1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2009 Nokia Corporation 4 * Author: Tomi Valkeinen <tomi.valkeinen@ti.com> 5 * 6 * Some code and ideas taken from drivers/video/omap/ driver 7 * by Imre Deak. 8 */ 9 10 #define DSS_SUBSYS_NAME "DISPC" 11 12 #include <linux/kernel.h> 13 #include <linux/dma-mapping.h> 14 #include <linux/vmalloc.h> 15 #include <linux/export.h> 16 #include <linux/clk.h> 17 #include <linux/io.h> 18 #include <linux/jiffies.h> 19 #include <linux/seq_file.h> 20 #include <linux/delay.h> 21 #include <linux/workqueue.h> 22 #include <linux/hardirq.h> 23 #include <linux/platform_device.h> 24 #include <linux/pm_runtime.h> 25 #include <linux/sizes.h> 26 #include <linux/mfd/syscon.h> 27 #include <linux/regmap.h> 28 #include <linux/of.h> 29 #include <linux/of_device.h> 30 #include <linux/component.h> 31 #include <linux/sys_soc.h> 32 #include <drm/drm_fourcc.h> 33 #include <drm/drm_blend.h> 34 35 #include "omapdss.h" 36 #include "dss.h" 37 #include "dispc.h" 38 39 struct dispc_device; 40 41 /* DISPC */ 42 #define DISPC_SZ_REGS SZ_4K 43 44 enum omap_burst_size { 45 BURST_SIZE_X2 = 0, 46 BURST_SIZE_X4 = 1, 47 BURST_SIZE_X8 = 2, 48 }; 49 50 #define REG_GET(dispc, idx, start, end) \ 51 FLD_GET(dispc_read_reg(dispc, idx), start, end) 52 53 #define REG_FLD_MOD(dispc, idx, val, start, end) \ 54 dispc_write_reg(dispc, idx, \ 55 FLD_MOD(dispc_read_reg(dispc, idx), val, start, end)) 56 57 /* DISPC has feature id */ 58 enum dispc_feature_id { 59 FEAT_LCDENABLEPOL, 60 FEAT_LCDENABLESIGNAL, 61 FEAT_PCKFREEENABLE, 62 FEAT_FUNCGATED, 63 FEAT_MGR_LCD2, 64 FEAT_MGR_LCD3, 65 FEAT_LINEBUFFERSPLIT, 66 FEAT_ROWREPEATENABLE, 67 FEAT_RESIZECONF, 68 /* Independent core clk divider */ 69 FEAT_CORE_CLK_DIV, 70 FEAT_HANDLE_UV_SEPARATE, 71 FEAT_ATTR2, 72 FEAT_CPR, 73 FEAT_PRELOAD, 74 FEAT_FIR_COEF_V, 75 FEAT_ALPHA_FIXED_ZORDER, 76 FEAT_ALPHA_FREE_ZORDER, 77 FEAT_FIFO_MERGE, 78 /* An unknown HW bug causing the normal FIFO thresholds not to work */ 79 FEAT_OMAP3_DSI_FIFO_BUG, 80 FEAT_BURST_2D, 81 FEAT_MFLAG, 82 }; 83 84 struct dispc_features { 85 u8 sw_start; 86 u8 fp_start; 87 u8 bp_start; 88 u16 sw_max; 89 u16 vp_max; 90 u16 hp_max; 91 u8 mgr_width_start; 92 u8 mgr_height_start; 93 u16 mgr_width_max; 94 u16 mgr_height_max; 95 u16 ovl_width_max; 96 u16 ovl_height_max; 97 unsigned long max_lcd_pclk; 98 unsigned long max_tv_pclk; 99 unsigned int max_downscale; 100 unsigned int max_line_width; 101 unsigned int min_pcd; 102 int (*calc_scaling)(struct dispc_device *dispc, 103 unsigned long pclk, unsigned long lclk, 104 const struct videomode *vm, 105 u16 width, u16 height, u16 out_width, u16 out_height, 106 u32 fourcc, bool *five_taps, 107 int *x_predecim, int *y_predecim, int *decim_x, int *decim_y, 108 u16 pos_x, unsigned long *core_clk, bool mem_to_mem); 109 unsigned long (*calc_core_clk) (unsigned long pclk, 110 u16 width, u16 height, u16 out_width, u16 out_height, 111 bool mem_to_mem); 112 u8 num_fifos; 113 const enum dispc_feature_id *features; 114 unsigned int num_features; 115 const struct dss_reg_field *reg_fields; 116 const unsigned int num_reg_fields; 117 const enum omap_overlay_caps *overlay_caps; 118 const u32 **supported_color_modes; 119 const u32 *supported_scaler_color_modes; 120 unsigned int num_mgrs; 121 unsigned int num_ovls; 122 unsigned int buffer_size_unit; 123 unsigned int burst_size_unit; 124 125 /* swap GFX & WB fifos */ 126 bool gfx_fifo_workaround:1; 127 128 /* no DISPC_IRQ_FRAMEDONETV on this SoC */ 129 bool no_framedone_tv:1; 130 131 /* revert to the OMAP4 mechanism of DISPC Smart Standby operation */ 132 bool mstandby_workaround:1; 133 134 bool set_max_preload:1; 135 136 /* PIXEL_INC is not added to the last pixel of a line */ 137 bool last_pixel_inc_missing:1; 138 139 /* POL_FREQ has ALIGN bit */ 140 bool supports_sync_align:1; 141 142 bool has_writeback:1; 143 144 bool supports_double_pixel:1; 145 146 /* 147 * Field order for VENC is different than HDMI. We should handle this in 148 * some intelligent manner, but as the SoCs have either HDMI or VENC, 149 * never both, we can just use this flag for now. 150 */ 151 bool reverse_ilace_field_order:1; 152 153 bool has_gamma_table:1; 154 155 bool has_gamma_i734_bug:1; 156 }; 157 158 #define DISPC_MAX_NR_FIFOS 5 159 #define DISPC_MAX_CHANNEL_GAMMA 4 160 161 struct dispc_device { 162 struct platform_device *pdev; 163 void __iomem *base; 164 struct dss_device *dss; 165 166 struct dss_debugfs_entry *debugfs; 167 168 int irq; 169 irq_handler_t user_handler; 170 void *user_data; 171 172 unsigned long core_clk_rate; 173 unsigned long tv_pclk_rate; 174 175 u32 fifo_size[DISPC_MAX_NR_FIFOS]; 176 /* maps which plane is using a fifo. fifo-id -> plane-id */ 177 int fifo_assignment[DISPC_MAX_NR_FIFOS]; 178 179 bool ctx_valid; 180 u32 ctx[DISPC_SZ_REGS / sizeof(u32)]; 181 182 u32 *gamma_table[DISPC_MAX_CHANNEL_GAMMA]; 183 184 const struct dispc_features *feat; 185 186 bool is_enabled; 187 188 struct regmap *syscon_pol; 189 u32 syscon_pol_offset; 190 }; 191 192 enum omap_color_component { 193 /* used for all color formats for OMAP3 and earlier 194 * and for RGB and Y color component on OMAP4 195 */ 196 DISPC_COLOR_COMPONENT_RGB_Y = 1 << 0, 197 /* used for UV component for 198 * DRM_FORMAT_YUYV, DRM_FORMAT_UYVY, DRM_FORMAT_NV12 199 * color formats on OMAP4 200 */ 201 DISPC_COLOR_COMPONENT_UV = 1 << 1, 202 }; 203 204 enum mgr_reg_fields { 205 DISPC_MGR_FLD_ENABLE, 206 DISPC_MGR_FLD_STNTFT, 207 DISPC_MGR_FLD_GO, 208 DISPC_MGR_FLD_TFTDATALINES, 209 DISPC_MGR_FLD_STALLMODE, 210 DISPC_MGR_FLD_TCKENABLE, 211 DISPC_MGR_FLD_TCKSELECTION, 212 DISPC_MGR_FLD_CPR, 213 DISPC_MGR_FLD_FIFOHANDCHECK, 214 /* used to maintain a count of the above fields */ 215 DISPC_MGR_FLD_NUM, 216 }; 217 218 /* DISPC register field id */ 219 enum dispc_feat_reg_field { 220 FEAT_REG_FIRHINC, 221 FEAT_REG_FIRVINC, 222 FEAT_REG_FIFOHIGHTHRESHOLD, 223 FEAT_REG_FIFOLOWTHRESHOLD, 224 FEAT_REG_FIFOSIZE, 225 FEAT_REG_HORIZONTALACCU, 226 FEAT_REG_VERTICALACCU, 227 }; 228 229 struct dispc_reg_field { 230 u16 reg; 231 u8 high; 232 u8 low; 233 }; 234 235 struct dispc_gamma_desc { 236 u32 len; 237 u32 bits; 238 u16 reg; 239 bool has_index; 240 }; 241 242 static const struct { 243 const char *name; 244 u32 vsync_irq; 245 u32 framedone_irq; 246 u32 sync_lost_irq; 247 struct dispc_gamma_desc gamma; 248 struct dispc_reg_field reg_desc[DISPC_MGR_FLD_NUM]; 249 } mgr_desc[] = { 250 [OMAP_DSS_CHANNEL_LCD] = { 251 .name = "LCD", 252 .vsync_irq = DISPC_IRQ_VSYNC, 253 .framedone_irq = DISPC_IRQ_FRAMEDONE, 254 .sync_lost_irq = DISPC_IRQ_SYNC_LOST, 255 .gamma = { 256 .len = 256, 257 .bits = 8, 258 .reg = DISPC_GAMMA_TABLE0, 259 .has_index = true, 260 }, 261 .reg_desc = { 262 [DISPC_MGR_FLD_ENABLE] = { DISPC_CONTROL, 0, 0 }, 263 [DISPC_MGR_FLD_STNTFT] = { DISPC_CONTROL, 3, 3 }, 264 [DISPC_MGR_FLD_GO] = { DISPC_CONTROL, 5, 5 }, 265 [DISPC_MGR_FLD_TFTDATALINES] = { DISPC_CONTROL, 9, 8 }, 266 [DISPC_MGR_FLD_STALLMODE] = { DISPC_CONTROL, 11, 11 }, 267 [DISPC_MGR_FLD_TCKENABLE] = { DISPC_CONFIG, 10, 10 }, 268 [DISPC_MGR_FLD_TCKSELECTION] = { DISPC_CONFIG, 11, 11 }, 269 [DISPC_MGR_FLD_CPR] = { DISPC_CONFIG, 15, 15 }, 270 [DISPC_MGR_FLD_FIFOHANDCHECK] = { DISPC_CONFIG, 16, 16 }, 271 }, 272 }, 273 [OMAP_DSS_CHANNEL_DIGIT] = { 274 .name = "DIGIT", 275 .vsync_irq = DISPC_IRQ_EVSYNC_ODD | DISPC_IRQ_EVSYNC_EVEN, 276 .framedone_irq = DISPC_IRQ_FRAMEDONETV, 277 .sync_lost_irq = DISPC_IRQ_SYNC_LOST_DIGIT, 278 .gamma = { 279 .len = 1024, 280 .bits = 10, 281 .reg = DISPC_GAMMA_TABLE2, 282 .has_index = false, 283 }, 284 .reg_desc = { 285 [DISPC_MGR_FLD_ENABLE] = { DISPC_CONTROL, 1, 1 }, 286 [DISPC_MGR_FLD_STNTFT] = { }, 287 [DISPC_MGR_FLD_GO] = { DISPC_CONTROL, 6, 6 }, 288 [DISPC_MGR_FLD_TFTDATALINES] = { }, 289 [DISPC_MGR_FLD_STALLMODE] = { }, 290 [DISPC_MGR_FLD_TCKENABLE] = { DISPC_CONFIG, 12, 12 }, 291 [DISPC_MGR_FLD_TCKSELECTION] = { DISPC_CONFIG, 13, 13 }, 292 [DISPC_MGR_FLD_CPR] = { }, 293 [DISPC_MGR_FLD_FIFOHANDCHECK] = { DISPC_CONFIG, 16, 16 }, 294 }, 295 }, 296 [OMAP_DSS_CHANNEL_LCD2] = { 297 .name = "LCD2", 298 .vsync_irq = DISPC_IRQ_VSYNC2, 299 .framedone_irq = DISPC_IRQ_FRAMEDONE2, 300 .sync_lost_irq = DISPC_IRQ_SYNC_LOST2, 301 .gamma = { 302 .len = 256, 303 .bits = 8, 304 .reg = DISPC_GAMMA_TABLE1, 305 .has_index = true, 306 }, 307 .reg_desc = { 308 [DISPC_MGR_FLD_ENABLE] = { DISPC_CONTROL2, 0, 0 }, 309 [DISPC_MGR_FLD_STNTFT] = { DISPC_CONTROL2, 3, 3 }, 310 [DISPC_MGR_FLD_GO] = { DISPC_CONTROL2, 5, 5 }, 311 [DISPC_MGR_FLD_TFTDATALINES] = { DISPC_CONTROL2, 9, 8 }, 312 [DISPC_MGR_FLD_STALLMODE] = { DISPC_CONTROL2, 11, 11 }, 313 [DISPC_MGR_FLD_TCKENABLE] = { DISPC_CONFIG2, 10, 10 }, 314 [DISPC_MGR_FLD_TCKSELECTION] = { DISPC_CONFIG2, 11, 11 }, 315 [DISPC_MGR_FLD_CPR] = { DISPC_CONFIG2, 15, 15 }, 316 [DISPC_MGR_FLD_FIFOHANDCHECK] = { DISPC_CONFIG2, 16, 16 }, 317 }, 318 }, 319 [OMAP_DSS_CHANNEL_LCD3] = { 320 .name = "LCD3", 321 .vsync_irq = DISPC_IRQ_VSYNC3, 322 .framedone_irq = DISPC_IRQ_FRAMEDONE3, 323 .sync_lost_irq = DISPC_IRQ_SYNC_LOST3, 324 .gamma = { 325 .len = 256, 326 .bits = 8, 327 .reg = DISPC_GAMMA_TABLE3, 328 .has_index = true, 329 }, 330 .reg_desc = { 331 [DISPC_MGR_FLD_ENABLE] = { DISPC_CONTROL3, 0, 0 }, 332 [DISPC_MGR_FLD_STNTFT] = { DISPC_CONTROL3, 3, 3 }, 333 [DISPC_MGR_FLD_GO] = { DISPC_CONTROL3, 5, 5 }, 334 [DISPC_MGR_FLD_TFTDATALINES] = { DISPC_CONTROL3, 9, 8 }, 335 [DISPC_MGR_FLD_STALLMODE] = { DISPC_CONTROL3, 11, 11 }, 336 [DISPC_MGR_FLD_TCKENABLE] = { DISPC_CONFIG3, 10, 10 }, 337 [DISPC_MGR_FLD_TCKSELECTION] = { DISPC_CONFIG3, 11, 11 }, 338 [DISPC_MGR_FLD_CPR] = { DISPC_CONFIG3, 15, 15 }, 339 [DISPC_MGR_FLD_FIFOHANDCHECK] = { DISPC_CONFIG3, 16, 16 }, 340 }, 341 }, 342 }; 343 344 static unsigned long dispc_fclk_rate(struct dispc_device *dispc); 345 static unsigned long dispc_core_clk_rate(struct dispc_device *dispc); 346 static unsigned long dispc_mgr_lclk_rate(struct dispc_device *dispc, 347 enum omap_channel channel); 348 static unsigned long dispc_mgr_pclk_rate(struct dispc_device *dispc, 349 enum omap_channel channel); 350 351 static unsigned long dispc_plane_pclk_rate(struct dispc_device *dispc, 352 enum omap_plane_id plane); 353 static unsigned long dispc_plane_lclk_rate(struct dispc_device *dispc, 354 enum omap_plane_id plane); 355 356 static inline void dispc_write_reg(struct dispc_device *dispc, u16 idx, u32 val) 357 { 358 __raw_writel(val, dispc->base + idx); 359 } 360 361 static inline u32 dispc_read_reg(struct dispc_device *dispc, u16 idx) 362 { 363 return __raw_readl(dispc->base + idx); 364 } 365 366 static u32 mgr_fld_read(struct dispc_device *dispc, enum omap_channel channel, 367 enum mgr_reg_fields regfld) 368 { 369 const struct dispc_reg_field *rfld = &mgr_desc[channel].reg_desc[regfld]; 370 371 return REG_GET(dispc, rfld->reg, rfld->high, rfld->low); 372 } 373 374 static void mgr_fld_write(struct dispc_device *dispc, enum omap_channel channel, 375 enum mgr_reg_fields regfld, int val) 376 { 377 const struct dispc_reg_field *rfld = &mgr_desc[channel].reg_desc[regfld]; 378 379 REG_FLD_MOD(dispc, rfld->reg, val, rfld->high, rfld->low); 380 } 381 382 int dispc_get_num_ovls(struct dispc_device *dispc) 383 { 384 return dispc->feat->num_ovls; 385 } 386 387 int dispc_get_num_mgrs(struct dispc_device *dispc) 388 { 389 return dispc->feat->num_mgrs; 390 } 391 392 static void dispc_get_reg_field(struct dispc_device *dispc, 393 enum dispc_feat_reg_field id, 394 u8 *start, u8 *end) 395 { 396 BUG_ON(id >= dispc->feat->num_reg_fields); 397 398 *start = dispc->feat->reg_fields[id].start; 399 *end = dispc->feat->reg_fields[id].end; 400 } 401 402 static bool dispc_has_feature(struct dispc_device *dispc, 403 enum dispc_feature_id id) 404 { 405 unsigned int i; 406 407 for (i = 0; i < dispc->feat->num_features; i++) { 408 if (dispc->feat->features[i] == id) 409 return true; 410 } 411 412 return false; 413 } 414 415 #define SR(dispc, reg) \ 416 dispc->ctx[DISPC_##reg / sizeof(u32)] = dispc_read_reg(dispc, DISPC_##reg) 417 #define RR(dispc, reg) \ 418 dispc_write_reg(dispc, DISPC_##reg, dispc->ctx[DISPC_##reg / sizeof(u32)]) 419 420 static void dispc_save_context(struct dispc_device *dispc) 421 { 422 int i, j; 423 424 DSSDBG("dispc_save_context\n"); 425 426 SR(dispc, IRQENABLE); 427 SR(dispc, CONTROL); 428 SR(dispc, CONFIG); 429 SR(dispc, LINE_NUMBER); 430 if (dispc_has_feature(dispc, FEAT_ALPHA_FIXED_ZORDER) || 431 dispc_has_feature(dispc, FEAT_ALPHA_FREE_ZORDER)) 432 SR(dispc, GLOBAL_ALPHA); 433 if (dispc_has_feature(dispc, FEAT_MGR_LCD2)) { 434 SR(dispc, CONTROL2); 435 SR(dispc, CONFIG2); 436 } 437 if (dispc_has_feature(dispc, FEAT_MGR_LCD3)) { 438 SR(dispc, CONTROL3); 439 SR(dispc, CONFIG3); 440 } 441 442 for (i = 0; i < dispc_get_num_mgrs(dispc); i++) { 443 SR(dispc, DEFAULT_COLOR(i)); 444 SR(dispc, TRANS_COLOR(i)); 445 SR(dispc, SIZE_MGR(i)); 446 if (i == OMAP_DSS_CHANNEL_DIGIT) 447 continue; 448 SR(dispc, TIMING_H(i)); 449 SR(dispc, TIMING_V(i)); 450 SR(dispc, POL_FREQ(i)); 451 SR(dispc, DIVISORo(i)); 452 453 SR(dispc, DATA_CYCLE1(i)); 454 SR(dispc, DATA_CYCLE2(i)); 455 SR(dispc, DATA_CYCLE3(i)); 456 457 if (dispc_has_feature(dispc, FEAT_CPR)) { 458 SR(dispc, CPR_COEF_R(i)); 459 SR(dispc, CPR_COEF_G(i)); 460 SR(dispc, CPR_COEF_B(i)); 461 } 462 } 463 464 for (i = 0; i < dispc_get_num_ovls(dispc); i++) { 465 SR(dispc, OVL_BA0(i)); 466 SR(dispc, OVL_BA1(i)); 467 SR(dispc, OVL_POSITION(i)); 468 SR(dispc, OVL_SIZE(i)); 469 SR(dispc, OVL_ATTRIBUTES(i)); 470 SR(dispc, OVL_FIFO_THRESHOLD(i)); 471 SR(dispc, OVL_ROW_INC(i)); 472 SR(dispc, OVL_PIXEL_INC(i)); 473 if (dispc_has_feature(dispc, FEAT_PRELOAD)) 474 SR(dispc, OVL_PRELOAD(i)); 475 if (i == OMAP_DSS_GFX) { 476 SR(dispc, OVL_WINDOW_SKIP(i)); 477 SR(dispc, OVL_TABLE_BA(i)); 478 continue; 479 } 480 SR(dispc, OVL_FIR(i)); 481 SR(dispc, OVL_PICTURE_SIZE(i)); 482 SR(dispc, OVL_ACCU0(i)); 483 SR(dispc, OVL_ACCU1(i)); 484 485 for (j = 0; j < 8; j++) 486 SR(dispc, OVL_FIR_COEF_H(i, j)); 487 488 for (j = 0; j < 8; j++) 489 SR(dispc, OVL_FIR_COEF_HV(i, j)); 490 491 for (j = 0; j < 5; j++) 492 SR(dispc, OVL_CONV_COEF(i, j)); 493 494 if (dispc_has_feature(dispc, FEAT_FIR_COEF_V)) { 495 for (j = 0; j < 8; j++) 496 SR(dispc, OVL_FIR_COEF_V(i, j)); 497 } 498 499 if (dispc_has_feature(dispc, FEAT_HANDLE_UV_SEPARATE)) { 500 SR(dispc, OVL_BA0_UV(i)); 501 SR(dispc, OVL_BA1_UV(i)); 502 SR(dispc, OVL_FIR2(i)); 503 SR(dispc, OVL_ACCU2_0(i)); 504 SR(dispc, OVL_ACCU2_1(i)); 505 506 for (j = 0; j < 8; j++) 507 SR(dispc, OVL_FIR_COEF_H2(i, j)); 508 509 for (j = 0; j < 8; j++) 510 SR(dispc, OVL_FIR_COEF_HV2(i, j)); 511 512 for (j = 0; j < 8; j++) 513 SR(dispc, OVL_FIR_COEF_V2(i, j)); 514 } 515 if (dispc_has_feature(dispc, FEAT_ATTR2)) 516 SR(dispc, OVL_ATTRIBUTES2(i)); 517 } 518 519 if (dispc_has_feature(dispc, FEAT_CORE_CLK_DIV)) 520 SR(dispc, DIVISOR); 521 522 dispc->ctx_valid = true; 523 524 DSSDBG("context saved\n"); 525 } 526 527 static void dispc_restore_context(struct dispc_device *dispc) 528 { 529 int i, j; 530 531 DSSDBG("dispc_restore_context\n"); 532 533 if (!dispc->ctx_valid) 534 return; 535 536 /*RR(dispc, IRQENABLE);*/ 537 /*RR(dispc, CONTROL);*/ 538 RR(dispc, CONFIG); 539 RR(dispc, LINE_NUMBER); 540 if (dispc_has_feature(dispc, FEAT_ALPHA_FIXED_ZORDER) || 541 dispc_has_feature(dispc, FEAT_ALPHA_FREE_ZORDER)) 542 RR(dispc, GLOBAL_ALPHA); 543 if (dispc_has_feature(dispc, FEAT_MGR_LCD2)) 544 RR(dispc, CONFIG2); 545 if (dispc_has_feature(dispc, FEAT_MGR_LCD3)) 546 RR(dispc, CONFIG3); 547 548 for (i = 0; i < dispc_get_num_mgrs(dispc); i++) { 549 RR(dispc, DEFAULT_COLOR(i)); 550 RR(dispc, TRANS_COLOR(i)); 551 RR(dispc, SIZE_MGR(i)); 552 if (i == OMAP_DSS_CHANNEL_DIGIT) 553 continue; 554 RR(dispc, TIMING_H(i)); 555 RR(dispc, TIMING_V(i)); 556 RR(dispc, POL_FREQ(i)); 557 RR(dispc, DIVISORo(i)); 558 559 RR(dispc, DATA_CYCLE1(i)); 560 RR(dispc, DATA_CYCLE2(i)); 561 RR(dispc, DATA_CYCLE3(i)); 562 563 if (dispc_has_feature(dispc, FEAT_CPR)) { 564 RR(dispc, CPR_COEF_R(i)); 565 RR(dispc, CPR_COEF_G(i)); 566 RR(dispc, CPR_COEF_B(i)); 567 } 568 } 569 570 for (i = 0; i < dispc_get_num_ovls(dispc); i++) { 571 RR(dispc, OVL_BA0(i)); 572 RR(dispc, OVL_BA1(i)); 573 RR(dispc, OVL_POSITION(i)); 574 RR(dispc, OVL_SIZE(i)); 575 RR(dispc, OVL_ATTRIBUTES(i)); 576 RR(dispc, OVL_FIFO_THRESHOLD(i)); 577 RR(dispc, OVL_ROW_INC(i)); 578 RR(dispc, OVL_PIXEL_INC(i)); 579 if (dispc_has_feature(dispc, FEAT_PRELOAD)) 580 RR(dispc, OVL_PRELOAD(i)); 581 if (i == OMAP_DSS_GFX) { 582 RR(dispc, OVL_WINDOW_SKIP(i)); 583 RR(dispc, OVL_TABLE_BA(i)); 584 continue; 585 } 586 RR(dispc, OVL_FIR(i)); 587 RR(dispc, OVL_PICTURE_SIZE(i)); 588 RR(dispc, OVL_ACCU0(i)); 589 RR(dispc, OVL_ACCU1(i)); 590 591 for (j = 0; j < 8; j++) 592 RR(dispc, OVL_FIR_COEF_H(i, j)); 593 594 for (j = 0; j < 8; j++) 595 RR(dispc, OVL_FIR_COEF_HV(i, j)); 596 597 for (j = 0; j < 5; j++) 598 RR(dispc, OVL_CONV_COEF(i, j)); 599 600 if (dispc_has_feature(dispc, FEAT_FIR_COEF_V)) { 601 for (j = 0; j < 8; j++) 602 RR(dispc, OVL_FIR_COEF_V(i, j)); 603 } 604 605 if (dispc_has_feature(dispc, FEAT_HANDLE_UV_SEPARATE)) { 606 RR(dispc, OVL_BA0_UV(i)); 607 RR(dispc, OVL_BA1_UV(i)); 608 RR(dispc, OVL_FIR2(i)); 609 RR(dispc, OVL_ACCU2_0(i)); 610 RR(dispc, OVL_ACCU2_1(i)); 611 612 for (j = 0; j < 8; j++) 613 RR(dispc, OVL_FIR_COEF_H2(i, j)); 614 615 for (j = 0; j < 8; j++) 616 RR(dispc, OVL_FIR_COEF_HV2(i, j)); 617 618 for (j = 0; j < 8; j++) 619 RR(dispc, OVL_FIR_COEF_V2(i, j)); 620 } 621 if (dispc_has_feature(dispc, FEAT_ATTR2)) 622 RR(dispc, OVL_ATTRIBUTES2(i)); 623 } 624 625 if (dispc_has_feature(dispc, FEAT_CORE_CLK_DIV)) 626 RR(dispc, DIVISOR); 627 628 /* enable last, because LCD & DIGIT enable are here */ 629 RR(dispc, CONTROL); 630 if (dispc_has_feature(dispc, FEAT_MGR_LCD2)) 631 RR(dispc, CONTROL2); 632 if (dispc_has_feature(dispc, FEAT_MGR_LCD3)) 633 RR(dispc, CONTROL3); 634 /* clear spurious SYNC_LOST_DIGIT interrupts */ 635 dispc_clear_irqstatus(dispc, DISPC_IRQ_SYNC_LOST_DIGIT); 636 637 /* 638 * enable last so IRQs won't trigger before 639 * the context is fully restored 640 */ 641 RR(dispc, IRQENABLE); 642 643 DSSDBG("context restored\n"); 644 } 645 646 #undef SR 647 #undef RR 648 649 int dispc_runtime_get(struct dispc_device *dispc) 650 { 651 int r; 652 653 DSSDBG("dispc_runtime_get\n"); 654 655 r = pm_runtime_get_sync(&dispc->pdev->dev); 656 if (WARN_ON(r < 0)) { 657 pm_runtime_put_noidle(&dispc->pdev->dev); 658 return r; 659 } 660 return 0; 661 } 662 663 void dispc_runtime_put(struct dispc_device *dispc) 664 { 665 int r; 666 667 DSSDBG("dispc_runtime_put\n"); 668 669 r = pm_runtime_put_sync(&dispc->pdev->dev); 670 WARN_ON(r < 0 && r != -ENOSYS); 671 } 672 673 u32 dispc_mgr_get_vsync_irq(struct dispc_device *dispc, 674 enum omap_channel channel) 675 { 676 return mgr_desc[channel].vsync_irq; 677 } 678 679 u32 dispc_mgr_get_framedone_irq(struct dispc_device *dispc, 680 enum omap_channel channel) 681 { 682 if (channel == OMAP_DSS_CHANNEL_DIGIT && dispc->feat->no_framedone_tv) 683 return 0; 684 685 return mgr_desc[channel].framedone_irq; 686 } 687 688 u32 dispc_mgr_get_sync_lost_irq(struct dispc_device *dispc, 689 enum omap_channel channel) 690 { 691 return mgr_desc[channel].sync_lost_irq; 692 } 693 694 u32 dispc_wb_get_framedone_irq(struct dispc_device *dispc) 695 { 696 return DISPC_IRQ_FRAMEDONEWB; 697 } 698 699 void dispc_mgr_enable(struct dispc_device *dispc, 700 enum omap_channel channel, bool enable) 701 { 702 mgr_fld_write(dispc, channel, DISPC_MGR_FLD_ENABLE, enable); 703 /* flush posted write */ 704 mgr_fld_read(dispc, channel, DISPC_MGR_FLD_ENABLE); 705 } 706 707 static bool dispc_mgr_is_enabled(struct dispc_device *dispc, 708 enum omap_channel channel) 709 { 710 return !!mgr_fld_read(dispc, channel, DISPC_MGR_FLD_ENABLE); 711 } 712 713 bool dispc_mgr_go_busy(struct dispc_device *dispc, 714 enum omap_channel channel) 715 { 716 return mgr_fld_read(dispc, channel, DISPC_MGR_FLD_GO) == 1; 717 } 718 719 void dispc_mgr_go(struct dispc_device *dispc, enum omap_channel channel) 720 { 721 WARN_ON(!dispc_mgr_is_enabled(dispc, channel)); 722 WARN_ON(dispc_mgr_go_busy(dispc, channel)); 723 724 DSSDBG("GO %s\n", mgr_desc[channel].name); 725 726 mgr_fld_write(dispc, channel, DISPC_MGR_FLD_GO, 1); 727 } 728 729 bool dispc_wb_go_busy(struct dispc_device *dispc) 730 { 731 return REG_GET(dispc, DISPC_CONTROL2, 6, 6) == 1; 732 } 733 734 void dispc_wb_go(struct dispc_device *dispc) 735 { 736 enum omap_plane_id plane = OMAP_DSS_WB; 737 bool enable, go; 738 739 enable = REG_GET(dispc, DISPC_OVL_ATTRIBUTES(plane), 0, 0) == 1; 740 741 if (!enable) 742 return; 743 744 go = REG_GET(dispc, DISPC_CONTROL2, 6, 6) == 1; 745 if (go) { 746 DSSERR("GO bit not down for WB\n"); 747 return; 748 } 749 750 REG_FLD_MOD(dispc, DISPC_CONTROL2, 1, 6, 6); 751 } 752 753 static void dispc_ovl_write_firh_reg(struct dispc_device *dispc, 754 enum omap_plane_id plane, int reg, 755 u32 value) 756 { 757 dispc_write_reg(dispc, DISPC_OVL_FIR_COEF_H(plane, reg), value); 758 } 759 760 static void dispc_ovl_write_firhv_reg(struct dispc_device *dispc, 761 enum omap_plane_id plane, int reg, 762 u32 value) 763 { 764 dispc_write_reg(dispc, DISPC_OVL_FIR_COEF_HV(plane, reg), value); 765 } 766 767 static void dispc_ovl_write_firv_reg(struct dispc_device *dispc, 768 enum omap_plane_id plane, int reg, 769 u32 value) 770 { 771 dispc_write_reg(dispc, DISPC_OVL_FIR_COEF_V(plane, reg), value); 772 } 773 774 static void dispc_ovl_write_firh2_reg(struct dispc_device *dispc, 775 enum omap_plane_id plane, int reg, 776 u32 value) 777 { 778 BUG_ON(plane == OMAP_DSS_GFX); 779 780 dispc_write_reg(dispc, DISPC_OVL_FIR_COEF_H2(plane, reg), value); 781 } 782 783 static void dispc_ovl_write_firhv2_reg(struct dispc_device *dispc, 784 enum omap_plane_id plane, int reg, 785 u32 value) 786 { 787 BUG_ON(plane == OMAP_DSS_GFX); 788 789 dispc_write_reg(dispc, DISPC_OVL_FIR_COEF_HV2(plane, reg), value); 790 } 791 792 static void dispc_ovl_write_firv2_reg(struct dispc_device *dispc, 793 enum omap_plane_id plane, int reg, 794 u32 value) 795 { 796 BUG_ON(plane == OMAP_DSS_GFX); 797 798 dispc_write_reg(dispc, DISPC_OVL_FIR_COEF_V2(plane, reg), value); 799 } 800 801 static void dispc_ovl_set_scale_coef(struct dispc_device *dispc, 802 enum omap_plane_id plane, int fir_hinc, 803 int fir_vinc, int five_taps, 804 enum omap_color_component color_comp) 805 { 806 const struct dispc_coef *h_coef, *v_coef; 807 int i; 808 809 h_coef = dispc_ovl_get_scale_coef(fir_hinc, true); 810 v_coef = dispc_ovl_get_scale_coef(fir_vinc, five_taps); 811 812 if (!h_coef || !v_coef) { 813 dev_err(&dispc->pdev->dev, "%s: failed to find scale coefs\n", 814 __func__); 815 return; 816 } 817 818 for (i = 0; i < 8; i++) { 819 u32 h, hv; 820 821 h = FLD_VAL(h_coef[i].hc0_vc00, 7, 0) 822 | FLD_VAL(h_coef[i].hc1_vc0, 15, 8) 823 | FLD_VAL(h_coef[i].hc2_vc1, 23, 16) 824 | FLD_VAL(h_coef[i].hc3_vc2, 31, 24); 825 hv = FLD_VAL(h_coef[i].hc4_vc22, 7, 0) 826 | FLD_VAL(v_coef[i].hc1_vc0, 15, 8) 827 | FLD_VAL(v_coef[i].hc2_vc1, 23, 16) 828 | FLD_VAL(v_coef[i].hc3_vc2, 31, 24); 829 830 if (color_comp == DISPC_COLOR_COMPONENT_RGB_Y) { 831 dispc_ovl_write_firh_reg(dispc, plane, i, h); 832 dispc_ovl_write_firhv_reg(dispc, plane, i, hv); 833 } else { 834 dispc_ovl_write_firh2_reg(dispc, plane, i, h); 835 dispc_ovl_write_firhv2_reg(dispc, plane, i, hv); 836 } 837 838 } 839 840 if (five_taps) { 841 for (i = 0; i < 8; i++) { 842 u32 v; 843 v = FLD_VAL(v_coef[i].hc0_vc00, 7, 0) 844 | FLD_VAL(v_coef[i].hc4_vc22, 15, 8); 845 if (color_comp == DISPC_COLOR_COMPONENT_RGB_Y) 846 dispc_ovl_write_firv_reg(dispc, plane, i, v); 847 else 848 dispc_ovl_write_firv2_reg(dispc, plane, i, v); 849 } 850 } 851 } 852 853 struct csc_coef_yuv2rgb { 854 int ry, rcb, rcr, gy, gcb, gcr, by, bcb, bcr; 855 bool full_range; 856 }; 857 858 struct csc_coef_rgb2yuv { 859 int yr, yg, yb, cbr, cbg, cbb, crr, crg, crb; 860 bool full_range; 861 }; 862 863 static void dispc_ovl_write_color_conv_coef(struct dispc_device *dispc, 864 enum omap_plane_id plane, 865 const struct csc_coef_yuv2rgb *ct) 866 { 867 #define CVAL(x, y) (FLD_VAL(x, 26, 16) | FLD_VAL(y, 10, 0)) 868 869 dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 0), CVAL(ct->rcr, ct->ry)); 870 dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 1), CVAL(ct->gy, ct->rcb)); 871 dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 2), CVAL(ct->gcb, ct->gcr)); 872 dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 3), CVAL(ct->bcr, ct->by)); 873 dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 4), CVAL(0, ct->bcb)); 874 875 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), ct->full_range, 11, 11); 876 877 #undef CVAL 878 } 879 880 /* YUV -> RGB, ITU-R BT.601, full range */ 881 static const struct csc_coef_yuv2rgb coefs_yuv2rgb_bt601_full = { 882 256, 0, 358, /* ry, rcb, rcr |1.000 0.000 1.402|*/ 883 256, -88, -182, /* gy, gcb, gcr |1.000 -0.344 -0.714|*/ 884 256, 452, 0, /* by, bcb, bcr |1.000 1.772 0.000|*/ 885 true, /* full range */ 886 }; 887 888 /* YUV -> RGB, ITU-R BT.601, limited range */ 889 static const struct csc_coef_yuv2rgb coefs_yuv2rgb_bt601_lim = { 890 298, 0, 409, /* ry, rcb, rcr |1.164 0.000 1.596|*/ 891 298, -100, -208, /* gy, gcb, gcr |1.164 -0.392 -0.813|*/ 892 298, 516, 0, /* by, bcb, bcr |1.164 2.017 0.000|*/ 893 false, /* limited range */ 894 }; 895 896 /* YUV -> RGB, ITU-R BT.709, full range */ 897 static const struct csc_coef_yuv2rgb coefs_yuv2rgb_bt709_full = { 898 256, 0, 402, /* ry, rcb, rcr |1.000 0.000 1.570|*/ 899 256, -48, -120, /* gy, gcb, gcr |1.000 -0.187 -0.467|*/ 900 256, 475, 0, /* by, bcb, bcr |1.000 1.856 0.000|*/ 901 true, /* full range */ 902 }; 903 904 /* YUV -> RGB, ITU-R BT.709, limited range */ 905 static const struct csc_coef_yuv2rgb coefs_yuv2rgb_bt709_lim = { 906 298, 0, 459, /* ry, rcb, rcr |1.164 0.000 1.793|*/ 907 298, -55, -136, /* gy, gcb, gcr |1.164 -0.213 -0.533|*/ 908 298, 541, 0, /* by, bcb, bcr |1.164 2.112 0.000|*/ 909 false, /* limited range */ 910 }; 911 912 static void dispc_ovl_set_csc(struct dispc_device *dispc, 913 enum omap_plane_id plane, 914 enum drm_color_encoding color_encoding, 915 enum drm_color_range color_range) 916 { 917 const struct csc_coef_yuv2rgb *csc; 918 919 switch (color_encoding) { 920 default: 921 case DRM_COLOR_YCBCR_BT601: 922 if (color_range == DRM_COLOR_YCBCR_FULL_RANGE) 923 csc = &coefs_yuv2rgb_bt601_full; 924 else 925 csc = &coefs_yuv2rgb_bt601_lim; 926 break; 927 case DRM_COLOR_YCBCR_BT709: 928 if (color_range == DRM_COLOR_YCBCR_FULL_RANGE) 929 csc = &coefs_yuv2rgb_bt709_full; 930 else 931 csc = &coefs_yuv2rgb_bt709_lim; 932 break; 933 } 934 935 dispc_ovl_write_color_conv_coef(dispc, plane, csc); 936 } 937 938 static void dispc_ovl_set_ba0(struct dispc_device *dispc, 939 enum omap_plane_id plane, u32 paddr) 940 { 941 dispc_write_reg(dispc, DISPC_OVL_BA0(plane), paddr); 942 } 943 944 static void dispc_ovl_set_ba1(struct dispc_device *dispc, 945 enum omap_plane_id plane, u32 paddr) 946 { 947 dispc_write_reg(dispc, DISPC_OVL_BA1(plane), paddr); 948 } 949 950 static void dispc_ovl_set_ba0_uv(struct dispc_device *dispc, 951 enum omap_plane_id plane, u32 paddr) 952 { 953 dispc_write_reg(dispc, DISPC_OVL_BA0_UV(plane), paddr); 954 } 955 956 static void dispc_ovl_set_ba1_uv(struct dispc_device *dispc, 957 enum omap_plane_id plane, u32 paddr) 958 { 959 dispc_write_reg(dispc, DISPC_OVL_BA1_UV(plane), paddr); 960 } 961 962 static void dispc_ovl_set_pos(struct dispc_device *dispc, 963 enum omap_plane_id plane, 964 enum omap_overlay_caps caps, int x, int y) 965 { 966 u32 val; 967 968 if ((caps & OMAP_DSS_OVL_CAP_POS) == 0) 969 return; 970 971 val = FLD_VAL(y, 26, 16) | FLD_VAL(x, 10, 0); 972 973 dispc_write_reg(dispc, DISPC_OVL_POSITION(plane), val); 974 } 975 976 static void dispc_ovl_set_input_size(struct dispc_device *dispc, 977 enum omap_plane_id plane, int width, 978 int height) 979 { 980 u32 val = FLD_VAL(height - 1, 26, 16) | FLD_VAL(width - 1, 10, 0); 981 982 if (plane == OMAP_DSS_GFX || plane == OMAP_DSS_WB) 983 dispc_write_reg(dispc, DISPC_OVL_SIZE(plane), val); 984 else 985 dispc_write_reg(dispc, DISPC_OVL_PICTURE_SIZE(plane), val); 986 } 987 988 static void dispc_ovl_set_output_size(struct dispc_device *dispc, 989 enum omap_plane_id plane, int width, 990 int height) 991 { 992 u32 val; 993 994 BUG_ON(plane == OMAP_DSS_GFX); 995 996 val = FLD_VAL(height - 1, 26, 16) | FLD_VAL(width - 1, 10, 0); 997 998 if (plane == OMAP_DSS_WB) 999 dispc_write_reg(dispc, DISPC_OVL_PICTURE_SIZE(plane), val); 1000 else 1001 dispc_write_reg(dispc, DISPC_OVL_SIZE(plane), val); 1002 } 1003 1004 static void dispc_ovl_set_zorder(struct dispc_device *dispc, 1005 enum omap_plane_id plane, 1006 enum omap_overlay_caps caps, u8 zorder) 1007 { 1008 if ((caps & OMAP_DSS_OVL_CAP_ZORDER) == 0) 1009 return; 1010 1011 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), zorder, 27, 26); 1012 } 1013 1014 static void dispc_ovl_enable_zorder_planes(struct dispc_device *dispc) 1015 { 1016 int i; 1017 1018 if (!dispc_has_feature(dispc, FEAT_ALPHA_FREE_ZORDER)) 1019 return; 1020 1021 for (i = 0; i < dispc_get_num_ovls(dispc); i++) 1022 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(i), 1, 25, 25); 1023 } 1024 1025 static void dispc_ovl_set_pre_mult_alpha(struct dispc_device *dispc, 1026 enum omap_plane_id plane, 1027 enum omap_overlay_caps caps, 1028 bool enable) 1029 { 1030 if ((caps & OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA) == 0) 1031 return; 1032 1033 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), enable ? 1 : 0, 28, 28); 1034 } 1035 1036 static void dispc_ovl_setup_global_alpha(struct dispc_device *dispc, 1037 enum omap_plane_id plane, 1038 enum omap_overlay_caps caps, 1039 u8 global_alpha) 1040 { 1041 static const unsigned int shifts[] = { 0, 8, 16, 24, }; 1042 int shift; 1043 1044 if ((caps & OMAP_DSS_OVL_CAP_GLOBAL_ALPHA) == 0) 1045 return; 1046 1047 shift = shifts[plane]; 1048 REG_FLD_MOD(dispc, DISPC_GLOBAL_ALPHA, global_alpha, shift + 7, shift); 1049 } 1050 1051 static void dispc_ovl_set_pix_inc(struct dispc_device *dispc, 1052 enum omap_plane_id plane, s32 inc) 1053 { 1054 dispc_write_reg(dispc, DISPC_OVL_PIXEL_INC(plane), inc); 1055 } 1056 1057 static void dispc_ovl_set_row_inc(struct dispc_device *dispc, 1058 enum omap_plane_id plane, s32 inc) 1059 { 1060 dispc_write_reg(dispc, DISPC_OVL_ROW_INC(plane), inc); 1061 } 1062 1063 static void dispc_ovl_set_color_mode(struct dispc_device *dispc, 1064 enum omap_plane_id plane, u32 fourcc) 1065 { 1066 u32 m = 0; 1067 if (plane != OMAP_DSS_GFX) { 1068 switch (fourcc) { 1069 case DRM_FORMAT_NV12: 1070 m = 0x0; break; 1071 case DRM_FORMAT_XRGB4444: 1072 m = 0x1; break; 1073 case DRM_FORMAT_RGBA4444: 1074 m = 0x2; break; 1075 case DRM_FORMAT_RGBX4444: 1076 m = 0x4; break; 1077 case DRM_FORMAT_ARGB4444: 1078 m = 0x5; break; 1079 case DRM_FORMAT_RGB565: 1080 m = 0x6; break; 1081 case DRM_FORMAT_ARGB1555: 1082 m = 0x7; break; 1083 case DRM_FORMAT_XRGB8888: 1084 m = 0x8; break; 1085 case DRM_FORMAT_RGB888: 1086 m = 0x9; break; 1087 case DRM_FORMAT_YUYV: 1088 m = 0xa; break; 1089 case DRM_FORMAT_UYVY: 1090 m = 0xb; break; 1091 case DRM_FORMAT_ARGB8888: 1092 m = 0xc; break; 1093 case DRM_FORMAT_RGBA8888: 1094 m = 0xd; break; 1095 case DRM_FORMAT_RGBX8888: 1096 m = 0xe; break; 1097 case DRM_FORMAT_XRGB1555: 1098 m = 0xf; break; 1099 default: 1100 BUG(); return; 1101 } 1102 } else { 1103 switch (fourcc) { 1104 case DRM_FORMAT_RGBX4444: 1105 m = 0x4; break; 1106 case DRM_FORMAT_ARGB4444: 1107 m = 0x5; break; 1108 case DRM_FORMAT_RGB565: 1109 m = 0x6; break; 1110 case DRM_FORMAT_ARGB1555: 1111 m = 0x7; break; 1112 case DRM_FORMAT_XRGB8888: 1113 m = 0x8; break; 1114 case DRM_FORMAT_RGB888: 1115 m = 0x9; break; 1116 case DRM_FORMAT_XRGB4444: 1117 m = 0xa; break; 1118 case DRM_FORMAT_RGBA4444: 1119 m = 0xb; break; 1120 case DRM_FORMAT_ARGB8888: 1121 m = 0xc; break; 1122 case DRM_FORMAT_RGBA8888: 1123 m = 0xd; break; 1124 case DRM_FORMAT_RGBX8888: 1125 m = 0xe; break; 1126 case DRM_FORMAT_XRGB1555: 1127 m = 0xf; break; 1128 default: 1129 BUG(); return; 1130 } 1131 } 1132 1133 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), m, 4, 1); 1134 } 1135 1136 static void dispc_ovl_configure_burst_type(struct dispc_device *dispc, 1137 enum omap_plane_id plane, 1138 enum omap_dss_rotation_type rotation) 1139 { 1140 if (dispc_has_feature(dispc, FEAT_BURST_2D) == 0) 1141 return; 1142 1143 if (rotation == OMAP_DSS_ROT_TILER) 1144 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), 1, 29, 29); 1145 else 1146 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), 0, 29, 29); 1147 } 1148 1149 static void dispc_ovl_set_channel_out(struct dispc_device *dispc, 1150 enum omap_plane_id plane, 1151 enum omap_channel channel) 1152 { 1153 int shift; 1154 u32 val; 1155 int chan = 0, chan2 = 0; 1156 1157 switch (plane) { 1158 case OMAP_DSS_GFX: 1159 shift = 8; 1160 break; 1161 case OMAP_DSS_VIDEO1: 1162 case OMAP_DSS_VIDEO2: 1163 case OMAP_DSS_VIDEO3: 1164 shift = 16; 1165 break; 1166 default: 1167 BUG(); 1168 return; 1169 } 1170 1171 val = dispc_read_reg(dispc, DISPC_OVL_ATTRIBUTES(plane)); 1172 if (dispc_has_feature(dispc, FEAT_MGR_LCD2)) { 1173 switch (channel) { 1174 case OMAP_DSS_CHANNEL_LCD: 1175 chan = 0; 1176 chan2 = 0; 1177 break; 1178 case OMAP_DSS_CHANNEL_DIGIT: 1179 chan = 1; 1180 chan2 = 0; 1181 break; 1182 case OMAP_DSS_CHANNEL_LCD2: 1183 chan = 0; 1184 chan2 = 1; 1185 break; 1186 case OMAP_DSS_CHANNEL_LCD3: 1187 if (dispc_has_feature(dispc, FEAT_MGR_LCD3)) { 1188 chan = 0; 1189 chan2 = 2; 1190 } else { 1191 BUG(); 1192 return; 1193 } 1194 break; 1195 case OMAP_DSS_CHANNEL_WB: 1196 chan = 0; 1197 chan2 = 3; 1198 break; 1199 default: 1200 BUG(); 1201 return; 1202 } 1203 1204 val = FLD_MOD(val, chan, shift, shift); 1205 val = FLD_MOD(val, chan2, 31, 30); 1206 } else { 1207 val = FLD_MOD(val, channel, shift, shift); 1208 } 1209 dispc_write_reg(dispc, DISPC_OVL_ATTRIBUTES(plane), val); 1210 } 1211 1212 static enum omap_channel dispc_ovl_get_channel_out(struct dispc_device *dispc, 1213 enum omap_plane_id plane) 1214 { 1215 int shift; 1216 u32 val; 1217 1218 switch (plane) { 1219 case OMAP_DSS_GFX: 1220 shift = 8; 1221 break; 1222 case OMAP_DSS_VIDEO1: 1223 case OMAP_DSS_VIDEO2: 1224 case OMAP_DSS_VIDEO3: 1225 shift = 16; 1226 break; 1227 default: 1228 BUG(); 1229 return 0; 1230 } 1231 1232 val = dispc_read_reg(dispc, DISPC_OVL_ATTRIBUTES(plane)); 1233 1234 if (FLD_GET(val, shift, shift) == 1) 1235 return OMAP_DSS_CHANNEL_DIGIT; 1236 1237 if (!dispc_has_feature(dispc, FEAT_MGR_LCD2)) 1238 return OMAP_DSS_CHANNEL_LCD; 1239 1240 switch (FLD_GET(val, 31, 30)) { 1241 case 0: 1242 default: 1243 return OMAP_DSS_CHANNEL_LCD; 1244 case 1: 1245 return OMAP_DSS_CHANNEL_LCD2; 1246 case 2: 1247 return OMAP_DSS_CHANNEL_LCD3; 1248 case 3: 1249 return OMAP_DSS_CHANNEL_WB; 1250 } 1251 } 1252 1253 static void dispc_ovl_set_burst_size(struct dispc_device *dispc, 1254 enum omap_plane_id plane, 1255 enum omap_burst_size burst_size) 1256 { 1257 static const unsigned int shifts[] = { 6, 14, 14, 14, 14, }; 1258 int shift; 1259 1260 shift = shifts[plane]; 1261 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), burst_size, 1262 shift + 1, shift); 1263 } 1264 1265 static void dispc_configure_burst_sizes(struct dispc_device *dispc) 1266 { 1267 int i; 1268 const int burst_size = BURST_SIZE_X8; 1269 1270 /* Configure burst size always to maximum size */ 1271 for (i = 0; i < dispc_get_num_ovls(dispc); ++i) 1272 dispc_ovl_set_burst_size(dispc, i, burst_size); 1273 if (dispc->feat->has_writeback) 1274 dispc_ovl_set_burst_size(dispc, OMAP_DSS_WB, burst_size); 1275 } 1276 1277 static u32 dispc_ovl_get_burst_size(struct dispc_device *dispc, 1278 enum omap_plane_id plane) 1279 { 1280 /* burst multiplier is always x8 (see dispc_configure_burst_sizes()) */ 1281 return dispc->feat->burst_size_unit * 8; 1282 } 1283 1284 bool dispc_ovl_color_mode_supported(struct dispc_device *dispc, 1285 enum omap_plane_id plane, u32 fourcc) 1286 { 1287 const u32 *modes; 1288 unsigned int i; 1289 1290 modes = dispc->feat->supported_color_modes[plane]; 1291 1292 for (i = 0; modes[i]; ++i) { 1293 if (modes[i] == fourcc) 1294 return true; 1295 } 1296 1297 return false; 1298 } 1299 1300 const u32 *dispc_ovl_get_color_modes(struct dispc_device *dispc, 1301 enum omap_plane_id plane) 1302 { 1303 return dispc->feat->supported_color_modes[plane]; 1304 } 1305 1306 static void dispc_mgr_enable_cpr(struct dispc_device *dispc, 1307 enum omap_channel channel, bool enable) 1308 { 1309 if (channel == OMAP_DSS_CHANNEL_DIGIT) 1310 return; 1311 1312 mgr_fld_write(dispc, channel, DISPC_MGR_FLD_CPR, enable); 1313 } 1314 1315 static void dispc_mgr_set_cpr_coef(struct dispc_device *dispc, 1316 enum omap_channel channel, 1317 const struct omap_dss_cpr_coefs *coefs) 1318 { 1319 u32 coef_r, coef_g, coef_b; 1320 1321 if (!dss_mgr_is_lcd(channel)) 1322 return; 1323 1324 coef_r = FLD_VAL(coefs->rr, 31, 22) | FLD_VAL(coefs->rg, 20, 11) | 1325 FLD_VAL(coefs->rb, 9, 0); 1326 coef_g = FLD_VAL(coefs->gr, 31, 22) | FLD_VAL(coefs->gg, 20, 11) | 1327 FLD_VAL(coefs->gb, 9, 0); 1328 coef_b = FLD_VAL(coefs->br, 31, 22) | FLD_VAL(coefs->bg, 20, 11) | 1329 FLD_VAL(coefs->bb, 9, 0); 1330 1331 dispc_write_reg(dispc, DISPC_CPR_COEF_R(channel), coef_r); 1332 dispc_write_reg(dispc, DISPC_CPR_COEF_G(channel), coef_g); 1333 dispc_write_reg(dispc, DISPC_CPR_COEF_B(channel), coef_b); 1334 } 1335 1336 static void dispc_ovl_set_vid_color_conv(struct dispc_device *dispc, 1337 enum omap_plane_id plane, bool enable) 1338 { 1339 u32 val; 1340 1341 BUG_ON(plane == OMAP_DSS_GFX); 1342 1343 val = dispc_read_reg(dispc, DISPC_OVL_ATTRIBUTES(plane)); 1344 val = FLD_MOD(val, enable, 9, 9); 1345 dispc_write_reg(dispc, DISPC_OVL_ATTRIBUTES(plane), val); 1346 } 1347 1348 static void dispc_ovl_enable_replication(struct dispc_device *dispc, 1349 enum omap_plane_id plane, 1350 enum omap_overlay_caps caps, 1351 bool enable) 1352 { 1353 static const unsigned int shifts[] = { 5, 10, 10, 10 }; 1354 int shift; 1355 1356 if ((caps & OMAP_DSS_OVL_CAP_REPLICATION) == 0) 1357 return; 1358 1359 shift = shifts[plane]; 1360 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), enable, shift, shift); 1361 } 1362 1363 static void dispc_mgr_set_size(struct dispc_device *dispc, 1364 enum omap_channel channel, u16 width, u16 height) 1365 { 1366 u32 val; 1367 1368 val = FLD_VAL(height - 1, dispc->feat->mgr_height_start, 16) | 1369 FLD_VAL(width - 1, dispc->feat->mgr_width_start, 0); 1370 1371 dispc_write_reg(dispc, DISPC_SIZE_MGR(channel), val); 1372 } 1373 1374 static void dispc_init_fifos(struct dispc_device *dispc) 1375 { 1376 u32 size; 1377 int fifo; 1378 u8 start, end; 1379 u32 unit; 1380 int i; 1381 1382 unit = dispc->feat->buffer_size_unit; 1383 1384 dispc_get_reg_field(dispc, FEAT_REG_FIFOSIZE, &start, &end); 1385 1386 for (fifo = 0; fifo < dispc->feat->num_fifos; ++fifo) { 1387 size = REG_GET(dispc, DISPC_OVL_FIFO_SIZE_STATUS(fifo), 1388 start, end); 1389 size *= unit; 1390 dispc->fifo_size[fifo] = size; 1391 1392 /* 1393 * By default fifos are mapped directly to overlays, fifo 0 to 1394 * ovl 0, fifo 1 to ovl 1, etc. 1395 */ 1396 dispc->fifo_assignment[fifo] = fifo; 1397 } 1398 1399 /* 1400 * The GFX fifo on OMAP4 is smaller than the other fifos. The small fifo 1401 * causes problems with certain use cases, like using the tiler in 2D 1402 * mode. The below hack swaps the fifos of GFX and WB planes, thus 1403 * giving GFX plane a larger fifo. WB but should work fine with a 1404 * smaller fifo. 1405 */ 1406 if (dispc->feat->gfx_fifo_workaround) { 1407 u32 v; 1408 1409 v = dispc_read_reg(dispc, DISPC_GLOBAL_BUFFER); 1410 1411 v = FLD_MOD(v, 4, 2, 0); /* GFX BUF top to WB */ 1412 v = FLD_MOD(v, 4, 5, 3); /* GFX BUF bottom to WB */ 1413 v = FLD_MOD(v, 0, 26, 24); /* WB BUF top to GFX */ 1414 v = FLD_MOD(v, 0, 29, 27); /* WB BUF bottom to GFX */ 1415 1416 dispc_write_reg(dispc, DISPC_GLOBAL_BUFFER, v); 1417 1418 dispc->fifo_assignment[OMAP_DSS_GFX] = OMAP_DSS_WB; 1419 dispc->fifo_assignment[OMAP_DSS_WB] = OMAP_DSS_GFX; 1420 } 1421 1422 /* 1423 * Setup default fifo thresholds. 1424 */ 1425 for (i = 0; i < dispc_get_num_ovls(dispc); ++i) { 1426 u32 low, high; 1427 const bool use_fifomerge = false; 1428 const bool manual_update = false; 1429 1430 dispc_ovl_compute_fifo_thresholds(dispc, i, &low, &high, 1431 use_fifomerge, manual_update); 1432 1433 dispc_ovl_set_fifo_threshold(dispc, i, low, high); 1434 } 1435 1436 if (dispc->feat->has_writeback) { 1437 u32 low, high; 1438 const bool use_fifomerge = false; 1439 const bool manual_update = false; 1440 1441 dispc_ovl_compute_fifo_thresholds(dispc, OMAP_DSS_WB, 1442 &low, &high, use_fifomerge, 1443 manual_update); 1444 1445 dispc_ovl_set_fifo_threshold(dispc, OMAP_DSS_WB, low, high); 1446 } 1447 } 1448 1449 static u32 dispc_ovl_get_fifo_size(struct dispc_device *dispc, 1450 enum omap_plane_id plane) 1451 { 1452 int fifo; 1453 u32 size = 0; 1454 1455 for (fifo = 0; fifo < dispc->feat->num_fifos; ++fifo) { 1456 if (dispc->fifo_assignment[fifo] == plane) 1457 size += dispc->fifo_size[fifo]; 1458 } 1459 1460 return size; 1461 } 1462 1463 void dispc_ovl_set_fifo_threshold(struct dispc_device *dispc, 1464 enum omap_plane_id plane, 1465 u32 low, u32 high) 1466 { 1467 u8 hi_start, hi_end, lo_start, lo_end; 1468 u32 unit; 1469 1470 unit = dispc->feat->buffer_size_unit; 1471 1472 WARN_ON(low % unit != 0); 1473 WARN_ON(high % unit != 0); 1474 1475 low /= unit; 1476 high /= unit; 1477 1478 dispc_get_reg_field(dispc, FEAT_REG_FIFOHIGHTHRESHOLD, 1479 &hi_start, &hi_end); 1480 dispc_get_reg_field(dispc, FEAT_REG_FIFOLOWTHRESHOLD, 1481 &lo_start, &lo_end); 1482 1483 DSSDBG("fifo(%d) threshold (bytes), old %u/%u, new %u/%u\n", 1484 plane, 1485 REG_GET(dispc, DISPC_OVL_FIFO_THRESHOLD(plane), 1486 lo_start, lo_end) * unit, 1487 REG_GET(dispc, DISPC_OVL_FIFO_THRESHOLD(plane), 1488 hi_start, hi_end) * unit, 1489 low * unit, high * unit); 1490 1491 dispc_write_reg(dispc, DISPC_OVL_FIFO_THRESHOLD(plane), 1492 FLD_VAL(high, hi_start, hi_end) | 1493 FLD_VAL(low, lo_start, lo_end)); 1494 1495 /* 1496 * configure the preload to the pipeline's high threhold, if HT it's too 1497 * large for the preload field, set the threshold to the maximum value 1498 * that can be held by the preload register 1499 */ 1500 if (dispc_has_feature(dispc, FEAT_PRELOAD) && 1501 dispc->feat->set_max_preload && plane != OMAP_DSS_WB) 1502 dispc_write_reg(dispc, DISPC_OVL_PRELOAD(plane), 1503 min(high, 0xfffu)); 1504 } 1505 1506 void dispc_enable_fifomerge(struct dispc_device *dispc, bool enable) 1507 { 1508 if (!dispc_has_feature(dispc, FEAT_FIFO_MERGE)) { 1509 WARN_ON(enable); 1510 return; 1511 } 1512 1513 DSSDBG("FIFO merge %s\n", enable ? "enabled" : "disabled"); 1514 REG_FLD_MOD(dispc, DISPC_CONFIG, enable ? 1 : 0, 14, 14); 1515 } 1516 1517 void dispc_ovl_compute_fifo_thresholds(struct dispc_device *dispc, 1518 enum omap_plane_id plane, 1519 u32 *fifo_low, u32 *fifo_high, 1520 bool use_fifomerge, bool manual_update) 1521 { 1522 /* 1523 * All sizes are in bytes. Both the buffer and burst are made of 1524 * buffer_units, and the fifo thresholds must be buffer_unit aligned. 1525 */ 1526 unsigned int buf_unit = dispc->feat->buffer_size_unit; 1527 unsigned int ovl_fifo_size, total_fifo_size, burst_size; 1528 int i; 1529 1530 burst_size = dispc_ovl_get_burst_size(dispc, plane); 1531 ovl_fifo_size = dispc_ovl_get_fifo_size(dispc, plane); 1532 1533 if (use_fifomerge) { 1534 total_fifo_size = 0; 1535 for (i = 0; i < dispc_get_num_ovls(dispc); ++i) 1536 total_fifo_size += dispc_ovl_get_fifo_size(dispc, i); 1537 } else { 1538 total_fifo_size = ovl_fifo_size; 1539 } 1540 1541 /* 1542 * We use the same low threshold for both fifomerge and non-fifomerge 1543 * cases, but for fifomerge we calculate the high threshold using the 1544 * combined fifo size 1545 */ 1546 1547 if (manual_update && dispc_has_feature(dispc, FEAT_OMAP3_DSI_FIFO_BUG)) { 1548 *fifo_low = ovl_fifo_size - burst_size * 2; 1549 *fifo_high = total_fifo_size - burst_size; 1550 } else if (plane == OMAP_DSS_WB) { 1551 /* 1552 * Most optimal configuration for writeback is to push out data 1553 * to the interconnect the moment writeback pushes enough pixels 1554 * in the FIFO to form a burst 1555 */ 1556 *fifo_low = 0; 1557 *fifo_high = burst_size; 1558 } else { 1559 *fifo_low = ovl_fifo_size - burst_size; 1560 *fifo_high = total_fifo_size - buf_unit; 1561 } 1562 } 1563 1564 static void dispc_ovl_set_mflag(struct dispc_device *dispc, 1565 enum omap_plane_id plane, bool enable) 1566 { 1567 int bit; 1568 1569 if (plane == OMAP_DSS_GFX) 1570 bit = 14; 1571 else 1572 bit = 23; 1573 1574 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), enable, bit, bit); 1575 } 1576 1577 static void dispc_ovl_set_mflag_threshold(struct dispc_device *dispc, 1578 enum omap_plane_id plane, 1579 int low, int high) 1580 { 1581 dispc_write_reg(dispc, DISPC_OVL_MFLAG_THRESHOLD(plane), 1582 FLD_VAL(high, 31, 16) | FLD_VAL(low, 15, 0)); 1583 } 1584 1585 static void dispc_init_mflag(struct dispc_device *dispc) 1586 { 1587 int i; 1588 1589 /* 1590 * HACK: NV12 color format and MFLAG seem to have problems working 1591 * together: using two displays, and having an NV12 overlay on one of 1592 * the displays will cause underflows/synclosts when MFLAG_CTRL=2. 1593 * Changing MFLAG thresholds and PRELOAD to certain values seem to 1594 * remove the errors, but there doesn't seem to be a clear logic on 1595 * which values work and which not. 1596 * 1597 * As a work-around, set force MFLAG to always on. 1598 */ 1599 dispc_write_reg(dispc, DISPC_GLOBAL_MFLAG_ATTRIBUTE, 1600 (1 << 0) | /* MFLAG_CTRL = force always on */ 1601 (0 << 2)); /* MFLAG_START = disable */ 1602 1603 for (i = 0; i < dispc_get_num_ovls(dispc); ++i) { 1604 u32 size = dispc_ovl_get_fifo_size(dispc, i); 1605 u32 unit = dispc->feat->buffer_size_unit; 1606 u32 low, high; 1607 1608 dispc_ovl_set_mflag(dispc, i, true); 1609 1610 /* 1611 * Simulation team suggests below thesholds: 1612 * HT = fifosize * 5 / 8; 1613 * LT = fifosize * 4 / 8; 1614 */ 1615 1616 low = size * 4 / 8 / unit; 1617 high = size * 5 / 8 / unit; 1618 1619 dispc_ovl_set_mflag_threshold(dispc, i, low, high); 1620 } 1621 1622 if (dispc->feat->has_writeback) { 1623 u32 size = dispc_ovl_get_fifo_size(dispc, OMAP_DSS_WB); 1624 u32 unit = dispc->feat->buffer_size_unit; 1625 u32 low, high; 1626 1627 dispc_ovl_set_mflag(dispc, OMAP_DSS_WB, true); 1628 1629 /* 1630 * Simulation team suggests below thesholds: 1631 * HT = fifosize * 5 / 8; 1632 * LT = fifosize * 4 / 8; 1633 */ 1634 1635 low = size * 4 / 8 / unit; 1636 high = size * 5 / 8 / unit; 1637 1638 dispc_ovl_set_mflag_threshold(dispc, OMAP_DSS_WB, low, high); 1639 } 1640 } 1641 1642 static void dispc_ovl_set_fir(struct dispc_device *dispc, 1643 enum omap_plane_id plane, 1644 int hinc, int vinc, 1645 enum omap_color_component color_comp) 1646 { 1647 u32 val; 1648 1649 if (color_comp == DISPC_COLOR_COMPONENT_RGB_Y) { 1650 u8 hinc_start, hinc_end, vinc_start, vinc_end; 1651 1652 dispc_get_reg_field(dispc, FEAT_REG_FIRHINC, 1653 &hinc_start, &hinc_end); 1654 dispc_get_reg_field(dispc, FEAT_REG_FIRVINC, 1655 &vinc_start, &vinc_end); 1656 val = FLD_VAL(vinc, vinc_start, vinc_end) | 1657 FLD_VAL(hinc, hinc_start, hinc_end); 1658 1659 dispc_write_reg(dispc, DISPC_OVL_FIR(plane), val); 1660 } else { 1661 val = FLD_VAL(vinc, 28, 16) | FLD_VAL(hinc, 12, 0); 1662 dispc_write_reg(dispc, DISPC_OVL_FIR2(plane), val); 1663 } 1664 } 1665 1666 static void dispc_ovl_set_vid_accu0(struct dispc_device *dispc, 1667 enum omap_plane_id plane, int haccu, 1668 int vaccu) 1669 { 1670 u32 val; 1671 u8 hor_start, hor_end, vert_start, vert_end; 1672 1673 dispc_get_reg_field(dispc, FEAT_REG_HORIZONTALACCU, 1674 &hor_start, &hor_end); 1675 dispc_get_reg_field(dispc, FEAT_REG_VERTICALACCU, 1676 &vert_start, &vert_end); 1677 1678 val = FLD_VAL(vaccu, vert_start, vert_end) | 1679 FLD_VAL(haccu, hor_start, hor_end); 1680 1681 dispc_write_reg(dispc, DISPC_OVL_ACCU0(plane), val); 1682 } 1683 1684 static void dispc_ovl_set_vid_accu1(struct dispc_device *dispc, 1685 enum omap_plane_id plane, int haccu, 1686 int vaccu) 1687 { 1688 u32 val; 1689 u8 hor_start, hor_end, vert_start, vert_end; 1690 1691 dispc_get_reg_field(dispc, FEAT_REG_HORIZONTALACCU, 1692 &hor_start, &hor_end); 1693 dispc_get_reg_field(dispc, FEAT_REG_VERTICALACCU, 1694 &vert_start, &vert_end); 1695 1696 val = FLD_VAL(vaccu, vert_start, vert_end) | 1697 FLD_VAL(haccu, hor_start, hor_end); 1698 1699 dispc_write_reg(dispc, DISPC_OVL_ACCU1(plane), val); 1700 } 1701 1702 static void dispc_ovl_set_vid_accu2_0(struct dispc_device *dispc, 1703 enum omap_plane_id plane, int haccu, 1704 int vaccu) 1705 { 1706 u32 val; 1707 1708 val = FLD_VAL(vaccu, 26, 16) | FLD_VAL(haccu, 10, 0); 1709 dispc_write_reg(dispc, DISPC_OVL_ACCU2_0(plane), val); 1710 } 1711 1712 static void dispc_ovl_set_vid_accu2_1(struct dispc_device *dispc, 1713 enum omap_plane_id plane, int haccu, 1714 int vaccu) 1715 { 1716 u32 val; 1717 1718 val = FLD_VAL(vaccu, 26, 16) | FLD_VAL(haccu, 10, 0); 1719 dispc_write_reg(dispc, DISPC_OVL_ACCU2_1(plane), val); 1720 } 1721 1722 static void dispc_ovl_set_scale_param(struct dispc_device *dispc, 1723 enum omap_plane_id plane, 1724 u16 orig_width, u16 orig_height, 1725 u16 out_width, u16 out_height, 1726 bool five_taps, u8 rotation, 1727 enum omap_color_component color_comp) 1728 { 1729 int fir_hinc, fir_vinc; 1730 1731 fir_hinc = 1024 * orig_width / out_width; 1732 fir_vinc = 1024 * orig_height / out_height; 1733 1734 dispc_ovl_set_scale_coef(dispc, plane, fir_hinc, fir_vinc, five_taps, 1735 color_comp); 1736 dispc_ovl_set_fir(dispc, plane, fir_hinc, fir_vinc, color_comp); 1737 } 1738 1739 static void dispc_ovl_set_accu_uv(struct dispc_device *dispc, 1740 enum omap_plane_id plane, 1741 u16 orig_width, u16 orig_height, 1742 u16 out_width, u16 out_height, 1743 bool ilace, u32 fourcc, u8 rotation) 1744 { 1745 int h_accu2_0, h_accu2_1; 1746 int v_accu2_0, v_accu2_1; 1747 int chroma_hinc, chroma_vinc; 1748 int idx; 1749 1750 struct accu { 1751 s8 h0_m, h0_n; 1752 s8 h1_m, h1_n; 1753 s8 v0_m, v0_n; 1754 s8 v1_m, v1_n; 1755 }; 1756 1757 const struct accu *accu_table; 1758 const struct accu *accu_val; 1759 1760 static const struct accu accu_nv12[4] = { 1761 { 0, 1, 0, 1 , -1, 2, 0, 1 }, 1762 { 1, 2, -3, 4 , 0, 1, 0, 1 }, 1763 { -1, 1, 0, 1 , -1, 2, 0, 1 }, 1764 { -1, 2, -1, 2 , -1, 1, 0, 1 }, 1765 }; 1766 1767 static const struct accu accu_nv12_ilace[4] = { 1768 { 0, 1, 0, 1 , -3, 4, -1, 4 }, 1769 { -1, 4, -3, 4 , 0, 1, 0, 1 }, 1770 { -1, 1, 0, 1 , -1, 4, -3, 4 }, 1771 { -3, 4, -3, 4 , -1, 1, 0, 1 }, 1772 }; 1773 1774 static const struct accu accu_yuv[4] = { 1775 { 0, 1, 0, 1, 0, 1, 0, 1 }, 1776 { 0, 1, 0, 1, 0, 1, 0, 1 }, 1777 { -1, 1, 0, 1, 0, 1, 0, 1 }, 1778 { 0, 1, 0, 1, -1, 1, 0, 1 }, 1779 }; 1780 1781 /* Note: DSS HW rotates clockwise, DRM_MODE_ROTATE_* counter-clockwise */ 1782 switch (rotation & DRM_MODE_ROTATE_MASK) { 1783 default: 1784 case DRM_MODE_ROTATE_0: 1785 idx = 0; 1786 break; 1787 case DRM_MODE_ROTATE_90: 1788 idx = 3; 1789 break; 1790 case DRM_MODE_ROTATE_180: 1791 idx = 2; 1792 break; 1793 case DRM_MODE_ROTATE_270: 1794 idx = 1; 1795 break; 1796 } 1797 1798 switch (fourcc) { 1799 case DRM_FORMAT_NV12: 1800 if (ilace) 1801 accu_table = accu_nv12_ilace; 1802 else 1803 accu_table = accu_nv12; 1804 break; 1805 case DRM_FORMAT_YUYV: 1806 case DRM_FORMAT_UYVY: 1807 accu_table = accu_yuv; 1808 break; 1809 default: 1810 BUG(); 1811 return; 1812 } 1813 1814 accu_val = &accu_table[idx]; 1815 1816 chroma_hinc = 1024 * orig_width / out_width; 1817 chroma_vinc = 1024 * orig_height / out_height; 1818 1819 h_accu2_0 = (accu_val->h0_m * chroma_hinc / accu_val->h0_n) % 1024; 1820 h_accu2_1 = (accu_val->h1_m * chroma_hinc / accu_val->h1_n) % 1024; 1821 v_accu2_0 = (accu_val->v0_m * chroma_vinc / accu_val->v0_n) % 1024; 1822 v_accu2_1 = (accu_val->v1_m * chroma_vinc / accu_val->v1_n) % 1024; 1823 1824 dispc_ovl_set_vid_accu2_0(dispc, plane, h_accu2_0, v_accu2_0); 1825 dispc_ovl_set_vid_accu2_1(dispc, plane, h_accu2_1, v_accu2_1); 1826 } 1827 1828 static void dispc_ovl_set_scaling_common(struct dispc_device *dispc, 1829 enum omap_plane_id plane, 1830 u16 orig_width, u16 orig_height, 1831 u16 out_width, u16 out_height, 1832 bool ilace, bool five_taps, 1833 bool fieldmode, u32 fourcc, 1834 u8 rotation) 1835 { 1836 int accu0 = 0; 1837 int accu1 = 0; 1838 u32 l; 1839 1840 dispc_ovl_set_scale_param(dispc, plane, orig_width, orig_height, 1841 out_width, out_height, five_taps, 1842 rotation, DISPC_COLOR_COMPONENT_RGB_Y); 1843 l = dispc_read_reg(dispc, DISPC_OVL_ATTRIBUTES(plane)); 1844 1845 /* RESIZEENABLE and VERTICALTAPS */ 1846 l &= ~((0x3 << 5) | (0x1 << 21)); 1847 l |= (orig_width != out_width) ? (1 << 5) : 0; 1848 l |= (orig_height != out_height) ? (1 << 6) : 0; 1849 l |= five_taps ? (1 << 21) : 0; 1850 1851 /* VRESIZECONF and HRESIZECONF */ 1852 if (dispc_has_feature(dispc, FEAT_RESIZECONF)) { 1853 l &= ~(0x3 << 7); 1854 l |= (orig_width <= out_width) ? 0 : (1 << 7); 1855 l |= (orig_height <= out_height) ? 0 : (1 << 8); 1856 } 1857 1858 /* LINEBUFFERSPLIT */ 1859 if (dispc_has_feature(dispc, FEAT_LINEBUFFERSPLIT)) { 1860 l &= ~(0x1 << 22); 1861 l |= five_taps ? (1 << 22) : 0; 1862 } 1863 1864 dispc_write_reg(dispc, DISPC_OVL_ATTRIBUTES(plane), l); 1865 1866 /* 1867 * field 0 = even field = bottom field 1868 * field 1 = odd field = top field 1869 */ 1870 if (ilace && !fieldmode) { 1871 accu1 = 0; 1872 accu0 = ((1024 * orig_height / out_height) / 2) & 0x3ff; 1873 if (accu0 >= 1024/2) { 1874 accu1 = 1024/2; 1875 accu0 -= accu1; 1876 } 1877 } 1878 1879 dispc_ovl_set_vid_accu0(dispc, plane, 0, accu0); 1880 dispc_ovl_set_vid_accu1(dispc, plane, 0, accu1); 1881 } 1882 1883 static void dispc_ovl_set_scaling_uv(struct dispc_device *dispc, 1884 enum omap_plane_id plane, 1885 u16 orig_width, u16 orig_height, 1886 u16 out_width, u16 out_height, 1887 bool ilace, bool five_taps, 1888 bool fieldmode, u32 fourcc, 1889 u8 rotation) 1890 { 1891 int scale_x = out_width != orig_width; 1892 int scale_y = out_height != orig_height; 1893 bool chroma_upscale = plane != OMAP_DSS_WB; 1894 const struct drm_format_info *info; 1895 1896 info = drm_format_info(fourcc); 1897 1898 if (!dispc_has_feature(dispc, FEAT_HANDLE_UV_SEPARATE)) 1899 return; 1900 1901 if (!info->is_yuv) { 1902 /* reset chroma resampling for RGB formats */ 1903 if (plane != OMAP_DSS_WB) 1904 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES2(plane), 1905 0, 8, 8); 1906 return; 1907 } 1908 1909 dispc_ovl_set_accu_uv(dispc, plane, orig_width, orig_height, out_width, 1910 out_height, ilace, fourcc, rotation); 1911 1912 switch (fourcc) { 1913 case DRM_FORMAT_NV12: 1914 if (chroma_upscale) { 1915 /* UV is subsampled by 2 horizontally and vertically */ 1916 orig_height >>= 1; 1917 orig_width >>= 1; 1918 } else { 1919 /* UV is downsampled by 2 horizontally and vertically */ 1920 orig_height <<= 1; 1921 orig_width <<= 1; 1922 } 1923 1924 break; 1925 case DRM_FORMAT_YUYV: 1926 case DRM_FORMAT_UYVY: 1927 /* For YUV422 with 90/270 rotation, we don't upsample chroma */ 1928 if (!drm_rotation_90_or_270(rotation)) { 1929 if (chroma_upscale) 1930 /* UV is subsampled by 2 horizontally */ 1931 orig_width >>= 1; 1932 else 1933 /* UV is downsampled by 2 horizontally */ 1934 orig_width <<= 1; 1935 } 1936 1937 /* must use FIR for YUV422 if rotated */ 1938 if ((rotation & DRM_MODE_ROTATE_MASK) != DRM_MODE_ROTATE_0) 1939 scale_x = scale_y = true; 1940 1941 break; 1942 default: 1943 BUG(); 1944 return; 1945 } 1946 1947 if (out_width != orig_width) 1948 scale_x = true; 1949 if (out_height != orig_height) 1950 scale_y = true; 1951 1952 dispc_ovl_set_scale_param(dispc, plane, orig_width, orig_height, 1953 out_width, out_height, five_taps, 1954 rotation, DISPC_COLOR_COMPONENT_UV); 1955 1956 if (plane != OMAP_DSS_WB) 1957 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES2(plane), 1958 (scale_x || scale_y) ? 1 : 0, 8, 8); 1959 1960 /* set H scaling */ 1961 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), scale_x ? 1 : 0, 5, 5); 1962 /* set V scaling */ 1963 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), scale_y ? 1 : 0, 6, 6); 1964 } 1965 1966 static void dispc_ovl_set_scaling(struct dispc_device *dispc, 1967 enum omap_plane_id plane, 1968 u16 orig_width, u16 orig_height, 1969 u16 out_width, u16 out_height, 1970 bool ilace, bool five_taps, 1971 bool fieldmode, u32 fourcc, 1972 u8 rotation) 1973 { 1974 BUG_ON(plane == OMAP_DSS_GFX); 1975 1976 dispc_ovl_set_scaling_common(dispc, plane, orig_width, orig_height, 1977 out_width, out_height, ilace, five_taps, 1978 fieldmode, fourcc, rotation); 1979 1980 dispc_ovl_set_scaling_uv(dispc, plane, orig_width, orig_height, 1981 out_width, out_height, ilace, five_taps, 1982 fieldmode, fourcc, rotation); 1983 } 1984 1985 static void dispc_ovl_set_rotation_attrs(struct dispc_device *dispc, 1986 enum omap_plane_id plane, u8 rotation, 1987 enum omap_dss_rotation_type rotation_type, 1988 u32 fourcc) 1989 { 1990 bool row_repeat = false; 1991 int vidrot = 0; 1992 1993 /* Note: DSS HW rotates clockwise, DRM_MODE_ROTATE_* counter-clockwise */ 1994 if (fourcc == DRM_FORMAT_YUYV || fourcc == DRM_FORMAT_UYVY) { 1995 1996 if (rotation & DRM_MODE_REFLECT_X) { 1997 switch (rotation & DRM_MODE_ROTATE_MASK) { 1998 case DRM_MODE_ROTATE_0: 1999 vidrot = 2; 2000 break; 2001 case DRM_MODE_ROTATE_90: 2002 vidrot = 1; 2003 break; 2004 case DRM_MODE_ROTATE_180: 2005 vidrot = 0; 2006 break; 2007 case DRM_MODE_ROTATE_270: 2008 vidrot = 3; 2009 break; 2010 } 2011 } else { 2012 switch (rotation & DRM_MODE_ROTATE_MASK) { 2013 case DRM_MODE_ROTATE_0: 2014 vidrot = 0; 2015 break; 2016 case DRM_MODE_ROTATE_90: 2017 vidrot = 3; 2018 break; 2019 case DRM_MODE_ROTATE_180: 2020 vidrot = 2; 2021 break; 2022 case DRM_MODE_ROTATE_270: 2023 vidrot = 1; 2024 break; 2025 } 2026 } 2027 2028 if (drm_rotation_90_or_270(rotation)) 2029 row_repeat = true; 2030 else 2031 row_repeat = false; 2032 } 2033 2034 /* 2035 * OMAP4/5 Errata i631: 2036 * NV12 in 1D mode must use ROTATION=1. Otherwise DSS will fetch extra 2037 * rows beyond the framebuffer, which may cause OCP error. 2038 */ 2039 if (fourcc == DRM_FORMAT_NV12 && rotation_type != OMAP_DSS_ROT_TILER) 2040 vidrot = 1; 2041 2042 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), vidrot, 13, 12); 2043 if (dispc_has_feature(dispc, FEAT_ROWREPEATENABLE)) 2044 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), 2045 row_repeat ? 1 : 0, 18, 18); 2046 2047 if (dispc_ovl_color_mode_supported(dispc, plane, DRM_FORMAT_NV12)) { 2048 bool doublestride = 2049 fourcc == DRM_FORMAT_NV12 && 2050 rotation_type == OMAP_DSS_ROT_TILER && 2051 !drm_rotation_90_or_270(rotation); 2052 2053 /* DOUBLESTRIDE */ 2054 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), 2055 doublestride, 22, 22); 2056 } 2057 } 2058 2059 static int color_mode_to_bpp(u32 fourcc) 2060 { 2061 switch (fourcc) { 2062 case DRM_FORMAT_NV12: 2063 return 8; 2064 case DRM_FORMAT_RGBX4444: 2065 case DRM_FORMAT_RGB565: 2066 case DRM_FORMAT_ARGB4444: 2067 case DRM_FORMAT_YUYV: 2068 case DRM_FORMAT_UYVY: 2069 case DRM_FORMAT_RGBA4444: 2070 case DRM_FORMAT_XRGB4444: 2071 case DRM_FORMAT_ARGB1555: 2072 case DRM_FORMAT_XRGB1555: 2073 return 16; 2074 case DRM_FORMAT_RGB888: 2075 return 24; 2076 case DRM_FORMAT_XRGB8888: 2077 case DRM_FORMAT_ARGB8888: 2078 case DRM_FORMAT_RGBA8888: 2079 case DRM_FORMAT_RGBX8888: 2080 return 32; 2081 default: 2082 BUG(); 2083 return 0; 2084 } 2085 } 2086 2087 static s32 pixinc(int pixels, u8 ps) 2088 { 2089 if (pixels == 1) 2090 return 1; 2091 else if (pixels > 1) 2092 return 1 + (pixels - 1) * ps; 2093 else if (pixels < 0) 2094 return 1 - (-pixels + 1) * ps; 2095 2096 BUG(); 2097 } 2098 2099 static void calc_offset(u16 screen_width, u16 width, 2100 u32 fourcc, bool fieldmode, unsigned int field_offset, 2101 unsigned int *offset0, unsigned int *offset1, 2102 s32 *row_inc, s32 *pix_inc, int x_predecim, int y_predecim, 2103 enum omap_dss_rotation_type rotation_type, u8 rotation) 2104 { 2105 u8 ps; 2106 2107 ps = color_mode_to_bpp(fourcc) / 8; 2108 2109 DSSDBG("scrw %d, width %d\n", screen_width, width); 2110 2111 if (rotation_type == OMAP_DSS_ROT_TILER && 2112 (fourcc == DRM_FORMAT_UYVY || fourcc == DRM_FORMAT_YUYV) && 2113 drm_rotation_90_or_270(rotation)) { 2114 /* 2115 * HACK: ROW_INC needs to be calculated with TILER units. 2116 * We get such 'screen_width' that multiplying it with the 2117 * YUV422 pixel size gives the correct TILER container width. 2118 * However, 'width' is in pixels and multiplying it with YUV422 2119 * pixel size gives incorrect result. We thus multiply it here 2120 * with 2 to match the 32 bit TILER unit size. 2121 */ 2122 width *= 2; 2123 } 2124 2125 /* 2126 * field 0 = even field = bottom field 2127 * field 1 = odd field = top field 2128 */ 2129 *offset0 = field_offset * screen_width * ps; 2130 *offset1 = 0; 2131 2132 *row_inc = pixinc(1 + (y_predecim * screen_width - width * x_predecim) + 2133 (fieldmode ? screen_width : 0), ps); 2134 if (fourcc == DRM_FORMAT_YUYV || fourcc == DRM_FORMAT_UYVY) 2135 *pix_inc = pixinc(x_predecim, 2 * ps); 2136 else 2137 *pix_inc = pixinc(x_predecim, ps); 2138 } 2139 2140 /* 2141 * This function is used to avoid synclosts in OMAP3, because of some 2142 * undocumented horizontal position and timing related limitations. 2143 */ 2144 static int check_horiz_timing_omap3(unsigned long pclk, unsigned long lclk, 2145 const struct videomode *vm, u16 pos_x, 2146 u16 width, u16 height, u16 out_width, u16 out_height, 2147 bool five_taps) 2148 { 2149 const int ds = DIV_ROUND_UP(height, out_height); 2150 unsigned long nonactive; 2151 static const u8 limits[3] = { 8, 10, 20 }; 2152 u64 val, blank; 2153 int i; 2154 2155 nonactive = vm->hactive + vm->hfront_porch + vm->hsync_len + 2156 vm->hback_porch - out_width; 2157 2158 i = 0; 2159 if (out_height < height) 2160 i++; 2161 if (out_width < width) 2162 i++; 2163 blank = div_u64((u64)(vm->hback_porch + vm->hsync_len + vm->hfront_porch) * 2164 lclk, pclk); 2165 DSSDBG("blanking period + ppl = %llu (limit = %u)\n", blank, limits[i]); 2166 if (blank <= limits[i]) 2167 return -EINVAL; 2168 2169 /* FIXME add checks for 3-tap filter once the limitations are known */ 2170 if (!five_taps) 2171 return 0; 2172 2173 /* 2174 * Pixel data should be prepared before visible display point starts. 2175 * So, atleast DS-2 lines must have already been fetched by DISPC 2176 * during nonactive - pos_x period. 2177 */ 2178 val = div_u64((u64)(nonactive - pos_x) * lclk, pclk); 2179 DSSDBG("(nonactive - pos_x) * pcd = %llu max(0, DS - 2) * width = %d\n", 2180 val, max(0, ds - 2) * width); 2181 if (val < max(0, ds - 2) * width) 2182 return -EINVAL; 2183 2184 /* 2185 * All lines need to be refilled during the nonactive period of which 2186 * only one line can be loaded during the active period. So, atleast 2187 * DS - 1 lines should be loaded during nonactive period. 2188 */ 2189 val = div_u64((u64)nonactive * lclk, pclk); 2190 DSSDBG("nonactive * pcd = %llu, max(0, DS - 1) * width = %d\n", 2191 val, max(0, ds - 1) * width); 2192 if (val < max(0, ds - 1) * width) 2193 return -EINVAL; 2194 2195 return 0; 2196 } 2197 2198 static unsigned long calc_core_clk_five_taps(unsigned long pclk, 2199 const struct videomode *vm, u16 width, 2200 u16 height, u16 out_width, u16 out_height, 2201 u32 fourcc) 2202 { 2203 u32 core_clk = 0; 2204 u64 tmp; 2205 2206 if (height <= out_height && width <= out_width) 2207 return (unsigned long) pclk; 2208 2209 if (height > out_height) { 2210 unsigned int ppl = vm->hactive; 2211 2212 tmp = (u64)pclk * height * out_width; 2213 do_div(tmp, 2 * out_height * ppl); 2214 core_clk = tmp; 2215 2216 if (height > 2 * out_height) { 2217 if (ppl == out_width) 2218 return 0; 2219 2220 tmp = (u64)pclk * (height - 2 * out_height) * out_width; 2221 do_div(tmp, 2 * out_height * (ppl - out_width)); 2222 core_clk = max_t(u32, core_clk, tmp); 2223 } 2224 } 2225 2226 if (width > out_width) { 2227 tmp = (u64)pclk * width; 2228 do_div(tmp, out_width); 2229 core_clk = max_t(u32, core_clk, tmp); 2230 2231 if (fourcc == DRM_FORMAT_XRGB8888) 2232 core_clk <<= 1; 2233 } 2234 2235 return core_clk; 2236 } 2237 2238 static unsigned long calc_core_clk_24xx(unsigned long pclk, u16 width, 2239 u16 height, u16 out_width, u16 out_height, bool mem_to_mem) 2240 { 2241 if (height > out_height && width > out_width) 2242 return pclk * 4; 2243 else 2244 return pclk * 2; 2245 } 2246 2247 static unsigned long calc_core_clk_34xx(unsigned long pclk, u16 width, 2248 u16 height, u16 out_width, u16 out_height, bool mem_to_mem) 2249 { 2250 unsigned int hf, vf; 2251 2252 /* 2253 * FIXME how to determine the 'A' factor 2254 * for the no downscaling case ? 2255 */ 2256 2257 if (width > 3 * out_width) 2258 hf = 4; 2259 else if (width > 2 * out_width) 2260 hf = 3; 2261 else if (width > out_width) 2262 hf = 2; 2263 else 2264 hf = 1; 2265 if (height > out_height) 2266 vf = 2; 2267 else 2268 vf = 1; 2269 2270 return pclk * vf * hf; 2271 } 2272 2273 static unsigned long calc_core_clk_44xx(unsigned long pclk, u16 width, 2274 u16 height, u16 out_width, u16 out_height, bool mem_to_mem) 2275 { 2276 /* 2277 * If the overlay/writeback is in mem to mem mode, there are no 2278 * downscaling limitations with respect to pixel clock, return 1 as 2279 * required core clock to represent that we have sufficient enough 2280 * core clock to do maximum downscaling 2281 */ 2282 if (mem_to_mem) 2283 return 1; 2284 2285 if (width > out_width) 2286 return DIV_ROUND_UP(pclk, out_width) * width; 2287 else 2288 return pclk; 2289 } 2290 2291 static int dispc_ovl_calc_scaling_24xx(struct dispc_device *dispc, 2292 unsigned long pclk, unsigned long lclk, 2293 const struct videomode *vm, 2294 u16 width, u16 height, 2295 u16 out_width, u16 out_height, 2296 u32 fourcc, bool *five_taps, 2297 int *x_predecim, int *y_predecim, 2298 int *decim_x, int *decim_y, 2299 u16 pos_x, unsigned long *core_clk, 2300 bool mem_to_mem) 2301 { 2302 int error; 2303 u16 in_width, in_height; 2304 int min_factor = min(*decim_x, *decim_y); 2305 const int maxsinglelinewidth = dispc->feat->max_line_width; 2306 2307 *five_taps = false; 2308 2309 do { 2310 in_height = height / *decim_y; 2311 in_width = width / *decim_x; 2312 *core_clk = dispc->feat->calc_core_clk(pclk, in_width, 2313 in_height, out_width, out_height, mem_to_mem); 2314 error = (in_width > maxsinglelinewidth || !*core_clk || 2315 *core_clk > dispc_core_clk_rate(dispc)); 2316 if (error) { 2317 if (*decim_x == *decim_y) { 2318 *decim_x = min_factor; 2319 ++*decim_y; 2320 } else { 2321 swap(*decim_x, *decim_y); 2322 if (*decim_x < *decim_y) 2323 ++*decim_x; 2324 } 2325 } 2326 } while (*decim_x <= *x_predecim && *decim_y <= *y_predecim && error); 2327 2328 if (error) { 2329 DSSERR("failed to find scaling settings\n"); 2330 return -EINVAL; 2331 } 2332 2333 if (in_width > maxsinglelinewidth) { 2334 DSSERR("Cannot scale max input width exceeded\n"); 2335 return -EINVAL; 2336 } 2337 return 0; 2338 } 2339 2340 static int dispc_ovl_calc_scaling_34xx(struct dispc_device *dispc, 2341 unsigned long pclk, unsigned long lclk, 2342 const struct videomode *vm, 2343 u16 width, u16 height, 2344 u16 out_width, u16 out_height, 2345 u32 fourcc, bool *five_taps, 2346 int *x_predecim, int *y_predecim, 2347 int *decim_x, int *decim_y, 2348 u16 pos_x, unsigned long *core_clk, 2349 bool mem_to_mem) 2350 { 2351 int error; 2352 u16 in_width, in_height; 2353 const int maxsinglelinewidth = dispc->feat->max_line_width; 2354 2355 do { 2356 in_height = height / *decim_y; 2357 in_width = width / *decim_x; 2358 *five_taps = in_height > out_height; 2359 2360 if (in_width > maxsinglelinewidth) 2361 if (in_height > out_height && 2362 in_height < out_height * 2) 2363 *five_taps = false; 2364 again: 2365 if (*five_taps) 2366 *core_clk = calc_core_clk_five_taps(pclk, vm, 2367 in_width, in_height, out_width, 2368 out_height, fourcc); 2369 else 2370 *core_clk = dispc->feat->calc_core_clk(pclk, in_width, 2371 in_height, out_width, out_height, 2372 mem_to_mem); 2373 2374 error = check_horiz_timing_omap3(pclk, lclk, vm, 2375 pos_x, in_width, in_height, out_width, 2376 out_height, *five_taps); 2377 if (error && *five_taps) { 2378 *five_taps = false; 2379 goto again; 2380 } 2381 2382 error = (error || in_width > maxsinglelinewidth * 2 || 2383 (in_width > maxsinglelinewidth && *five_taps) || 2384 !*core_clk || *core_clk > dispc_core_clk_rate(dispc)); 2385 2386 if (!error) { 2387 /* verify that we're inside the limits of scaler */ 2388 if (in_width / 4 > out_width) 2389 error = 1; 2390 2391 if (*five_taps) { 2392 if (in_height / 4 > out_height) 2393 error = 1; 2394 } else { 2395 if (in_height / 2 > out_height) 2396 error = 1; 2397 } 2398 } 2399 2400 if (error) 2401 ++*decim_y; 2402 } while (*decim_x <= *x_predecim && *decim_y <= *y_predecim && error); 2403 2404 if (error) { 2405 DSSERR("failed to find scaling settings\n"); 2406 return -EINVAL; 2407 } 2408 2409 if (check_horiz_timing_omap3(pclk, lclk, vm, pos_x, in_width, 2410 in_height, out_width, out_height, *five_taps)) { 2411 DSSERR("horizontal timing too tight\n"); 2412 return -EINVAL; 2413 } 2414 2415 if (in_width > (maxsinglelinewidth * 2)) { 2416 DSSERR("Cannot setup scaling\n"); 2417 DSSERR("width exceeds maximum width possible\n"); 2418 return -EINVAL; 2419 } 2420 2421 if (in_width > maxsinglelinewidth && *five_taps) { 2422 DSSERR("cannot setup scaling with five taps\n"); 2423 return -EINVAL; 2424 } 2425 return 0; 2426 } 2427 2428 static int dispc_ovl_calc_scaling_44xx(struct dispc_device *dispc, 2429 unsigned long pclk, unsigned long lclk, 2430 const struct videomode *vm, 2431 u16 width, u16 height, 2432 u16 out_width, u16 out_height, 2433 u32 fourcc, bool *five_taps, 2434 int *x_predecim, int *y_predecim, 2435 int *decim_x, int *decim_y, 2436 u16 pos_x, unsigned long *core_clk, 2437 bool mem_to_mem) 2438 { 2439 u16 in_width, in_width_max; 2440 int decim_x_min = *decim_x; 2441 u16 in_height = height / *decim_y; 2442 const int maxsinglelinewidth = dispc->feat->max_line_width; 2443 const int maxdownscale = dispc->feat->max_downscale; 2444 2445 if (mem_to_mem) { 2446 in_width_max = out_width * maxdownscale; 2447 } else { 2448 in_width_max = dispc_core_clk_rate(dispc) 2449 / DIV_ROUND_UP(pclk, out_width); 2450 } 2451 2452 *decim_x = DIV_ROUND_UP(width, in_width_max); 2453 2454 *decim_x = *decim_x > decim_x_min ? *decim_x : decim_x_min; 2455 if (*decim_x > *x_predecim) 2456 return -EINVAL; 2457 2458 do { 2459 in_width = width / *decim_x; 2460 } while (*decim_x <= *x_predecim && 2461 in_width > maxsinglelinewidth && ++*decim_x); 2462 2463 if (in_width > maxsinglelinewidth) { 2464 DSSERR("Cannot scale width exceeds max line width\n"); 2465 return -EINVAL; 2466 } 2467 2468 if (*decim_x > 4 && fourcc != DRM_FORMAT_NV12) { 2469 /* 2470 * Let's disable all scaling that requires horizontal 2471 * decimation with higher factor than 4, until we have 2472 * better estimates of what we can and can not 2473 * do. However, NV12 color format appears to work Ok 2474 * with all decimation factors. 2475 * 2476 * When decimating horizontally by more that 4 the dss 2477 * is not able to fetch the data in burst mode. When 2478 * this happens it is hard to tell if there enough 2479 * bandwidth. Despite what theory says this appears to 2480 * be true also for 16-bit color formats. 2481 */ 2482 DSSERR("Not enough bandwidth, too much downscaling (x-decimation factor %d > 4)\n", *decim_x); 2483 2484 return -EINVAL; 2485 } 2486 2487 *core_clk = dispc->feat->calc_core_clk(pclk, in_width, in_height, 2488 out_width, out_height, mem_to_mem); 2489 return 0; 2490 } 2491 2492 enum omap_overlay_caps dispc_ovl_get_caps(struct dispc_device *dispc, enum omap_plane_id plane) 2493 { 2494 return dispc->feat->overlay_caps[plane]; 2495 } 2496 2497 #define DIV_FRAC(dividend, divisor) \ 2498 ((dividend) * 100 / (divisor) - ((dividend) / (divisor) * 100)) 2499 2500 static int dispc_ovl_calc_scaling(struct dispc_device *dispc, 2501 enum omap_plane_id plane, 2502 unsigned long pclk, unsigned long lclk, 2503 enum omap_overlay_caps caps, 2504 const struct videomode *vm, 2505 u16 width, u16 height, 2506 u16 out_width, u16 out_height, 2507 u32 fourcc, bool *five_taps, 2508 int *x_predecim, int *y_predecim, u16 pos_x, 2509 enum omap_dss_rotation_type rotation_type, 2510 bool mem_to_mem) 2511 { 2512 int maxhdownscale = dispc->feat->max_downscale; 2513 int maxvdownscale = dispc->feat->max_downscale; 2514 const int max_decim_limit = 16; 2515 unsigned long core_clk = 0; 2516 int decim_x, decim_y, ret; 2517 2518 if (width == out_width && height == out_height) 2519 return 0; 2520 2521 if (dispc->feat->supported_scaler_color_modes) { 2522 const u32 *modes = dispc->feat->supported_scaler_color_modes; 2523 unsigned int i; 2524 2525 for (i = 0; modes[i]; ++i) { 2526 if (modes[i] == fourcc) 2527 break; 2528 } 2529 2530 if (modes[i] == 0) 2531 return -EINVAL; 2532 } 2533 2534 if (plane == OMAP_DSS_WB) { 2535 switch (fourcc) { 2536 case DRM_FORMAT_NV12: 2537 maxhdownscale = maxvdownscale = 2; 2538 break; 2539 case DRM_FORMAT_YUYV: 2540 case DRM_FORMAT_UYVY: 2541 maxhdownscale = 2; 2542 maxvdownscale = 4; 2543 break; 2544 default: 2545 break; 2546 } 2547 } 2548 if (!mem_to_mem && (pclk == 0 || vm->pixelclock == 0)) { 2549 DSSERR("cannot calculate scaling settings: pclk is zero\n"); 2550 return -EINVAL; 2551 } 2552 2553 if ((caps & OMAP_DSS_OVL_CAP_SCALE) == 0) 2554 return -EINVAL; 2555 2556 if (mem_to_mem) { 2557 *x_predecim = *y_predecim = 1; 2558 } else { 2559 *x_predecim = max_decim_limit; 2560 *y_predecim = (rotation_type == OMAP_DSS_ROT_TILER && 2561 dispc_has_feature(dispc, FEAT_BURST_2D)) ? 2562 2 : max_decim_limit; 2563 } 2564 2565 decim_x = DIV_ROUND_UP(DIV_ROUND_UP(width, out_width), maxhdownscale); 2566 decim_y = DIV_ROUND_UP(DIV_ROUND_UP(height, out_height), maxvdownscale); 2567 2568 if (decim_x > *x_predecim || out_width > width * 8) 2569 return -EINVAL; 2570 2571 if (decim_y > *y_predecim || out_height > height * 8) 2572 return -EINVAL; 2573 2574 ret = dispc->feat->calc_scaling(dispc, pclk, lclk, vm, width, height, 2575 out_width, out_height, fourcc, 2576 five_taps, x_predecim, y_predecim, 2577 &decim_x, &decim_y, pos_x, &core_clk, 2578 mem_to_mem); 2579 if (ret) 2580 return ret; 2581 2582 DSSDBG("%dx%d -> %dx%d (%d.%02d x %d.%02d), decim %dx%d %dx%d (%d.%02d x %d.%02d), taps %d, req clk %lu, cur clk %lu\n", 2583 width, height, 2584 out_width, out_height, 2585 out_width / width, DIV_FRAC(out_width, width), 2586 out_height / height, DIV_FRAC(out_height, height), 2587 2588 decim_x, decim_y, 2589 width / decim_x, height / decim_y, 2590 out_width / (width / decim_x), DIV_FRAC(out_width, width / decim_x), 2591 out_height / (height / decim_y), DIV_FRAC(out_height, height / decim_y), 2592 2593 *five_taps ? 5 : 3, 2594 core_clk, dispc_core_clk_rate(dispc)); 2595 2596 if (!core_clk || core_clk > dispc_core_clk_rate(dispc)) { 2597 DSSERR("failed to set up scaling, " 2598 "required core clk rate = %lu Hz, " 2599 "current core clk rate = %lu Hz\n", 2600 core_clk, dispc_core_clk_rate(dispc)); 2601 return -EINVAL; 2602 } 2603 2604 *x_predecim = decim_x; 2605 *y_predecim = decim_y; 2606 return 0; 2607 } 2608 2609 void dispc_ovl_get_max_size(struct dispc_device *dispc, u16 *width, u16 *height) 2610 { 2611 *width = dispc->feat->ovl_width_max; 2612 *height = dispc->feat->ovl_height_max; 2613 } 2614 2615 static int dispc_ovl_setup_common(struct dispc_device *dispc, 2616 enum omap_plane_id plane, 2617 enum omap_overlay_caps caps, 2618 u32 paddr, u32 p_uv_addr, 2619 u16 screen_width, int pos_x, int pos_y, 2620 u16 width, u16 height, 2621 u16 out_width, u16 out_height, 2622 u32 fourcc, u8 rotation, u8 zorder, 2623 u8 pre_mult_alpha, u8 global_alpha, 2624 enum omap_dss_rotation_type rotation_type, 2625 bool replication, const struct videomode *vm, 2626 bool mem_to_mem, 2627 enum drm_color_encoding color_encoding, 2628 enum drm_color_range color_range) 2629 { 2630 bool five_taps = true; 2631 bool fieldmode = false; 2632 int r, cconv = 0; 2633 unsigned int offset0, offset1; 2634 s32 row_inc; 2635 s32 pix_inc; 2636 u16 frame_width; 2637 unsigned int field_offset = 0; 2638 u16 in_height = height; 2639 u16 in_width = width; 2640 int x_predecim = 1, y_predecim = 1; 2641 bool ilace = !!(vm->flags & DISPLAY_FLAGS_INTERLACED); 2642 unsigned long pclk = dispc_plane_pclk_rate(dispc, plane); 2643 unsigned long lclk = dispc_plane_lclk_rate(dispc, plane); 2644 const struct drm_format_info *info; 2645 2646 info = drm_format_info(fourcc); 2647 2648 /* when setting up WB, dispc_plane_pclk_rate() returns 0 */ 2649 if (plane == OMAP_DSS_WB) 2650 pclk = vm->pixelclock; 2651 2652 if (paddr == 0 && rotation_type != OMAP_DSS_ROT_TILER) 2653 return -EINVAL; 2654 2655 if (info->is_yuv && (in_width & 1)) { 2656 DSSERR("input width %d is not even for YUV format\n", in_width); 2657 return -EINVAL; 2658 } 2659 2660 out_width = out_width == 0 ? width : out_width; 2661 out_height = out_height == 0 ? height : out_height; 2662 2663 if (plane != OMAP_DSS_WB) { 2664 if (ilace && height == out_height) 2665 fieldmode = true; 2666 2667 if (ilace) { 2668 if (fieldmode) 2669 in_height /= 2; 2670 pos_y /= 2; 2671 out_height /= 2; 2672 2673 DSSDBG("adjusting for ilace: height %d, pos_y %d, out_height %d\n", 2674 in_height, pos_y, out_height); 2675 } 2676 } 2677 2678 if (!dispc_ovl_color_mode_supported(dispc, plane, fourcc)) 2679 return -EINVAL; 2680 2681 r = dispc_ovl_calc_scaling(dispc, plane, pclk, lclk, caps, vm, in_width, 2682 in_height, out_width, out_height, fourcc, 2683 &five_taps, &x_predecim, &y_predecim, pos_x, 2684 rotation_type, mem_to_mem); 2685 if (r) 2686 return r; 2687 2688 in_width = in_width / x_predecim; 2689 in_height = in_height / y_predecim; 2690 2691 if (x_predecim > 1 || y_predecim > 1) 2692 DSSDBG("predecimation %d x %x, new input size %d x %d\n", 2693 x_predecim, y_predecim, in_width, in_height); 2694 2695 if (info->is_yuv && (in_width & 1)) { 2696 DSSDBG("predecimated input width is not even for YUV format\n"); 2697 DSSDBG("adjusting input width %d -> %d\n", 2698 in_width, in_width & ~1); 2699 2700 in_width &= ~1; 2701 } 2702 2703 if (info->is_yuv) 2704 cconv = 1; 2705 2706 if (ilace && !fieldmode) { 2707 /* 2708 * when downscaling the bottom field may have to start several 2709 * source lines below the top field. Unfortunately ACCUI 2710 * registers will only hold the fractional part of the offset 2711 * so the integer part must be added to the base address of the 2712 * bottom field. 2713 */ 2714 if (!in_height || in_height == out_height) 2715 field_offset = 0; 2716 else 2717 field_offset = in_height / out_height / 2; 2718 } 2719 2720 /* Fields are independent but interleaved in memory. */ 2721 if (fieldmode) 2722 field_offset = 1; 2723 2724 offset0 = 0; 2725 offset1 = 0; 2726 row_inc = 0; 2727 pix_inc = 0; 2728 2729 if (plane == OMAP_DSS_WB) 2730 frame_width = out_width; 2731 else 2732 frame_width = in_width; 2733 2734 calc_offset(screen_width, frame_width, 2735 fourcc, fieldmode, field_offset, 2736 &offset0, &offset1, &row_inc, &pix_inc, 2737 x_predecim, y_predecim, 2738 rotation_type, rotation); 2739 2740 DSSDBG("offset0 %u, offset1 %u, row_inc %d, pix_inc %d\n", 2741 offset0, offset1, row_inc, pix_inc); 2742 2743 dispc_ovl_set_color_mode(dispc, plane, fourcc); 2744 2745 dispc_ovl_configure_burst_type(dispc, plane, rotation_type); 2746 2747 if (dispc->feat->reverse_ilace_field_order) 2748 swap(offset0, offset1); 2749 2750 dispc_ovl_set_ba0(dispc, plane, paddr + offset0); 2751 dispc_ovl_set_ba1(dispc, plane, paddr + offset1); 2752 2753 if (fourcc == DRM_FORMAT_NV12) { 2754 dispc_ovl_set_ba0_uv(dispc, plane, p_uv_addr + offset0); 2755 dispc_ovl_set_ba1_uv(dispc, plane, p_uv_addr + offset1); 2756 } 2757 2758 if (dispc->feat->last_pixel_inc_missing) 2759 row_inc += pix_inc - 1; 2760 2761 dispc_ovl_set_row_inc(dispc, plane, row_inc); 2762 dispc_ovl_set_pix_inc(dispc, plane, pix_inc); 2763 2764 DSSDBG("%d,%d %dx%d -> %dx%d\n", pos_x, pos_y, in_width, 2765 in_height, out_width, out_height); 2766 2767 dispc_ovl_set_pos(dispc, plane, caps, pos_x, pos_y); 2768 2769 dispc_ovl_set_input_size(dispc, plane, in_width, in_height); 2770 2771 if (caps & OMAP_DSS_OVL_CAP_SCALE) { 2772 dispc_ovl_set_scaling(dispc, plane, in_width, in_height, 2773 out_width, out_height, ilace, five_taps, 2774 fieldmode, fourcc, rotation); 2775 dispc_ovl_set_output_size(dispc, plane, out_width, out_height); 2776 dispc_ovl_set_vid_color_conv(dispc, plane, cconv); 2777 2778 if (plane != OMAP_DSS_WB) 2779 dispc_ovl_set_csc(dispc, plane, color_encoding, color_range); 2780 } 2781 2782 dispc_ovl_set_rotation_attrs(dispc, plane, rotation, rotation_type, 2783 fourcc); 2784 2785 dispc_ovl_set_zorder(dispc, plane, caps, zorder); 2786 dispc_ovl_set_pre_mult_alpha(dispc, plane, caps, pre_mult_alpha); 2787 dispc_ovl_setup_global_alpha(dispc, plane, caps, global_alpha); 2788 2789 dispc_ovl_enable_replication(dispc, plane, caps, replication); 2790 2791 return 0; 2792 } 2793 2794 int dispc_ovl_setup(struct dispc_device *dispc, 2795 enum omap_plane_id plane, 2796 const struct omap_overlay_info *oi, 2797 const struct videomode *vm, bool mem_to_mem, 2798 enum omap_channel channel) 2799 { 2800 int r; 2801 enum omap_overlay_caps caps = dispc->feat->overlay_caps[plane]; 2802 const bool replication = true; 2803 2804 DSSDBG("dispc_ovl_setup %d, pa %pad, pa_uv %pad, sw %d, %d,%d, %dx%d ->" 2805 " %dx%d, cmode %x, rot %d, chan %d repl %d\n", 2806 plane, &oi->paddr, &oi->p_uv_addr, oi->screen_width, oi->pos_x, 2807 oi->pos_y, oi->width, oi->height, oi->out_width, oi->out_height, 2808 oi->fourcc, oi->rotation, channel, replication); 2809 2810 dispc_ovl_set_channel_out(dispc, plane, channel); 2811 2812 r = dispc_ovl_setup_common(dispc, plane, caps, oi->paddr, oi->p_uv_addr, 2813 oi->screen_width, oi->pos_x, oi->pos_y, oi->width, oi->height, 2814 oi->out_width, oi->out_height, oi->fourcc, oi->rotation, 2815 oi->zorder, oi->pre_mult_alpha, oi->global_alpha, 2816 oi->rotation_type, replication, vm, mem_to_mem, 2817 oi->color_encoding, oi->color_range); 2818 2819 return r; 2820 } 2821 2822 int dispc_wb_setup(struct dispc_device *dispc, 2823 const struct omap_dss_writeback_info *wi, 2824 bool mem_to_mem, const struct videomode *vm, 2825 enum dss_writeback_channel channel_in) 2826 { 2827 int r; 2828 u32 l; 2829 enum omap_plane_id plane = OMAP_DSS_WB; 2830 const int pos_x = 0, pos_y = 0; 2831 const u8 zorder = 0, global_alpha = 0; 2832 const bool replication = true; 2833 bool truncation; 2834 int in_width = vm->hactive; 2835 int in_height = vm->vactive; 2836 enum omap_overlay_caps caps = 2837 OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA; 2838 2839 if (vm->flags & DISPLAY_FLAGS_INTERLACED) 2840 in_height /= 2; 2841 2842 DSSDBG("dispc_wb_setup, pa %x, pa_uv %x, %d,%d -> %dx%d, cmode %x, " 2843 "rot %d\n", wi->paddr, wi->p_uv_addr, in_width, 2844 in_height, wi->width, wi->height, wi->fourcc, wi->rotation); 2845 2846 r = dispc_ovl_setup_common(dispc, plane, caps, wi->paddr, wi->p_uv_addr, 2847 wi->buf_width, pos_x, pos_y, in_width, in_height, wi->width, 2848 wi->height, wi->fourcc, wi->rotation, zorder, 2849 wi->pre_mult_alpha, global_alpha, wi->rotation_type, 2850 replication, vm, mem_to_mem, DRM_COLOR_YCBCR_BT601, 2851 DRM_COLOR_YCBCR_LIMITED_RANGE); 2852 if (r) 2853 return r; 2854 2855 switch (wi->fourcc) { 2856 case DRM_FORMAT_RGB565: 2857 case DRM_FORMAT_RGB888: 2858 case DRM_FORMAT_ARGB4444: 2859 case DRM_FORMAT_RGBA4444: 2860 case DRM_FORMAT_RGBX4444: 2861 case DRM_FORMAT_ARGB1555: 2862 case DRM_FORMAT_XRGB1555: 2863 case DRM_FORMAT_XRGB4444: 2864 truncation = true; 2865 break; 2866 default: 2867 truncation = false; 2868 break; 2869 } 2870 2871 /* setup extra DISPC_WB_ATTRIBUTES */ 2872 l = dispc_read_reg(dispc, DISPC_OVL_ATTRIBUTES(plane)); 2873 l = FLD_MOD(l, truncation, 10, 10); /* TRUNCATIONENABLE */ 2874 l = FLD_MOD(l, channel_in, 18, 16); /* CHANNELIN */ 2875 l = FLD_MOD(l, mem_to_mem, 19, 19); /* WRITEBACKMODE */ 2876 if (mem_to_mem) 2877 l = FLD_MOD(l, 1, 26, 24); /* CAPTUREMODE */ 2878 else 2879 l = FLD_MOD(l, 0, 26, 24); /* CAPTUREMODE */ 2880 dispc_write_reg(dispc, DISPC_OVL_ATTRIBUTES(plane), l); 2881 2882 if (mem_to_mem) { 2883 /* WBDELAYCOUNT */ 2884 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES2(plane), 0, 7, 0); 2885 } else { 2886 u32 wbdelay; 2887 2888 if (channel_in == DSS_WB_TV_MGR) 2889 wbdelay = vm->vsync_len + vm->vback_porch; 2890 else 2891 wbdelay = vm->vfront_porch + vm->vsync_len + 2892 vm->vback_porch; 2893 2894 if (vm->flags & DISPLAY_FLAGS_INTERLACED) 2895 wbdelay /= 2; 2896 2897 wbdelay = min(wbdelay, 255u); 2898 2899 /* WBDELAYCOUNT */ 2900 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES2(plane), wbdelay, 7, 0); 2901 } 2902 2903 return 0; 2904 } 2905 2906 bool dispc_has_writeback(struct dispc_device *dispc) 2907 { 2908 return dispc->feat->has_writeback; 2909 } 2910 2911 int dispc_ovl_enable(struct dispc_device *dispc, 2912 enum omap_plane_id plane, bool enable) 2913 { 2914 DSSDBG("dispc_enable_plane %d, %d\n", plane, enable); 2915 2916 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), enable ? 1 : 0, 0, 0); 2917 2918 return 0; 2919 } 2920 2921 static void dispc_lcd_enable_signal_polarity(struct dispc_device *dispc, 2922 bool act_high) 2923 { 2924 if (!dispc_has_feature(dispc, FEAT_LCDENABLEPOL)) 2925 return; 2926 2927 REG_FLD_MOD(dispc, DISPC_CONTROL, act_high ? 1 : 0, 29, 29); 2928 } 2929 2930 void dispc_lcd_enable_signal(struct dispc_device *dispc, bool enable) 2931 { 2932 if (!dispc_has_feature(dispc, FEAT_LCDENABLESIGNAL)) 2933 return; 2934 2935 REG_FLD_MOD(dispc, DISPC_CONTROL, enable ? 1 : 0, 28, 28); 2936 } 2937 2938 void dispc_pck_free_enable(struct dispc_device *dispc, bool enable) 2939 { 2940 if (!dispc_has_feature(dispc, FEAT_PCKFREEENABLE)) 2941 return; 2942 2943 REG_FLD_MOD(dispc, DISPC_CONTROL, enable ? 1 : 0, 27, 27); 2944 } 2945 2946 static void dispc_mgr_enable_fifohandcheck(struct dispc_device *dispc, 2947 enum omap_channel channel, 2948 bool enable) 2949 { 2950 mgr_fld_write(dispc, channel, DISPC_MGR_FLD_FIFOHANDCHECK, enable); 2951 } 2952 2953 2954 static void dispc_mgr_set_lcd_type_tft(struct dispc_device *dispc, 2955 enum omap_channel channel) 2956 { 2957 mgr_fld_write(dispc, channel, DISPC_MGR_FLD_STNTFT, 1); 2958 } 2959 2960 static void dispc_set_loadmode(struct dispc_device *dispc, 2961 enum omap_dss_load_mode mode) 2962 { 2963 REG_FLD_MOD(dispc, DISPC_CONFIG, mode, 2, 1); 2964 } 2965 2966 2967 static void dispc_mgr_set_default_color(struct dispc_device *dispc, 2968 enum omap_channel channel, u32 color) 2969 { 2970 dispc_write_reg(dispc, DISPC_DEFAULT_COLOR(channel), color); 2971 } 2972 2973 static void dispc_mgr_set_trans_key(struct dispc_device *dispc, 2974 enum omap_channel ch, 2975 enum omap_dss_trans_key_type type, 2976 u32 trans_key) 2977 { 2978 mgr_fld_write(dispc, ch, DISPC_MGR_FLD_TCKSELECTION, type); 2979 2980 dispc_write_reg(dispc, DISPC_TRANS_COLOR(ch), trans_key); 2981 } 2982 2983 static void dispc_mgr_enable_trans_key(struct dispc_device *dispc, 2984 enum omap_channel ch, bool enable) 2985 { 2986 mgr_fld_write(dispc, ch, DISPC_MGR_FLD_TCKENABLE, enable); 2987 } 2988 2989 static void dispc_mgr_enable_alpha_fixed_zorder(struct dispc_device *dispc, 2990 enum omap_channel ch, 2991 bool enable) 2992 { 2993 if (!dispc_has_feature(dispc, FEAT_ALPHA_FIXED_ZORDER)) 2994 return; 2995 2996 if (ch == OMAP_DSS_CHANNEL_LCD) 2997 REG_FLD_MOD(dispc, DISPC_CONFIG, enable, 18, 18); 2998 else if (ch == OMAP_DSS_CHANNEL_DIGIT) 2999 REG_FLD_MOD(dispc, DISPC_CONFIG, enable, 19, 19); 3000 } 3001 3002 void dispc_mgr_setup(struct dispc_device *dispc, 3003 enum omap_channel channel, 3004 const struct omap_overlay_manager_info *info) 3005 { 3006 dispc_mgr_set_default_color(dispc, channel, info->default_color); 3007 dispc_mgr_set_trans_key(dispc, channel, info->trans_key_type, 3008 info->trans_key); 3009 dispc_mgr_enable_trans_key(dispc, channel, info->trans_enabled); 3010 dispc_mgr_enable_alpha_fixed_zorder(dispc, channel, 3011 info->partial_alpha_enabled); 3012 if (dispc_has_feature(dispc, FEAT_CPR)) { 3013 dispc_mgr_enable_cpr(dispc, channel, info->cpr_enable); 3014 dispc_mgr_set_cpr_coef(dispc, channel, &info->cpr_coefs); 3015 } 3016 } 3017 3018 static void dispc_mgr_set_tft_data_lines(struct dispc_device *dispc, 3019 enum omap_channel channel, 3020 u8 data_lines) 3021 { 3022 int code; 3023 3024 switch (data_lines) { 3025 case 12: 3026 code = 0; 3027 break; 3028 case 16: 3029 code = 1; 3030 break; 3031 case 18: 3032 code = 2; 3033 break; 3034 case 24: 3035 code = 3; 3036 break; 3037 default: 3038 BUG(); 3039 return; 3040 } 3041 3042 mgr_fld_write(dispc, channel, DISPC_MGR_FLD_TFTDATALINES, code); 3043 } 3044 3045 static void dispc_mgr_set_io_pad_mode(struct dispc_device *dispc, 3046 enum dss_io_pad_mode mode) 3047 { 3048 u32 l; 3049 int gpout0, gpout1; 3050 3051 switch (mode) { 3052 case DSS_IO_PAD_MODE_RESET: 3053 gpout0 = 0; 3054 gpout1 = 0; 3055 break; 3056 case DSS_IO_PAD_MODE_RFBI: 3057 gpout0 = 1; 3058 gpout1 = 0; 3059 break; 3060 case DSS_IO_PAD_MODE_BYPASS: 3061 gpout0 = 1; 3062 gpout1 = 1; 3063 break; 3064 default: 3065 BUG(); 3066 return; 3067 } 3068 3069 l = dispc_read_reg(dispc, DISPC_CONTROL); 3070 l = FLD_MOD(l, gpout0, 15, 15); 3071 l = FLD_MOD(l, gpout1, 16, 16); 3072 dispc_write_reg(dispc, DISPC_CONTROL, l); 3073 } 3074 3075 static void dispc_mgr_enable_stallmode(struct dispc_device *dispc, 3076 enum omap_channel channel, bool enable) 3077 { 3078 mgr_fld_write(dispc, channel, DISPC_MGR_FLD_STALLMODE, enable); 3079 } 3080 3081 void dispc_mgr_set_lcd_config(struct dispc_device *dispc, 3082 enum omap_channel channel, 3083 const struct dss_lcd_mgr_config *config) 3084 { 3085 dispc_mgr_set_io_pad_mode(dispc, config->io_pad_mode); 3086 3087 dispc_mgr_enable_stallmode(dispc, channel, config->stallmode); 3088 dispc_mgr_enable_fifohandcheck(dispc, channel, config->fifohandcheck); 3089 3090 dispc_mgr_set_clock_div(dispc, channel, &config->clock_info); 3091 3092 dispc_mgr_set_tft_data_lines(dispc, channel, config->video_port_width); 3093 3094 dispc_lcd_enable_signal_polarity(dispc, config->lcden_sig_polarity); 3095 3096 dispc_mgr_set_lcd_type_tft(dispc, channel); 3097 } 3098 3099 static bool _dispc_mgr_size_ok(struct dispc_device *dispc, 3100 u16 width, u16 height) 3101 { 3102 return width <= dispc->feat->mgr_width_max && 3103 height <= dispc->feat->mgr_height_max; 3104 } 3105 3106 static bool _dispc_lcd_timings_ok(struct dispc_device *dispc, 3107 int hsync_len, int hfp, int hbp, 3108 int vsw, int vfp, int vbp) 3109 { 3110 if (hsync_len < 1 || hsync_len > dispc->feat->sw_max || 3111 hfp < 1 || hfp > dispc->feat->hp_max || 3112 hbp < 1 || hbp > dispc->feat->hp_max || 3113 vsw < 1 || vsw > dispc->feat->sw_max || 3114 vfp < 0 || vfp > dispc->feat->vp_max || 3115 vbp < 0 || vbp > dispc->feat->vp_max) 3116 return false; 3117 return true; 3118 } 3119 3120 static bool _dispc_mgr_pclk_ok(struct dispc_device *dispc, 3121 enum omap_channel channel, 3122 unsigned long pclk) 3123 { 3124 if (dss_mgr_is_lcd(channel)) 3125 return pclk <= dispc->feat->max_lcd_pclk; 3126 else 3127 return pclk <= dispc->feat->max_tv_pclk; 3128 } 3129 3130 int dispc_mgr_check_timings(struct dispc_device *dispc, 3131 enum omap_channel channel, 3132 const struct videomode *vm) 3133 { 3134 if (!_dispc_mgr_size_ok(dispc, vm->hactive, vm->vactive)) 3135 return MODE_BAD; 3136 3137 if (!_dispc_mgr_pclk_ok(dispc, channel, vm->pixelclock)) 3138 return MODE_BAD; 3139 3140 if (dss_mgr_is_lcd(channel)) { 3141 /* TODO: OMAP4+ supports interlace for LCD outputs */ 3142 if (vm->flags & DISPLAY_FLAGS_INTERLACED) 3143 return MODE_BAD; 3144 3145 if (!_dispc_lcd_timings_ok(dispc, vm->hsync_len, 3146 vm->hfront_porch, vm->hback_porch, 3147 vm->vsync_len, vm->vfront_porch, 3148 vm->vback_porch)) 3149 return MODE_BAD; 3150 } 3151 3152 return MODE_OK; 3153 } 3154 3155 static void _dispc_mgr_set_lcd_timings(struct dispc_device *dispc, 3156 enum omap_channel channel, 3157 const struct videomode *vm) 3158 { 3159 u32 timing_h, timing_v, l; 3160 bool onoff, rf, ipc, vs, hs, de; 3161 3162 timing_h = FLD_VAL(vm->hsync_len - 1, dispc->feat->sw_start, 0) | 3163 FLD_VAL(vm->hfront_porch - 1, dispc->feat->fp_start, 8) | 3164 FLD_VAL(vm->hback_porch - 1, dispc->feat->bp_start, 20); 3165 timing_v = FLD_VAL(vm->vsync_len - 1, dispc->feat->sw_start, 0) | 3166 FLD_VAL(vm->vfront_porch, dispc->feat->fp_start, 8) | 3167 FLD_VAL(vm->vback_porch, dispc->feat->bp_start, 20); 3168 3169 dispc_write_reg(dispc, DISPC_TIMING_H(channel), timing_h); 3170 dispc_write_reg(dispc, DISPC_TIMING_V(channel), timing_v); 3171 3172 vs = !!(vm->flags & DISPLAY_FLAGS_VSYNC_LOW); 3173 hs = !!(vm->flags & DISPLAY_FLAGS_HSYNC_LOW); 3174 de = !!(vm->flags & DISPLAY_FLAGS_DE_LOW); 3175 ipc = !!(vm->flags & DISPLAY_FLAGS_PIXDATA_NEGEDGE); 3176 onoff = true; /* always use the 'rf' setting */ 3177 rf = !!(vm->flags & DISPLAY_FLAGS_SYNC_POSEDGE); 3178 3179 l = FLD_VAL(onoff, 17, 17) | 3180 FLD_VAL(rf, 16, 16) | 3181 FLD_VAL(de, 15, 15) | 3182 FLD_VAL(ipc, 14, 14) | 3183 FLD_VAL(hs, 13, 13) | 3184 FLD_VAL(vs, 12, 12); 3185 3186 /* always set ALIGN bit when available */ 3187 if (dispc->feat->supports_sync_align) 3188 l |= (1 << 18); 3189 3190 dispc_write_reg(dispc, DISPC_POL_FREQ(channel), l); 3191 3192 if (dispc->syscon_pol) { 3193 const int shifts[] = { 3194 [OMAP_DSS_CHANNEL_LCD] = 0, 3195 [OMAP_DSS_CHANNEL_LCD2] = 1, 3196 [OMAP_DSS_CHANNEL_LCD3] = 2, 3197 }; 3198 3199 u32 mask, val; 3200 3201 mask = (1 << 0) | (1 << 3) | (1 << 6); 3202 val = (rf << 0) | (ipc << 3) | (onoff << 6); 3203 3204 mask <<= 16 + shifts[channel]; 3205 val <<= 16 + shifts[channel]; 3206 3207 regmap_update_bits(dispc->syscon_pol, dispc->syscon_pol_offset, 3208 mask, val); 3209 } 3210 } 3211 3212 static int vm_flag_to_int(enum display_flags flags, enum display_flags high, 3213 enum display_flags low) 3214 { 3215 if (flags & high) 3216 return 1; 3217 if (flags & low) 3218 return -1; 3219 return 0; 3220 } 3221 3222 /* change name to mode? */ 3223 void dispc_mgr_set_timings(struct dispc_device *dispc, 3224 enum omap_channel channel, 3225 const struct videomode *vm) 3226 { 3227 unsigned int xtot, ytot; 3228 unsigned long ht, vt; 3229 struct videomode t = *vm; 3230 3231 DSSDBG("channel %d xres %u yres %u\n", channel, t.hactive, t.vactive); 3232 3233 if (dispc_mgr_check_timings(dispc, channel, &t)) { 3234 BUG(); 3235 return; 3236 } 3237 3238 if (dss_mgr_is_lcd(channel)) { 3239 _dispc_mgr_set_lcd_timings(dispc, channel, &t); 3240 3241 xtot = t.hactive + t.hfront_porch + t.hsync_len + t.hback_porch; 3242 ytot = t.vactive + t.vfront_porch + t.vsync_len + t.vback_porch; 3243 3244 ht = vm->pixelclock / xtot; 3245 vt = vm->pixelclock / xtot / ytot; 3246 3247 DSSDBG("pck %lu\n", vm->pixelclock); 3248 DSSDBG("hsync_len %d hfp %d hbp %d vsw %d vfp %d vbp %d\n", 3249 t.hsync_len, t.hfront_porch, t.hback_porch, 3250 t.vsync_len, t.vfront_porch, t.vback_porch); 3251 DSSDBG("vsync_level %d hsync_level %d data_pclk_edge %d de_level %d sync_pclk_edge %d\n", 3252 vm_flag_to_int(t.flags, DISPLAY_FLAGS_VSYNC_HIGH, DISPLAY_FLAGS_VSYNC_LOW), 3253 vm_flag_to_int(t.flags, DISPLAY_FLAGS_HSYNC_HIGH, DISPLAY_FLAGS_HSYNC_LOW), 3254 vm_flag_to_int(t.flags, DISPLAY_FLAGS_PIXDATA_POSEDGE, DISPLAY_FLAGS_PIXDATA_NEGEDGE), 3255 vm_flag_to_int(t.flags, DISPLAY_FLAGS_DE_HIGH, DISPLAY_FLAGS_DE_LOW), 3256 vm_flag_to_int(t.flags, DISPLAY_FLAGS_SYNC_POSEDGE, DISPLAY_FLAGS_SYNC_NEGEDGE)); 3257 3258 DSSDBG("hsync %luHz, vsync %luHz\n", ht, vt); 3259 } else { 3260 if (t.flags & DISPLAY_FLAGS_INTERLACED) 3261 t.vactive /= 2; 3262 3263 if (dispc->feat->supports_double_pixel) 3264 REG_FLD_MOD(dispc, DISPC_CONTROL, 3265 !!(t.flags & DISPLAY_FLAGS_DOUBLECLK), 3266 19, 17); 3267 } 3268 3269 dispc_mgr_set_size(dispc, channel, t.hactive, t.vactive); 3270 } 3271 3272 static void dispc_mgr_set_lcd_divisor(struct dispc_device *dispc, 3273 enum omap_channel channel, u16 lck_div, 3274 u16 pck_div) 3275 { 3276 BUG_ON(lck_div < 1); 3277 BUG_ON(pck_div < 1); 3278 3279 dispc_write_reg(dispc, DISPC_DIVISORo(channel), 3280 FLD_VAL(lck_div, 23, 16) | FLD_VAL(pck_div, 7, 0)); 3281 3282 if (!dispc_has_feature(dispc, FEAT_CORE_CLK_DIV) && 3283 channel == OMAP_DSS_CHANNEL_LCD) 3284 dispc->core_clk_rate = dispc_fclk_rate(dispc) / lck_div; 3285 } 3286 3287 static void dispc_mgr_get_lcd_divisor(struct dispc_device *dispc, 3288 enum omap_channel channel, int *lck_div, 3289 int *pck_div) 3290 { 3291 u32 l; 3292 l = dispc_read_reg(dispc, DISPC_DIVISORo(channel)); 3293 *lck_div = FLD_GET(l, 23, 16); 3294 *pck_div = FLD_GET(l, 7, 0); 3295 } 3296 3297 static unsigned long dispc_fclk_rate(struct dispc_device *dispc) 3298 { 3299 unsigned long r; 3300 enum dss_clk_source src; 3301 3302 src = dss_get_dispc_clk_source(dispc->dss); 3303 3304 if (src == DSS_CLK_SRC_FCK) { 3305 r = dss_get_dispc_clk_rate(dispc->dss); 3306 } else { 3307 struct dss_pll *pll; 3308 unsigned int clkout_idx; 3309 3310 pll = dss_pll_find_by_src(dispc->dss, src); 3311 clkout_idx = dss_pll_get_clkout_idx_for_src(src); 3312 3313 r = pll->cinfo.clkout[clkout_idx]; 3314 } 3315 3316 return r; 3317 } 3318 3319 static unsigned long dispc_mgr_lclk_rate(struct dispc_device *dispc, 3320 enum omap_channel channel) 3321 { 3322 int lcd; 3323 unsigned long r; 3324 enum dss_clk_source src; 3325 3326 /* for TV, LCLK rate is the FCLK rate */ 3327 if (!dss_mgr_is_lcd(channel)) 3328 return dispc_fclk_rate(dispc); 3329 3330 src = dss_get_lcd_clk_source(dispc->dss, channel); 3331 3332 if (src == DSS_CLK_SRC_FCK) { 3333 r = dss_get_dispc_clk_rate(dispc->dss); 3334 } else { 3335 struct dss_pll *pll; 3336 unsigned int clkout_idx; 3337 3338 pll = dss_pll_find_by_src(dispc->dss, src); 3339 clkout_idx = dss_pll_get_clkout_idx_for_src(src); 3340 3341 r = pll->cinfo.clkout[clkout_idx]; 3342 } 3343 3344 lcd = REG_GET(dispc, DISPC_DIVISORo(channel), 23, 16); 3345 3346 return r / lcd; 3347 } 3348 3349 static unsigned long dispc_mgr_pclk_rate(struct dispc_device *dispc, 3350 enum omap_channel channel) 3351 { 3352 unsigned long r; 3353 3354 if (dss_mgr_is_lcd(channel)) { 3355 int pcd; 3356 u32 l; 3357 3358 l = dispc_read_reg(dispc, DISPC_DIVISORo(channel)); 3359 3360 pcd = FLD_GET(l, 7, 0); 3361 3362 r = dispc_mgr_lclk_rate(dispc, channel); 3363 3364 return r / pcd; 3365 } else { 3366 return dispc->tv_pclk_rate; 3367 } 3368 } 3369 3370 void dispc_set_tv_pclk(struct dispc_device *dispc, unsigned long pclk) 3371 { 3372 dispc->tv_pclk_rate = pclk; 3373 } 3374 3375 static unsigned long dispc_core_clk_rate(struct dispc_device *dispc) 3376 { 3377 return dispc->core_clk_rate; 3378 } 3379 3380 static unsigned long dispc_plane_pclk_rate(struct dispc_device *dispc, 3381 enum omap_plane_id plane) 3382 { 3383 enum omap_channel channel; 3384 3385 if (plane == OMAP_DSS_WB) 3386 return 0; 3387 3388 channel = dispc_ovl_get_channel_out(dispc, plane); 3389 3390 return dispc_mgr_pclk_rate(dispc, channel); 3391 } 3392 3393 static unsigned long dispc_plane_lclk_rate(struct dispc_device *dispc, 3394 enum omap_plane_id plane) 3395 { 3396 enum omap_channel channel; 3397 3398 if (plane == OMAP_DSS_WB) 3399 return 0; 3400 3401 channel = dispc_ovl_get_channel_out(dispc, plane); 3402 3403 return dispc_mgr_lclk_rate(dispc, channel); 3404 } 3405 3406 static void dispc_dump_clocks_channel(struct dispc_device *dispc, 3407 struct seq_file *s, 3408 enum omap_channel channel) 3409 { 3410 int lcd, pcd; 3411 enum dss_clk_source lcd_clk_src; 3412 3413 seq_printf(s, "- %s -\n", mgr_desc[channel].name); 3414 3415 lcd_clk_src = dss_get_lcd_clk_source(dispc->dss, channel); 3416 3417 seq_printf(s, "%s clk source = %s\n", mgr_desc[channel].name, 3418 dss_get_clk_source_name(lcd_clk_src)); 3419 3420 dispc_mgr_get_lcd_divisor(dispc, channel, &lcd, &pcd); 3421 3422 seq_printf(s, "lck\t\t%-16lulck div\t%u\n", 3423 dispc_mgr_lclk_rate(dispc, channel), lcd); 3424 seq_printf(s, "pck\t\t%-16lupck div\t%u\n", 3425 dispc_mgr_pclk_rate(dispc, channel), pcd); 3426 } 3427 3428 void dispc_dump_clocks(struct dispc_device *dispc, struct seq_file *s) 3429 { 3430 enum dss_clk_source dispc_clk_src; 3431 int lcd; 3432 u32 l; 3433 3434 if (dispc_runtime_get(dispc)) 3435 return; 3436 3437 seq_printf(s, "- DISPC -\n"); 3438 3439 dispc_clk_src = dss_get_dispc_clk_source(dispc->dss); 3440 seq_printf(s, "dispc fclk source = %s\n", 3441 dss_get_clk_source_name(dispc_clk_src)); 3442 3443 seq_printf(s, "fck\t\t%-16lu\n", dispc_fclk_rate(dispc)); 3444 3445 if (dispc_has_feature(dispc, FEAT_CORE_CLK_DIV)) { 3446 seq_printf(s, "- DISPC-CORE-CLK -\n"); 3447 l = dispc_read_reg(dispc, DISPC_DIVISOR); 3448 lcd = FLD_GET(l, 23, 16); 3449 3450 seq_printf(s, "lck\t\t%-16lulck div\t%u\n", 3451 (dispc_fclk_rate(dispc)/lcd), lcd); 3452 } 3453 3454 dispc_dump_clocks_channel(dispc, s, OMAP_DSS_CHANNEL_LCD); 3455 3456 if (dispc_has_feature(dispc, FEAT_MGR_LCD2)) 3457 dispc_dump_clocks_channel(dispc, s, OMAP_DSS_CHANNEL_LCD2); 3458 if (dispc_has_feature(dispc, FEAT_MGR_LCD3)) 3459 dispc_dump_clocks_channel(dispc, s, OMAP_DSS_CHANNEL_LCD3); 3460 3461 dispc_runtime_put(dispc); 3462 } 3463 3464 static int dispc_dump_regs(struct seq_file *s, void *p) 3465 { 3466 struct dispc_device *dispc = s->private; 3467 int i, j; 3468 const char *mgr_names[] = { 3469 [OMAP_DSS_CHANNEL_LCD] = "LCD", 3470 [OMAP_DSS_CHANNEL_DIGIT] = "TV", 3471 [OMAP_DSS_CHANNEL_LCD2] = "LCD2", 3472 [OMAP_DSS_CHANNEL_LCD3] = "LCD3", 3473 }; 3474 const char *ovl_names[] = { 3475 [OMAP_DSS_GFX] = "GFX", 3476 [OMAP_DSS_VIDEO1] = "VID1", 3477 [OMAP_DSS_VIDEO2] = "VID2", 3478 [OMAP_DSS_VIDEO3] = "VID3", 3479 [OMAP_DSS_WB] = "WB", 3480 }; 3481 const char **p_names; 3482 3483 #define DUMPREG(dispc, r) \ 3484 seq_printf(s, "%-50s %08x\n", #r, dispc_read_reg(dispc, r)) 3485 3486 if (dispc_runtime_get(dispc)) 3487 return 0; 3488 3489 /* DISPC common registers */ 3490 DUMPREG(dispc, DISPC_REVISION); 3491 DUMPREG(dispc, DISPC_SYSCONFIG); 3492 DUMPREG(dispc, DISPC_SYSSTATUS); 3493 DUMPREG(dispc, DISPC_IRQSTATUS); 3494 DUMPREG(dispc, DISPC_IRQENABLE); 3495 DUMPREG(dispc, DISPC_CONTROL); 3496 DUMPREG(dispc, DISPC_CONFIG); 3497 DUMPREG(dispc, DISPC_CAPABLE); 3498 DUMPREG(dispc, DISPC_LINE_STATUS); 3499 DUMPREG(dispc, DISPC_LINE_NUMBER); 3500 if (dispc_has_feature(dispc, FEAT_ALPHA_FIXED_ZORDER) || 3501 dispc_has_feature(dispc, FEAT_ALPHA_FREE_ZORDER)) 3502 DUMPREG(dispc, DISPC_GLOBAL_ALPHA); 3503 if (dispc_has_feature(dispc, FEAT_MGR_LCD2)) { 3504 DUMPREG(dispc, DISPC_CONTROL2); 3505 DUMPREG(dispc, DISPC_CONFIG2); 3506 } 3507 if (dispc_has_feature(dispc, FEAT_MGR_LCD3)) { 3508 DUMPREG(dispc, DISPC_CONTROL3); 3509 DUMPREG(dispc, DISPC_CONFIG3); 3510 } 3511 if (dispc_has_feature(dispc, FEAT_MFLAG)) 3512 DUMPREG(dispc, DISPC_GLOBAL_MFLAG_ATTRIBUTE); 3513 3514 #undef DUMPREG 3515 3516 #define DISPC_REG(i, name) name(i) 3517 #define DUMPREG(dispc, i, r) seq_printf(s, "%s(%s)%*s %08x\n", #r, p_names[i], \ 3518 (int)(48 - strlen(#r) - strlen(p_names[i])), " ", \ 3519 dispc_read_reg(dispc, DISPC_REG(i, r))) 3520 3521 p_names = mgr_names; 3522 3523 /* DISPC channel specific registers */ 3524 for (i = 0; i < dispc_get_num_mgrs(dispc); i++) { 3525 DUMPREG(dispc, i, DISPC_DEFAULT_COLOR); 3526 DUMPREG(dispc, i, DISPC_TRANS_COLOR); 3527 DUMPREG(dispc, i, DISPC_SIZE_MGR); 3528 3529 if (i == OMAP_DSS_CHANNEL_DIGIT) 3530 continue; 3531 3532 DUMPREG(dispc, i, DISPC_TIMING_H); 3533 DUMPREG(dispc, i, DISPC_TIMING_V); 3534 DUMPREG(dispc, i, DISPC_POL_FREQ); 3535 DUMPREG(dispc, i, DISPC_DIVISORo); 3536 3537 DUMPREG(dispc, i, DISPC_DATA_CYCLE1); 3538 DUMPREG(dispc, i, DISPC_DATA_CYCLE2); 3539 DUMPREG(dispc, i, DISPC_DATA_CYCLE3); 3540 3541 if (dispc_has_feature(dispc, FEAT_CPR)) { 3542 DUMPREG(dispc, i, DISPC_CPR_COEF_R); 3543 DUMPREG(dispc, i, DISPC_CPR_COEF_G); 3544 DUMPREG(dispc, i, DISPC_CPR_COEF_B); 3545 } 3546 } 3547 3548 p_names = ovl_names; 3549 3550 for (i = 0; i < dispc_get_num_ovls(dispc); i++) { 3551 DUMPREG(dispc, i, DISPC_OVL_BA0); 3552 DUMPREG(dispc, i, DISPC_OVL_BA1); 3553 DUMPREG(dispc, i, DISPC_OVL_POSITION); 3554 DUMPREG(dispc, i, DISPC_OVL_SIZE); 3555 DUMPREG(dispc, i, DISPC_OVL_ATTRIBUTES); 3556 DUMPREG(dispc, i, DISPC_OVL_FIFO_THRESHOLD); 3557 DUMPREG(dispc, i, DISPC_OVL_FIFO_SIZE_STATUS); 3558 DUMPREG(dispc, i, DISPC_OVL_ROW_INC); 3559 DUMPREG(dispc, i, DISPC_OVL_PIXEL_INC); 3560 3561 if (dispc_has_feature(dispc, FEAT_PRELOAD)) 3562 DUMPREG(dispc, i, DISPC_OVL_PRELOAD); 3563 if (dispc_has_feature(dispc, FEAT_MFLAG)) 3564 DUMPREG(dispc, i, DISPC_OVL_MFLAG_THRESHOLD); 3565 3566 if (i == OMAP_DSS_GFX) { 3567 DUMPREG(dispc, i, DISPC_OVL_WINDOW_SKIP); 3568 DUMPREG(dispc, i, DISPC_OVL_TABLE_BA); 3569 continue; 3570 } 3571 3572 DUMPREG(dispc, i, DISPC_OVL_FIR); 3573 DUMPREG(dispc, i, DISPC_OVL_PICTURE_SIZE); 3574 DUMPREG(dispc, i, DISPC_OVL_ACCU0); 3575 DUMPREG(dispc, i, DISPC_OVL_ACCU1); 3576 if (dispc_has_feature(dispc, FEAT_HANDLE_UV_SEPARATE)) { 3577 DUMPREG(dispc, i, DISPC_OVL_BA0_UV); 3578 DUMPREG(dispc, i, DISPC_OVL_BA1_UV); 3579 DUMPREG(dispc, i, DISPC_OVL_FIR2); 3580 DUMPREG(dispc, i, DISPC_OVL_ACCU2_0); 3581 DUMPREG(dispc, i, DISPC_OVL_ACCU2_1); 3582 } 3583 if (dispc_has_feature(dispc, FEAT_ATTR2)) 3584 DUMPREG(dispc, i, DISPC_OVL_ATTRIBUTES2); 3585 } 3586 3587 if (dispc->feat->has_writeback) { 3588 i = OMAP_DSS_WB; 3589 DUMPREG(dispc, i, DISPC_OVL_BA0); 3590 DUMPREG(dispc, i, DISPC_OVL_BA1); 3591 DUMPREG(dispc, i, DISPC_OVL_SIZE); 3592 DUMPREG(dispc, i, DISPC_OVL_ATTRIBUTES); 3593 DUMPREG(dispc, i, DISPC_OVL_FIFO_THRESHOLD); 3594 DUMPREG(dispc, i, DISPC_OVL_FIFO_SIZE_STATUS); 3595 DUMPREG(dispc, i, DISPC_OVL_ROW_INC); 3596 DUMPREG(dispc, i, DISPC_OVL_PIXEL_INC); 3597 3598 if (dispc_has_feature(dispc, FEAT_MFLAG)) 3599 DUMPREG(dispc, i, DISPC_OVL_MFLAG_THRESHOLD); 3600 3601 DUMPREG(dispc, i, DISPC_OVL_FIR); 3602 DUMPREG(dispc, i, DISPC_OVL_PICTURE_SIZE); 3603 DUMPREG(dispc, i, DISPC_OVL_ACCU0); 3604 DUMPREG(dispc, i, DISPC_OVL_ACCU1); 3605 if (dispc_has_feature(dispc, FEAT_HANDLE_UV_SEPARATE)) { 3606 DUMPREG(dispc, i, DISPC_OVL_BA0_UV); 3607 DUMPREG(dispc, i, DISPC_OVL_BA1_UV); 3608 DUMPREG(dispc, i, DISPC_OVL_FIR2); 3609 DUMPREG(dispc, i, DISPC_OVL_ACCU2_0); 3610 DUMPREG(dispc, i, DISPC_OVL_ACCU2_1); 3611 } 3612 if (dispc_has_feature(dispc, FEAT_ATTR2)) 3613 DUMPREG(dispc, i, DISPC_OVL_ATTRIBUTES2); 3614 } 3615 3616 #undef DISPC_REG 3617 #undef DUMPREG 3618 3619 #define DISPC_REG(plane, name, i) name(plane, i) 3620 #define DUMPREG(dispc, plane, name, i) \ 3621 seq_printf(s, "%s_%d(%s)%*s %08x\n", #name, i, p_names[plane], \ 3622 (int)(46 - strlen(#name) - strlen(p_names[plane])), " ", \ 3623 dispc_read_reg(dispc, DISPC_REG(plane, name, i))) 3624 3625 /* Video pipeline coefficient registers */ 3626 3627 /* start from OMAP_DSS_VIDEO1 */ 3628 for (i = 1; i < dispc_get_num_ovls(dispc); i++) { 3629 for (j = 0; j < 8; j++) 3630 DUMPREG(dispc, i, DISPC_OVL_FIR_COEF_H, j); 3631 3632 for (j = 0; j < 8; j++) 3633 DUMPREG(dispc, i, DISPC_OVL_FIR_COEF_HV, j); 3634 3635 for (j = 0; j < 5; j++) 3636 DUMPREG(dispc, i, DISPC_OVL_CONV_COEF, j); 3637 3638 if (dispc_has_feature(dispc, FEAT_FIR_COEF_V)) { 3639 for (j = 0; j < 8; j++) 3640 DUMPREG(dispc, i, DISPC_OVL_FIR_COEF_V, j); 3641 } 3642 3643 if (dispc_has_feature(dispc, FEAT_HANDLE_UV_SEPARATE)) { 3644 for (j = 0; j < 8; j++) 3645 DUMPREG(dispc, i, DISPC_OVL_FIR_COEF_H2, j); 3646 3647 for (j = 0; j < 8; j++) 3648 DUMPREG(dispc, i, DISPC_OVL_FIR_COEF_HV2, j); 3649 3650 for (j = 0; j < 8; j++) 3651 DUMPREG(dispc, i, DISPC_OVL_FIR_COEF_V2, j); 3652 } 3653 } 3654 3655 dispc_runtime_put(dispc); 3656 3657 #undef DISPC_REG 3658 #undef DUMPREG 3659 3660 return 0; 3661 } 3662 3663 /* calculate clock rates using dividers in cinfo */ 3664 int dispc_calc_clock_rates(struct dispc_device *dispc, 3665 unsigned long dispc_fclk_rate, 3666 struct dispc_clock_info *cinfo) 3667 { 3668 if (cinfo->lck_div > 255 || cinfo->lck_div == 0) 3669 return -EINVAL; 3670 if (cinfo->pck_div < 1 || cinfo->pck_div > 255) 3671 return -EINVAL; 3672 3673 cinfo->lck = dispc_fclk_rate / cinfo->lck_div; 3674 cinfo->pck = cinfo->lck / cinfo->pck_div; 3675 3676 return 0; 3677 } 3678 3679 bool dispc_div_calc(struct dispc_device *dispc, unsigned long dispc_freq, 3680 unsigned long pck_min, unsigned long pck_max, 3681 dispc_div_calc_func func, void *data) 3682 { 3683 int lckd, lckd_start, lckd_stop; 3684 int pckd, pckd_start, pckd_stop; 3685 unsigned long pck, lck; 3686 unsigned long lck_max; 3687 unsigned long pckd_hw_min, pckd_hw_max; 3688 unsigned int min_fck_per_pck; 3689 unsigned long fck; 3690 3691 #ifdef CONFIG_OMAP2_DSS_MIN_FCK_PER_PCK 3692 min_fck_per_pck = CONFIG_OMAP2_DSS_MIN_FCK_PER_PCK; 3693 #else 3694 min_fck_per_pck = 0; 3695 #endif 3696 3697 pckd_hw_min = dispc->feat->min_pcd; 3698 pckd_hw_max = 255; 3699 3700 lck_max = dss_get_max_fck_rate(dispc->dss); 3701 3702 pck_min = pck_min ? pck_min : 1; 3703 pck_max = pck_max ? pck_max : ULONG_MAX; 3704 3705 lckd_start = max(DIV_ROUND_UP(dispc_freq, lck_max), 1ul); 3706 lckd_stop = min(dispc_freq / pck_min, 255ul); 3707 3708 for (lckd = lckd_start; lckd <= lckd_stop; ++lckd) { 3709 lck = dispc_freq / lckd; 3710 3711 pckd_start = max(DIV_ROUND_UP(lck, pck_max), pckd_hw_min); 3712 pckd_stop = min(lck / pck_min, pckd_hw_max); 3713 3714 for (pckd = pckd_start; pckd <= pckd_stop; ++pckd) { 3715 pck = lck / pckd; 3716 3717 /* 3718 * For OMAP2/3 the DISPC fclk is the same as LCD's logic 3719 * clock, which means we're configuring DISPC fclk here 3720 * also. Thus we need to use the calculated lck. For 3721 * OMAP4+ the DISPC fclk is a separate clock. 3722 */ 3723 if (dispc_has_feature(dispc, FEAT_CORE_CLK_DIV)) 3724 fck = dispc_core_clk_rate(dispc); 3725 else 3726 fck = lck; 3727 3728 if (fck < pck * min_fck_per_pck) 3729 continue; 3730 3731 if (func(lckd, pckd, lck, pck, data)) 3732 return true; 3733 } 3734 } 3735 3736 return false; 3737 } 3738 3739 void dispc_mgr_set_clock_div(struct dispc_device *dispc, 3740 enum omap_channel channel, 3741 const struct dispc_clock_info *cinfo) 3742 { 3743 DSSDBG("lck = %lu (%u)\n", cinfo->lck, cinfo->lck_div); 3744 DSSDBG("pck = %lu (%u)\n", cinfo->pck, cinfo->pck_div); 3745 3746 dispc_mgr_set_lcd_divisor(dispc, channel, cinfo->lck_div, 3747 cinfo->pck_div); 3748 } 3749 3750 int dispc_mgr_get_clock_div(struct dispc_device *dispc, 3751 enum omap_channel channel, 3752 struct dispc_clock_info *cinfo) 3753 { 3754 unsigned long fck; 3755 3756 fck = dispc_fclk_rate(dispc); 3757 3758 cinfo->lck_div = REG_GET(dispc, DISPC_DIVISORo(channel), 23, 16); 3759 cinfo->pck_div = REG_GET(dispc, DISPC_DIVISORo(channel), 7, 0); 3760 3761 cinfo->lck = fck / cinfo->lck_div; 3762 cinfo->pck = cinfo->lck / cinfo->pck_div; 3763 3764 return 0; 3765 } 3766 3767 u32 dispc_read_irqstatus(struct dispc_device *dispc) 3768 { 3769 return dispc_read_reg(dispc, DISPC_IRQSTATUS); 3770 } 3771 3772 void dispc_clear_irqstatus(struct dispc_device *dispc, u32 mask) 3773 { 3774 dispc_write_reg(dispc, DISPC_IRQSTATUS, mask); 3775 } 3776 3777 void dispc_write_irqenable(struct dispc_device *dispc, u32 mask) 3778 { 3779 u32 old_mask = dispc_read_reg(dispc, DISPC_IRQENABLE); 3780 3781 /* clear the irqstatus for newly enabled irqs */ 3782 dispc_clear_irqstatus(dispc, (mask ^ old_mask) & mask); 3783 3784 dispc_write_reg(dispc, DISPC_IRQENABLE, mask); 3785 3786 /* flush posted write */ 3787 dispc_read_reg(dispc, DISPC_IRQENABLE); 3788 } 3789 3790 void dispc_enable_sidle(struct dispc_device *dispc) 3791 { 3792 /* SIDLEMODE: smart idle */ 3793 REG_FLD_MOD(dispc, DISPC_SYSCONFIG, 2, 4, 3); 3794 } 3795 3796 void dispc_disable_sidle(struct dispc_device *dispc) 3797 { 3798 REG_FLD_MOD(dispc, DISPC_SYSCONFIG, 1, 4, 3); /* SIDLEMODE: no idle */ 3799 } 3800 3801 u32 dispc_mgr_gamma_size(struct dispc_device *dispc, 3802 enum omap_channel channel) 3803 { 3804 const struct dispc_gamma_desc *gdesc = &mgr_desc[channel].gamma; 3805 3806 if (!dispc->feat->has_gamma_table) 3807 return 0; 3808 3809 return gdesc->len; 3810 } 3811 3812 static void dispc_mgr_write_gamma_table(struct dispc_device *dispc, 3813 enum omap_channel channel) 3814 { 3815 const struct dispc_gamma_desc *gdesc = &mgr_desc[channel].gamma; 3816 u32 *table = dispc->gamma_table[channel]; 3817 unsigned int i; 3818 3819 DSSDBG("%s: channel %d\n", __func__, channel); 3820 3821 for (i = 0; i < gdesc->len; ++i) { 3822 u32 v = table[i]; 3823 3824 if (gdesc->has_index) 3825 v |= i << 24; 3826 else if (i == 0) 3827 v |= 1 << 31; 3828 3829 dispc_write_reg(dispc, gdesc->reg, v); 3830 } 3831 } 3832 3833 static void dispc_restore_gamma_tables(struct dispc_device *dispc) 3834 { 3835 DSSDBG("%s()\n", __func__); 3836 3837 if (!dispc->feat->has_gamma_table) 3838 return; 3839 3840 dispc_mgr_write_gamma_table(dispc, OMAP_DSS_CHANNEL_LCD); 3841 3842 dispc_mgr_write_gamma_table(dispc, OMAP_DSS_CHANNEL_DIGIT); 3843 3844 if (dispc_has_feature(dispc, FEAT_MGR_LCD2)) 3845 dispc_mgr_write_gamma_table(dispc, OMAP_DSS_CHANNEL_LCD2); 3846 3847 if (dispc_has_feature(dispc, FEAT_MGR_LCD3)) 3848 dispc_mgr_write_gamma_table(dispc, OMAP_DSS_CHANNEL_LCD3); 3849 } 3850 3851 static const struct drm_color_lut dispc_mgr_gamma_default_lut[] = { 3852 { .red = 0, .green = 0, .blue = 0, }, 3853 { .red = U16_MAX, .green = U16_MAX, .blue = U16_MAX, }, 3854 }; 3855 3856 void dispc_mgr_set_gamma(struct dispc_device *dispc, 3857 enum omap_channel channel, 3858 const struct drm_color_lut *lut, 3859 unsigned int length) 3860 { 3861 const struct dispc_gamma_desc *gdesc = &mgr_desc[channel].gamma; 3862 u32 *table = dispc->gamma_table[channel]; 3863 uint i; 3864 3865 DSSDBG("%s: channel %d, lut len %u, hw len %u\n", __func__, 3866 channel, length, gdesc->len); 3867 3868 if (!dispc->feat->has_gamma_table) 3869 return; 3870 3871 if (lut == NULL || length < 2) { 3872 lut = dispc_mgr_gamma_default_lut; 3873 length = ARRAY_SIZE(dispc_mgr_gamma_default_lut); 3874 } 3875 3876 for (i = 0; i < length - 1; ++i) { 3877 uint first = i * (gdesc->len - 1) / (length - 1); 3878 uint last = (i + 1) * (gdesc->len - 1) / (length - 1); 3879 uint w = last - first; 3880 u16 r, g, b; 3881 uint j; 3882 3883 if (w == 0) 3884 continue; 3885 3886 for (j = 0; j <= w; j++) { 3887 r = (lut[i].red * (w - j) + lut[i+1].red * j) / w; 3888 g = (lut[i].green * (w - j) + lut[i+1].green * j) / w; 3889 b = (lut[i].blue * (w - j) + lut[i+1].blue * j) / w; 3890 3891 r >>= 16 - gdesc->bits; 3892 g >>= 16 - gdesc->bits; 3893 b >>= 16 - gdesc->bits; 3894 3895 table[first + j] = (r << (gdesc->bits * 2)) | 3896 (g << gdesc->bits) | b; 3897 } 3898 } 3899 3900 if (dispc->is_enabled) 3901 dispc_mgr_write_gamma_table(dispc, channel); 3902 } 3903 3904 static int dispc_init_gamma_tables(struct dispc_device *dispc) 3905 { 3906 int channel; 3907 3908 if (!dispc->feat->has_gamma_table) 3909 return 0; 3910 3911 for (channel = 0; channel < ARRAY_SIZE(dispc->gamma_table); channel++) { 3912 const struct dispc_gamma_desc *gdesc = &mgr_desc[channel].gamma; 3913 u32 *gt; 3914 3915 if (channel == OMAP_DSS_CHANNEL_LCD2 && 3916 !dispc_has_feature(dispc, FEAT_MGR_LCD2)) 3917 continue; 3918 3919 if (channel == OMAP_DSS_CHANNEL_LCD3 && 3920 !dispc_has_feature(dispc, FEAT_MGR_LCD3)) 3921 continue; 3922 3923 gt = devm_kmalloc_array(&dispc->pdev->dev, gdesc->len, 3924 sizeof(u32), GFP_KERNEL); 3925 if (!gt) 3926 return -ENOMEM; 3927 3928 dispc->gamma_table[channel] = gt; 3929 3930 dispc_mgr_set_gamma(dispc, channel, NULL, 0); 3931 } 3932 return 0; 3933 } 3934 3935 static void _omap_dispc_initial_config(struct dispc_device *dispc) 3936 { 3937 u32 l; 3938 3939 /* Exclusively enable DISPC_CORE_CLK and set divider to 1 */ 3940 if (dispc_has_feature(dispc, FEAT_CORE_CLK_DIV)) { 3941 l = dispc_read_reg(dispc, DISPC_DIVISOR); 3942 /* Use DISPC_DIVISOR.LCD, instead of DISPC_DIVISOR1.LCD */ 3943 l = FLD_MOD(l, 1, 0, 0); 3944 l = FLD_MOD(l, 1, 23, 16); 3945 dispc_write_reg(dispc, DISPC_DIVISOR, l); 3946 3947 dispc->core_clk_rate = dispc_fclk_rate(dispc); 3948 } 3949 3950 /* Use gamma table mode, instead of palette mode */ 3951 if (dispc->feat->has_gamma_table) 3952 REG_FLD_MOD(dispc, DISPC_CONFIG, 1, 3, 3); 3953 3954 /* For older DSS versions (FEAT_FUNCGATED) this enables 3955 * func-clock auto-gating. For newer versions 3956 * (dispc->feat->has_gamma_table) this enables tv-out gamma tables. 3957 */ 3958 if (dispc_has_feature(dispc, FEAT_FUNCGATED) || 3959 dispc->feat->has_gamma_table) 3960 REG_FLD_MOD(dispc, DISPC_CONFIG, 1, 9, 9); 3961 3962 dispc_set_loadmode(dispc, OMAP_DSS_LOAD_FRAME_ONLY); 3963 3964 dispc_init_fifos(dispc); 3965 3966 dispc_configure_burst_sizes(dispc); 3967 3968 dispc_ovl_enable_zorder_planes(dispc); 3969 3970 if (dispc->feat->mstandby_workaround) 3971 REG_FLD_MOD(dispc, DISPC_MSTANDBY_CTRL, 1, 0, 0); 3972 3973 if (dispc_has_feature(dispc, FEAT_MFLAG)) 3974 dispc_init_mflag(dispc); 3975 } 3976 3977 static const enum dispc_feature_id omap2_dispc_features_list[] = { 3978 FEAT_LCDENABLEPOL, 3979 FEAT_LCDENABLESIGNAL, 3980 FEAT_PCKFREEENABLE, 3981 FEAT_FUNCGATED, 3982 FEAT_ROWREPEATENABLE, 3983 FEAT_RESIZECONF, 3984 }; 3985 3986 static const enum dispc_feature_id omap3_dispc_features_list[] = { 3987 FEAT_LCDENABLEPOL, 3988 FEAT_LCDENABLESIGNAL, 3989 FEAT_PCKFREEENABLE, 3990 FEAT_FUNCGATED, 3991 FEAT_LINEBUFFERSPLIT, 3992 FEAT_ROWREPEATENABLE, 3993 FEAT_RESIZECONF, 3994 FEAT_CPR, 3995 FEAT_PRELOAD, 3996 FEAT_FIR_COEF_V, 3997 FEAT_ALPHA_FIXED_ZORDER, 3998 FEAT_FIFO_MERGE, 3999 FEAT_OMAP3_DSI_FIFO_BUG, 4000 }; 4001 4002 static const enum dispc_feature_id am43xx_dispc_features_list[] = { 4003 FEAT_LCDENABLEPOL, 4004 FEAT_LCDENABLESIGNAL, 4005 FEAT_PCKFREEENABLE, 4006 FEAT_FUNCGATED, 4007 FEAT_LINEBUFFERSPLIT, 4008 FEAT_ROWREPEATENABLE, 4009 FEAT_RESIZECONF, 4010 FEAT_CPR, 4011 FEAT_PRELOAD, 4012 FEAT_FIR_COEF_V, 4013 FEAT_ALPHA_FIXED_ZORDER, 4014 FEAT_FIFO_MERGE, 4015 }; 4016 4017 static const enum dispc_feature_id omap4_dispc_features_list[] = { 4018 FEAT_MGR_LCD2, 4019 FEAT_CORE_CLK_DIV, 4020 FEAT_HANDLE_UV_SEPARATE, 4021 FEAT_ATTR2, 4022 FEAT_CPR, 4023 FEAT_PRELOAD, 4024 FEAT_FIR_COEF_V, 4025 FEAT_ALPHA_FREE_ZORDER, 4026 FEAT_FIFO_MERGE, 4027 FEAT_BURST_2D, 4028 }; 4029 4030 static const enum dispc_feature_id omap5_dispc_features_list[] = { 4031 FEAT_MGR_LCD2, 4032 FEAT_MGR_LCD3, 4033 FEAT_CORE_CLK_DIV, 4034 FEAT_HANDLE_UV_SEPARATE, 4035 FEAT_ATTR2, 4036 FEAT_CPR, 4037 FEAT_PRELOAD, 4038 FEAT_FIR_COEF_V, 4039 FEAT_ALPHA_FREE_ZORDER, 4040 FEAT_FIFO_MERGE, 4041 FEAT_BURST_2D, 4042 FEAT_MFLAG, 4043 }; 4044 4045 static const struct dss_reg_field omap2_dispc_reg_fields[] = { 4046 [FEAT_REG_FIRHINC] = { 11, 0 }, 4047 [FEAT_REG_FIRVINC] = { 27, 16 }, 4048 [FEAT_REG_FIFOLOWTHRESHOLD] = { 8, 0 }, 4049 [FEAT_REG_FIFOHIGHTHRESHOLD] = { 24, 16 }, 4050 [FEAT_REG_FIFOSIZE] = { 8, 0 }, 4051 [FEAT_REG_HORIZONTALACCU] = { 9, 0 }, 4052 [FEAT_REG_VERTICALACCU] = { 25, 16 }, 4053 }; 4054 4055 static const struct dss_reg_field omap3_dispc_reg_fields[] = { 4056 [FEAT_REG_FIRHINC] = { 12, 0 }, 4057 [FEAT_REG_FIRVINC] = { 28, 16 }, 4058 [FEAT_REG_FIFOLOWTHRESHOLD] = { 11, 0 }, 4059 [FEAT_REG_FIFOHIGHTHRESHOLD] = { 27, 16 }, 4060 [FEAT_REG_FIFOSIZE] = { 10, 0 }, 4061 [FEAT_REG_HORIZONTALACCU] = { 9, 0 }, 4062 [FEAT_REG_VERTICALACCU] = { 25, 16 }, 4063 }; 4064 4065 static const struct dss_reg_field omap4_dispc_reg_fields[] = { 4066 [FEAT_REG_FIRHINC] = { 12, 0 }, 4067 [FEAT_REG_FIRVINC] = { 28, 16 }, 4068 [FEAT_REG_FIFOLOWTHRESHOLD] = { 15, 0 }, 4069 [FEAT_REG_FIFOHIGHTHRESHOLD] = { 31, 16 }, 4070 [FEAT_REG_FIFOSIZE] = { 15, 0 }, 4071 [FEAT_REG_HORIZONTALACCU] = { 10, 0 }, 4072 [FEAT_REG_VERTICALACCU] = { 26, 16 }, 4073 }; 4074 4075 static const enum omap_overlay_caps omap2_dispc_overlay_caps[] = { 4076 /* OMAP_DSS_GFX */ 4077 OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION, 4078 4079 /* OMAP_DSS_VIDEO1 */ 4080 OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_POS | 4081 OMAP_DSS_OVL_CAP_REPLICATION, 4082 4083 /* OMAP_DSS_VIDEO2 */ 4084 OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_POS | 4085 OMAP_DSS_OVL_CAP_REPLICATION, 4086 }; 4087 4088 static const enum omap_overlay_caps omap3430_dispc_overlay_caps[] = { 4089 /* OMAP_DSS_GFX */ 4090 OMAP_DSS_OVL_CAP_GLOBAL_ALPHA | OMAP_DSS_OVL_CAP_POS | 4091 OMAP_DSS_OVL_CAP_REPLICATION, 4092 4093 /* OMAP_DSS_VIDEO1 */ 4094 OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_POS | 4095 OMAP_DSS_OVL_CAP_REPLICATION, 4096 4097 /* OMAP_DSS_VIDEO2 */ 4098 OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_GLOBAL_ALPHA | 4099 OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION, 4100 }; 4101 4102 static const enum omap_overlay_caps omap3630_dispc_overlay_caps[] = { 4103 /* OMAP_DSS_GFX */ 4104 OMAP_DSS_OVL_CAP_GLOBAL_ALPHA | OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA | 4105 OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION, 4106 4107 /* OMAP_DSS_VIDEO1 */ 4108 OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_POS | 4109 OMAP_DSS_OVL_CAP_REPLICATION, 4110 4111 /* OMAP_DSS_VIDEO2 */ 4112 OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_GLOBAL_ALPHA | 4113 OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA | OMAP_DSS_OVL_CAP_POS | 4114 OMAP_DSS_OVL_CAP_REPLICATION, 4115 }; 4116 4117 static const enum omap_overlay_caps omap4_dispc_overlay_caps[] = { 4118 /* OMAP_DSS_GFX */ 4119 OMAP_DSS_OVL_CAP_GLOBAL_ALPHA | OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA | 4120 OMAP_DSS_OVL_CAP_ZORDER | OMAP_DSS_OVL_CAP_POS | 4121 OMAP_DSS_OVL_CAP_REPLICATION, 4122 4123 /* OMAP_DSS_VIDEO1 */ 4124 OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_GLOBAL_ALPHA | 4125 OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA | OMAP_DSS_OVL_CAP_ZORDER | 4126 OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION, 4127 4128 /* OMAP_DSS_VIDEO2 */ 4129 OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_GLOBAL_ALPHA | 4130 OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA | OMAP_DSS_OVL_CAP_ZORDER | 4131 OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION, 4132 4133 /* OMAP_DSS_VIDEO3 */ 4134 OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_GLOBAL_ALPHA | 4135 OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA | OMAP_DSS_OVL_CAP_ZORDER | 4136 OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION, 4137 }; 4138 4139 #define COLOR_ARRAY(arr...) (const u32[]) { arr, 0 } 4140 4141 static const u32 *omap2_dispc_supported_color_modes[] = { 4142 4143 /* OMAP_DSS_GFX */ 4144 COLOR_ARRAY( 4145 DRM_FORMAT_RGBX4444, DRM_FORMAT_RGB565, 4146 DRM_FORMAT_XRGB8888, DRM_FORMAT_RGB888), 4147 4148 /* OMAP_DSS_VIDEO1 */ 4149 COLOR_ARRAY( 4150 DRM_FORMAT_RGB565, DRM_FORMAT_XRGB8888, 4151 DRM_FORMAT_RGB888, DRM_FORMAT_YUYV, 4152 DRM_FORMAT_UYVY), 4153 4154 /* OMAP_DSS_VIDEO2 */ 4155 COLOR_ARRAY( 4156 DRM_FORMAT_RGB565, DRM_FORMAT_XRGB8888, 4157 DRM_FORMAT_RGB888, DRM_FORMAT_YUYV, 4158 DRM_FORMAT_UYVY), 4159 }; 4160 4161 static const u32 *omap3_dispc_supported_color_modes[] = { 4162 /* OMAP_DSS_GFX */ 4163 COLOR_ARRAY( 4164 DRM_FORMAT_RGBX4444, DRM_FORMAT_ARGB4444, 4165 DRM_FORMAT_RGB565, DRM_FORMAT_XRGB8888, 4166 DRM_FORMAT_RGB888, DRM_FORMAT_ARGB8888, 4167 DRM_FORMAT_RGBA8888, DRM_FORMAT_RGBX8888), 4168 4169 /* OMAP_DSS_VIDEO1 */ 4170 COLOR_ARRAY( 4171 DRM_FORMAT_XRGB8888, DRM_FORMAT_RGB888, 4172 DRM_FORMAT_RGBX4444, DRM_FORMAT_RGB565, 4173 DRM_FORMAT_YUYV, DRM_FORMAT_UYVY), 4174 4175 /* OMAP_DSS_VIDEO2 */ 4176 COLOR_ARRAY( 4177 DRM_FORMAT_RGBX4444, DRM_FORMAT_ARGB4444, 4178 DRM_FORMAT_RGB565, DRM_FORMAT_XRGB8888, 4179 DRM_FORMAT_RGB888, DRM_FORMAT_YUYV, 4180 DRM_FORMAT_UYVY, DRM_FORMAT_ARGB8888, 4181 DRM_FORMAT_RGBA8888, DRM_FORMAT_RGBX8888), 4182 }; 4183 4184 static const u32 *omap4_dispc_supported_color_modes[] = { 4185 /* OMAP_DSS_GFX */ 4186 COLOR_ARRAY( 4187 DRM_FORMAT_RGBX4444, DRM_FORMAT_ARGB4444, 4188 DRM_FORMAT_RGB565, DRM_FORMAT_XRGB8888, 4189 DRM_FORMAT_RGB888, DRM_FORMAT_ARGB8888, 4190 DRM_FORMAT_RGBA8888, DRM_FORMAT_RGBX8888, 4191 DRM_FORMAT_ARGB1555, DRM_FORMAT_XRGB4444, 4192 DRM_FORMAT_RGBA4444, DRM_FORMAT_XRGB1555), 4193 4194 /* OMAP_DSS_VIDEO1 */ 4195 COLOR_ARRAY( 4196 DRM_FORMAT_RGB565, DRM_FORMAT_RGBX4444, 4197 DRM_FORMAT_YUYV, DRM_FORMAT_ARGB1555, 4198 DRM_FORMAT_RGBA8888, DRM_FORMAT_NV12, 4199 DRM_FORMAT_RGBA4444, DRM_FORMAT_XRGB8888, 4200 DRM_FORMAT_RGB888, DRM_FORMAT_UYVY, 4201 DRM_FORMAT_ARGB4444, DRM_FORMAT_XRGB1555, 4202 DRM_FORMAT_ARGB8888, DRM_FORMAT_XRGB4444, 4203 DRM_FORMAT_RGBX8888), 4204 4205 /* OMAP_DSS_VIDEO2 */ 4206 COLOR_ARRAY( 4207 DRM_FORMAT_RGB565, DRM_FORMAT_RGBX4444, 4208 DRM_FORMAT_YUYV, DRM_FORMAT_ARGB1555, 4209 DRM_FORMAT_RGBA8888, DRM_FORMAT_NV12, 4210 DRM_FORMAT_RGBA4444, DRM_FORMAT_XRGB8888, 4211 DRM_FORMAT_RGB888, DRM_FORMAT_UYVY, 4212 DRM_FORMAT_ARGB4444, DRM_FORMAT_XRGB1555, 4213 DRM_FORMAT_ARGB8888, DRM_FORMAT_XRGB4444, 4214 DRM_FORMAT_RGBX8888), 4215 4216 /* OMAP_DSS_VIDEO3 */ 4217 COLOR_ARRAY( 4218 DRM_FORMAT_RGB565, DRM_FORMAT_RGBX4444, 4219 DRM_FORMAT_YUYV, DRM_FORMAT_ARGB1555, 4220 DRM_FORMAT_RGBA8888, DRM_FORMAT_NV12, 4221 DRM_FORMAT_RGBA4444, DRM_FORMAT_XRGB8888, 4222 DRM_FORMAT_RGB888, DRM_FORMAT_UYVY, 4223 DRM_FORMAT_ARGB4444, DRM_FORMAT_XRGB1555, 4224 DRM_FORMAT_ARGB8888, DRM_FORMAT_XRGB4444, 4225 DRM_FORMAT_RGBX8888), 4226 4227 /* OMAP_DSS_WB */ 4228 COLOR_ARRAY( 4229 DRM_FORMAT_RGB565, DRM_FORMAT_RGBX4444, 4230 DRM_FORMAT_YUYV, DRM_FORMAT_ARGB1555, 4231 DRM_FORMAT_RGBA8888, DRM_FORMAT_NV12, 4232 DRM_FORMAT_RGBA4444, DRM_FORMAT_XRGB8888, 4233 DRM_FORMAT_RGB888, DRM_FORMAT_UYVY, 4234 DRM_FORMAT_ARGB4444, DRM_FORMAT_XRGB1555, 4235 DRM_FORMAT_ARGB8888, DRM_FORMAT_XRGB4444, 4236 DRM_FORMAT_RGBX8888), 4237 }; 4238 4239 static const u32 omap3_dispc_supported_scaler_color_modes[] = { 4240 DRM_FORMAT_XRGB8888, DRM_FORMAT_RGB565, DRM_FORMAT_YUYV, 4241 DRM_FORMAT_UYVY, 4242 0, 4243 }; 4244 4245 static const struct dispc_features omap24xx_dispc_feats = { 4246 .sw_start = 5, 4247 .fp_start = 15, 4248 .bp_start = 27, 4249 .sw_max = 64, 4250 .vp_max = 255, 4251 .hp_max = 256, 4252 .mgr_width_start = 10, 4253 .mgr_height_start = 26, 4254 .mgr_width_max = 2048, 4255 .mgr_height_max = 2048, 4256 .ovl_width_max = 2048, 4257 .ovl_height_max = 2048, 4258 .max_lcd_pclk = 66500000, 4259 .max_downscale = 2, 4260 /* 4261 * Assume the line width buffer to be 768 pixels as OMAP2 DISPC scaler 4262 * cannot scale an image width larger than 768. 4263 */ 4264 .max_line_width = 768, 4265 .min_pcd = 2, 4266 .calc_scaling = dispc_ovl_calc_scaling_24xx, 4267 .calc_core_clk = calc_core_clk_24xx, 4268 .num_fifos = 3, 4269 .features = omap2_dispc_features_list, 4270 .num_features = ARRAY_SIZE(omap2_dispc_features_list), 4271 .reg_fields = omap2_dispc_reg_fields, 4272 .num_reg_fields = ARRAY_SIZE(omap2_dispc_reg_fields), 4273 .overlay_caps = omap2_dispc_overlay_caps, 4274 .supported_color_modes = omap2_dispc_supported_color_modes, 4275 .supported_scaler_color_modes = COLOR_ARRAY(DRM_FORMAT_XRGB8888), 4276 .num_mgrs = 2, 4277 .num_ovls = 3, 4278 .buffer_size_unit = 1, 4279 .burst_size_unit = 8, 4280 .no_framedone_tv = true, 4281 .set_max_preload = false, 4282 .last_pixel_inc_missing = true, 4283 }; 4284 4285 static const struct dispc_features omap34xx_rev1_0_dispc_feats = { 4286 .sw_start = 5, 4287 .fp_start = 15, 4288 .bp_start = 27, 4289 .sw_max = 64, 4290 .vp_max = 255, 4291 .hp_max = 256, 4292 .mgr_width_start = 10, 4293 .mgr_height_start = 26, 4294 .mgr_width_max = 2048, 4295 .mgr_height_max = 2048, 4296 .ovl_width_max = 2048, 4297 .ovl_height_max = 2048, 4298 .max_lcd_pclk = 173000000, 4299 .max_tv_pclk = 59000000, 4300 .max_downscale = 4, 4301 .max_line_width = 1024, 4302 .min_pcd = 1, 4303 .calc_scaling = dispc_ovl_calc_scaling_34xx, 4304 .calc_core_clk = calc_core_clk_34xx, 4305 .num_fifos = 3, 4306 .features = omap3_dispc_features_list, 4307 .num_features = ARRAY_SIZE(omap3_dispc_features_list), 4308 .reg_fields = omap3_dispc_reg_fields, 4309 .num_reg_fields = ARRAY_SIZE(omap3_dispc_reg_fields), 4310 .overlay_caps = omap3430_dispc_overlay_caps, 4311 .supported_color_modes = omap3_dispc_supported_color_modes, 4312 .supported_scaler_color_modes = omap3_dispc_supported_scaler_color_modes, 4313 .num_mgrs = 2, 4314 .num_ovls = 3, 4315 .buffer_size_unit = 1, 4316 .burst_size_unit = 8, 4317 .no_framedone_tv = true, 4318 .set_max_preload = false, 4319 .last_pixel_inc_missing = true, 4320 }; 4321 4322 static const struct dispc_features omap34xx_rev3_0_dispc_feats = { 4323 .sw_start = 7, 4324 .fp_start = 19, 4325 .bp_start = 31, 4326 .sw_max = 256, 4327 .vp_max = 4095, 4328 .hp_max = 4096, 4329 .mgr_width_start = 10, 4330 .mgr_height_start = 26, 4331 .mgr_width_max = 2048, 4332 .mgr_height_max = 2048, 4333 .ovl_width_max = 2048, 4334 .ovl_height_max = 2048, 4335 .max_lcd_pclk = 173000000, 4336 .max_tv_pclk = 59000000, 4337 .max_downscale = 4, 4338 .max_line_width = 1024, 4339 .min_pcd = 1, 4340 .calc_scaling = dispc_ovl_calc_scaling_34xx, 4341 .calc_core_clk = calc_core_clk_34xx, 4342 .num_fifos = 3, 4343 .features = omap3_dispc_features_list, 4344 .num_features = ARRAY_SIZE(omap3_dispc_features_list), 4345 .reg_fields = omap3_dispc_reg_fields, 4346 .num_reg_fields = ARRAY_SIZE(omap3_dispc_reg_fields), 4347 .overlay_caps = omap3430_dispc_overlay_caps, 4348 .supported_color_modes = omap3_dispc_supported_color_modes, 4349 .supported_scaler_color_modes = omap3_dispc_supported_scaler_color_modes, 4350 .num_mgrs = 2, 4351 .num_ovls = 3, 4352 .buffer_size_unit = 1, 4353 .burst_size_unit = 8, 4354 .no_framedone_tv = true, 4355 .set_max_preload = false, 4356 .last_pixel_inc_missing = true, 4357 }; 4358 4359 static const struct dispc_features omap36xx_dispc_feats = { 4360 .sw_start = 7, 4361 .fp_start = 19, 4362 .bp_start = 31, 4363 .sw_max = 256, 4364 .vp_max = 4095, 4365 .hp_max = 4096, 4366 .mgr_width_start = 10, 4367 .mgr_height_start = 26, 4368 .mgr_width_max = 2048, 4369 .mgr_height_max = 2048, 4370 .ovl_width_max = 2048, 4371 .ovl_height_max = 2048, 4372 .max_lcd_pclk = 173000000, 4373 .max_tv_pclk = 59000000, 4374 .max_downscale = 4, 4375 .max_line_width = 1024, 4376 .min_pcd = 1, 4377 .calc_scaling = dispc_ovl_calc_scaling_34xx, 4378 .calc_core_clk = calc_core_clk_34xx, 4379 .num_fifos = 3, 4380 .features = omap3_dispc_features_list, 4381 .num_features = ARRAY_SIZE(omap3_dispc_features_list), 4382 .reg_fields = omap3_dispc_reg_fields, 4383 .num_reg_fields = ARRAY_SIZE(omap3_dispc_reg_fields), 4384 .overlay_caps = omap3630_dispc_overlay_caps, 4385 .supported_color_modes = omap3_dispc_supported_color_modes, 4386 .supported_scaler_color_modes = omap3_dispc_supported_scaler_color_modes, 4387 .num_mgrs = 2, 4388 .num_ovls = 3, 4389 .buffer_size_unit = 1, 4390 .burst_size_unit = 8, 4391 .no_framedone_tv = true, 4392 .set_max_preload = false, 4393 .last_pixel_inc_missing = true, 4394 }; 4395 4396 static const struct dispc_features am43xx_dispc_feats = { 4397 .sw_start = 7, 4398 .fp_start = 19, 4399 .bp_start = 31, 4400 .sw_max = 256, 4401 .vp_max = 4095, 4402 .hp_max = 4096, 4403 .mgr_width_start = 10, 4404 .mgr_height_start = 26, 4405 .mgr_width_max = 2048, 4406 .mgr_height_max = 2048, 4407 .ovl_width_max = 2048, 4408 .ovl_height_max = 2048, 4409 .max_lcd_pclk = 173000000, 4410 .max_tv_pclk = 59000000, 4411 .max_downscale = 4, 4412 .max_line_width = 1024, 4413 .min_pcd = 1, 4414 .calc_scaling = dispc_ovl_calc_scaling_34xx, 4415 .calc_core_clk = calc_core_clk_34xx, 4416 .num_fifos = 3, 4417 .features = am43xx_dispc_features_list, 4418 .num_features = ARRAY_SIZE(am43xx_dispc_features_list), 4419 .reg_fields = omap3_dispc_reg_fields, 4420 .num_reg_fields = ARRAY_SIZE(omap3_dispc_reg_fields), 4421 .overlay_caps = omap3430_dispc_overlay_caps, 4422 .supported_color_modes = omap3_dispc_supported_color_modes, 4423 .supported_scaler_color_modes = omap3_dispc_supported_scaler_color_modes, 4424 .num_mgrs = 1, 4425 .num_ovls = 3, 4426 .buffer_size_unit = 1, 4427 .burst_size_unit = 8, 4428 .no_framedone_tv = true, 4429 .set_max_preload = false, 4430 .last_pixel_inc_missing = true, 4431 }; 4432 4433 static const struct dispc_features omap44xx_dispc_feats = { 4434 .sw_start = 7, 4435 .fp_start = 19, 4436 .bp_start = 31, 4437 .sw_max = 256, 4438 .vp_max = 4095, 4439 .hp_max = 4096, 4440 .mgr_width_start = 10, 4441 .mgr_height_start = 26, 4442 .mgr_width_max = 2048, 4443 .mgr_height_max = 2048, 4444 .ovl_width_max = 2048, 4445 .ovl_height_max = 2048, 4446 .max_lcd_pclk = 170000000, 4447 .max_tv_pclk = 185625000, 4448 .max_downscale = 4, 4449 .max_line_width = 2048, 4450 .min_pcd = 1, 4451 .calc_scaling = dispc_ovl_calc_scaling_44xx, 4452 .calc_core_clk = calc_core_clk_44xx, 4453 .num_fifos = 5, 4454 .features = omap4_dispc_features_list, 4455 .num_features = ARRAY_SIZE(omap4_dispc_features_list), 4456 .reg_fields = omap4_dispc_reg_fields, 4457 .num_reg_fields = ARRAY_SIZE(omap4_dispc_reg_fields), 4458 .overlay_caps = omap4_dispc_overlay_caps, 4459 .supported_color_modes = omap4_dispc_supported_color_modes, 4460 .num_mgrs = 3, 4461 .num_ovls = 4, 4462 .buffer_size_unit = 16, 4463 .burst_size_unit = 16, 4464 .gfx_fifo_workaround = true, 4465 .set_max_preload = true, 4466 .supports_sync_align = true, 4467 .has_writeback = true, 4468 .supports_double_pixel = true, 4469 .reverse_ilace_field_order = true, 4470 .has_gamma_table = true, 4471 .has_gamma_i734_bug = true, 4472 }; 4473 4474 static const struct dispc_features omap54xx_dispc_feats = { 4475 .sw_start = 7, 4476 .fp_start = 19, 4477 .bp_start = 31, 4478 .sw_max = 256, 4479 .vp_max = 4095, 4480 .hp_max = 4096, 4481 .mgr_width_start = 11, 4482 .mgr_height_start = 27, 4483 .mgr_width_max = 4096, 4484 .mgr_height_max = 4096, 4485 .ovl_width_max = 2048, 4486 .ovl_height_max = 4096, 4487 .max_lcd_pclk = 170000000, 4488 .max_tv_pclk = 192000000, 4489 .max_downscale = 4, 4490 .max_line_width = 2048, 4491 .min_pcd = 1, 4492 .calc_scaling = dispc_ovl_calc_scaling_44xx, 4493 .calc_core_clk = calc_core_clk_44xx, 4494 .num_fifos = 5, 4495 .features = omap5_dispc_features_list, 4496 .num_features = ARRAY_SIZE(omap5_dispc_features_list), 4497 .reg_fields = omap4_dispc_reg_fields, 4498 .num_reg_fields = ARRAY_SIZE(omap4_dispc_reg_fields), 4499 .overlay_caps = omap4_dispc_overlay_caps, 4500 .supported_color_modes = omap4_dispc_supported_color_modes, 4501 .num_mgrs = 4, 4502 .num_ovls = 4, 4503 .buffer_size_unit = 16, 4504 .burst_size_unit = 16, 4505 .gfx_fifo_workaround = true, 4506 .mstandby_workaround = true, 4507 .set_max_preload = true, 4508 .supports_sync_align = true, 4509 .has_writeback = true, 4510 .supports_double_pixel = true, 4511 .reverse_ilace_field_order = true, 4512 .has_gamma_table = true, 4513 .has_gamma_i734_bug = true, 4514 }; 4515 4516 static irqreturn_t dispc_irq_handler(int irq, void *arg) 4517 { 4518 struct dispc_device *dispc = arg; 4519 4520 if (!dispc->is_enabled) 4521 return IRQ_NONE; 4522 4523 return dispc->user_handler(irq, dispc->user_data); 4524 } 4525 4526 int dispc_request_irq(struct dispc_device *dispc, irq_handler_t handler, 4527 void *dev_id) 4528 { 4529 int r; 4530 4531 if (dispc->user_handler != NULL) 4532 return -EBUSY; 4533 4534 dispc->user_handler = handler; 4535 dispc->user_data = dev_id; 4536 4537 /* ensure the dispc_irq_handler sees the values above */ 4538 smp_wmb(); 4539 4540 r = devm_request_irq(&dispc->pdev->dev, dispc->irq, dispc_irq_handler, 4541 IRQF_SHARED, "OMAP DISPC", dispc); 4542 if (r) { 4543 dispc->user_handler = NULL; 4544 dispc->user_data = NULL; 4545 } 4546 4547 return r; 4548 } 4549 4550 void dispc_free_irq(struct dispc_device *dispc, void *dev_id) 4551 { 4552 devm_free_irq(&dispc->pdev->dev, dispc->irq, dispc); 4553 4554 dispc->user_handler = NULL; 4555 dispc->user_data = NULL; 4556 } 4557 4558 u32 dispc_get_memory_bandwidth_limit(struct dispc_device *dispc) 4559 { 4560 u32 limit = 0; 4561 4562 /* Optional maximum memory bandwidth */ 4563 of_property_read_u32(dispc->pdev->dev.of_node, "max-memory-bandwidth", 4564 &limit); 4565 4566 return limit; 4567 } 4568 4569 /* 4570 * Workaround for errata i734 in DSS dispc 4571 * - LCD1 Gamma Correction Is Not Working When GFX Pipe Is Disabled 4572 * 4573 * For gamma tables to work on LCD1 the GFX plane has to be used at 4574 * least once after DSS HW has come out of reset. The workaround 4575 * sets up a minimal LCD setup with GFX plane and waits for one 4576 * vertical sync irq before disabling the setup and continuing with 4577 * the context restore. The physical outputs are gated during the 4578 * operation. This workaround requires that gamma table's LOADMODE 4579 * is set to 0x2 in DISPC_CONTROL1 register. 4580 * 4581 * For details see: 4582 * OMAP543x Multimedia Device Silicon Revision 2.0 Silicon Errata 4583 * Literature Number: SWPZ037E 4584 * Or some other relevant errata document for the DSS IP version. 4585 */ 4586 4587 static const struct dispc_errata_i734_data { 4588 struct videomode vm; 4589 struct omap_overlay_info ovli; 4590 struct omap_overlay_manager_info mgri; 4591 struct dss_lcd_mgr_config lcd_conf; 4592 } i734 = { 4593 .vm = { 4594 .hactive = 8, .vactive = 1, 4595 .pixelclock = 16000000, 4596 .hsync_len = 8, .hfront_porch = 4, .hback_porch = 4, 4597 .vsync_len = 1, .vfront_porch = 1, .vback_porch = 1, 4598 4599 .flags = DISPLAY_FLAGS_HSYNC_LOW | DISPLAY_FLAGS_VSYNC_LOW | 4600 DISPLAY_FLAGS_DE_HIGH | DISPLAY_FLAGS_SYNC_POSEDGE | 4601 DISPLAY_FLAGS_PIXDATA_POSEDGE, 4602 }, 4603 .ovli = { 4604 .screen_width = 1, 4605 .width = 1, .height = 1, 4606 .fourcc = DRM_FORMAT_XRGB8888, 4607 .rotation = DRM_MODE_ROTATE_0, 4608 .rotation_type = OMAP_DSS_ROT_NONE, 4609 .pos_x = 0, .pos_y = 0, 4610 .out_width = 0, .out_height = 0, 4611 .global_alpha = 0xff, 4612 .pre_mult_alpha = 0, 4613 .zorder = 0, 4614 }, 4615 .mgri = { 4616 .default_color = 0, 4617 .trans_enabled = false, 4618 .partial_alpha_enabled = false, 4619 .cpr_enable = false, 4620 }, 4621 .lcd_conf = { 4622 .io_pad_mode = DSS_IO_PAD_MODE_BYPASS, 4623 .stallmode = false, 4624 .fifohandcheck = false, 4625 .clock_info = { 4626 .lck_div = 1, 4627 .pck_div = 2, 4628 }, 4629 .video_port_width = 24, 4630 .lcden_sig_polarity = 0, 4631 }, 4632 }; 4633 4634 static struct i734_buf { 4635 size_t size; 4636 dma_addr_t paddr; 4637 void *vaddr; 4638 } i734_buf; 4639 4640 static int dispc_errata_i734_wa_init(struct dispc_device *dispc) 4641 { 4642 if (!dispc->feat->has_gamma_i734_bug) 4643 return 0; 4644 4645 i734_buf.size = i734.ovli.width * i734.ovli.height * 4646 color_mode_to_bpp(i734.ovli.fourcc) / 8; 4647 4648 i734_buf.vaddr = dma_alloc_wc(&dispc->pdev->dev, i734_buf.size, 4649 &i734_buf.paddr, GFP_KERNEL); 4650 if (!i734_buf.vaddr) { 4651 dev_err(&dispc->pdev->dev, "%s: dma_alloc_wc failed\n", 4652 __func__); 4653 return -ENOMEM; 4654 } 4655 4656 return 0; 4657 } 4658 4659 static void dispc_errata_i734_wa_fini(struct dispc_device *dispc) 4660 { 4661 if (!dispc->feat->has_gamma_i734_bug) 4662 return; 4663 4664 dma_free_wc(&dispc->pdev->dev, i734_buf.size, i734_buf.vaddr, 4665 i734_buf.paddr); 4666 } 4667 4668 static void dispc_errata_i734_wa(struct dispc_device *dispc) 4669 { 4670 u32 framedone_irq = dispc_mgr_get_framedone_irq(dispc, 4671 OMAP_DSS_CHANNEL_LCD); 4672 struct omap_overlay_info ovli; 4673 struct dss_lcd_mgr_config lcd_conf; 4674 u32 gatestate; 4675 unsigned int count; 4676 4677 if (!dispc->feat->has_gamma_i734_bug) 4678 return; 4679 4680 gatestate = REG_GET(dispc, DISPC_CONFIG, 8, 4); 4681 4682 ovli = i734.ovli; 4683 ovli.paddr = i734_buf.paddr; 4684 lcd_conf = i734.lcd_conf; 4685 4686 /* Gate all LCD1 outputs */ 4687 REG_FLD_MOD(dispc, DISPC_CONFIG, 0x1f, 8, 4); 4688 4689 /* Setup and enable GFX plane */ 4690 dispc_ovl_setup(dispc, OMAP_DSS_GFX, &ovli, &i734.vm, false, 4691 OMAP_DSS_CHANNEL_LCD); 4692 dispc_ovl_enable(dispc, OMAP_DSS_GFX, true); 4693 4694 /* Set up and enable display manager for LCD1 */ 4695 dispc_mgr_setup(dispc, OMAP_DSS_CHANNEL_LCD, &i734.mgri); 4696 dispc_calc_clock_rates(dispc, dss_get_dispc_clk_rate(dispc->dss), 4697 &lcd_conf.clock_info); 4698 dispc_mgr_set_lcd_config(dispc, OMAP_DSS_CHANNEL_LCD, &lcd_conf); 4699 dispc_mgr_set_timings(dispc, OMAP_DSS_CHANNEL_LCD, &i734.vm); 4700 4701 dispc_clear_irqstatus(dispc, framedone_irq); 4702 4703 /* Enable and shut the channel to produce just one frame */ 4704 dispc_mgr_enable(dispc, OMAP_DSS_CHANNEL_LCD, true); 4705 dispc_mgr_enable(dispc, OMAP_DSS_CHANNEL_LCD, false); 4706 4707 /* Busy wait for framedone. We can't fiddle with irq handlers 4708 * in PM resume. Typically the loop runs less than 5 times and 4709 * waits less than a micro second. 4710 */ 4711 count = 0; 4712 while (!(dispc_read_irqstatus(dispc) & framedone_irq)) { 4713 if (count++ > 10000) { 4714 dev_err(&dispc->pdev->dev, "%s: framedone timeout\n", 4715 __func__); 4716 break; 4717 } 4718 } 4719 dispc_ovl_enable(dispc, OMAP_DSS_GFX, false); 4720 4721 /* Clear all irq bits before continuing */ 4722 dispc_clear_irqstatus(dispc, 0xffffffff); 4723 4724 /* Restore the original state to LCD1 output gates */ 4725 REG_FLD_MOD(dispc, DISPC_CONFIG, gatestate, 8, 4); 4726 } 4727 4728 /* DISPC HW IP initialisation */ 4729 static const struct of_device_id dispc_of_match[] = { 4730 { .compatible = "ti,omap2-dispc", .data = &omap24xx_dispc_feats }, 4731 { .compatible = "ti,omap3-dispc", .data = &omap36xx_dispc_feats }, 4732 { .compatible = "ti,omap4-dispc", .data = &omap44xx_dispc_feats }, 4733 { .compatible = "ti,omap5-dispc", .data = &omap54xx_dispc_feats }, 4734 { .compatible = "ti,dra7-dispc", .data = &omap54xx_dispc_feats }, 4735 {}, 4736 }; 4737 4738 static const struct soc_device_attribute dispc_soc_devices[] = { 4739 { .machine = "OMAP3[45]*", 4740 .revision = "ES[12].?", .data = &omap34xx_rev1_0_dispc_feats }, 4741 { .machine = "OMAP3[45]*", .data = &omap34xx_rev3_0_dispc_feats }, 4742 { .machine = "AM35*", .data = &omap34xx_rev3_0_dispc_feats }, 4743 { .machine = "AM43*", .data = &am43xx_dispc_feats }, 4744 { /* sentinel */ } 4745 }; 4746 4747 static int dispc_bind(struct device *dev, struct device *master, void *data) 4748 { 4749 struct platform_device *pdev = to_platform_device(dev); 4750 const struct soc_device_attribute *soc; 4751 struct dss_device *dss = dss_get_device(master); 4752 struct dispc_device *dispc; 4753 u32 rev; 4754 int r = 0; 4755 struct device_node *np = pdev->dev.of_node; 4756 4757 dispc = kzalloc(sizeof(*dispc), GFP_KERNEL); 4758 if (!dispc) 4759 return -ENOMEM; 4760 4761 dispc->pdev = pdev; 4762 platform_set_drvdata(pdev, dispc); 4763 dispc->dss = dss; 4764 4765 /* 4766 * The OMAP3-based models can't be told apart using the compatible 4767 * string, use SoC device matching. 4768 */ 4769 soc = soc_device_match(dispc_soc_devices); 4770 if (soc) 4771 dispc->feat = soc->data; 4772 else 4773 dispc->feat = of_match_device(dispc_of_match, &pdev->dev)->data; 4774 4775 r = dispc_errata_i734_wa_init(dispc); 4776 if (r) 4777 goto err_free; 4778 4779 dispc->base = devm_platform_ioremap_resource(pdev, 0); 4780 if (IS_ERR(dispc->base)) { 4781 r = PTR_ERR(dispc->base); 4782 goto err_free; 4783 } 4784 4785 dispc->irq = platform_get_irq(dispc->pdev, 0); 4786 if (dispc->irq < 0) { 4787 DSSERR("platform_get_irq failed\n"); 4788 r = -ENODEV; 4789 goto err_free; 4790 } 4791 4792 if (np && of_property_read_bool(np, "syscon-pol")) { 4793 dispc->syscon_pol = syscon_regmap_lookup_by_phandle(np, "syscon-pol"); 4794 if (IS_ERR(dispc->syscon_pol)) { 4795 dev_err(&pdev->dev, "failed to get syscon-pol regmap\n"); 4796 r = PTR_ERR(dispc->syscon_pol); 4797 goto err_free; 4798 } 4799 4800 if (of_property_read_u32_index(np, "syscon-pol", 1, 4801 &dispc->syscon_pol_offset)) { 4802 dev_err(&pdev->dev, "failed to get syscon-pol offset\n"); 4803 r = -EINVAL; 4804 goto err_free; 4805 } 4806 } 4807 4808 r = dispc_init_gamma_tables(dispc); 4809 if (r) 4810 goto err_free; 4811 4812 pm_runtime_enable(&pdev->dev); 4813 4814 r = dispc_runtime_get(dispc); 4815 if (r) 4816 goto err_runtime_get; 4817 4818 _omap_dispc_initial_config(dispc); 4819 4820 rev = dispc_read_reg(dispc, DISPC_REVISION); 4821 dev_dbg(&pdev->dev, "OMAP DISPC rev %d.%d\n", 4822 FLD_GET(rev, 7, 4), FLD_GET(rev, 3, 0)); 4823 4824 dispc_runtime_put(dispc); 4825 4826 dss->dispc = dispc; 4827 4828 dispc->debugfs = dss_debugfs_create_file(dss, "dispc", dispc_dump_regs, 4829 dispc); 4830 4831 return 0; 4832 4833 err_runtime_get: 4834 pm_runtime_disable(&pdev->dev); 4835 err_free: 4836 kfree(dispc); 4837 return r; 4838 } 4839 4840 static void dispc_unbind(struct device *dev, struct device *master, void *data) 4841 { 4842 struct dispc_device *dispc = dev_get_drvdata(dev); 4843 struct dss_device *dss = dispc->dss; 4844 4845 dss_debugfs_remove_file(dispc->debugfs); 4846 4847 dss->dispc = NULL; 4848 4849 pm_runtime_disable(dev); 4850 4851 dispc_errata_i734_wa_fini(dispc); 4852 4853 kfree(dispc); 4854 } 4855 4856 static const struct component_ops dispc_component_ops = { 4857 .bind = dispc_bind, 4858 .unbind = dispc_unbind, 4859 }; 4860 4861 static int dispc_probe(struct platform_device *pdev) 4862 { 4863 return component_add(&pdev->dev, &dispc_component_ops); 4864 } 4865 4866 static int dispc_remove(struct platform_device *pdev) 4867 { 4868 component_del(&pdev->dev, &dispc_component_ops); 4869 return 0; 4870 } 4871 4872 static __maybe_unused int dispc_runtime_suspend(struct device *dev) 4873 { 4874 struct dispc_device *dispc = dev_get_drvdata(dev); 4875 4876 dispc->is_enabled = false; 4877 /* ensure the dispc_irq_handler sees the is_enabled value */ 4878 smp_wmb(); 4879 /* wait for current handler to finish before turning the DISPC off */ 4880 synchronize_irq(dispc->irq); 4881 4882 dispc_save_context(dispc); 4883 4884 return 0; 4885 } 4886 4887 static __maybe_unused int dispc_runtime_resume(struct device *dev) 4888 { 4889 struct dispc_device *dispc = dev_get_drvdata(dev); 4890 4891 /* 4892 * The reset value for load mode is 0 (OMAP_DSS_LOAD_CLUT_AND_FRAME) 4893 * but we always initialize it to 2 (OMAP_DSS_LOAD_FRAME_ONLY) in 4894 * _omap_dispc_initial_config(). We can thus use it to detect if 4895 * we have lost register context. 4896 */ 4897 if (REG_GET(dispc, DISPC_CONFIG, 2, 1) != OMAP_DSS_LOAD_FRAME_ONLY) { 4898 _omap_dispc_initial_config(dispc); 4899 4900 dispc_errata_i734_wa(dispc); 4901 4902 dispc_restore_context(dispc); 4903 4904 dispc_restore_gamma_tables(dispc); 4905 } 4906 4907 dispc->is_enabled = true; 4908 /* ensure the dispc_irq_handler sees the is_enabled value */ 4909 smp_wmb(); 4910 4911 return 0; 4912 } 4913 4914 static const struct dev_pm_ops dispc_pm_ops = { 4915 SET_RUNTIME_PM_OPS(dispc_runtime_suspend, dispc_runtime_resume, NULL) 4916 SET_LATE_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, pm_runtime_force_resume) 4917 }; 4918 4919 struct platform_driver omap_dispchw_driver = { 4920 .probe = dispc_probe, 4921 .remove = dispc_remove, 4922 .driver = { 4923 .name = "omapdss_dispc", 4924 .pm = &dispc_pm_ops, 4925 .of_match_table = dispc_of_match, 4926 .suppress_bind_attrs = true, 4927 }, 4928 }; 4929