:
2067 	case DRM_FORMAT_YUYV:
2068 	case DRM_FORMAT_UYVY:
2069 	case DRM_FORMAT_RGBA4444:
2070 	case DRM_FORMAT_XRGB4444:
2071 	case DRM_FORMAT_ARGB1555:
2072 	case DRM_FORMAT_XRGB1555:
2073 		return 16;
2074 	case DRM_FORMAT_RGB888:
2075 		return 24;
2076 	case DRM_FORMAT_XRGB8888:
2077 	case DRM_FORMAT_ARGB8888:
2078 	case DRM_FORMAT_RGBA8888:
2079 	case DRM_FORMAT_RGBX8888:
2080 		return 32;
2081 	default:
2082 		BUG();
2083 		return 0;
2084 	}
2085 }
2086 
2087 static s32 pixinc(int pixels, u8 ps)
2088 {
2089 	if (pixels == 1)
2090 		return 1;
2091 	else if (pixels > 1)
2092 		return 1 + (pixels - 1) * ps;
2093 	else if (pixels < 0)
2094 		return 1 - (-pixels + 1) * ps;
2095 
2096 	BUG();
2097 }
2098 
2099 static void calc_offset(u16 screen_width, u16 width,
2100 		u32 fourcc, bool fieldmode, unsigned int field_offset,
2101 		unsigned int *offset0, unsigned int *offset1,
2102 		s32 *row_inc, s32 *pix_inc, int x_predecim, int y_predecim,
2103 		enum omap_dss_rotation_type rotation_type, u8 rotation)
2104 {
2105 	u8 ps;
2106 
2107 	ps = color_mode_to_bpp(fourcc) / 8;
2108 
2109 	DSSDBG("scrw %d, width %d\n", screen_width, width);
2110 
2111 	if (rotation_type == OMAP_DSS_ROT_TILER &&
2112 	    (fourcc == DRM_FORMAT_UYVY || fourcc == DRM_FORMAT_YUYV) &&
2113 	    drm_rotation_90_or_270(rotation)) {
2114 		/*
2115 		 * HACK: ROW_INC needs to be calculated with TILER units.
2116 		 * We get such 'screen_width' that multiplying it with the
2117 		 * YUV422 pixel size gives the correct TILER container width.
2118 		 * However, 'width' is in pixels and multiplying it with YUV422
2119 		 * pixel size gives incorrect result. We thus multiply it here
2120 		 * with 2 to match the 32 bit TILER unit size.
2121 		 */
2122 		width *= 2;
2123 	}
2124 
2125 	/*
2126 	 * field 0 = even field = bottom field
2127 	 * field 1 = odd field = top field
2128 	 */
2129 	*offset0 = field_offset * screen_width * ps;
2130 	*offset1 = 0;
2131 
2132 	*row_inc = pixinc(1 + (y_predecim * screen_width - width * x_predecim) +
2133 			(fieldmode ? screen_width : 0), ps);
2134 	if (fourcc == DRM_FORMAT_YUYV || fourcc == DRM_FORMAT_UYVY)
2135 		*pix_inc = pixinc(x_predecim, 2 * ps);
2136 	else
2137 		*pix_inc = pixinc(x_predecim, ps);
2138 }
2139 
2140 /*
2141  * This function is used to avoid synclosts in OMAP3, because of some
2142  * undocumented horizontal position and timing related limitations.
2143  */
2144 static int check_horiz_timing_omap3(unsigned long pclk, unsigned long lclk,
2145 		const struct videomode *vm, u16 pos_x,
2146 		u16 width, u16 height, u16 out_width, u16 out_height,
2147 		bool five_taps)
2148 {
2149 	const int ds = DIV_ROUND_UP(height, out_height);
2150 	unsigned long nonactive;
2151 	static const u8 limits[3] = { 8, 10, 20 };
2152 	u64 val, blank;
2153 	int i;
2154 
2155 	nonactive = vm->hactive + vm->hfront_porch + vm->hsync_len +
2156 		    vm->hback_porch - out_width;
2157 
2158 	i = 0;
2159 	if (out_height < height)
2160 		i++;
2161 	if (out_width < width)
2162 		i++;
2163 	blank = div_u64((u64)(vm->hback_porch + vm->hsync_len + vm->hfront_porch) *
2164 			lclk, pclk);
2165 	DSSDBG("blanking period + ppl = %llu (limit = %u)\n", blank, limits[i]);
2166 	if (blank <= limits[i])
2167 		return -EINVAL;
2168 
2169 	/* FIXME add checks for 3-tap filter once the limitations are known */
2170 	if (!five_taps)
2171 		return 0;
2172 
2173 	/*
2174 	 * Pixel data should be prepared before visible display point starts.
2175 	 * So, atleast DS-2 lines must have already been fetched by DISPC
2176 	 * during nonactive - pos_x period.
2177 	 */
2178 	val = div_u64((u64)(nonactive - pos_x) * lclk, pclk);
2179 	DSSDBG("(nonactive - pos_x) * pcd = %llu max(0, DS - 2) * width = %d\n",
2180 		val, max(0, ds - 2) * width);
2181 	if (val < max(0, ds - 2) * width)
2182 		return -EINVAL;
2183 
2184 	/*
2185 	 * All lines need to be refilled during the nonactive period of which
2186 	 * only one line can be loaded during the active period. So, atleast
2187 	 * DS - 1 lines should be loaded during nonactive period.
2188 	 */
2189 	val =  div_u64((u64)nonactive * lclk, pclk);
2190 	DSSDBG("nonactive * pcd  = %llu, max(0, DS - 1) * width = %d\n",
2191 		val, max(0, ds - 1) * width);
2192 	if (val < max(0, ds - 1) * width)
2193 		return -EINVAL;
2194 
2195 	return 0;
2196 }
2197 
2198 static unsigned long calc_core_clk_five_taps(unsigned long pclk,
2199 		const struct videomode *vm, u16 width,
2200 		u16 height, u16 out_width, u16 out_height,
2201 		u32 fourcc)
2202 {
2203 	u32 core_clk = 0;
2204 	u64 tmp;
2205 
2206 	if (height <= out_height && width <= out_width)
2207 		return (unsigned long) pclk;
2208 
2209 	if (height > out_height) {
2210 		unsigned int ppl = vm->hactive;
2211 
2212 		tmp = (u64)pclk * height * out_width;
2213 		do_div(tmp, 2 * out_height * ppl);
2214 		core_clk = tmp;
2215 
2216 		if (height > 2 * out_height) {
2217 			if (ppl == out_width)
2218 				return 0;
2219 
2220 			tmp = (u64)pclk * (height - 2 * out_height) * out_width;
2221 			do_div(tmp, 2 * out_height * (ppl - out_width));
2222 			core_clk = max_t(u32, core_clk, tmp);
2223 		}
2224 	}
2225 
2226 	if (width > out_width) {
2227 		tmp = (u64)pclk * width;
2228 		do_div(tmp, out_width);
2229 		core_clk = max_t(u32, core_clk, tmp);
2230 
2231 		if (fourcc == DRM_FORMAT_XRGB8888)
2232 			core_clk <<= 1;
2233 	}
2234 
2235 	return core_clk;
2236 }
2237 
2238 static unsigned long calc_core_clk_24xx(unsigned long pclk, u16 width,
2239 		u16 height, u16 out_width, u16 out_height, bool mem_to_mem)
2240 {
2241 	if (height > out_height && width > out_width)
2242 		return pclk * 4;
2243 	else
2244 		return pclk * 2;
2245 }
2246 
2247 static unsigned long calc_core_clk_34xx(unsigned long pclk, u16 width,
2248 		u16 height, u16 out_width, u16 out_height, bool mem_to_mem)
2249 {
2250 	unsigned int hf, vf;
2251 
2252 	/*
2253 	 * FIXME how to determine the 'A' factor
2254 	 * for the no downscaling case ?
2255 	 */
2256 
2257 	if (width > 3 * out_width)
2258 		hf = 4;
2259 	else if (width > 2 * out_width)
2260 		hf = 3;
2261 	else if (width > out_width)
2262 		hf = 2;
2263 	else
2264 		hf = 1;
2265 	if (height > out_height)
2266 		vf = 2;
2267 	else
2268 		vf = 1;
2269 
2270 	return pclk * vf * hf;
2271 }
2272 
2273 static unsigned long calc_core_clk_44xx(unsigned long pclk, u16 width,
2274 		u16 height, u16 out_width, u16 out_height, bool mem_to_mem)
2275 {
2276 	/*
2277 	 * If the overlay/writeback is in mem to mem mode, there are no
2278 	 * downscaling limitations with respect to pixel clock, return 1 as
2279 	 * required core clock to represent that we have sufficient enough
2280 	 * core clock to do maximum downscaling
2281 	 */
2282 	if (mem_to_mem)
2283 		return 1;
2284 
2285 	if (width > out_width)
2286 		return DIV_ROUND_UP(pclk, out_width) * width;
2287 	else
2288 		return pclk;
2289 }
2290 
2291 static int dispc_ovl_calc_scaling_24xx(struct dispc_device *dispc,
2292 				       unsigned long pclk, unsigned long lclk,
2293 				       const struct videomode *vm,
2294 				       u16 width, u16 height,
2295 				       u16 out_width, u16 out_height,
2296 				       u32 fourcc, bool *five_taps,
2297 				       int *x_predecim, int *y_predecim,
2298 				       int *decim_x, int *decim_y,
2299 				       u16 pos_x, unsigned long *core_clk,
2300 				       bool mem_to_mem)
2301 {
2302 	int error;
2303 	u16 in_width, in_height;
2304 	int min_factor = min(*decim_x, *decim_y);
2305 	const int maxsinglelinewidth = dispc->feat->max_line_width;
2306 
2307 	*five_taps = false;
2308 
2309 	do {
2310 		in_height = height / *decim_y;
2311 		in_width = width / *decim_x;
2312 		*core_clk = dispc->feat->calc_core_clk(pclk, in_width,
2313 				in_height, out_width, out_height, mem_to_mem);
2314 		error = (in_width > maxsinglelinewidth || !*core_clk ||
2315 			*core_clk > dispc_core_clk_rate(dispc));
2316 		if (error) {
2317 			if (*decim_x == *decim_y) {
2318 				*decim_x = min_factor;
2319 				++*decim_y;
2320 			} else {
2321 				swap(*decim_x, *decim_y);
2322 				if (*decim_x < *decim_y)
2323 					++*decim_x;
2324 			}
2325 		}
2326 	} while (*decim_x <= *x_predecim && *decim_y <= *y_predecim && error);
2327 
2328 	if (error) {
2329 		DSSERR("failed to find scaling settings\n");
2330 		return -EINVAL;
2331 	}
2332 
2333 	if (in_width > maxsinglelinewidth) {
2334 		DSSERR("Cannot scale max input width exceeded\n");
2335 		return -EINVAL;
2336 	}
2337 	return 0;
2338 }
2339 
2340 static int dispc_ovl_calc_scaling_34xx(struct dispc_device *dispc,
2341 				       unsigned long pclk, unsigned long lclk,
2342 				       const struct videomode *vm,
2343 				       u16 width, u16 height,
2344 				       u16 out_width, u16 out_height,
2345 				       u32 fourcc, bool *five_taps,
2346 				       int *x_predecim, int *y_predecim,
2347 				       int *decim_x, int *decim_y,
2348 				       u16 pos_x, unsigned long *core_clk,
2349 				       bool mem_to_mem)
2350 {
2351 	int error;
2352 	u16 in_width, in_height;
2353 	const int maxsinglelinewidth = dispc->feat->max_line_width;
2354 
2355 	do {
2356 		in_height = height / *decim_y;
2357 		in_width = width / *decim_x;
2358 		*five_taps = in_height > out_height;
2359 
2360 		if (in_width > maxsinglelinewidth)
2361 			if (in_height > out_height &&
2362 						in_height < out_height * 2)
2363 				*five_taps = false;
2364 again:
2365 		if (*five_taps)
2366 			*core_clk = calc_core_clk_five_taps(pclk, vm,
2367 						in_width, in_height, out_width,
2368 						out_height, fourcc);
2369 		else
2370 			*core_clk = dispc->feat->calc_core_clk(pclk, in_width,
2371 					in_height, out_width, out_height,
2372 					mem_to_mem);
2373 
2374 		error = check_horiz_timing_omap3(pclk, lclk, vm,
2375 				pos_x, in_width, in_height, out_width,
2376 				out_height, *five_taps);
2377 		if (error && *five_taps) {
2378 			*five_taps = false;
2379 			goto again;
2380 		}
2381 
2382 		error = (error || in_width > maxsinglelinewidth * 2 ||
2383 			(in_width > maxsinglelinewidth && *five_taps) ||
2384 			!*core_clk || *core_clk > dispc_core_clk_rate(dispc));
2385 
2386 		if (!error) {
2387 			/* verify that we're inside the limits of scaler */
2388 			if (in_width / 4 > out_width)
2389 					error = 1;
2390 
2391 			if (*five_taps) {
2392 				if (in_height / 4 > out_height)
2393 					error = 1;
2394 			} else {
2395 				if (in_height / 2 > out_height)
2396 					error = 1;
2397 			}
2398 		}
2399 
2400 		if (error)
2401 			++*decim_y;
2402 	} while (*decim_x <= *x_predecim && *decim_y <= *y_predecim && error);
2403 
2404 	if (error) {
2405 		DSSERR("failed to find scaling settings\n");
2406 		return -EINVAL;
2407 	}
2408 
2409 	if (check_horiz_timing_omap3(pclk, lclk, vm, pos_x, in_width,
2410 				in_height, out_width, out_height, *five_taps)) {
2411 			DSSERR("horizontal timing too tight\n");
2412 			return -EINVAL;
2413 	}
2414 
2415 	if (in_width > (maxsinglelinewidth * 2)) {
2416 		DSSERR("Cannot setup scaling\n");
2417 		DSSERR("width exceeds maximum width possible\n");
2418 		return -EINVAL;
2419 	}
2420 
2421 	if (in_width > maxsinglelinewidth && *five_taps) {
2422 		DSSERR("cannot setup scaling with five taps\n");
2423 		return -EINVAL;
2424 	}
2425 	return 0;
2426 }
2427 
2428 static int dispc_ovl_calc_scaling_44xx(struct dispc_device *dispc,
2429 				       unsigned long pclk, unsigned long lclk,
2430 				       const struct videomode *vm,
2431 				       u16 width, u16 height,
2432 				       u16 out_width, u16 out_height,
2433 				       u32 fourcc, bool *five_taps,
2434 				       int *x_predecim, int *y_predecim,
2435 				       int *decim_x, int *decim_y,
2436 				       u16 pos_x, unsigned long *core_clk,
2437 				       bool mem_to_mem)
2438 {
2439 	u16 in_width, in_width_max;
2440 	int decim_x_min = *decim_x;
2441 	u16 in_height = height / *decim_y;
2442 	const int maxsinglelinewidth = dispc->feat->max_line_width;
2443 	const int maxdownscale = dispc->feat->max_downscale;
2444 
2445 	if (mem_to_mem) {
2446 		in_width_max = out_width * maxdownscale;
2447 	} else {
2448 		in_width_max = dispc_core_clk_rate(dispc)
2449 			     / DIV_ROUND_UP(pclk, out_width);
2450 	}
2451 
2452 	*decim_x = DIV_ROUND_UP(width, in_width_max);
2453 
2454 	*decim_x = max(*decim_x, decim_x_min);
2455 	if (*decim_x > *x_predecim)
2456 		return -EINVAL;
2457 
2458 	do {
2459 		in_width = width / *decim_x;
2460 	} while (*decim_x <= *x_predecim &&
2461 			in_width > maxsinglelinewidth && ++*decim_x);
2462 
2463 	if (in_width > maxsinglelinewidth) {
2464 		DSSERR("Cannot scale width exceeds max line width\n");
2465 		return -EINVAL;
2466 	}
2467 
2468 	if (*decim_x > 4 && fourcc != DRM_FORMAT_NV12) {
2469 		/*
2470 		 * Let's disable all scaling that requires horizontal
2471 		 * decimation with higher factor than 4, until we have
2472 		 * better estimates of what we can and can not
2473 		 * do. However, NV12 color format appears to work Ok
2474 		 * with all decimation factors.
2475 		 *
2476 		 * When decimating horizontally by more that 4 the dss
2477 		 * is not able to fetch the data in burst mode. When
2478 		 * this happens it is hard to tell if there enough
2479 		 * bandwidth. Despite what theory says this appears to
2480 		 * be true also for 16-bit color formats.
2481 		 */
2482 		DSSERR("Not enough bandwidth, too much downscaling (x-decimation factor %d > 4)\n", *decim_x);
2483 
2484 		return -EINVAL;
2485 	}
2486 
2487 	*core_clk = dispc->feat->calc_core_clk(pclk, in_width, in_height,
2488 				out_width, out_height, mem_to_mem);
2489 	return 0;
2490 }
2491 
2492 enum omap_overlay_caps dispc_ovl_get_caps(struct dispc_device *dispc, enum omap_plane_id plane)
2493 {
2494 	return dispc->feat->overlay_caps[plane];
2495 }
2496 
2497 #define DIV_FRAC(dividend, divisor) \
2498 	((dividend) * 100 / (divisor) - ((dividend) / (divisor) * 100))
2499 
2500 static int dispc_ovl_calc_scaling(struct dispc_device *dispc,
2501 				  enum omap_plane_id plane,
2502 				  unsigned long pclk, unsigned long lclk,
2503 				  enum omap_overlay_caps caps,
2504 				  const struct videomode *vm,
2505 				  u16 width, u16 height,
2506 				  u16 out_width, u16 out_height,
2507 				  u32 fourcc, bool *five_taps,
2508 				  int *x_predecim, int *y_predecim, u16 pos_x,
2509 				  enum omap_dss_rotation_type rotation_type,
2510 				  bool mem_to_mem)
2511 {
2512 	int maxhdownscale = dispc->feat->max_downscale;
2513 	int maxvdownscale = dispc->feat->max_downscale;
2514 	const int max_decim_limit = 16;
2515 	unsigned long core_clk = 0;
2516 	int decim_x, decim_y, ret;
2517 
2518 	if (width == out_width && height == out_height)
2519 		return 0;
2520 
2521 	if (dispc->feat->supported_scaler_color_modes) {
2522 		const u32 *modes = dispc->feat->supported_scaler_color_modes;
2523 		unsigned int i;
2524 
2525 		for (i = 0; modes[i]; ++i) {
2526 			if (modes[i] == fourcc)
2527 				break;
2528 		}
2529 
2530 		if (modes[i] == 0)
2531 			return -EINVAL;
2532 	}
2533 
2534 	if (plane == OMAP_DSS_WB) {
2535 		switch (fourcc) {
2536 		case DRM_FORMAT_NV12:
2537 			maxhdownscale = maxvdownscale = 2;
2538 			break;
2539 		case DRM_FORMAT_YUYV:
2540 		case DRM_FORMAT_UYVY:
2541 			maxhdownscale = 2;
2542 			maxvdownscale = 4;
2543 			break;
2544 		default:
2545 			break;
2546 		}
2547 	}
2548 	if (!mem_to_mem && (pclk == 0 || vm->pixelclock == 0)) {
2549 		DSSERR("cannot calculate scaling settings: pclk is zero\n");
2550 		return -EINVAL;
2551 	}
2552 
2553 	if ((caps & OMAP_DSS_OVL_CAP_SCALE) == 0)
2554 		return -EINVAL;
2555 
2556 	if (mem_to_mem) {
2557 		*x_predecim = *y_predecim = 1;
2558 	} else {
2559 		*x_predecim = max_decim_limit;
2560 		*y_predecim = (rotation_type == OMAP_DSS_ROT_TILER &&
2561 				dispc_has_feature(dispc, FEAT_BURST_2D)) ?
2562 				2 : max_decim_limit;
2563 	}
2564 
2565 	decim_x = DIV_ROUND_UP(DIV_ROUND_UP(width, out_width), maxhdownscale);
2566 	decim_y = DIV_ROUND_UP(DIV_ROUND_UP(height, out_height), maxvdownscale);
2567 
2568 	if (decim_x > *x_predecim || out_width > width * 8)
2569 		return -EINVAL;
2570 
2571 	if (decim_y > *y_predecim || out_height > height * 8)
2572 		return -EINVAL;
2573 
2574 	ret = dispc->feat->calc_scaling(dispc, pclk, lclk, vm, width, height,
2575 					out_width, out_height, fourcc,
2576 					five_taps, x_predecim, y_predecim,
2577 					&decim_x, &decim_y, pos_x, &core_clk,
2578 					mem_to_mem);
2579 	if (ret)
2580 		return ret;
2581 
2582 	DSSDBG("%dx%d -> %dx%d (%d.%02d x %d.%02d), decim %dx%d %dx%d (%d.%02d x %d.%02d), taps %d, req clk %lu, cur clk %lu\n",
2583 		width, height,
2584 		out_width, out_height,
2585 		out_width / width, DIV_FRAC(out_width, width),
2586 		out_height / height, DIV_FRAC(out_height, height),
2587 
2588 		decim_x, decim_y,
2589 		width / decim_x, height / decim_y,
2590 		out_width / (width / decim_x), DIV_FRAC(out_width, width / decim_x),
2591 		out_height / (height / decim_y), DIV_FRAC(out_height, height / decim_y),
2592 
2593 		*five_taps ? 5 : 3,
2594 		core_clk, dispc_core_clk_rate(dispc));
2595 
2596 	if (!core_clk || core_clk > dispc_core_clk_rate(dispc)) {
2597 		DSSERR("failed to set up scaling, "
2598 			"required core clk rate = %lu Hz, "
2599 			"current core clk rate = %lu Hz\n",
2600 			core_clk, dispc_core_clk_rate(dispc));
2601 		return -EINVAL;
2602 	}
2603 
2604 	*x_predecim = decim_x;
2605 	*y_predecim = decim_y;
2606 	return 0;
2607 }
2608 
2609 void dispc_ovl_get_max_size(struct dispc_device *dispc, u16 *width, u16 *height)
2610 {
2611 	*width = dispc->feat->ovl_width_max;
2612 	*height = dispc->feat->ovl_height_max;
2613 }
2614 
2615 static int dispc_ovl_setup_common(struct dispc_device *dispc,
2616 				  enum omap_plane_id plane,
2617 				  enum omap_overlay_caps caps,
2618 				  u32 paddr, u32 p_uv_addr,
2619 				  u16 screen_width, int pos_x, int pos_y,
2620 				  u16 width, u16 height,
2621 				  u16 out_width, u16 out_height,
2622 				  u32 fourcc, u8 rotation, u8 zorder,
2623 				  u8 pre_mult_alpha, u8 global_alpha,
2624 				  enum omap_dss_rotation_type rotation_type,
2625 				  bool replication, const struct videomode *vm,
2626 				  bool mem_to_mem,
2627 				  enum drm_color_encoding color_encoding,
2628 				  enum drm_color_range color_range)
2629 {
2630 	bool five_taps = true;
2631 	bool fieldmode = false;
2632 	int r, cconv = 0;
2633 	unsigned int offset0, offset1;
2634 	s32 row_inc;
2635 	s32 pix_inc;
2636 	u16 frame_width;
2637 	unsigned int field_offset = 0;
2638 	u16 in_height = height;
2639 	u16 in_width = width;
2640 	int x_predecim = 1, y_predecim = 1;
2641 	bool ilace = !!(vm->flags & DISPLAY_FLAGS_INTERLACED);
2642 	unsigned long pclk = dispc_plane_pclk_rate(dispc, plane);
2643 	unsigned long lclk = dispc_plane_lclk_rate(dispc, plane);
2644 	const struct drm_format_info *info;
2645 
2646 	info = drm_format_info(fourcc);
2647 
2648 	/* when setting up WB, dispc_plane_pclk_rate() returns 0 */
2649 	if (plane == OMAP_DSS_WB)
2650 		pclk = vm->pixelclock;
2651 
2652 	if (paddr == 0 && rotation_type != OMAP_DSS_ROT_TILER)
2653 		return -EINVAL;
2654 
2655 	if (info->is_yuv && (in_width & 1)) {
2656 		DSSERR("input width %d is not even for YUV format\n", in_width);
2657 		return -EINVAL;
2658 	}
2659 
2660 	out_width = out_width == 0 ? width : out_width;
2661 	out_height = out_height == 0 ? height : out_height;
2662 
2663 	if (plane != OMAP_DSS_WB) {
2664 		if (ilace && height == out_height)
2665 			fieldmode = true;
2666 
2667 		if (ilace) {
2668 			if (fieldmode)
2669 				in_height /= 2;
2670 			pos_y /= 2;
2671 			out_height /= 2;
2672 
2673 			DSSDBG("adjusting for ilace: height %d, pos_y %d, out_height %d\n",
2674 				in_height, pos_y, out_height);
2675 		}
2676 	}
2677 
2678 	if (!dispc_ovl_color_mode_supported(dispc, plane, fourcc))
2679 		return -EINVAL;
2680 
2681 	r = dispc_ovl_calc_scaling(dispc, plane, pclk, lclk, caps, vm, in_width,
2682 				   in_height, out_width, out_height, fourcc,
2683 				   &five_taps, &x_predecim, &y_predecim, pos_x,
2684 				   rotation_type, mem_to_mem);
2685 	if (r)
2686 		return r;
2687 
2688 	in_width = in_width / x_predecim;
2689 	in_height = in_height / y_predecim;
2690 
2691 	if (x_predecim > 1 || y_predecim > 1)
2692 		DSSDBG("predecimation %d x %x, new input size %d x %d\n",
2693 			x_predecim, y_predecim, in_width, in_height);
2694 
2695 	if (info->is_yuv && (in_width & 1)) {
2696 		DSSDBG("predecimated input width is not even for YUV format\n");
2697 		DSSDBG("adjusting input width %d -> %d\n",
2698 			in_width, in_width & ~1);
2699 
2700 		in_width &= ~1;
2701 	}
2702 
2703 	if (info->is_yuv)
2704 		cconv = 1;
2705 
2706 	if (ilace && !fieldmode) {
2707 		/*
2708 		 * when downscaling the bottom field may have to start several
2709 		 * source lines below the top field. Unfortunately ACCUI
2710 		 * registers will only hold the fractional part of the offset
2711 		 * so the integer part must be added to the base address of the
2712 		 * bottom field.
2713 		 */
2714 		if (!in_height || in_height == out_height)
2715 			field_offset = 0;
2716 		else
2717 			field_offset = in_height / out_height / 2;
2718 	}
2719 
2720 	/* Fields are independent but interleaved in memory. */
2721 	if (fieldmode)
2722 		field_offset = 1;
2723 
2724 	offset0 = 0;
2725 	offset1 = 0;
2726 	row_inc = 0;
2727 	pix_inc = 0;
2728 
2729 	if (plane == OMAP_DSS_WB)
2730 		frame_width = out_width;
2731 	else
2732 		frame_width = in_width;
2733 
2734 	calc_offset(screen_width, frame_width,
2735 			fourcc, fieldmode, field_offset,
2736 			&offset0, &offset1, &row_inc, &pix_inc,
2737 			x_predecim, y_predecim,
2738 			rotation_type, rotation);
2739 
2740 	DSSDBG("offset0 %u, offset1 %u, row_inc %d, pix_inc %d\n",
2741 			offset0, offset1, row_inc, pix_inc);
2742 
2743 	dispc_ovl_set_color_mode(dispc, plane, fourcc);
2744 
2745 	dispc_ovl_configure_burst_type(dispc, plane, rotation_type);
2746 
2747 	if (dispc->feat->reverse_ilace_field_order)
2748 		swap(offset0, offset1);
2749 
2750 	dispc_ovl_set_ba0(dispc, plane, paddr + offset0);
2751 	dispc_ovl_set_ba1(dispc, plane, paddr + offset1);
2752 
2753 	if (fourcc == DRM_FORMAT_NV12) {
2754 		dispc_ovl_set_ba0_uv(dispc, plane, p_uv_addr + offset0);
2755 		dispc_ovl_set_ba1_uv(dispc, plane, p_uv_addr + offset1);
2756 	}
2757 
2758 	if (dispc->feat->last_pixel_inc_missing)
2759 		row_inc += pix_inc - 1;
2760 
2761 	dispc_ovl_set_row_inc(dispc, plane, row_inc);
2762 	dispc_ovl_set_pix_inc(dispc, plane, pix_inc);
2763 
2764 	DSSDBG("%d,%d %dx%d -> %dx%d\n", pos_x, pos_y, in_width,
2765 			in_height, out_width, out_height);
2766 
2767 	dispc_ovl_set_pos(dispc, plane, caps, pos_x, pos_y);
2768 
2769 	dispc_ovl_set_input_size(dispc, plane, in_width, in_height);
2770 
2771 	if (caps & OMAP_DSS_OVL_CAP_SCALE) {
2772 		dispc_ovl_set_scaling(dispc, plane, in_width, in_height,
2773 				      out_width, out_height, ilace, five_taps,
2774 				      fieldmode, fourcc, rotation);
2775 		dispc_ovl_set_output_size(dispc, plane, out_width, out_height);
2776 		dispc_ovl_set_vid_color_conv(dispc, plane, cconv);
2777 
2778 		if (plane != OMAP_DSS_WB)
2779 			dispc_ovl_set_csc(dispc, plane, color_encoding, color_range);
2780 	}
2781 
2782 	dispc_ovl_set_rotation_attrs(dispc, plane, rotation, rotation_type,
2783 				     fourcc);
2784 
2785 	dispc_ovl_set_zorder(dispc, plane, caps, zorder);
2786 	dispc_ovl_set_pre_mult_alpha(dispc, plane, caps, pre_mult_alpha);
2787 	dispc_ovl_setup_global_alpha(dispc, plane, caps, global_alpha);
2788 
2789 	dispc_ovl_enable_replication(dispc, plane, caps, replication);
2790 
2791 	return 0;
2792 }
2793 
2794 int dispc_ovl_setup(struct dispc_device *dispc,
2795 			   enum omap_plane_id plane,
2796 			   const struct omap_overlay_info *oi,
2797 			   const struct videomode *vm, bool mem_to_mem,
2798 			   enum omap_channel channel)
2799 {
2800 	int r;
2801 	enum omap_overlay_caps caps = dispc->feat->overlay_caps[plane];
2802 	const bool replication = true;
2803 
2804 	DSSDBG("dispc_ovl_setup %d, pa %pad, pa_uv %pad, sw %d, %d,%d, %dx%d ->"
2805 		" %dx%d, cmode %x, rot %d, chan %d repl %d\n",
2806 		plane, &oi->paddr, &oi->p_uv_addr, oi->screen_width, oi->pos_x,
2807 		oi->pos_y, oi->width, oi->height, oi->out_width, oi->out_height,
2808 		oi->fourcc, oi->rotation, channel, replication);
2809 
2810 	dispc_ovl_set_channel_out(dispc, plane, channel);
2811 
2812 	r = dispc_ovl_setup_common(dispc, plane, caps, oi->paddr, oi->p_uv_addr,
2813 		oi->screen_width, oi->pos_x, oi->pos_y, oi->width, oi->height,
2814 		oi->out_width, oi->out_height, oi->fourcc, oi->rotation,
2815 		oi->zorder, oi->pre_mult_alpha, oi->global_alpha,
2816 		oi->rotation_type, replication, vm, mem_to_mem,
2817 		oi->color_encoding, oi->color_range);
2818 
2819 	return r;
2820 }
2821 
2822 int dispc_wb_setup(struct dispc_device *dispc,
2823 		   const struct omap_dss_writeback_info *wi,
2824 		   bool mem_to_mem, const struct videomode *vm,
2825 		   enum dss_writeback_channel channel_in)
2826 {
2827 	int r;
2828 	u32 l;
2829 	enum omap_plane_id plane = OMAP_DSS_WB;
2830 	const int pos_x = 0, pos_y = 0;
2831 	const u8 zorder = 0, global_alpha = 0;
2832 	const bool replication = true;
2833 	bool truncation;
2834 	int in_width = vm->hactive;
2835 	int in_height = vm->vactive;
2836 	enum omap_overlay_caps caps =
2837 		OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA;
2838 
2839 	if (vm->flags & DISPLAY_FLAGS_INTERLACED)
2840 		in_height /= 2;
2841 
2842 	DSSDBG("dispc_wb_setup, pa %x, pa_uv %x, %d,%d -> %dx%d, cmode %x, "
2843 		"rot %d\n", wi->paddr, wi->p_uv_addr, in_width,
2844 		in_height, wi->width, wi->height, wi->fourcc, wi->rotation);
2845 
2846 	r = dispc_ovl_setup_common(dispc, plane, caps, wi->paddr, wi->p_uv_addr,
2847 		wi->buf_width, pos_x, pos_y, in_width, in_height, wi->width,
2848 		wi->height, wi->fourcc, wi->rotation, zorder,
2849 		wi->pre_mult_alpha, global_alpha, wi->rotation_type,
2850 		replication, vm, mem_to_mem, DRM_COLOR_YCBCR_BT601,
2851 		DRM_COLOR_YCBCR_LIMITED_RANGE);
2852 	if (r)
2853 		return r;
2854 
2855 	switch (wi->fourcc) {
2856 	case DRM_FORMAT_RGB565:
2857 	case DRM_FORMAT_RGB888:
2858 	case DRM_FORMAT_ARGB4444:
2859 	case DRM_FORMAT_RGBA4444:
2860 	case DRM_FORMAT_RGBX4444:
2861 	case DRM_FORMAT_ARGB1555:
2862 	case DRM_FORMAT_XRGB1555:
2863 	case DRM_FORMAT_XRGB4444:
2864 		truncation = true;
2865 		break;
2866 	default:
2867 		truncation = false;
2868 		break;
2869 	}
2870 
2871 	/* setup extra DISPC_WB_ATTRIBUTES */
2872 	l = dispc_read_reg(dispc, DISPC_OVL_ATTRIBUTES(plane));
2873 	l = FLD_MOD(l, truncation, 10, 10);	/* TRUNCATIONENABLE */
2874 	l = FLD_MOD(l, channel_in, 18, 16);	/* CHANNELIN */
2875 	l = FLD_MOD(l, mem_to_mem, 19, 19);	/* WRITEBACKMODE */
2876 	if (mem_to_mem)
2877 		l = FLD_MOD(l, 1, 26, 24);	/* CAPTUREMODE */
2878 	else
2879 		l = FLD_MOD(l, 0, 26, 24);	/* CAPTUREMODE */
2880 	dispc_write_reg(dispc, DISPC_OVL_ATTRIBUTES(plane), l);
2881 
2882 	if (mem_to_mem) {
2883 		/* WBDELAYCOUNT */
2884 		REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES2(plane), 0, 7, 0);
2885 	} else {
2886 		u32 wbdelay;
2887 
2888 		if (channel_in == DSS_WB_TV_MGR)
2889 			wbdelay = vm->vsync_len + vm->vback_porch;
2890 		else
2891 			wbdelay = vm->vfront_porch + vm->vsync_len +
2892 				vm->vback_porch;
2893 
2894 		if (vm->flags & DISPLAY_FLAGS_INTERLACED)
2895 			wbdelay /= 2;
2896 
2897 		wbdelay = min(wbdelay, 255u);
2898 
2899 		/* WBDELAYCOUNT */
2900 		REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES2(plane), wbdelay, 7, 0);
2901 	}
2902 
2903 	return 0;
2904 }
2905 
2906 bool dispc_has_writeback(struct dispc_device *dispc)
2907 {
2908 	return dispc->feat->has_writeback;
2909 }
2910 
2911 int dispc_ovl_enable(struct dispc_device *dispc,
2912 			    enum omap_plane_id plane, bool enable)
2913 {
2914 	DSSDBG("dispc_enable_plane %d, %d\n", plane, enable);
2915 
2916 	REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), enable ? 1 : 0, 0, 0);
2917 
2918 	return 0;
2919 }
2920 
2921 static void dispc_lcd_enable_signal_polarity(struct dispc_device *dispc,
2922 					     bool act_high)
2923 {
2924 	if (!dispc_has_feature(dispc, FEAT_LCDENABLEPOL))
2925 		return;
2926 
2927 	REG_FLD_MOD(dispc, DISPC_CONTROL, act_high ? 1 : 0, 29, 29);
2928 }
2929 
2930 void dispc_lcd_enable_signal(struct dispc_device *dispc, bool enable)
2931 {
2932 	if (!dispc_has_feature(dispc, FEAT_LCDENABLESIGNAL))
2933 		return;
2934 
2935 	REG_FLD_MOD(dispc, DISPC_CONTROL, enable ? 1 : 0, 28, 28);
2936 }
2937 
2938 void dispc_pck_free_enable(struct dispc_device *dispc, bool enable)
2939 {
2940 	if (!dispc_has_feature(dispc, FEAT_PCKFREEENABLE))
2941 		return;
2942 
2943 	REG_FLD_MOD(dispc, DISPC_CONTROL, enable ? 1 : 0, 27, 27);
2944 }
2945 
2946 static void dispc_mgr_enable_fifohandcheck(struct dispc_device *dispc,
2947 					   enum omap_channel channel,
2948 					   bool enable)
2949 {
2950 	mgr_fld_write(dispc, channel, DISPC_MGR_FLD_FIFOHANDCHECK, enable);
2951 }
2952 
2953 
2954 static void dispc_mgr_set_lcd_type_tft(struct dispc_device *dispc,
2955 				       enum omap_channel channel)
2956 {
2957 	mgr_fld_write(dispc, channel, DISPC_MGR_FLD_STNTFT, 1);
2958 }
2959 
2960 static void dispc_set_loadmode(struct dispc_device *dispc,
2961 			       enum omap_dss_load_mode mode)
2962 {
2963 	REG_FLD_MOD(dispc, DISPC_CONFIG, mode, 2, 1);
2964 }
2965 
2966 
2967 static void dispc_mgr_set_default_color(struct dispc_device *dispc,
2968 					enum omap_channel channel, u32 color)
2969 {
2970 	dispc_write_reg(dispc, DISPC_DEFAULT_COLOR(channel), color);
2971 }
2972 
2973 static void dispc_mgr_set_trans_key(struct dispc_device *dispc,
2974 				    enum omap_channel ch,
2975 				    enum omap_dss_trans_key_type type,
2976 				    u32 trans_key)
2977 {
2978 	mgr_fld_write(dispc, ch, DISPC_MGR_FLD_TCKSELECTION, type);
2979 
2980 	dispc_write_reg(dispc, DISPC_TRANS_COLOR(ch), trans_key);
2981 }
2982 
2983 static void dispc_mgr_enable_trans_key(struct dispc_device *dispc,
2984 				       enum omap_channel ch, bool enable)
2985 {
2986 	mgr_fld_write(dispc, ch, DISPC_MGR_FLD_TCKENABLE, enable);
2987 }
2988 
2989 static void dispc_mgr_enable_alpha_fixed_zorder(struct dispc_device *dispc,
2990 						enum omap_channel ch,
2991 						bool enable)
2992 {
2993 	if (!dispc_has_feature(dispc, FEAT_ALPHA_FIXED_ZORDER))
2994 		return;
2995 
2996 	if (ch == OMAP_DSS_CHANNEL_LCD)
2997 		REG_FLD_MOD(dispc, DISPC_CONFIG, enable, 18, 18);
2998 	else if (ch == OMAP_DSS_CHANNEL_DIGIT)
2999 		REG_FLD_MOD(dispc, DISPC_CONFIG, enable, 19, 19);
3000 }
3001 
3002 void dispc_mgr_setup(struct dispc_device *dispc,
3003 			    enum omap_channel channel,
3004 			    const struct omap_overlay_manager_info *info)
3005 {
3006 	dispc_mgr_set_default_color(dispc, channel, info->default_color);
3007 	dispc_mgr_set_trans_key(dispc, channel, info->trans_key_type,
3008 				info->trans_key);
3009 	dispc_mgr_enable_trans_key(dispc, channel, info->trans_enabled);
3010 	dispc_mgr_enable_alpha_fixed_zorder(dispc, channel,
3011 			info->partial_alpha_enabled);
3012 	if (dispc_has_feature(dispc, FEAT_CPR)) {
3013 		dispc_mgr_enable_cpr(dispc, channel, info->cpr_enable);
3014 		dispc_mgr_set_cpr_coef(dispc, channel, &info->cpr_coefs);
3015 	}
3016 }
3017 
3018 static void dispc_mgr_set_tft_data_lines(struct dispc_device *dispc,
3019 					 enum omap_channel channel,
3020 					 u8 data_lines)
3021 {
3022 	int code;
3023 
3024 	switch (data_lines) {
3025 	case 12:
3026 		code = 0;
3027 		break;
3028 	case 16:
3029 		code = 1;
3030 		break;
3031 	case 18:
3032 		code = 2;
3033 		break;
3034 	case 24:
3035 		code = 3;
3036 		break;
3037 	default:
3038 		BUG();
3039 		return;
3040 	}
3041 
3042 	mgr_fld_write(dispc, channel, DISPC_MGR_FLD_TFTDATALINES, code);
3043 }
3044 
3045 static void dispc_mgr_set_io_pad_mode(struct dispc_device *dispc,
3046 				      enum dss_io_pad_mode mode)
3047 {
3048 	u32 l;
3049 	int gpout0, gpout1;
3050 
3051 	switch (mode) {
3052 	case DSS_IO_PAD_MODE_RESET:
3053 		gpout0 = 0;
3054 		gpout1 = 0;
3055 		break;
3056 	case DSS_IO_PAD_MODE_RFBI:
3057 		gpout0 = 1;
3058 		gpout1 = 0;
3059 		break;
3060 	case DSS_IO_PAD_MODE_BYPASS:
3061 		gpout0 = 1;
3062 		gpout1 = 1;
3063 		break;
3064 	default:
3065 		BUG();
3066 		return;
3067 	}
3068 
3069 	l = dispc_read_reg(dispc, DISPC_CONTROL);
3070 	l = FLD_MOD(l, gpout0, 15, 15);
3071 	l = FLD_MOD(l, gpout1, 16, 16);
3072 	dispc_write_reg(dispc, DISPC_CONTROL, l);
3073 }
3074 
3075 static void dispc_mgr_enable_stallmode(struct dispc_device *dispc,
3076 				       enum omap_channel channel, bool enable)
3077 {
3078 	mgr_fld_write(dispc, channel, DISPC_MGR_FLD_STALLMODE, enable);
3079 }
3080 
3081 void dispc_mgr_set_lcd_config(struct dispc_device *dispc,
3082 				     enum omap_channel channel,
3083 				     const struct dss_lcd_mgr_config *config)
3084 {
3085 	dispc_mgr_set_io_pad_mode(dispc, config->io_pad_mode);
3086 
3087 	dispc_mgr_enable_stallmode(dispc, channel, config->stallmode);
3088 	dispc_mgr_enable_fifohandcheck(dispc, channel, config->fifohandcheck);
3089 
3090 	dispc_mgr_set_clock_div(dispc, channel, &config->clock_info);
3091 
3092 	dispc_mgr_set_tft_data_lines(dispc, channel, config->video_port_width);
3093 
3094 	dispc_lcd_enable_signal_polarity(dispc, config->lcden_sig_polarity);
3095 
3096 	dispc_mgr_set_lcd_type_tft(dispc, channel);
3097 }
3098 
3099 static bool _dispc_mgr_size_ok(struct dispc_device *dispc,
3100 			       u16 width, u16 height)
3101 {
3102 	return width <= dispc->feat->mgr_width_max &&
3103 		height <= dispc->feat->mgr_height_max;
3104 }
3105 
3106 static bool _dispc_lcd_timings_ok(struct dispc_device *dispc,
3107 				  int hsync_len, int hfp, int hbp,
3108 				  int vsw, int vfp, int vbp)
3109 {
3110 	if (hsync_len < 1 || hsync_len > dispc->feat->sw_max ||
3111 	    hfp < 1 || hfp > dispc->feat->hp_max ||
3112 	    hbp < 1 || hbp > dispc->feat->hp_max ||
3113 	    vsw < 1 || vsw > dispc->feat->sw_max ||
3114 	    vfp < 0 || vfp > dispc->feat->vp_max ||
3115 	    vbp < 0 || vbp > dispc->feat->vp_max)
3116 		return false;
3117 	return true;
3118 }
3119 
3120 static bool _dispc_mgr_pclk_ok(struct dispc_device *dispc,
3121 			       enum omap_channel channel,
3122 			       unsigned long pclk)
3123 {
3124 	if (dss_mgr_is_lcd(channel))
3125 		return pclk <= dispc->feat->max_lcd_pclk;
3126 	else
3127 		return pclk <= dispc->feat->max_tv_pclk;
3128 }
3129 
3130 int dispc_mgr_check_timings(struct dispc_device *dispc,
3131 				   enum omap_channel channel,
3132 				   const struct videomode *vm)
3133 {
3134 	if (!_dispc_mgr_size_ok(dispc, vm->hactive, vm->vactive))
3135 		return MODE_BAD;
3136 
3137 	if (!_dispc_mgr_pclk_ok(dispc, channel, vm->pixelclock))
3138 		return MODE_BAD;
3139 
3140 	if (dss_mgr_is_lcd(channel)) {
3141 		/* TODO: OMAP4+ supports interlace for LCD outputs */
3142 		if (vm->flags & DISPLAY_FLAGS_INTERLACED)
3143 			return MODE_BAD;
3144 
3145 		if (!_dispc_lcd_timings_ok(dispc, vm->hsync_len,
3146 				vm->hfront_porch, vm->hback_porch,
3147 				vm->vsync_len, vm->vfront_porch,
3148 				vm->vback_porch))
3149 			return MODE_BAD;
3150 	}
3151 
3152 	return MODE_OK;
3153 }
3154 
3155 static void _dispc_mgr_set_lcd_timings(struct dispc_device *dispc,
3156 				       enum omap_channel channel,
3157 				       const struct videomode *vm)
3158 {
3159 	u32 timing_h, timing_v, l;
3160 	bool onoff, rf, ipc, vs, hs, de;
3161 
3162 	timing_h = FLD_VAL(vm->hsync_len - 1, dispc->feat->sw_start, 0) |
3163 		   FLD_VAL(vm->hfront_porch - 1, dispc->feat->fp_start, 8) |
3164 		   FLD_VAL(vm->hback_porch - 1, dispc->feat->bp_start, 20);
3165 	timing_v = FLD_VAL(vm->vsync_len - 1, dispc->feat->sw_start, 0) |
3166 		   FLD_VAL(vm->vfront_porch, dispc->feat->fp_start, 8) |
3167 		   FLD_VAL(vm->vback_porch, dispc->feat->bp_start, 20);
3168 
3169 	dispc_write_reg(dispc, DISPC_TIMING_H(channel), timing_h);
3170 	dispc_write_reg(dispc, DISPC_TIMING_V(channel), timing_v);
3171 
3172 	vs = !!(vm->flags & DISPLAY_FLAGS_VSYNC_LOW);
3173 	hs = !!(vm->flags & DISPLAY_FLAGS_HSYNC_LOW);
3174 	de = !!(vm->flags & DISPLAY_FLAGS_DE_LOW);
3175 	ipc = !!(vm->flags & DISPLAY_FLAGS_PIXDATA_NEGEDGE);
3176 	onoff = true; /* always use the 'rf' setting */
3177 	rf = !!(vm->flags & DISPLAY_FLAGS_SYNC_POSEDGE);
3178 
3179 	l = FLD_VAL(onoff, 17, 17) |
3180 		FLD_VAL(rf, 16, 16) |
3181 		FLD_VAL(de, 15, 15) |
3182 		FLD_VAL(ipc, 14, 14) |
3183 		FLD_VAL(hs, 13, 13) |
3184 		FLD_VAL(vs, 12, 12);
3185 
3186 	/* always set ALIGN bit when available */
3187 	if (dispc->feat->supports_sync_align)
3188 		l |= (1 << 18);
3189 
3190 	dispc_write_reg(dispc, DISPC_POL_FREQ(channel), l);
3191 
3192 	if (dispc->syscon_pol) {
3193 		const int shifts[] = {
3194 			[OMAP_DSS_CHANNEL_LCD] = 0,
3195 			[OMAP_DSS_CHANNEL_LCD2] = 1,
3196 			[OMAP_DSS_CHANNEL_LCD3] = 2,
3197 		};
3198 
3199 		u32 mask, val;
3200 
3201 		mask = (1 << 0) | (1 << 3) | (1 << 6);
3202 		val = (rf << 0) | (ipc << 3) | (onoff << 6);
3203 
3204 		mask <<= 16 + shifts[channel];
3205 		val <<= 16 + shifts[channel];
3206 
3207 		regmap_update_bits(dispc->syscon_pol, dispc->syscon_pol_offset,
3208 				   mask, val);
3209 	}
3210 }
3211 
3212 static int vm_flag_to_int(enum display_flags flags, enum display_flags high,
3213 	enum display_flags low)
3214 {
3215 	if (flags & high)
3216 		return 1;
3217 	if (flags & low)
3218 		return -1;
3219 	return 0;
3220 }
3221 
3222 /* change name to mode? */
3223 void dispc_mgr_set_timings(struct dispc_device *dispc,
3224 				  enum omap_channel channel,
3225 				  const struct videomode *vm)
3226 {
3227 	unsigned int xtot, ytot;
3228 	unsigned long ht, vt;
3229 	struct videomode t = *vm;
3230 
3231 	DSSDBG("channel %d xres %u yres %u\n", channel, t.hactive, t.vactive);
3232 
3233 	if (dispc_mgr_check_timings(dispc, channel, &t)) {
3234 		BUG();
3235 		return;
3236 	}
3237 
3238 	if (dss_mgr_is_lcd(channel)) {
3239 		_dispc_mgr_set_lcd_timings(dispc, channel, &t);
3240 
3241 		xtot = t.hactive + t.hfront_porch + t.hsync_len + t.hback_porch;
3242 		ytot = t.vactive + t.vfront_porch + t.vsync_len + t.vback_porch;
3243 
3244 		ht = vm->pixelclock / xtot;
3245 		vt = vm->pixelclock / xtot / ytot;
3246 
3247 		DSSDBG("pck %lu\n", vm->pixelclock);
3248 		DSSDBG("hsync_len %d hfp %d hbp %d vsw %d vfp %d vbp %d\n",
3249 			t.hsync_len, t.hfront_porch, t.hback_porch,
3250 			t.vsync_len, t.vfront_porch, t.vback_porch);
3251 		DSSDBG("vsync_level %d hsync_level %d data_pclk_edge %d de_level %d sync_pclk_edge %d\n",
3252 			vm_flag_to_int(t.flags, DISPLAY_FLAGS_VSYNC_HIGH, DISPLAY_FLAGS_VSYNC_LOW),
3253 			vm_flag_to_int(t.flags, DISPLAY_FLAGS_HSYNC_HIGH, DISPLAY_FLAGS_HSYNC_LOW),
3254 			vm_flag_to_int(t.flags, DISPLAY_FLAGS_PIXDATA_POSEDGE, DISPLAY_FLAGS_PIXDATA_NEGEDGE),
3255 			vm_flag_to_int(t.flags, DISPLAY_FLAGS_DE_HIGH, DISPLAY_FLAGS_DE_LOW),
3256 			vm_flag_to_int(t.flags, DISPLAY_FLAGS_SYNC_POSEDGE, DISPLAY_FLAGS_SYNC_NEGEDGE));
3257 
3258 		DSSDBG("hsync %luHz, vsync %luHz\n", ht, vt);
3259 	} else {
3260 		if (t.flags & DISPLAY_FLAGS_INTERLACED)
3261 			t.vactive /= 2;
3262 
3263 		if (dispc->feat->supports_double_pixel)
3264 			REG_FLD_MOD(dispc, DISPC_CONTROL,
3265 				    !!(t.flags & DISPLAY_FLAGS_DOUBLECLK),
3266 				    19, 17);
3267 	}
3268 
3269 	dispc_mgr_set_size(dispc, channel, t.hactive, t.vactive);
3270 }
3271 
3272 static void dispc_mgr_set_lcd_divisor(struct dispc_device *dispc,
3273 				      enum omap_channel channel, u16 lck_div,
3274 				      u16 pck_div)
3275 {
3276 	BUG_ON(lck_div < 1);
3277 	BUG_ON(pck_div < 1);
3278 
3279 	dispc_write_reg(dispc, DISPC_DIVISORo(channel),
3280 			FLD_VAL(lck_div, 23, 16) | FLD_VAL(pck_div, 7, 0));
3281 
3282 	if (!dispc_has_feature(dispc, FEAT_CORE_CLK_DIV) &&
3283 			channel == OMAP_DSS_CHANNEL_LCD)
3284 		dispc->core_clk_rate = dispc_fclk_rate(dispc) / lck_div;
3285 }
3286 
3287 static void dispc_mgr_get_lcd_divisor(struct dispc_device *dispc,
3288 				      enum omap_channel channel, int *lck_div,
3289 				      int *pck_div)
3290 {
3291 	u32 l;
3292 	l = dispc_read_reg(dispc, DISPC_DIVISORo(channel));
3293 	*lck_div = FLD_GET(l, 23, 16);
3294 	*pck_div = FLD_GET(l, 7, 0);
3295 }
3296 
3297 static unsigned long dispc_fclk_rate(struct dispc_device *dispc)
3298 {
3299 	unsigned long r;
3300 	enum dss_clk_source src;
3301 
3302 	src = dss_get_dispc_clk_source(dispc->dss);
3303 
3304 	if (src == DSS_CLK_SRC_FCK) {
3305 		r = dss_get_dispc_clk_rate(dispc->dss);
3306 	} else {
3307 		struct dss_pll *pll;
3308 		unsigned int clkout_idx;
3309 
3310 		pll = dss_pll_find_by_src(dispc->dss, src);
3311 		clkout_idx = dss_pll_get_clkout_idx_for_src(src);
3312 
3313 		r = pll->cinfo.clkout[clkout_idx];
3314 	}
3315 
3316 	return r;
3317 }
3318 
3319 static unsigned long dispc_mgr_lclk_rate(struct dispc_device *dispc,
3320 					 enum omap_channel channel)
3321 {
3322 	int lcd;
3323 	unsigned long r;
3324 	enum dss_clk_source src;
3325 
3326 	/* for TV, LCLK rate is the FCLK rate */
3327 	if (!dss_mgr_is_lcd(channel))
3328 		return dispc_fclk_rate(dispc);
3329 
3330 	src = dss_get_lcd_clk_source(dispc->dss, channel);
3331 
3332 	if (src == DSS_CLK_SRC_FCK) {
3333 		r = dss_get_dispc_clk_rate(dispc->dss);
3334 	} else {
3335 		struct dss_pll *pll;
3336 		unsigned int clkout_idx;
3337 
3338 		pll = dss_pll_find_by_src(dispc->dss, src);
3339 		clkout_idx = dss_pll_get_clkout_idx_for_src(src);
3340 
3341 		r = pll->cinfo.clkout[clkout_idx];
3342 	}
3343 
3344 	lcd = REG_GET(dispc, DISPC_DIVISORo(channel), 23, 16);
3345 
3346 	return r / lcd;
3347 }
3348 
3349 static unsigned long dispc_mgr_pclk_rate(struct dispc_device *dispc,
3350 					 enum omap_channel channel)
3351 {
3352 	unsigned long r;
3353 
3354 	if (dss_mgr_is_lcd(channel)) {
3355 		int pcd;
3356 		u32 l;
3357 
3358 		l = dispc_read_reg(dispc, DISPC_DIVISORo(channel));
3359 
3360 		pcd = FLD_GET(l, 7, 0);
3361 
3362 		r = dispc_mgr_lclk_rate(dispc, channel);
3363 
3364 		return r / pcd;
3365 	} else {
3366 		return dispc->tv_pclk_rate;
3367 	}
3368 }
3369 
3370 void dispc_set_tv_pclk(struct dispc_device *dispc, unsigned long pclk)
3371 {
3372 	dispc->tv_pclk_rate = pclk;
3373 }
3374 
3375 static unsigned long dispc_core_clk_rate(struct dispc_device *dispc)
3376 {
3377 	return dispc->core_clk_rate;
3378 }
3379 
3380 static unsigned long dispc_plane_pclk_rate(struct dispc_device *dispc,
3381 					   enum omap_plane_id plane)
3382 {
3383 	enum omap_channel channel;
3384 
3385 	if (plane == OMAP_DSS_WB)
3386 		return 0;
3387 
3388 	channel = dispc_ovl_get_channel_out(dispc, plane);
3389 
3390 	return dispc_mgr_pclk_rate(dispc, channel);
3391 }
3392 
3393 static unsigned long dispc_plane_lclk_rate(struct dispc_device *dispc,
3394 					   enum omap_plane_id plane)
3395 {
3396 	enum omap_channel channel;
3397 
3398 	if (plane == OMAP_DSS_WB)
3399 		return 0;
3400 
3401 	channel	= dispc_ovl_get_channel_out(dispc, plane);
3402 
3403 	return dispc_mgr_lclk_rate(dispc, channel);
3404 }
3405 
3406 static void dispc_dump_clocks_channel(struct dispc_device *dispc,
3407 				      struct seq_file *s,
3408 				      enum omap_channel channel)
3409 {
3410 	int lcd, pcd;
3411 	enum dss_clk_source lcd_clk_src;
3412 
3413 	seq_printf(s, "- %s -\n", mgr_desc[channel].name);
3414 
3415 	lcd_clk_src = dss_get_lcd_clk_source(dispc->dss, channel);
3416 
3417 	seq_printf(s, "%s clk source = %s\n", mgr_desc[channel].name,
3418 		dss_get_clk_source_name(lcd_clk_src));
3419 
3420 	dispc_mgr_get_lcd_divisor(dispc, channel, &lcd, &pcd);
3421 
3422 	seq_printf(s, "lck\t\t%-16lulck div\t%u\n",
3423 		dispc_mgr_lclk_rate(dispc, channel), lcd);
3424 	seq_printf(s, "pck\t\t%-16lupck div\t%u\n",
3425 		dispc_mgr_pclk_rate(dispc, channel), pcd);
3426 }
3427 
3428 void dispc_dump_clocks(struct dispc_device *dispc, struct seq_file *s)
3429 {
3430 	enum dss_clk_source dispc_clk_src;
3431 	int lcd;
3432 	u32 l;
3433 
3434 	if (dispc_runtime_get(dispc))
3435 		return;
3436 
3437 	seq_printf(s, "- DISPC -\n");
3438 
3439 	dispc_clk_src = dss_get_dispc_clk_source(dispc->dss);
3440 	seq_printf(s, "dispc fclk source = %s\n",
3441 			dss_get_clk_source_name(dispc_clk_src));
3442 
3443 	seq_printf(s, "fck\t\t%-16lu\n", dispc_fclk_rate(dispc));
3444 
3445 	if (dispc_has_feature(dispc, FEAT_CORE_CLK_DIV)) {
3446 		seq_printf(s, "- DISPC-CORE-CLK -\n");
3447 		l = dispc_read_reg(dispc, DISPC_DIVISOR);
3448 		lcd = FLD_GET(l, 23, 16);
3449 
3450 		seq_printf(s, "lck\t\t%-16lulck div\t%u\n",
3451 				(dispc_fclk_rate(dispc)/lcd), lcd);
3452 	}
3453 
3454 	dispc_dump_clocks_channel(dispc, s, OMAP_DSS_CHANNEL_LCD);
3455 
3456 	if (dispc_has_feature(dispc, FEAT_MGR_LCD2))
3457 		dispc_dump_clocks_channel(dispc, s, OMAP_DSS_CHANNEL_LCD2);
3458 	if (dispc_has_feature(dispc, FEAT_MGR_LCD3))
3459 		dispc_dump_clocks_channel(dispc, s, OMAP_DSS_CHANNEL_LCD3);
3460 
3461 	dispc_runtime_put(dispc);
3462 }
3463 
3464 static int dispc_dump_regs(struct seq_file *s, void *p)
3465 {
3466 	struct dispc_device *dispc = s->private;
3467 	int i, j;
3468 	const char *mgr_names[] = {
3469 		[OMAP_DSS_CHANNEL_LCD]		= "LCD",
3470 		[OMAP_DSS_CHANNEL_DIGIT]	= "TV",
3471 		[OMAP_DSS_CHANNEL_LCD2]		= "LCD2",
3472 		[OMAP_DSS_CHANNEL_LCD3]		= "LCD3",
3473 	};
3474 	const char *ovl_names[] = {
3475 		[OMAP_DSS_GFX]		= "GFX",
3476 		[OMAP_DSS_VIDEO1]	= "VID1",
3477 		[OMAP_DSS_VIDEO2]	= "VID2",
3478 		[OMAP_DSS_VIDEO3]	= "VID3",
3479 		[OMAP_DSS_WB]		= "WB",
3480 	};
3481 	const char **p_names;
3482 
3483 #define DUMPREG(dispc, r) \
3484 	seq_printf(s, "%-50s %08x\n", #r, dispc_read_reg(dispc, r))
3485 
3486 	if (dispc_runtime_get(dispc))
3487 		return 0;
3488 
3489 	/* DISPC common registers */
3490 	DUMPREG(dispc, DISPC_REVISION);
3491 	DUMPREG(dispc, DISPC_SYSCONFIG);
3492 	DUMPREG(dispc, DISPC_SYSSTATUS);
3493 	DUMPREG(dispc, DISPC_IRQSTATUS);
3494 	DUMPREG(dispc, DISPC_IRQENABLE);
3495 	DUMPREG(dispc, DISPC_CONTROL);
3496 	DUMPREG(dispc, DISPC_CONFIG);
3497 	DUMPREG(dispc, DISPC_CAPABLE);
3498 	DUMPREG(dispc, DISPC_LINE_STATUS);
3499 	DUMPREG(dispc, DISPC_LINE_NUMBER);
3500 	if (dispc_has_feature(dispc, FEAT_ALPHA_FIXED_ZORDER) ||
3501 			dispc_has_feature(dispc, FEAT_ALPHA_FREE_ZORDER))
3502 		DUMPREG(dispc, DISPC_GLOBAL_ALPHA);
3503 	if (dispc_has_feature(dispc, FEAT_MGR_LCD2)) {
3504 		DUMPREG(dispc, DISPC_CONTROL2);
3505 		DUMPREG(dispc, DISPC_CONFIG2);
3506 	}
3507 	if (dispc_has_feature(dispc, FEAT_MGR_LCD3)) {
3508 		DUMPREG(dispc, DISPC_CONTROL3);
3509 		DUMPREG(dispc, DISPC_CONFIG3);
3510 	}
3511 	if (dispc_has_feature(dispc, FEAT_MFLAG))
3512 		DUMPREG(dispc, DISPC_GLOBAL_MFLAG_ATTRIBUTE);
3513 
3514 #undef DUMPREG
3515 
3516 #define DISPC_REG(i, name) name(i)
3517 #define DUMPREG(dispc, i, r) seq_printf(s, "%s(%s)%*s %08x\n", #r, p_names[i], \
3518 	(int)(48 - strlen(#r) - strlen(p_names[i])), " ", \
3519 	dispc_read_reg(dispc, DISPC_REG(i, r)))
3520 
3521 	p_names = mgr_names;
3522 
3523 	/* DISPC channel specific registers */
3524 	for (i = 0; i < dispc_get_num_mgrs(dispc); i++) {
3525 		DUMPREG(dispc, i, DISPC_DEFAULT_COLOR);
3526 		DUMPREG(dispc, i, DISPC_TRANS_COLOR);
3527 		DUMPREG(dispc, i, DISPC_SIZE_MGR);
3528 
3529 		if (i == OMAP_DSS_CHANNEL_DIGIT)
3530 			continue;
3531 
3532 		DUMPREG(dispc, i, DISPC_TIMING_H);
3533 		DUMPREG(dispc, i, DISPC_TIMING_V);
3534 		DUMPREG(dispc, i, DISPC_POL_FREQ);
3535 		DUMPREG(dispc, i, DISPC_DIVISORo);
3536 
3537 		DUMPREG(dispc, i, DISPC_DATA_CYCLE1);
3538 		DUMPREG(dispc, i, DISPC_DATA_CYCLE2);
3539 		DUMPREG(dispc, i, DISPC_DATA_CYCLE3);
3540 
3541 		if (dispc_has_feature(dispc, FEAT_CPR)) {
3542 			DUMPREG(dispc, i, DISPC_CPR_COEF_R);
3543 			DUMPREG(dispc, i, DISPC_CPR_COEF_G);
3544 			DUMPREG(dispc, i, DISPC_CPR_COEF_B);
3545 		}
3546 	}
3547 
3548 	p_names = ovl_names;
3549 
3550 	for (i = 0; i < dispc_get_num_ovls(dispc); i++) {
3551 		DUMPREG(dispc, i, DISPC_OVL_BA0);
3552 		DUMPREG(dispc, i, DISPC_OVL_BA1);
3553 		DUMPREG(dispc, i, DISPC_OVL_POSITION);
3554 		DUMPREG(dispc, i, DISPC_OVL_SIZE);
3555 		DUMPREG(dispc, i, DISPC_OVL_ATTRIBUTES);
3556 		DUMPREG(dispc, i, DISPC_OVL_FIFO_THRESHOLD);
3557 		DUMPREG(dispc, i, DISPC_OVL_FIFO_SIZE_STATUS);
3558 		DUMPREG(dispc, i, DISPC_OVL_ROW_INC);
3559 		DUMPREG(dispc, i, DISPC_OVL_PIXEL_INC);
3560 
3561 		if (dispc_has_feature(dispc, FEAT_PRELOAD))
3562 			DUMPREG(dispc, i, DISPC_OVL_PRELOAD);
3563 		if (dispc_has_feature(dispc, FEAT_MFLAG))
3564 			DUMPREG(dispc, i, DISPC_OVL_MFLAG_THRESHOLD);
3565 
3566 		if (i == OMAP_DSS_GFX) {
3567 			DUMPREG(dispc, i, DISPC_OVL_WINDOW_SKIP);
3568 			DUMPREG(dispc, i, DISPC_OVL_TABLE_BA);
3569 			continue;
3570 		}
3571 
3572 		DUMPREG(dispc, i, DISPC_OVL_FIR);
3573 		DUMPREG(dispc, i, DISPC_OVL_PICTURE_SIZE);
3574 		DUMPREG(dispc, i, DISPC_OVL_ACCU0);
3575 		DUMPREG(dispc, i, DISPC_OVL_ACCU1);
3576 		if (dispc_has_feature(dispc, FEAT_HANDLE_UV_SEPARATE)) {
3577 			DUMPREG(dispc, i, DISPC_OVL_BA0_UV);
3578 			DUMPREG(dispc, i, DISPC_OVL_BA1_UV);
3579 			DUMPREG(dispc, i, DISPC_OVL_FIR2);
3580 			DUMPREG(dispc, i, DISPC_OVL_ACCU2_0);
3581 			DUMPREG(dispc, i, DISPC_OVL_ACCU2_1);
3582 		}
3583 		if (dispc_has_feature(dispc, FEAT_ATTR2))
3584 			DUMPREG(dispc, i, DISPC_OVL_ATTRIBUTES2);
3585 	}
3586 
3587 	if (dispc->feat->has_writeback) {
3588 		i = OMAP_DSS_WB;
3589 		DUMPREG(dispc, i, DISPC_OVL_BA0);
3590 		DUMPREG(dispc, i, DISPC_OVL_BA1);
3591 		DUMPREG(dispc, i, DISPC_OVL_SIZE);
3592 		DUMPREG(dispc, i, DISPC_OVL_ATTRIBUTES);
3593 		DUMPREG(dispc, i, DISPC_OVL_FIFO_THRESHOLD);
3594 		DUMPREG(dispc, i, DISPC_OVL_FIFO_SIZE_STATUS);
3595 		DUMPREG(dispc, i, DISPC_OVL_ROW_INC);
3596 		DUMPREG(dispc, i, DISPC_OVL_PIXEL_INC);
3597 
3598 		if (dispc_has_feature(dispc, FEAT_MFLAG))
3599 			DUMPREG(dispc, i, DISPC_OVL_MFLAG_THRESHOLD);
3600 
3601 		DUMPREG(dispc, i, DISPC_OVL_FIR);
3602 		DUMPREG(dispc, i, DISPC_OVL_PICTURE_SIZE);
3603 		DUMPREG(dispc, i, DISPC_OVL_ACCU0);
3604 		DUMPREG(dispc, i, DISPC_OVL_ACCU1);
3605 		if (dispc_has_feature(dispc, FEAT_HANDLE_UV_SEPARATE)) {
3606 			DUMPREG(dispc, i, DISPC_OVL_BA0_UV);
3607 			DUMPREG(dispc, i, DISPC_OVL_BA1_UV);
3608 			DUMPREG(dispc, i, DISPC_OVL_FIR2);
3609 			DUMPREG(dispc, i, DISPC_OVL_ACCU2_0);
3610 			DUMPREG(dispc, i, DISPC_OVL_ACCU2_1);
3611 		}
3612 		if (dispc_has_feature(dispc, FEAT_ATTR2))
3613 			DUMPREG(dispc, i, DISPC_OVL_ATTRIBUTES2);
3614 	}
3615 
3616 #undef DISPC_REG
3617 #undef DUMPREG
3618 
3619 #define DISPC_REG(plane, name, i) name(plane, i)
3620 #define DUMPREG(dispc, plane, name, i) \
3621 	seq_printf(s, "%s_%d(%s)%*s %08x\n", #name, i, p_names[plane], \
3622 	(int)(46 - strlen(#name) - strlen(p_names[plane])), " ", \
3623 	dispc_read_reg(dispc, DISPC_REG(plane, name, i)))
3624 
3625 	/* Video pipeline coefficient registers */
3626 
3627 	/* start from OMAP_DSS_VIDEO1 */
3628 	for (i = 1; i < dispc_get_num_ovls(dispc); i++) {
3629 		for (j = 0; j < 8; j++)
3630 			DUMPREG(dispc, i, DISPC_OVL_FIR_COEF_H, j);
3631 
3632 		for (j = 0; j < 8; j++)
3633 			DUMPREG(dispc, i, DISPC_OVL_FIR_COEF_HV, j);
3634 
3635 		for (j = 0; j < 5; j++)
3636 			DUMPREG(dispc, i, DISPC_OVL_CONV_COEF, j);
3637 
3638 		if (dispc_has_feature(dispc, FEAT_FIR_COEF_V)) {
3639 			for (j = 0; j < 8; j++)
3640 				DUMPREG(dispc, i, DISPC_OVL_FIR_COEF_V, j);
3641 		}
3642 
3643 		if (dispc_has_feature(dispc, FEAT_HANDLE_UV_SEPARATE)) {
3644 			for (j = 0; j < 8; j++)
3645 				DUMPREG(dispc, i, DISPC_OVL_FIR_COEF_H2, j);
3646 
3647 			for (j = 0; j < 8; j++)
3648 				DUMPREG(dispc, i, DISPC_OVL_FIR_COEF_HV2, j);
3649 
3650 			for (j = 0; j < 8; j++)
3651 				DUMPREG(dispc, i, DISPC_OVL_FIR_COEF_V2, j);
3652 		}
3653 	}
3654 
3655 	dispc_runtime_put(dispc);
3656 
3657 #undef DISPC_REG
3658 #undef DUMPREG
3659 
3660 	return 0;
3661 }
3662 
3663 /* calculate clock rates using dividers in cinfo */
3664 int dispc_calc_clock_rates(struct dispc_device *dispc,
3665 			   unsigned long dispc_fclk_rate,
3666 			   struct dispc_clock_info *cinfo)
3667 {
3668 	if (cinfo->lck_div > 255 || cinfo->lck_div == 0)
3669 		return -EINVAL;
3670 	if (cinfo->pck_div < 1 || cinfo->pck_div > 255)
3671 		return -EINVAL;
3672 
3673 	cinfo->lck = dispc_fclk_rate / cinfo->lck_div;
3674 	cinfo->pck = cinfo->lck / cinfo->pck_div;
3675 
3676 	return 0;
3677 }
3678 
3679 bool dispc_div_calc(struct dispc_device *dispc, unsigned long dispc_freq,
3680 		    unsigned long pck_min, unsigned long pck_max,
3681 		    dispc_div_calc_func func, void *data)
3682 {
3683 	int lckd, lckd_start, lckd_stop;
3684 	int pckd, pckd_start, pckd_stop;
3685 	unsigned long pck, lck;
3686 	unsigned long lck_max;
3687 	unsigned long pckd_hw_min, pckd_hw_max;
3688 	unsigned int min_fck_per_pck;
3689 	unsigned long fck;
3690 
3691 #ifdef CONFIG_OMAP2_DSS_MIN_FCK_PER_PCK
3692 	min_fck_per_pck = CONFIG_OMAP2_DSS_MIN_FCK_PER_PCK;
3693 #else
3694 	min_fck_per_pck = 0;
3695 #endif
3696 
3697 	pckd_hw_min = dispc->feat->min_pcd;
3698 	pckd_hw_max = 255;
3699 
3700 	lck_max = dss_get_max_fck_rate(dispc->dss);
3701 
3702 	pck_min = pck_min ? pck_min : 1;
3703 	pck_max = pck_max ? pck_max : ULONG_MAX;
3704 
3705 	lckd_start = max(DIV_ROUND_UP(dispc_freq, lck_max), 1ul);
3706 	lckd_stop = min(dispc_freq / pck_min, 255ul);
3707 
3708 	for (lckd = lckd_start; lckd <= lckd_stop; ++lckd) {
3709 		lck = dispc_freq / lckd;
3710 
3711 		pckd_start = max(DIV_ROUND_UP(lck, pck_max), pckd_hw_min);
3712 		pckd_stop = min(lck / pck_min, pckd_hw_max);
3713 
3714 		for (pckd = pckd_start; pckd <= pckd_stop; ++pckd) {
3715 			pck = lck / pckd;
3716 
3717 			/*
3718 			 * For OMAP2/3 the DISPC fclk is the same as LCD's logic
3719 			 * clock, which means we're configuring DISPC fclk here
3720 			 * also. Thus we need to use the calculated lck. For
3721 			 * OMAP4+ the DISPC fclk is a separate clock.
3722 			 */
3723 			if (dispc_has_feature(dispc, FEAT_CORE_CLK_DIV))
3724 				fck = dispc_core_clk_rate(dispc);
3725 			else
3726 				fck = lck;
3727 
3728 			if (fck < pck * min_fck_per_pck)
3729 				continue;
3730 
3731 			if (func(lckd, pckd, lck, pck, data))
3732 				return true;
3733 		}
3734 	}
3735 
3736 	return false;
3737 }
3738 
3739 void dispc_mgr_set_clock_div(struct dispc_device *dispc,
3740 			     enum omap_channel channel,
3741 			     const struct dispc_clock_info *cinfo)
3742 {
3743 	DSSDBG("lck = %lu (%u)\n", cinfo->lck, cinfo->lck_div);
3744 	DSSDBG("pck = %lu (%u)\n", cinfo->pck, cinfo->pck_div);
3745 
3746 	dispc_mgr_set_lcd_divisor(dispc, channel, cinfo->lck_div,
3747 				  cinfo->pck_div);
3748 }
3749 
3750 int dispc_mgr_get_clock_div(struct dispc_device *dispc,
3751 			    enum omap_channel channel,
3752 			    struct dispc_clock_info *cinfo)
3753 {
3754 	unsigned long fck;
3755 
3756 	fck = dispc_fclk_rate(dispc);
3757 
3758 	cinfo->lck_div = REG_GET(dispc, DISPC_DIVISORo(channel), 23, 16);
3759 	cinfo->pck_div = REG_GET(dispc, DISPC_DIVISORo(channel), 7, 0);
3760 
3761 	cinfo->lck = fck / cinfo->lck_div;
3762 	cinfo->pck = cinfo->lck / cinfo->pck_div;
3763 
3764 	return 0;
3765 }
3766 
3767 u32 dispc_read_irqstatus(struct dispc_device *dispc)
3768 {
3769 	return dispc_read_reg(dispc, DISPC_IRQSTATUS);
3770 }
3771 
3772 void dispc_clear_irqstatus(struct dispc_device *dispc, u32 mask)
3773 {
3774 	dispc_write_reg(dispc, DISPC_IRQSTATUS, mask);
3775 }
3776 
3777 void dispc_write_irqenable(struct dispc_device *dispc, u32 mask)
3778 {
3779 	u32 old_mask = dispc_read_reg(dispc, DISPC_IRQENABLE);
3780 
3781 	/* clear the irqstatus for newly enabled irqs */
3782 	dispc_clear_irqstatus(dispc, (mask ^ old_mask) & mask);
3783 
3784 	dispc_write_reg(dispc, DISPC_IRQENABLE, mask);
3785 
3786 	/* flush posted write */
3787 	dispc_read_reg(dispc, DISPC_IRQENABLE);
3788 }
3789 
3790 void dispc_enable_sidle(struct dispc_device *dispc)
3791 {
3792 	/* SIDLEMODE: smart idle */
3793 	REG_FLD_MOD(dispc, DISPC_SYSCONFIG, 2, 4, 3);
3794 }
3795 
3796 void dispc_disable_sidle(struct dispc_device *dispc)
3797 {
3798 	REG_FLD_MOD(dispc, DISPC_SYSCONFIG, 1, 4, 3);	/* SIDLEMODE: no idle */
3799 }
3800 
3801 u32 dispc_mgr_gamma_size(struct dispc_device *dispc,
3802 				enum omap_channel channel)
3803 {
3804 	const struct dispc_gamma_desc *gdesc = &mgr_desc[channel].gamma;
3805 
3806 	if (!dispc->feat->has_gamma_table)
3807 		return 0;
3808 
3809 	return gdesc->len;
3810 }
3811 
3812 static void dispc_mgr_write_gamma_table(struct dispc_device *dispc,
3813 					enum omap_channel channel)
3814 {
3815 	const struct dispc_gamma_desc *gdesc = &mgr_desc[channel].gamma;
3816 	u32 *table = dispc->gamma_table[channel];
3817 	unsigned int i;
3818 
3819 	DSSDBG("%s: channel %d\n", __func__, channel);
3820 
3821 	for (i = 0; i < gdesc->len; ++i) {
3822 		u32 v = table[i];
3823 
3824 		if (gdesc->has_index)
3825 			v |= i << 24;
3826 		else if (i == 0)
3827 			v |= 1 << 31;
3828 
3829 		dispc_write_reg(dispc, gdesc->reg, v);
3830 	}
3831 }
3832 
3833 static void dispc_restore_gamma_tables(struct dispc_device *dispc)
3834 {
3835 	DSSDBG("%s()\n", __func__);
3836 
3837 	if (!dispc->feat->has_gamma_table)
3838 		return;
3839 
3840 	dispc_mgr_write_gamma_table(dispc, OMAP_DSS_CHANNEL_LCD);
3841 
3842 	dispc_mgr_write_gamma_table(dispc, OMAP_DSS_CHANNEL_DIGIT);
3843 
3844 	if (dispc_has_feature(dispc, FEAT_MGR_LCD2))
3845 		dispc_mgr_write_gamma_table(dispc, OMAP_DSS_CHANNEL_LCD2);
3846 
3847 	if (dispc_has_feature(dispc, FEAT_MGR_LCD3))
3848 		dispc_mgr_write_gamma_table(dispc, OMAP_DSS_CHANNEL_LCD3);
3849 }
3850 
3851 static const struct drm_color_lut dispc_mgr_gamma_default_lut[] = {
3852 	{ .red = 0, .green = 0, .blue = 0, },
3853 	{ .red = U16_MAX, .green = U16_MAX, .blue = U16_MAX, },
3854 };
3855 
3856 void dispc_mgr_set_gamma(struct dispc_device *dispc,
3857 				enum omap_channel channel,
3858 				const struct drm_color_lut *lut,
3859 				unsigned int length)
3860 {
3861 	const struct dispc_gamma_desc *gdesc = &mgr_desc[channel].gamma;
3862 	u32 *table = dispc->gamma_table[channel];
3863 	uint i;
3864 
3865 	DSSDBG("%s: channel %d, lut len %u, hw len %u\n", __func__,
3866 	       channel, length, gdesc->len);
3867 
3868 	if (!dispc->feat->has_gamma_table)
3869 		return;
3870 
3871 	if (lut == NULL || length < 2) {
3872 		lut = dispc_mgr_gamma_default_lut;
3873 		length = ARRAY_SIZE(dispc_mgr_gamma_default_lut);
3874 	}
3875 
3876 	for (i = 0; i < length - 1; ++i) {
3877 		uint first = i * (gdesc->len - 1) / (length - 1);
3878 		uint last = (i + 1) * (gdesc->len - 1) / (length - 1);
3879 		uint w = last - first;
3880 		u16 r, g, b;
3881 		uint j;
3882 
3883 		if (w == 0)
3884 			continue;
3885 
3886 		for (j = 0; j <= w; j++) {
3887 			r = (lut[i].red * (w - j) + lut[i+1].red * j) / w;
3888 			g = (lut[i].green * (w - j) + lut[i+1].green * j) / w;
3889 			b = (lut[i].blue * (w - j) + lut[i+1].blue * j) / w;
3890 
3891 			r >>= 16 - gdesc->bits;
3892 			g >>= 16 - gdesc->bits;
3893 			b >>= 16 - gdesc->bits;
3894 
3895 			table[first + j] = (r << (gdesc->bits * 2)) |
3896 				(g << gdesc->bits) | b;
3897 		}
3898 	}
3899 
3900 	if (dispc->is_enabled)
3901 		dispc_mgr_write_gamma_table(dispc, channel);
3902 }
3903 
3904 static int dispc_init_gamma_tables(struct dispc_device *dispc)
3905 {
3906 	int channel;
3907 
3908 	if (!dispc->feat->has_gamma_table)
3909 		return 0;
3910 
3911 	for (channel = 0; channel < ARRAY_SIZE(dispc->gamma_table); channel++) {
3912 		const struct dispc_gamma_desc *gdesc = &mgr_desc[channel].gamma;
3913 		u32 *gt;
3914 
3915 		if (channel == OMAP_DSS_CHANNEL_LCD2 &&
3916 		    !dispc_has_feature(dispc, FEAT_MGR_LCD2))
3917 			continue;
3918 
3919 		if (channel == OMAP_DSS_CHANNEL_LCD3 &&
3920 		    !dispc_has_feature(dispc, FEAT_MGR_LCD3))
3921 			continue;
3922 
3923 		gt = devm_kmalloc_array(&dispc->pdev->dev, gdesc->len,
3924 					sizeof(u32), GFP_KERNEL);
3925 		if (!gt)
3926 			return -ENOMEM;
3927 
3928 		dispc->gamma_table[channel] = gt;
3929 
3930 		dispc_mgr_set_gamma(dispc, channel, NULL, 0);
3931 	}
3932 	return 0;
3933 }
3934 
3935 static void _omap_dispc_initial_config(struct dispc_device *dispc)
3936 {
3937 	u32 l;
3938 
3939 	/* Exclusively enable DISPC_CORE_CLK and set divider to 1 */
3940 	if (dispc_has_feature(dispc, FEAT_CORE_CLK_DIV)) {
3941 		l = dispc_read_reg(dispc, DISPC_DIVISOR);
3942 		/* Use DISPC_DIVISOR.LCD, instead of DISPC_DIVISOR1.LCD */
3943 		l = FLD_MOD(l, 1, 0, 0);
3944 		l = FLD_MOD(l, 1, 23, 16);
3945 		dispc_write_reg(dispc, DISPC_DIVISOR, l);
3946 
3947 		dispc->core_clk_rate = dispc_fclk_rate(dispc);
3948 	}
3949 
3950 	/* Use gamma table mode, instead of palette mode */
3951 	if (dispc->feat->has_gamma_table)
3952 		REG_FLD_MOD(dispc, DISPC_CONFIG, 1, 3, 3);
3953 
3954 	/* For older DSS versions (FEAT_FUNCGATED) this enables
3955 	 * func-clock auto-gating. For newer versions
3956 	 * (dispc->feat->has_gamma_table) this enables tv-out gamma tables.
3957 	 */
3958 	if (dispc_has_feature(dispc, FEAT_FUNCGATED) ||
3959 	    dispc->feat->has_gamma_table)
3960 		REG_FLD_MOD(dispc, DISPC_CONFIG, 1, 9, 9);
3961 
3962 	dispc_set_loadmode(dispc, OMAP_DSS_LOAD_FRAME_ONLY);
3963 
3964 	dispc_init_fifos(dispc);
3965 
3966 	dispc_configure_burst_sizes(dispc);
3967 
3968 	dispc_ovl_enable_zorder_planes(dispc);
3969 
3970 	if (dispc->feat->mstandby_workaround)
3971 		REG_FLD_MOD(dispc, DISPC_MSTANDBY_CTRL, 1, 0, 0);
3972 
3973 	if (dispc_has_feature(dispc, FEAT_MFLAG))
3974 		dispc_init_mflag(dispc);
3975 }
3976 
3977 static const enum dispc_feature_id omap2_dispc_features_list[] = {
3978 	FEAT_LCDENABLEPOL,
3979 	FEAT_LCDENABLESIGNAL,
3980 	FEAT_PCKFREEENABLE,
3981 	FEAT_FUNCGATED,
3982 	FEAT_ROWREPEATENABLE,
3983 	FEAT_RESIZECONF,
3984 };
3985 
3986 static const enum dispc_feature_id omap3_dispc_features_list[] = {
3987 	FEAT_LCDENABLEPOL,
3988 	FEAT_LCDENABLESIGNAL,
3989 	FEAT_PCKFREEENABLE,
3990 	FEAT_FUNCGATED,
3991 	FEAT_LINEBUFFERSPLIT,
3992 	FEAT_ROWREPEATENABLE,
3993 	FEAT_RESIZECONF,
3994 	FEAT_CPR,
3995 	FEAT_PRELOAD,
3996 	FEAT_FIR_COEF_V,
3997 	FEAT_ALPHA_FIXED_ZORDER,
3998 	FEAT_FIFO_MERGE,
3999 	FEAT_OMAP3_DSI_FIFO_BUG,
4000 };
4001 
4002 static const enum dispc_feature_id am43xx_dispc_features_list[] = {
4003 	FEAT_LCDENABLEPOL,
4004 	FEAT_LCDENABLESIGNAL,
4005 	FEAT_PCKFREEENABLE,
4006 	FEAT_FUNCGATED,
4007 	FEAT_LINEBUFFERSPLIT,
4008 	FEAT_ROWREPEATENABLE,
4009 	FEAT_RESIZECONF,
4010 	FEAT_CPR,
4011 	FEAT_PRELOAD,
4012 	FEAT_FIR_COEF_V,
4013 	FEAT_ALPHA_FIXED_ZORDER,
4014 	FEAT_FIFO_MERGE,
4015 };
4016 
4017 static const enum dispc_feature_id omap4_dispc_features_list[] = {
4018 	FEAT_MGR_LCD2,
4019 	FEAT_CORE_CLK_DIV,
4020 	FEAT_HANDLE_UV_SEPARATE,
4021 	FEAT_ATTR2,
4022 	FEAT_CPR,
4023 	FEAT_PRELOAD,
4024 	FEAT_FIR_COEF_V,
4025 	FEAT_ALPHA_FREE_ZORDER,
4026 	FEAT_FIFO_MERGE,
4027 	FEAT_BURST_2D,
4028 };
4029 
4030 static const enum dispc_feature_id omap5_dispc_features_list[] = {
4031 	FEAT_MGR_LCD2,
4032 	FEAT_MGR_LCD3,
4033 	FEAT_CORE_CLK_DIV,
4034 	FEAT_HANDLE_UV_SEPARATE,
4035 	FEAT_ATTR2,
4036 	FEAT_CPR,
4037 	FEAT_PRELOAD,
4038 	FEAT_FIR_COEF_V,
4039 	FEAT_ALPHA_FREE_ZORDER,
4040 	FEAT_FIFO_MERGE,
4041 	FEAT_BURST_2D,
4042 	FEAT_MFLAG,
4043 };
4044 
4045 static const struct dss_reg_field omap2_dispc_reg_fields[] = {
4046 	[FEAT_REG_FIRHINC]			= { 11, 0 },
4047 	[FEAT_REG_FIRVINC]			= { 27, 16 },
4048 	[FEAT_REG_FIFOLOWTHRESHOLD]		= { 8, 0 },
4049 	[FEAT_REG_FIFOHIGHTHRESHOLD]		= { 24, 16 },
4050 	[FEAT_REG_FIFOSIZE]			= { 8, 0 },
4051 	[FEAT_REG_HORIZONTALACCU]		= { 9, 0 },
4052 	[FEAT_REG_VERTICALACCU]			= { 25, 16 },
4053 };
4054 
4055 static const struct dss_reg_field omap3_dispc_reg_fields[] = {
4056 	[FEAT_REG_FIRHINC]			= { 12, 0 },
4057 	[FEAT_REG_FIRVINC]			= { 28, 16 },
4058 	[FEAT_REG_FIFOLOWTHRESHOLD]		= { 11, 0 },
4059 	[FEAT_REG_FIFOHIGHTHRESHOLD]		= { 27, 16 },
4060 	[FEAT_REG_FIFOSIZE]			= { 10, 0 },
4061 	[FEAT_REG_HORIZONTALACCU]		= { 9, 0 },
4062 	[FEAT_REG_VERTICALACCU]			= { 25, 16 },
4063 };
4064 
4065 static const struct dss_reg_field omap4_dispc_reg_fields[] = {
4066 	[FEAT_REG_FIRHINC]			= { 12, 0 },
4067 	[FEAT_REG_FIRVINC]			= { 28, 16 },
4068 	[FEAT_REG_FIFOLOWTHRESHOLD]		= { 15, 0 },
4069 	[FEAT_REG_FIFOHIGHTHRESHOLD]		= { 31, 16 },
4070 	[FEAT_REG_FIFOSIZE]			= { 15, 0 },
4071 	[FEAT_REG_HORIZONTALACCU]		= { 10, 0 },
4072 	[FEAT_REG_VERTICALACCU]			= { 26, 16 },
4073 };
4074 
4075 static const enum omap_overlay_caps omap2_dispc_overlay_caps[] = {
4076 	/* OMAP_DSS_GFX */
4077 	OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION,
4078 
4079 	/* OMAP_DSS_VIDEO1 */
4080 	OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_POS |
4081 		OMAP_DSS_OVL_CAP_REPLICATION,
4082 
4083 	/* OMAP_DSS_VIDEO2 */
4084 	OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_POS |
4085 		OMAP_DSS_OVL_CAP_REPLICATION,
4086 };
4087 
4088 static const enum omap_overlay_caps omap3430_dispc_overlay_caps[] = {
4089 	/* OMAP_DSS_GFX */
4090 	OMAP_DSS_OVL_CAP_GLOBAL_ALPHA | OMAP_DSS_OVL_CAP_POS |
4091 		OMAP_DSS_OVL_CAP_REPLICATION,
4092 
4093 	/* OMAP_DSS_VIDEO1 */
4094 	OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_POS |
4095 		OMAP_DSS_OVL_CAP_REPLICATION,
4096 
4097 	/* OMAP_DSS_VIDEO2 */
4098 	OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_GLOBAL_ALPHA |
4099 		OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION,
4100 };
4101 
4102 static const enum omap_overlay_caps omap3630_dispc_overlay_caps[] = {
4103 	/* OMAP_DSS_GFX */
4104 	OMAP_DSS_OVL_CAP_GLOBAL_ALPHA | OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA |
4105 		OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION,
4106 
4107 	/* OMAP_DSS_VIDEO1 */
4108 	OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_POS |
4109 		OMAP_DSS_OVL_CAP_REPLICATION,
4110 
4111 	/* OMAP_DSS_VIDEO2 */
4112 	OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_GLOBAL_ALPHA |
4113 		OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA | OMAP_DSS_OVL_CAP_POS |
4114 		OMAP_DSS_OVL_CAP_REPLICATION,
4115 };
4116 
4117 static const enum omap_overlay_caps omap4_dispc_overlay_caps[] = {
4118 	/* OMAP_DSS_GFX */
4119 	OMAP_DSS_OVL_CAP_GLOBAL_ALPHA | OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA |
4120 		OMAP_DSS_OVL_CAP_ZORDER | OMAP_DSS_OVL_CAP_POS |
4121 		OMAP_DSS_OVL_CAP_REPLICATION,
4122 
4123 	/* OMAP_DSS_VIDEO1 */
4124 	OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_GLOBAL_ALPHA |
4125 		OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA | OMAP_DSS_OVL_CAP_ZORDER |
4126 		OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION,
4127 
4128 	/* OMAP_DSS_VIDEO2 */
4129 	OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_GLOBAL_ALPHA |
4130 		OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA | OMAP_DSS_OVL_CAP_ZORDER |
4131 		OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION,
4132 
4133 	/* OMAP_DSS_VIDEO3 */
4134 	OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_GLOBAL_ALPHA |
4135 		OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA | OMAP_DSS_OVL_CAP_ZORDER |
4136 		OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION,
4137 };
4138 
4139 #define COLOR_ARRAY(arr...) (const u32[]) { arr, 0 }
4140 
4141 static const u32 *omap2_dispc_supported_color_modes[] = {
4142 
4143 	/* OMAP_DSS_GFX */
4144 	COLOR_ARRAY(
4145 	DRM_FORMAT_RGBX4444, DRM_FORMAT_RGB565,
4146 	DRM_FORMAT_XRGB8888, DRM_FORMAT_RGB888),
4147 
4148 	/* OMAP_DSS_VIDEO1 */
4149 	COLOR_ARRAY(
4150 	DRM_FORMAT_RGB565, DRM_FORMAT_XRGB8888,
4151 	DRM_FORMAT_RGB888, DRM_FORMAT_YUYV,
4152 	DRM_FORMAT_UYVY),
4153 
4154 	/* OMAP_DSS_VIDEO2 */
4155 	COLOR_ARRAY(
4156 	DRM_FORMAT_RGB565, DRM_FORMAT_XRGB8888,
4157 	DRM_FORMAT_RGB888, DRM_FORMAT_YUYV,
4158 	DRM_FORMAT_UYVY),
4159 };
4160 
4161 static const u32 *omap3_dispc_supported_color_modes[] = {
4162 	/* OMAP_DSS_GFX */
4163 	COLOR_ARRAY(
4164 	DRM_FORMAT_RGBX4444, DRM_FORMAT_ARGB4444,
4165 	DRM_FORMAT_RGB565, DRM_FORMAT_XRGB8888,
4166 	DRM_FORMAT_RGB888, DRM_FORMAT_ARGB8888,
4167 	DRM_FORMAT_RGBA8888, DRM_FORMAT_RGBX8888),
4168 
4169 	/* OMAP_DSS_VIDEO1 */
4170 	COLOR_ARRAY(
4171 	DRM_FORMAT_XRGB8888, DRM_FORMAT_RGB888,
4172 	DRM_FORMAT_RGBX4444, DRM_FORMAT_RGB565,
4173 	DRM_FORMAT_YUYV, DRM_FORMAT_UYVY),
4174 
4175 	/* OMAP_DSS_VIDEO2 */
4176 	COLOR_ARRAY(
4177 	DRM_FORMAT_RGBX4444, DRM_FORMAT_ARGB4444,
4178 	DRM_FORMAT_RGB565, DRM_FORMAT_XRGB8888,
4179 	DRM_FORMAT_RGB888, DRM_FORMAT_YUYV,
4180 	DRM_FORMAT_UYVY, DRM_FORMAT_ARGB8888,
4181 	DRM_FORMAT_RGBA8888, DRM_FORMAT_RGBX8888),
4182 };
4183 
4184 static const u32 *omap4_dispc_supported_color_modes[] = {
4185 	/* OMAP_DSS_GFX */
4186 	COLOR_ARRAY(
4187 	DRM_FORMAT_RGBX4444, DRM_FORMAT_ARGB4444,
4188 	DRM_FORMAT_RGB565, DRM_FORMAT_XRGB8888,
4189 	DRM_FORMAT_RGB888, DRM_FORMAT_ARGB8888,
4190 	DRM_FORMAT_RGBA8888, DRM_FORMAT_RGBX8888,
4191 	DRM_FORMAT_ARGB1555, DRM_FORMAT_XRGB4444,
4192 	DRM_FORMAT_RGBA4444, DRM_FORMAT_XRGB1555),
4193 
4194 	/* OMAP_DSS_VIDEO1 */
4195 	COLOR_ARRAY(
4196 	DRM_FORMAT_RGB565, DRM_FORMAT_RGBX4444,
4197 	DRM_FORMAT_YUYV, DRM_FORMAT_ARGB1555,
4198 	DRM_FORMAT_RGBA8888, DRM_FORMAT_NV12,
4199 	DRM_FORMAT_RGBA4444, DRM_FORMAT_XRGB8888,
4200 	DRM_FORMAT_RGB888, DRM_FORMAT_UYVY,
4201 	DRM_FORMAT_ARGB4444, DRM_FORMAT_XRGB1555,
4202 	DRM_FORMAT_ARGB8888, DRM_FORMAT_XRGB4444,
4203 	DRM_FORMAT_RGBX8888),
4204 
4205        /* OMAP_DSS_VIDEO2 */
4206 	COLOR_ARRAY(
4207 	DRM_FORMAT_RGB565, DRM_FORMAT_RGBX4444,
4208 	DRM_FORMAT_YUYV, DRM_FORMAT_ARGB1555,
4209 	DRM_FORMAT_RGBA8888, DRM_FORMAT_NV12,
4210 	DRM_FORMAT_RGBA4444, DRM_FORMAT_XRGB8888,
4211 	DRM_FORMAT_RGB888, DRM_FORMAT_UYVY,
4212 	DRM_FORMAT_ARGB4444, DRM_FORMAT_XRGB1555,
4213 	DRM_FORMAT_ARGB8888, DRM_FORMAT_XRGB4444,
4214 	DRM_FORMAT_RGBX8888),
4215 
4216 	/* OMAP_DSS_VIDEO3 */
4217 	COLOR_ARRAY(
4218 	DRM_FORMAT_RGB565, DRM_FORMAT_RGBX4444,
4219 	DRM_FORMAT_YUYV, DRM_FORMAT_ARGB1555,
4220 	DRM_FORMAT_RGBA8888, DRM_FORMAT_NV12,
4221 	DRM_FORMAT_RGBA4444, DRM_FORMAT_XRGB8888,
4222 	DRM_FORMAT_RGB888, DRM_FORMAT_UYVY,
4223 	DRM_FORMAT_ARGB4444, DRM_FORMAT_XRGB1555,
4224 	DRM_FORMAT_ARGB8888, DRM_FORMAT_XRGB4444,
4225 	DRM_FORMAT_RGBX8888),
4226 
4227 	/* OMAP_DSS_WB */
4228 	COLOR_ARRAY(
4229 	DRM_FORMAT_RGB565, DRM_FORMAT_RGBX4444,
4230 	DRM_FORMAT_YUYV, DRM_FORMAT_ARGB1555,
4231 	DRM_FORMAT_RGBA8888, DRM_FORMAT_NV12,
4232 	DRM_FORMAT_RGBA4444, DRM_FORMAT_XRGB8888,
4233 	DRM_FORMAT_RGB888, DRM_FORMAT_UYVY,
4234 	DRM_FORMAT_ARGB4444, DRM_FORMAT_XRGB1555,
4235 	DRM_FORMAT_ARGB8888, DRM_FORMAT_XRGB4444,
4236 	DRM_FORMAT_RGBX8888),
4237 };
4238 
4239 static const u32 omap3_dispc_supported_scaler_color_modes[] = {
4240 	DRM_FORMAT_XRGB8888, DRM_FORMAT_RGB565, DRM_FORMAT_YUYV,
4241 	DRM_FORMAT_UYVY,
4242 	0,
4243 };
4244 
4245 static const struct dispc_features omap24xx_dispc_feats = {
4246 	.sw_start		=	5,
4247 	.fp_start		=	15,
4248 	.bp_start		=	27,
4249 	.sw_max			=	64,
4250 	.vp_max			=	255,
4251 	.hp_max			=	256,
4252 	.mgr_width_start	=	10,
4253 	.mgr_height_start	=	26,
4254 	.mgr_width_max		=	2048,
4255 	.mgr_height_max		=	2048,
4256 	.ovl_width_max		=	2048,
4257 	.ovl_height_max		=	2048,
4258 	.max_lcd_pclk		=	66500000,
4259 	.max_downscale		=	2,
4260 	/*
4261 	 * Assume the line width buffer to be 768 pixels as OMAP2 DISPC scaler
4262 	 * cannot scale an image width larger than 768.
4263 	 */
4264 	.max_line_width		=	768,
4265 	.min_pcd		=	2,
4266 	.calc_scaling		=	dispc_ovl_calc_scaling_24xx,
4267 	.calc_core_clk		=	calc_core_clk_24xx,
4268 	.num_fifos		=	3,
4269 	.features		=	omap2_dispc_features_list,
4270 	.num_features		=	ARRAY_SIZE(omap2_dispc_features_list),
4271 	.reg_fields		=	omap2_dispc_reg_fields,
4272 	.num_reg_fields		=	ARRAY_SIZE(omap2_dispc_reg_fields),
4273 	.overlay_caps		=	omap2_dispc_overlay_caps,
4274 	.supported_color_modes	=	omap2_dispc_supported_color_modes,
4275 	.supported_scaler_color_modes = COLOR_ARRAY(DRM_FORMAT_XRGB8888),
4276 	.num_mgrs		=	2,
4277 	.num_ovls		=	3,
4278 	.buffer_size_unit	=	1,
4279 	.burst_size_unit	=	8,
4280 	.no_framedone_tv	=	true,
4281 	.set_max_preload	=	false,
4282 	.last_pixel_inc_missing	=	true,
4283 };
4284 
4285 static const struct dispc_features omap34xx_rev1_0_dispc_feats = {
4286 	.sw_start		=	5,
4287 	.fp_start		=	15,
4288 	.bp_start		=	27,
4289 	.sw_max			=	64,
4290 	.vp_max			=	255,
4291 	.hp_max			=	256,
4292 	.mgr_width_start	=	10,
4293 	.mgr_height_start	=	26,
4294 	.mgr_width_max		=	2048,
4295 	.mgr_height_max		=	2048,
4296 	.ovl_width_max		=	2048,
4297 	.ovl_height_max		=	2048,
4298 	.max_lcd_pclk		=	173000000,
4299 	.max_tv_pclk		=	59000000,
4300 	.max_downscale		=	4,
4301 	.max_line_width		=	1024,
4302 	.min_pcd		=	1,
4303 	.calc_scaling		=	dispc_ovl_calc_scaling_34xx,
4304 	.calc_core_clk		=	calc_core_clk_34xx,
4305 	.num_fifos		=	3,
4306 	.features		=	omap3_dispc_features_list,
4307 	.num_features		=	ARRAY_SIZE(omap3_dispc_features_list),
4308 	.reg_fields		=	omap3_dispc_reg_fields,
4309 	.num_reg_fields		=	ARRAY_SIZE(omap3_dispc_reg_fields),
4310 	.overlay_caps		=	omap3430_dispc_overlay_caps,
4311 	.supported_color_modes	=	omap3_dispc_supported_color_modes,
4312 	.supported_scaler_color_modes = omap3_dispc_supported_scaler_color_modes,
4313 	.num_mgrs		=	2,
4314 	.num_ovls		=	3,
4315 	.buffer_size_unit	=	1,
4316 	.burst_size_unit	=	8,
4317 	.no_framedone_tv	=	true,
4318 	.set_max_preload	=	false,
4319 	.last_pixel_inc_missing	=	true,
4320 };
4321 
4322 static const struct dispc_features omap34xx_rev3_0_dispc_feats = {
4323 	.sw_start		=	7,
4324 	.fp_start		=	19,
4325 	.bp_start		=	31,
4326 	.sw_max			=	256,
4327 	.vp_max			=	4095,
4328 	.hp_max			=	4096,
4329 	.mgr_width_start	=	10,
4330 	.mgr_height_start	=	26,
4331 	.mgr_width_max		=	2048,
4332 	.mgr_height_max		=	2048,
4333 	.ovl_width_max		=	2048,
4334 	.ovl_height_max		=	2048,
4335 	.max_lcd_pclk		=	173000000,
4336 	.max_tv_pclk		=	59000000,
4337 	.max_downscale		=	4,
4338 	.max_line_width		=	1024,
4339 	.min_pcd		=	1,
4340 	.calc_scaling		=	dispc_ovl_calc_scaling_34xx,
4341 	.calc_core_clk		=	calc_core_clk_34xx,
4342 	.num_fifos		=	3,
4343 	.features		=	omap3_dispc_features_list,
4344 	.num_features		=	ARRAY_SIZE(omap3_dispc_features_list),
4345 	.reg_fields		=	omap3_dispc_reg_fields,
4346 	.num_reg_fields		=	ARRAY_SIZE(omap3_dispc_reg_fields),
4347 	.overlay_caps		=	omap3430_dispc_overlay_caps,
4348 	.supported_color_modes	=	omap3_dispc_supported_color_modes,
4349 	.supported_scaler_color_modes = omap3_dispc_supported_scaler_color_modes,
4350 	.num_mgrs		=	2,
4351 	.num_ovls		=	3,
4352 	.buffer_size_unit	=	1,
4353 	.burst_size_unit	=	8,
4354 	.no_framedone_tv	=	true,
4355 	.set_max_preload	=	false,
4356 	.last_pixel_inc_missing	=	true,
4357 };
4358 
4359 static const struct dispc_features omap36xx_dispc_feats = {
4360 	.sw_start		=	7,
4361 	.fp_start		=	19,
4362 	.bp_start		=	31,
4363 	.sw_max			=	256,
4364 	.vp_max			=	4095,
4365 	.hp_max			=	4096,
4366 	.mgr_width_start	=	10,
4367 	.mgr_height_start	=	26,
4368 	.mgr_width_max		=	2048,
4369 	.mgr_height_max		=	2048,
4370 	.ovl_width_max		=	2048,
4371 	.ovl_height_max		=	2048,
4372 	.max_lcd_pclk		=	173000000,
4373 	.max_tv_pclk		=	59000000,
4374 	.max_downscale		=	4,
4375 	.max_line_width		=	1024,
4376 	.min_pcd		=	1,
4377 	.calc_scaling		=	dispc_ovl_calc_scaling_34xx,
4378 	.calc_core_clk		=	calc_core_clk_34xx,
4379 	.num_fifos		=	3,
4380 	.features		=	omap3_dispc_features_list,
4381 	.num_features		=	ARRAY_SIZE(omap3_dispc_features_list),
4382 	.reg_fields		=	omap3_dispc_reg_fields,
4383 	.num_reg_fields		=	ARRAY_SIZE(omap3_dispc_reg_fields),
4384 	.overlay_caps		=	omap3630_dispc_overlay_caps,
4385 	.supported_color_modes	=	omap3_dispc_supported_color_modes,
4386 	.supported_scaler_color_modes = omap3_dispc_supported_scaler_color_modes,
4387 	.num_mgrs		=	2,
4388 	.num_ovls		=	3,
4389 	.buffer_size_unit	=	1,
4390 	.burst_size_unit	=	8,
4391 	.no_framedone_tv	=	true,
4392 	.set_max_preload	=	false,
4393 	.last_pixel_inc_missing	=	true,
4394 };
4395 
4396 static const struct dispc_features am43xx_dispc_feats = {
4397 	.sw_start		=	7,
4398 	.fp_start		=	19,
4399 	.bp_start		=	31,
4400 	.sw_max			=	256,
4401 	.vp_max			=	4095,
4402 	.hp_max			=	4096,
4403 	.mgr_width_start	=	10,
4404 	.mgr_height_start	=	26,
4405 	.mgr_width_max		=	2048,
4406 	.mgr_height_max		=	2048,
4407 	.ovl_width_max		=	2048,
4408 	.ovl_height_max		=	2048,
4409 	.max_lcd_pclk		=	173000000,
4410 	.max_tv_pclk		=	59000000,
4411 	.max_downscale		=	4,
4412 	.max_line_width		=	1024,
4413 	.min_pcd		=	1,
4414 	.calc_scaling		=	dispc_ovl_calc_scaling_34xx,
4415 	.calc_core_clk		=	calc_core_clk_34xx,
4416 	.num_fifos		=	3,
4417 	.features		=	am43xx_dispc_features_list,
4418 	.num_features		=	ARRAY_SIZE(am43xx_dispc_features_list),
4419 	.reg_fields		=	omap3_dispc_reg_fields,
4420 	.num_reg_fields		=	ARRAY_SIZE(omap3_dispc_reg_fields),
4421 	.overlay_caps		=	omap3430_dispc_overlay_caps,
4422 	.supported_color_modes	=	omap3_dispc_supported_color_modes,
4423 	.supported_scaler_color_modes = omap3_dispc_supported_scaler_color_modes,
4424 	.num_mgrs		=	1,
4425 	.num_ovls		=	3,
4426 	.buffer_size_unit	=	1,
4427 	.burst_size_unit	=	8,
4428 	.no_framedone_tv	=	true,
4429 	.set_max_preload	=	false,
4430 	.last_pixel_inc_missing	=	true,
4431 };
4432 
4433 static const struct dispc_features omap44xx_dispc_feats = {
4434 	.sw_start		=	7,
4435 	.fp_start		=	19,
4436 	.bp_start		=	31,
4437 	.sw_max			=	256,
4438 	.vp_max			=	4095,
4439 	.hp_max			=	4096,
4440 	.mgr_width_start	=	10,
4441 	.mgr_height_start	=	26,
4442 	.mgr_width_max		=	2048,
4443 	.mgr_height_max		=	2048,
4444 	.ovl_width_max		=	2048,
4445 	.ovl_height_max		=	2048,
4446 	.max_lcd_pclk		=	170000000,
4447 	.max_tv_pclk		=	185625000,
4448 	.max_downscale		=	4,
4449 	.max_line_width		=	2048,
4450 	.min_pcd		=	1,
4451 	.calc_scaling		=	dispc_ovl_calc_scaling_44xx,
4452 	.calc_core_clk		=	calc_core_clk_44xx,
4453 	.num_fifos		=	5,
4454 	.features		=	omap4_dispc_features_list,
4455 	.num_features		=	ARRAY_SIZE(omap4_dispc_features_list),
4456 	.reg_fields		=	omap4_dispc_reg_fields,
4457 	.num_reg_fields		=	ARRAY_SIZE(omap4_dispc_reg_fields),
4458 	.overlay_caps		=	omap4_dispc_overlay_caps,
4459 	.supported_color_modes	=	omap4_dispc_supported_color_modes,
4460 	.num_mgrs		=	3,
4461 	.num_ovls		=	4,
4462 	.buffer_size_unit	=	16,
4463 	.burst_size_unit	=	16,
4464 	.gfx_fifo_workaround	=	true,
4465 	.set_max_preload	=	true,
4466 	.supports_sync_align	=	true,
4467 	.has_writeback		=	true,
4468 	.supports_double_pixel	=	true,
4469 	.reverse_ilace_field_order =	true,
4470 	.has_gamma_table	=	true,
4471 	.has_gamma_i734_bug	=	true,
4472 };
4473 
4474 static const struct dispc_features omap54xx_dispc_feats = {
4475 	.sw_start		=	7,
4476 	.fp_start		=	19,
4477 	.bp_start		=	31,
4478 	.sw_max			=	256,
4479 	.vp_max			=	4095,
4480 	.hp_max			=	4096,
4481 	.mgr_width_start	=	11,
4482 	.mgr_height_start	=	27,
4483 	.mgr_width_max		=	4096,
4484 	.mgr_height_max		=	4096,
4485 	.ovl_width_max		=	2048,
4486 	.ovl_height_max		=	4096,
4487 	.max_lcd_pclk		=	170000000,
4488 	.max_tv_pclk		=	192000000,
4489 	.max_downscale		=	4,
4490 	.max_line_width		=	2048,
4491 	.min_pcd		=	1,
4492 	.calc_scaling		=	dispc_ovl_calc_scaling_44xx,
4493 	.calc_core_clk		=	calc_core_clk_44xx,
4494 	.num_fifos		=	5,
4495 	.features		=	omap5_dispc_features_list,
4496 	.num_features		=	ARRAY_SIZE(omap5_dispc_features_list),
4497 	.reg_fields		=	omap4_dispc_reg_fields,
4498 	.num_reg_fields		=	ARRAY_SIZE(omap4_dispc_reg_fields),
4499 	.overlay_caps		=	omap4_dispc_overlay_caps,
4500 	.supported_color_modes	=	omap4_dispc_supported_color_modes,
4501 	.num_mgrs		=	4,
4502 	.num_ovls		=	4,
4503 	.buffer_size_unit	=	16,
4504 	.burst_size_unit	=	16,
4505 	.gfx_fifo_workaround	=	true,
4506 	.mstandby_workaround	=	true,
4507 	.set_max_preload	=	true,
4508 	.supports_sync_align	=	true,
4509 	.has_writeback		=	true,
4510 	.supports_double_pixel	=	true,
4511 	.reverse_ilace_field_order =	true,
4512 	.has_gamma_table	=	true,
4513 	.has_gamma_i734_bug	=	true,
4514 };
4515 
4516 static irqreturn_t dispc_irq_handler(int irq, void *arg)
4517 {
4518 	struct dispc_device *dispc = arg;
4519 
4520 	if (!dispc->is_enabled)
4521 		return IRQ_NONE;
4522 
4523 	return dispc->user_handler(irq, dispc->user_data);
4524 }
4525 
4526 int dispc_request_irq(struct dispc_device *dispc, irq_handler_t handler,
4527 			     void *dev_id)
4528 {
4529 	int r;
4530 
4531 	if (dispc->user_handler != NULL)
4532 		return -EBUSY;
4533 
4534 	dispc->user_handler = handler;
4535 	dispc->user_data = dev_id;
4536 
4537 	/* ensure the dispc_irq_handler sees the values above */
4538 	smp_wmb();
4539 
4540 	r = devm_request_irq(&dispc->pdev->dev, dispc->irq, dispc_irq_handler,
4541 			     IRQF_SHARED, "OMAP DISPC", dispc);
4542 	if (r) {
4543 		dispc->user_handler = NULL;
4544 		dispc->user_data = NULL;
4545 	}
4546 
4547 	return r;
4548 }
4549 
4550 void dispc_free_irq(struct dispc_device *dispc, void *dev_id)
4551 {
4552 	devm_free_irq(&dispc->pdev->dev, dispc->irq, dispc);
4553 
4554 	dispc->user_handler = NULL;
4555 	dispc->user_data = NULL;
4556 }
4557 
4558 u32 dispc_get_memory_bandwidth_limit(struct dispc_device *dispc)
4559 {
4560 	u32 limit = 0;
4561 
4562 	/* Optional maximum memory bandwidth */
4563 	of_property_read_u32(dispc->pdev->dev.of_node, "max-memory-bandwidth",
4564 			     &limit);
4565 
4566 	return limit;
4567 }
4568 
4569 /*
4570  * Workaround for errata i734 in DSS dispc
4571  *  - LCD1 Gamma Correction Is Not Working When GFX Pipe Is Disabled
4572  *
4573  * For gamma tables to work on LCD1 the GFX plane has to be used at
4574  * least once after DSS HW has come out of reset. The workaround
4575  * sets up a minimal LCD setup with GFX plane and waits for one
4576  * vertical sync irq before disabling the setup and continuing with
4577  * the context restore. The physical outputs are gated during the
4578  * operation. This workaround requires that gamma table's LOADMODE
4579  * is set to 0x2 in DISPC_CONTROL1 register.
4580  *
4581  * For details see:
4582  * OMAP543x Multimedia Device Silicon Revision 2.0 Silicon Errata
4583  * Literature Number: SWPZ037E
4584  * Or some other relevant errata document for the DSS IP version.
4585  */
4586 
4587 static const struct dispc_errata_i734_data {
4588 	struct videomode vm;
4589 	struct omap_overlay_info ovli;
4590 	struct omap_overlay_manager_info mgri;
4591 	struct dss_lcd_mgr_config lcd_conf;
4592 } i734 = {
4593 	.vm = {
4594 		.hactive = 8, .vactive = 1,
4595 		.pixelclock = 16000000,
4596 		.hsync_len = 8, .hfront_porch = 4, .hback_porch = 4,
4597 		.vsync_len = 1, .vfront_porch = 1, .vback_porch = 1,
4598 
4599 		.flags = DISPLAY_FLAGS_HSYNC_LOW | DISPLAY_FLAGS_VSYNC_LOW |
4600 			 DISPLAY_FLAGS_DE_HIGH | DISPLAY_FLAGS_SYNC_POSEDGE |
4601 			 DISPLAY_FLAGS_PIXDATA_POSEDGE,
4602 	},
4603 	.ovli = {
4604 		.screen_width = 1,
4605 		.width = 1, .height = 1,
4606 		.fourcc = DRM_FORMAT_XRGB8888,
4607 		.rotation = DRM_MODE_ROTATE_0,
4608 		.rotation_type = OMAP_DSS_ROT_NONE,
4609 		.pos_x = 0, .pos_y = 0,
4610 		.out_width = 0, .out_height = 0,
4611 		.global_alpha = 0xff,
4612 		.pre_mult_alpha = 0,
4613 		.zorder = 0,
4614 	},
4615 	.mgri = {
4616 		.default_color = 0,
4617 		.trans_enabled = false,
4618 		.partial_alpha_enabled = false,
4619 		.cpr_enable = false,
4620 	},
4621 	.lcd_conf = {
4622 		.io_pad_mode = DSS_IO_PAD_MODE_BYPASS,
4623 		.stallmode = false,
4624 		.fifohandcheck = false,
4625 		.clock_info = {
4626 			.lck_div = 1,
4627 			.pck_div = 2,
4628 		},
4629 		.video_port_width = 24,
4630 		.lcden_sig_polarity = 0,
4631 	},
4632 };
4633 
4634 static struct i734_buf {
4635 	size_t size;
4636 	dma_addr_t paddr;
4637 	void *vaddr;
4638 } i734_buf;
4639 
4640 static int dispc_errata_i734_wa_init(struct dispc_device *dispc)
4641 {
4642 	if (!dispc->feat->has_gamma_i734_bug)
4643 		return 0;
4644 
4645 	i734_buf.size = i734.ovli.width * i734.ovli.height *
4646 		color_mode_to_bpp(i734.ovli.fourcc) / 8;
4647 
4648 	i734_buf.vaddr = dma_alloc_wc(&dispc->pdev->dev, i734_buf.size,
4649 				      &i734_buf.paddr, GFP_KERNEL);
4650 	if (!i734_buf.vaddr) {
4651 		dev_err(&dispc->pdev->dev, "%s: dma_alloc_wc failed\n",
4652 			__func__);
4653 		return -ENOMEM;
4654 	}
4655 
4656 	return 0;
4657 }
4658 
4659 static void dispc_errata_i734_wa_fini(struct dispc_device *dispc)
4660 {
4661 	if (!dispc->feat->has_gamma_i734_bug)
4662 		return;
4663 
4664 	dma_free_wc(&dispc->pdev->dev, i734_buf.size, i734_buf.vaddr,
4665 		    i734_buf.paddr);
4666 }
4667 
4668 static void dispc_errata_i734_wa(struct dispc_device *dispc)
4669 {
4670 	u32 framedone_irq = dispc_mgr_get_framedone_irq(dispc,
4671 							OMAP_DSS_CHANNEL_LCD);
4672 	struct omap_overlay_info ovli;
4673 	struct dss_lcd_mgr_config lcd_conf;
4674 	u32 gatestate;
4675 	unsigned int count;
4676 
4677 	if (!dispc->feat->has_gamma_i734_bug)
4678 		return;
4679 
4680 	gatestate = REG_GET(dispc, DISPC_CONFIG, 8, 4);
4681 
4682 	ovli = i734.ovli;
4683 	ovli.paddr = i734_buf.paddr;
4684 	lcd_conf = i734.lcd_conf;
4685 
4686 	/* Gate all LCD1 outputs */
4687 	REG_FLD_MOD(dispc, DISPC_CONFIG, 0x1f, 8, 4);
4688 
4689 	/* Setup and enable GFX plane */
4690 	dispc_ovl_setup(dispc, OMAP_DSS_GFX, &ovli, &i734.vm, false,
4691 			OMAP_DSS_CHANNEL_LCD);
4692 	dispc_ovl_enable(dispc, OMAP_DSS_GFX, true);
4693 
4694 	/* Set up and enable display manager for LCD1 */
4695 	dispc_mgr_setup(dispc, OMAP_DSS_CHANNEL_LCD, &i734.mgri);
4696 	dispc_calc_clock_rates(dispc, dss_get_dispc_clk_rate(dispc->dss),
4697 			       &lcd_conf.clock_info);
4698 	dispc_mgr_set_lcd_config(dispc, OMAP_DSS_CHANNEL_LCD, &lcd_conf);
4699 	dispc_mgr_set_timings(dispc, OMAP_DSS_CHANNEL_LCD, &i734.vm);
4700 
4701 	dispc_clear_irqstatus(dispc, framedone_irq);
4702 
4703 	/* Enable and shut the channel to produce just one frame */
4704 	dispc_mgr_enable(dispc, OMAP_DSS_CHANNEL_LCD, true);
4705 	dispc_mgr_enable(dispc, OMAP_DSS_CHANNEL_LCD, false);
4706 
4707 	/* Busy wait for framedone. We can't fiddle with irq handlers
4708 	 * in PM resume. Typically the loop runs less than 5 times and
4709 	 * waits less than a micro second.
4710 	 */
4711 	count = 0;
4712 	while (!(dispc_read_irqstatus(dispc) & framedone_irq)) {
4713 		if (count++ > 10000) {
4714 			dev_err(&dispc->pdev->dev, "%s: framedone timeout\n",
4715 				__func__);
4716 			break;
4717 		}
4718 	}
4719 	dispc_ovl_enable(dispc, OMAP_DSS_GFX, false);
4720 
4721 	/* Clear all irq bits before continuing */
4722 	dispc_clear_irqstatus(dispc, 0xffffffff);
4723 
4724 	/* Restore the original state to LCD1 output gates */
4725 	REG_FLD_MOD(dispc, DISPC_CONFIG, gatestate, 8, 4);
4726 }
4727 
4728 /* DISPC HW IP initialisation */
4729 static const struct of_device_id dispc_of_match[] = {
4730 	{ .compatible = "ti,omap2-dispc", .data = &omap24xx_dispc_feats },
4731 	{ .compatible = "ti,omap3-dispc", .data = &omap36xx_dispc_feats },
4732 	{ .compatible = "ti,omap4-dispc", .data = &omap44xx_dispc_feats },
4733 	{ .compatible = "ti,omap5-dispc", .data = &omap54xx_dispc_feats },
4734 	{ .compatible = "ti,dra7-dispc",  .data = &omap54xx_dispc_feats },
4735 	{},
4736 };
4737 
4738 static const struct soc_device_attribute dispc_soc_devices[] = {
4739 	{ .machine = "OMAP3[45]*",
4740 	  .revision = "ES[12].?",	.data = &omap34xx_rev1_0_dispc_feats },
4741 	{ .machine = "OMAP3[45]*",	.data = &omap34xx_rev3_0_dispc_feats },
4742 	{ .machine = "AM35*",		.data = &omap34xx_rev3_0_dispc_feats },
4743 	{ .machine = "AM43*",		.data = &am43xx_dispc_feats },
4744 	{ /* sentinel */ }
4745 };
4746 
4747 static int dispc_bind(struct device *dev, struct device *master, void *data)
4748 {
4749 	struct platform_device *pdev = to_platform_device(dev);
4750 	const struct soc_device_attribute *soc;
4751 	struct dss_device *dss = dss_get_device(master);
4752 	struct dispc_device *dispc;
4753 	u32 rev;
4754 	int r = 0;
4755 	struct device_node *np = pdev->dev.of_node;
4756 
4757 	dispc = kzalloc(sizeof(*dispc), GFP_KERNEL);
4758 	if (!dispc)
4759 		return -ENOMEM;
4760 
4761 	dispc->pdev = pdev;
4762 	platform_set_drvdata(pdev, dispc);
4763 	dispc->dss = dss;
4764 
4765 	/*
4766 	 * The OMAP3-based models can't be told apart using the compatible
4767 	 * string, use SoC device matching.
4768 	 */
4769 	soc = soc_device_match(dispc_soc_devices);
4770 	if (soc)
4771 		dispc->feat = soc->data;
4772 	else
4773 		dispc->feat = of_match_device(dispc_of_match, &pdev->dev)->data;
4774 
4775 	r = dispc_errata_i734_wa_init(dispc);
4776 	if (r)
4777 		goto err_free;
4778 
4779 	dispc->base = devm_platform_ioremap_resource(pdev, 0);
4780 	if (IS_ERR(dispc->base)) {
4781 		r = PTR_ERR(dispc->base);
4782 		goto err_free;
4783 	}
4784 
4785 	dispc->irq = platform_get_irq(dispc->pdev, 0);
4786 	if (dispc->irq < 0) {
4787 		DSSERR("platform_get_irq failed\n");
4788 		r = -ENODEV;
4789 		goto err_free;
4790 	}
4791 
4792 	if (np && of_property_read_bool(np, "syscon-pol")) {
4793 		dispc->syscon_pol = syscon_regmap_lookup_by_phandle(np, "syscon-pol");
4794 		if (IS_ERR(dispc->syscon_pol)) {
4795 			dev_err(&pdev->dev, "failed to get syscon-pol regmap\n");
4796 			r = PTR_ERR(dispc->syscon_pol);
4797 			goto err_free;
4798 		}
4799 
4800 		if (of_property_read_u32_index(np, "syscon-pol", 1,
4801 				&dispc->syscon_pol_offset)) {
4802 			dev_err(&pdev->dev, "failed to get syscon-pol offset\n");
4803 			r = -EINVAL;
4804 			goto err_free;
4805 		}
4806 	}
4807 
4808 	r = dispc_init_gamma_tables(dispc);
4809 	if (r)
4810 		goto err_free;
4811 
4812 	pm_runtime_enable(&pdev->dev);
4813 
4814 	r = dispc_runtime_get(dispc);
4815 	if (r)
4816 		goto err_runtime_get;
4817 
4818 	_omap_dispc_initial_config(dispc);
4819 
4820 	rev = dispc_read_reg(dispc, DISPC_REVISION);
4821 	dev_dbg(&pdev->dev, "OMAP DISPC rev %d.%d\n",
4822 	       FLD_GET(rev, 7, 4), FLD_GET(rev, 3, 0));
4823 
4824 	dispc_runtime_put(dispc);
4825 
4826 	dss->dispc = dispc;
4827 
4828 	dispc->debugfs = dss_debugfs_create_file(dss, "dispc", dispc_dump_regs,
4829 						 dispc);
4830 
4831 	return 0;
4832 
4833 err_runtime_get:
4834 	pm_runtime_disable(&pdev->dev);
4835 err_free:
4836 	kfree(dispc);
4837 	return r;
4838 }
4839 
4840 static void dispc_unbind(struct device *dev, struct device *master, void *data)
4841 {
4842 	struct dispc_device *dispc = dev_get_drvdata(dev);
4843 	struct dss_device *dss = dispc->dss;
4844 
4845 	dss_debugfs_remove_file(dispc->debugfs);
4846 
4847 	dss->dispc = NULL;
4848 
4849 	pm_runtime_disable(dev);
4850 
4851 	dispc_errata_i734_wa_fini(dispc);
4852 
4853 	kfree(dispc);
4854 }
4855 
4856 static const struct component_ops dispc_component_ops = {
4857 	.bind	= dispc_bind,
4858 	.unbind	= dispc_unbind,
4859 };
4860 
4861 static int dispc_probe(struct platform_device *pdev)
4862 {
4863 	return component_add(&pdev->dev, &dispc_component_ops);
4864 }
4865 
4866 static int dispc_remove(struct platform_device *pdev)
4867 {
4868 	component_del(&pdev->dev, &dispc_component_ops);
4869 	return 0;
4870 }
4871 
4872 static __maybe_unused int dispc_runtime_suspend(struct device *dev)
4873 {
4874 	struct dispc_device *dispc = dev_get_drvdata(dev);
4875 
4876 	dispc->is_enabled = false;
4877 	/* ensure the dispc_irq_handler sees the is_enabled value */
4878 	smp_wmb();
4879 	/* wait for current handler to finish before turning the DISPC off */
4880 	synchronize_irq(dispc->irq);
4881 
4882 	dispc_save_context(dispc);
4883 
4884 	return 0;
4885 }
4886 
4887 static __maybe_unused int dispc_runtime_resume(struct device *dev)
4888 {
4889 	struct dispc_device *dispc = dev_get_drvdata(dev);
4890 
4891 	/*
4892 	 * The reset value for load mode is 0 (OMAP_DSS_LOAD_CLUT_AND_FRAME)
4893 	 * but we always initialize it to 2 (OMAP_DSS_LOAD_FRAME_ONLY) in
4894 	 * _omap_dispc_initial_config(). We can thus use it to detect if
4895 	 * we have lost register context.
4896 	 */
4897 	if (REG_GET(dispc, DISPC_CONFIG, 2, 1) != OMAP_DSS_LOAD_FRAME_ONLY) {
4898 		_omap_dispc_initial_config(dispc);
4899 
4900 		dispc_errata_i734_wa(dispc);
4901 
4902 		dispc_restore_context(dispc);
4903 
4904 		dispc_restore_gamma_tables(dispc);
4905 	}
4906 
4907 	dispc->is_enabled = true;
4908 	/* ensure the dispc_irq_handler sees the is_enabled value */
4909 	smp_wmb();
4910 
4911 	return 0;
4912 }
4913 
4914 static const struct dev_pm_ops dispc_pm_ops = {
4915 	SET_RUNTIME_PM_OPS(dispc_runtime_suspend, dispc_runtime_resume, NULL)
4916 	SET_LATE_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, pm_runtime_force_resume)
4917 };
4918 
4919 struct platform_driver omap_dispchw_driver = {
4920 	.probe		= dispc_probe,
4921 	.remove         = dispc_remove,
4922 	.driver         = {
4923 		.name   = "omapdss_dispc",
4924 		.pm	= &dispc_pm_ops,
4925 		.of_match_table = dispc_of_match,
4926 		.suppress_bind_attrs = true,
4927 	},
4928 };
4929