xref: /openbmc/linux/drivers/gpu/drm/nouveau/nvkm/subdev/mmu/vmmgp100.c (revision f97cee494dc92395a668445bcd24d34c89f4ff8c)
1 /*
2  * Copyright 2017 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 #include "vmm.h"
23 
24 #include <core/client.h>
25 #include <subdev/fb.h>
26 #include <subdev/ltc.h>
27 #include <subdev/timer.h>
28 #include <engine/gr.h>
29 
30 #include <nvif/ifc00d.h>
31 #include <nvif/unpack.h>
32 
33 static void
34 gp100_vmm_pfn_unmap(struct nvkm_vmm *vmm,
35 		    struct nvkm_mmu_pt *pt, u32 ptei, u32 ptes)
36 {
37 	struct device *dev = vmm->mmu->subdev.device->dev;
38 	dma_addr_t addr;
39 
40 	nvkm_kmap(pt->memory);
41 	while (ptes--) {
42 		u32 datalo = nvkm_ro32(pt->memory, pt->base + ptei * 8 + 0);
43 		u32 datahi = nvkm_ro32(pt->memory, pt->base + ptei * 8 + 4);
44 		u64 data   = (u64)datahi << 32 | datalo;
45 		if ((data & (3ULL << 1)) != 0) {
46 			addr = (data >> 8) << 12;
47 			dma_unmap_page(dev, addr, PAGE_SIZE, DMA_BIDIRECTIONAL);
48 		}
49 		ptei++;
50 	}
51 	nvkm_done(pt->memory);
52 }
53 
54 static bool
55 gp100_vmm_pfn_clear(struct nvkm_vmm *vmm,
56 		    struct nvkm_mmu_pt *pt, u32 ptei, u32 ptes)
57 {
58 	bool dma = false;
59 	nvkm_kmap(pt->memory);
60 	while (ptes--) {
61 		u32 datalo = nvkm_ro32(pt->memory, pt->base + ptei * 8 + 0);
62 		u32 datahi = nvkm_ro32(pt->memory, pt->base + ptei * 8 + 4);
63 		u64 data   = (u64)datahi << 32 | datalo;
64 		if ((data & BIT_ULL(0)) && (data & (3ULL << 1)) != 0) {
65 			VMM_WO064(pt, vmm, ptei * 8, data & ~BIT_ULL(0));
66 			dma = true;
67 		}
68 		ptei++;
69 	}
70 	nvkm_done(pt->memory);
71 	return dma;
72 }
73 
74 static void
75 gp100_vmm_pgt_pfn(struct nvkm_vmm *vmm, struct nvkm_mmu_pt *pt,
76 		  u32 ptei, u32 ptes, struct nvkm_vmm_map *map)
77 {
78 	struct device *dev = vmm->mmu->subdev.device->dev;
79 	dma_addr_t addr;
80 
81 	nvkm_kmap(pt->memory);
82 	for (; ptes; ptes--, map->pfn++) {
83 		u64 data = 0;
84 
85 		if (!(*map->pfn & NVKM_VMM_PFN_V))
86 			continue;
87 
88 		if (!(*map->pfn & NVKM_VMM_PFN_W))
89 			data |= BIT_ULL(6); /* RO. */
90 
91 		if (!(*map->pfn & NVKM_VMM_PFN_VRAM)) {
92 			addr = *map->pfn >> NVKM_VMM_PFN_ADDR_SHIFT;
93 			addr = dma_map_page(dev, pfn_to_page(addr), 0,
94 					    PAGE_SIZE, DMA_BIDIRECTIONAL);
95 			if (!WARN_ON(dma_mapping_error(dev, addr))) {
96 				data |= addr >> 4;
97 				data |= 2ULL << 1; /* SYSTEM_COHERENT_MEMORY. */
98 				data |= BIT_ULL(3); /* VOL. */
99 				data |= BIT_ULL(0); /* VALID. */
100 			}
101 		} else {
102 			data |= (*map->pfn & NVKM_VMM_PFN_ADDR) >> 4;
103 			data |= BIT_ULL(0); /* VALID. */
104 		}
105 
106 		VMM_WO064(pt, vmm, ptei++ * 8, data);
107 	}
108 	nvkm_done(pt->memory);
109 }
110 
111 static inline void
112 gp100_vmm_pgt_pte(struct nvkm_vmm *vmm, struct nvkm_mmu_pt *pt,
113 		  u32 ptei, u32 ptes, struct nvkm_vmm_map *map, u64 addr)
114 {
115 	u64 data = (addr >> 4) | map->type;
116 
117 	map->type += ptes * map->ctag;
118 
119 	while (ptes--) {
120 		VMM_WO064(pt, vmm, ptei++ * 8, data);
121 		data += map->next;
122 	}
123 }
124 
125 static void
126 gp100_vmm_pgt_sgl(struct nvkm_vmm *vmm, struct nvkm_mmu_pt *pt,
127 		  u32 ptei, u32 ptes, struct nvkm_vmm_map *map)
128 {
129 	VMM_MAP_ITER_SGL(vmm, pt, ptei, ptes, map, gp100_vmm_pgt_pte);
130 }
131 
132 static void
133 gp100_vmm_pgt_dma(struct nvkm_vmm *vmm, struct nvkm_mmu_pt *pt,
134 		  u32 ptei, u32 ptes, struct nvkm_vmm_map *map)
135 {
136 	if (map->page->shift == PAGE_SHIFT) {
137 		VMM_SPAM(vmm, "DMAA %08x %08x PTE(s)", ptei, ptes);
138 		nvkm_kmap(pt->memory);
139 		while (ptes--) {
140 			const u64 data = (*map->dma++ >> 4) | map->type;
141 			VMM_WO064(pt, vmm, ptei++ * 8, data);
142 			map->type += map->ctag;
143 		}
144 		nvkm_done(pt->memory);
145 		return;
146 	}
147 
148 	VMM_MAP_ITER_DMA(vmm, pt, ptei, ptes, map, gp100_vmm_pgt_pte);
149 }
150 
151 static void
152 gp100_vmm_pgt_mem(struct nvkm_vmm *vmm, struct nvkm_mmu_pt *pt,
153 		  u32 ptei, u32 ptes, struct nvkm_vmm_map *map)
154 {
155 	VMM_MAP_ITER_MEM(vmm, pt, ptei, ptes, map, gp100_vmm_pgt_pte);
156 }
157 
158 static void
159 gp100_vmm_pgt_sparse(struct nvkm_vmm *vmm,
160 		     struct nvkm_mmu_pt *pt, u32 ptei, u32 ptes)
161 {
162 	/* VALID_FALSE + VOL tells the MMU to treat the PTE as sparse. */
163 	VMM_FO064(pt, vmm, ptei * 8, BIT_ULL(3) /* VOL. */, ptes);
164 }
165 
166 static const struct nvkm_vmm_desc_func
167 gp100_vmm_desc_spt = {
168 	.unmap = gf100_vmm_pgt_unmap,
169 	.sparse = gp100_vmm_pgt_sparse,
170 	.mem = gp100_vmm_pgt_mem,
171 	.dma = gp100_vmm_pgt_dma,
172 	.sgl = gp100_vmm_pgt_sgl,
173 	.pfn = gp100_vmm_pgt_pfn,
174 	.pfn_clear = gp100_vmm_pfn_clear,
175 	.pfn_unmap = gp100_vmm_pfn_unmap,
176 };
177 
178 static void
179 gp100_vmm_lpt_invalid(struct nvkm_vmm *vmm,
180 		      struct nvkm_mmu_pt *pt, u32 ptei, u32 ptes)
181 {
182 	/* VALID_FALSE + PRIV tells the MMU to ignore corresponding SPTEs. */
183 	VMM_FO064(pt, vmm, ptei * 8, BIT_ULL(5) /* PRIV. */, ptes);
184 }
185 
186 static const struct nvkm_vmm_desc_func
187 gp100_vmm_desc_lpt = {
188 	.invalid = gp100_vmm_lpt_invalid,
189 	.unmap = gf100_vmm_pgt_unmap,
190 	.sparse = gp100_vmm_pgt_sparse,
191 	.mem = gp100_vmm_pgt_mem,
192 };
193 
194 static inline void
195 gp100_vmm_pd0_pte(struct nvkm_vmm *vmm, struct nvkm_mmu_pt *pt,
196 		  u32 ptei, u32 ptes, struct nvkm_vmm_map *map, u64 addr)
197 {
198 	u64 data = (addr >> 4) | map->type;
199 
200 	map->type += ptes * map->ctag;
201 
202 	while (ptes--) {
203 		VMM_WO128(pt, vmm, ptei++ * 0x10, data, 0ULL);
204 		data += map->next;
205 	}
206 }
207 
208 static void
209 gp100_vmm_pd0_mem(struct nvkm_vmm *vmm, struct nvkm_mmu_pt *pt,
210 		  u32 ptei, u32 ptes, struct nvkm_vmm_map *map)
211 {
212 	VMM_MAP_ITER_MEM(vmm, pt, ptei, ptes, map, gp100_vmm_pd0_pte);
213 }
214 
215 static inline bool
216 gp100_vmm_pde(struct nvkm_mmu_pt *pt, u64 *data)
217 {
218 	switch (nvkm_memory_target(pt->memory)) {
219 	case NVKM_MEM_TARGET_VRAM: *data |= 1ULL << 1; break;
220 	case NVKM_MEM_TARGET_HOST: *data |= 2ULL << 1;
221 		*data |= BIT_ULL(3); /* VOL. */
222 		break;
223 	case NVKM_MEM_TARGET_NCOH: *data |= 3ULL << 1; break;
224 	default:
225 		WARN_ON(1);
226 		return false;
227 	}
228 	*data |= pt->addr >> 4;
229 	return true;
230 }
231 
232 static void
233 gp100_vmm_pd0_pde(struct nvkm_vmm *vmm, struct nvkm_vmm_pt *pgd, u32 pdei)
234 {
235 	struct nvkm_vmm_pt *pgt = pgd->pde[pdei];
236 	struct nvkm_mmu_pt *pd = pgd->pt[0];
237 	u64 data[2] = {};
238 
239 	if (pgt->pt[0] && !gp100_vmm_pde(pgt->pt[0], &data[0]))
240 		return;
241 	if (pgt->pt[1] && !gp100_vmm_pde(pgt->pt[1], &data[1]))
242 		return;
243 
244 	nvkm_kmap(pd->memory);
245 	VMM_WO128(pd, vmm, pdei * 0x10, data[0], data[1]);
246 	nvkm_done(pd->memory);
247 }
248 
249 static void
250 gp100_vmm_pd0_sparse(struct nvkm_vmm *vmm,
251 		     struct nvkm_mmu_pt *pt, u32 pdei, u32 pdes)
252 {
253 	/* VALID_FALSE + VOL_BIG tells the MMU to treat the PDE as sparse. */
254 	VMM_FO128(pt, vmm, pdei * 0x10, BIT_ULL(3) /* VOL_BIG. */, 0ULL, pdes);
255 }
256 
257 static void
258 gp100_vmm_pd0_unmap(struct nvkm_vmm *vmm,
259 		    struct nvkm_mmu_pt *pt, u32 pdei, u32 pdes)
260 {
261 	VMM_FO128(pt, vmm, pdei * 0x10, 0ULL, 0ULL, pdes);
262 }
263 
264 static void
265 gp100_vmm_pd0_pfn_unmap(struct nvkm_vmm *vmm,
266 			struct nvkm_mmu_pt *pt, u32 ptei, u32 ptes)
267 {
268 	struct device *dev = vmm->mmu->subdev.device->dev;
269 	dma_addr_t addr;
270 
271 	nvkm_kmap(pt->memory);
272 	while (ptes--) {
273 		u32 datalo = nvkm_ro32(pt->memory, pt->base + ptei * 16 + 0);
274 		u32 datahi = nvkm_ro32(pt->memory, pt->base + ptei * 16 + 4);
275 		u64 data   = (u64)datahi << 32 | datalo;
276 
277 		if ((data & (3ULL << 1)) != 0) {
278 			addr = (data >> 8) << 12;
279 			dma_unmap_page(dev, addr, 1UL << 21, DMA_BIDIRECTIONAL);
280 		}
281 		ptei++;
282 	}
283 	nvkm_done(pt->memory);
284 }
285 
286 static bool
287 gp100_vmm_pd0_pfn_clear(struct nvkm_vmm *vmm,
288 			struct nvkm_mmu_pt *pt, u32 ptei, u32 ptes)
289 {
290 	bool dma = false;
291 
292 	nvkm_kmap(pt->memory);
293 	while (ptes--) {
294 		u32 datalo = nvkm_ro32(pt->memory, pt->base + ptei * 16 + 0);
295 		u32 datahi = nvkm_ro32(pt->memory, pt->base + ptei * 16 + 4);
296 		u64 data   = (u64)datahi << 32 | datalo;
297 
298 		if ((data & BIT_ULL(0)) && (data & (3ULL << 1)) != 0) {
299 			VMM_WO064(pt, vmm, ptei * 16, data & ~BIT_ULL(0));
300 			dma = true;
301 		}
302 		ptei++;
303 	}
304 	nvkm_done(pt->memory);
305 	return dma;
306 }
307 
308 static void
309 gp100_vmm_pd0_pfn(struct nvkm_vmm *vmm, struct nvkm_mmu_pt *pt,
310 		  u32 ptei, u32 ptes, struct nvkm_vmm_map *map)
311 {
312 	struct device *dev = vmm->mmu->subdev.device->dev;
313 	dma_addr_t addr;
314 
315 	nvkm_kmap(pt->memory);
316 	for (; ptes; ptes--, map->pfn++) {
317 		u64 data = 0;
318 
319 		if (!(*map->pfn & NVKM_VMM_PFN_V))
320 			continue;
321 
322 		if (!(*map->pfn & NVKM_VMM_PFN_W))
323 			data |= BIT_ULL(6); /* RO. */
324 
325 		if (!(*map->pfn & NVKM_VMM_PFN_VRAM)) {
326 			addr = *map->pfn >> NVKM_VMM_PFN_ADDR_SHIFT;
327 			addr = dma_map_page(dev, pfn_to_page(addr), 0,
328 					    1UL << 21, DMA_BIDIRECTIONAL);
329 			if (!WARN_ON(dma_mapping_error(dev, addr))) {
330 				data |= addr >> 4;
331 				data |= 2ULL << 1; /* SYSTEM_COHERENT_MEMORY. */
332 				data |= BIT_ULL(3); /* VOL. */
333 				data |= BIT_ULL(0); /* VALID. */
334 			}
335 		} else {
336 			data |= (*map->pfn & NVKM_VMM_PFN_ADDR) >> 4;
337 			data |= BIT_ULL(0); /* VALID. */
338 		}
339 
340 		VMM_WO064(pt, vmm, ptei++ * 16, data);
341 	}
342 	nvkm_done(pt->memory);
343 }
344 
345 static const struct nvkm_vmm_desc_func
346 gp100_vmm_desc_pd0 = {
347 	.unmap = gp100_vmm_pd0_unmap,
348 	.sparse = gp100_vmm_pd0_sparse,
349 	.pde = gp100_vmm_pd0_pde,
350 	.mem = gp100_vmm_pd0_mem,
351 	.pfn = gp100_vmm_pd0_pfn,
352 	.pfn_clear = gp100_vmm_pd0_pfn_clear,
353 	.pfn_unmap = gp100_vmm_pd0_pfn_unmap,
354 };
355 
356 static void
357 gp100_vmm_pd1_pde(struct nvkm_vmm *vmm, struct nvkm_vmm_pt *pgd, u32 pdei)
358 {
359 	struct nvkm_vmm_pt *pgt = pgd->pde[pdei];
360 	struct nvkm_mmu_pt *pd = pgd->pt[0];
361 	u64 data = 0;
362 
363 	if (!gp100_vmm_pde(pgt->pt[0], &data))
364 		return;
365 
366 	nvkm_kmap(pd->memory);
367 	VMM_WO064(pd, vmm, pdei * 8, data);
368 	nvkm_done(pd->memory);
369 }
370 
371 static const struct nvkm_vmm_desc_func
372 gp100_vmm_desc_pd1 = {
373 	.unmap = gf100_vmm_pgt_unmap,
374 	.sparse = gp100_vmm_pgt_sparse,
375 	.pde = gp100_vmm_pd1_pde,
376 };
377 
378 const struct nvkm_vmm_desc
379 gp100_vmm_desc_16[] = {
380 	{ LPT, 5,  8, 0x0100, &gp100_vmm_desc_lpt },
381 	{ PGD, 8, 16, 0x1000, &gp100_vmm_desc_pd0 },
382 	{ PGD, 9,  8, 0x1000, &gp100_vmm_desc_pd1 },
383 	{ PGD, 9,  8, 0x1000, &gp100_vmm_desc_pd1 },
384 	{ PGD, 2,  8, 0x1000, &gp100_vmm_desc_pd1 },
385 	{}
386 };
387 
388 const struct nvkm_vmm_desc
389 gp100_vmm_desc_12[] = {
390 	{ SPT, 9,  8, 0x1000, &gp100_vmm_desc_spt },
391 	{ PGD, 8, 16, 0x1000, &gp100_vmm_desc_pd0 },
392 	{ PGD, 9,  8, 0x1000, &gp100_vmm_desc_pd1 },
393 	{ PGD, 9,  8, 0x1000, &gp100_vmm_desc_pd1 },
394 	{ PGD, 2,  8, 0x1000, &gp100_vmm_desc_pd1 },
395 	{}
396 };
397 
398 int
399 gp100_vmm_valid(struct nvkm_vmm *vmm, void *argv, u32 argc,
400 		struct nvkm_vmm_map *map)
401 {
402 	const enum nvkm_memory_target target = nvkm_memory_target(map->memory);
403 	const struct nvkm_vmm_page *page = map->page;
404 	union {
405 		struct gp100_vmm_map_vn vn;
406 		struct gp100_vmm_map_v0 v0;
407 	} *args = argv;
408 	struct nvkm_device *device = vmm->mmu->subdev.device;
409 	struct nvkm_memory *memory = map->memory;
410 	u8  kind, kind_inv, priv, ro, vol;
411 	int kindn, aper, ret = -ENOSYS;
412 	const u8 *kindm;
413 
414 	map->next = (1ULL << page->shift) >> 4;
415 	map->type = 0;
416 
417 	if (!(ret = nvif_unpack(ret, &argv, &argc, args->v0, 0, 0, false))) {
418 		vol  = !!args->v0.vol;
419 		ro   = !!args->v0.ro;
420 		priv = !!args->v0.priv;
421 		kind =   args->v0.kind;
422 	} else
423 	if (!(ret = nvif_unvers(ret, &argv, &argc, args->vn))) {
424 		vol  = target == NVKM_MEM_TARGET_HOST;
425 		ro   = 0;
426 		priv = 0;
427 		kind = 0x00;
428 	} else {
429 		VMM_DEBUG(vmm, "args");
430 		return ret;
431 	}
432 
433 	aper = vmm->func->aper(target);
434 	if (WARN_ON(aper < 0))
435 		return aper;
436 
437 	kindm = vmm->mmu->func->kind(vmm->mmu, &kindn, &kind_inv);
438 	if (kind >= kindn || kindm[kind] == kind_inv) {
439 		VMM_DEBUG(vmm, "kind %02x", kind);
440 		return -EINVAL;
441 	}
442 
443 	if (kindm[kind] != kind) {
444 		u64 tags = nvkm_memory_size(memory) >> 16;
445 		if (aper != 0 || !(page->type & NVKM_VMM_PAGE_COMP)) {
446 			VMM_DEBUG(vmm, "comp %d %02x", aper, page->type);
447 			return -EINVAL;
448 		}
449 
450 		ret = nvkm_memory_tags_get(memory, device, tags,
451 					   nvkm_ltc_tags_clear,
452 					   &map->tags);
453 		if (ret) {
454 			VMM_DEBUG(vmm, "comp %d", ret);
455 			return ret;
456 		}
457 
458 		if (map->tags->mn) {
459 			tags = map->tags->mn->offset + (map->offset >> 16);
460 			map->ctag |= ((1ULL << page->shift) >> 16) << 36;
461 			map->type |= tags << 36;
462 			map->next |= map->ctag;
463 		} else {
464 			kind = kindm[kind];
465 		}
466 	}
467 
468 	map->type |= BIT(0);
469 	map->type |= (u64)aper << 1;
470 	map->type |= (u64) vol << 3;
471 	map->type |= (u64)priv << 5;
472 	map->type |= (u64)  ro << 6;
473 	map->type |= (u64)kind << 56;
474 	return 0;
475 }
476 
477 static int
478 gp100_vmm_fault_cancel(struct nvkm_vmm *vmm, void *argv, u32 argc)
479 {
480 	struct nvkm_device *device = vmm->mmu->subdev.device;
481 	union {
482 		struct gp100_vmm_fault_cancel_v0 v0;
483 	} *args = argv;
484 	int ret = -ENOSYS;
485 	u32 inst, aper;
486 
487 	if ((ret = nvif_unpack(ret, &argv, &argc, args->v0, 0, 0, false)))
488 		return ret;
489 
490 	/* Translate MaxwellFaultBufferA instance pointer to the same
491 	 * format as the NV_GR_FECS_CURRENT_CTX register.
492 	 */
493 	aper = (args->v0.inst >> 8) & 3;
494 	args->v0.inst >>= 12;
495 	args->v0.inst |= aper << 28;
496 	args->v0.inst |= 0x80000000;
497 
498 	if (!WARN_ON(nvkm_gr_ctxsw_pause(device))) {
499 		if ((inst = nvkm_gr_ctxsw_inst(device)) == args->v0.inst) {
500 			gf100_vmm_invalidate(vmm, 0x0000001b
501 					     /* CANCEL_TARGETED. */ |
502 					     (args->v0.hub    << 20) |
503 					     (args->v0.gpc    << 15) |
504 					     (args->v0.client << 9));
505 		}
506 		WARN_ON(nvkm_gr_ctxsw_resume(device));
507 	}
508 
509 	return 0;
510 }
511 
512 static int
513 gp100_vmm_fault_replay(struct nvkm_vmm *vmm, void *argv, u32 argc)
514 {
515 	union {
516 		struct gp100_vmm_fault_replay_vn vn;
517 	} *args = argv;
518 	int ret = -ENOSYS;
519 
520 	if (!(ret = nvif_unvers(ret, &argv, &argc, args->vn))) {
521 		gf100_vmm_invalidate(vmm, 0x0000000b); /* REPLAY_GLOBAL. */
522 	}
523 
524 	return ret;
525 }
526 
527 int
528 gp100_vmm_mthd(struct nvkm_vmm *vmm,
529 	       struct nvkm_client *client, u32 mthd, void *argv, u32 argc)
530 {
531 	if (client->super) {
532 		switch (mthd) {
533 		case GP100_VMM_VN_FAULT_REPLAY:
534 			return gp100_vmm_fault_replay(vmm, argv, argc);
535 		case GP100_VMM_VN_FAULT_CANCEL:
536 			return gp100_vmm_fault_cancel(vmm, argv, argc);
537 		default:
538 			break;
539 		}
540 	}
541 	return -EINVAL;
542 }
543 
544 void
545 gp100_vmm_invalidate_pdb(struct nvkm_vmm *vmm, u64 addr)
546 {
547 	struct nvkm_device *device = vmm->mmu->subdev.device;
548 	nvkm_wr32(device, 0x100cb8, lower_32_bits(addr));
549 	nvkm_wr32(device, 0x100cec, upper_32_bits(addr));
550 }
551 
552 void
553 gp100_vmm_flush(struct nvkm_vmm *vmm, int depth)
554 {
555 	u32 type = (5 /* CACHE_LEVEL_UP_TO_PDE3 */ - depth) << 24;
556 	if (atomic_read(&vmm->engref[NVKM_SUBDEV_BAR]))
557 		type |= 0x00000004; /* HUB_ONLY */
558 	type |= 0x00000001; /* PAGE_ALL */
559 	gf100_vmm_invalidate(vmm, type);
560 }
561 
562 int
563 gp100_vmm_join(struct nvkm_vmm *vmm, struct nvkm_memory *inst)
564 {
565 	u64 base = BIT_ULL(10) /* VER2 */ | BIT_ULL(11) /* 64KiB */;
566 	if (vmm->replay) {
567 		base |= BIT_ULL(4); /* FAULT_REPLAY_TEX */
568 		base |= BIT_ULL(5); /* FAULT_REPLAY_GCC */
569 	}
570 	return gf100_vmm_join_(vmm, inst, base);
571 }
572 
573 static const struct nvkm_vmm_func
574 gp100_vmm = {
575 	.join = gp100_vmm_join,
576 	.part = gf100_vmm_part,
577 	.aper = gf100_vmm_aper,
578 	.valid = gp100_vmm_valid,
579 	.flush = gp100_vmm_flush,
580 	.mthd = gp100_vmm_mthd,
581 	.invalidate_pdb = gp100_vmm_invalidate_pdb,
582 	.page = {
583 		{ 47, &gp100_vmm_desc_16[4], NVKM_VMM_PAGE_Sxxx },
584 		{ 38, &gp100_vmm_desc_16[3], NVKM_VMM_PAGE_Sxxx },
585 		{ 29, &gp100_vmm_desc_16[2], NVKM_VMM_PAGE_Sxxx },
586 		{ 21, &gp100_vmm_desc_16[1], NVKM_VMM_PAGE_SVxC },
587 		{ 16, &gp100_vmm_desc_16[0], NVKM_VMM_PAGE_SVxC },
588 		{ 12, &gp100_vmm_desc_12[0], NVKM_VMM_PAGE_SVHx },
589 		{}
590 	}
591 };
592 
593 int
594 gp100_vmm_new_(const struct nvkm_vmm_func *func,
595 	       struct nvkm_mmu *mmu, bool managed, u64 addr, u64 size,
596 	       void *argv, u32 argc, struct lock_class_key *key,
597 	       const char *name, struct nvkm_vmm **pvmm)
598 {
599 	union {
600 		struct gp100_vmm_vn vn;
601 		struct gp100_vmm_v0 v0;
602 	} *args = argv;
603 	int ret = -ENOSYS;
604 	bool replay;
605 
606 	if (!(ret = nvif_unpack(ret, &argv, &argc, args->v0, 0, 0, false))) {
607 		replay = args->v0.fault_replay != 0;
608 	} else
609 	if (!(ret = nvif_unvers(ret, &argv, &argc, args->vn))) {
610 		replay = false;
611 	} else
612 		return ret;
613 
614 	ret = nvkm_vmm_new_(func, mmu, 0, managed, addr, size, key, name, pvmm);
615 	if (ret)
616 		return ret;
617 
618 	(*pvmm)->replay = replay;
619 	return 0;
620 }
621 
622 int
623 gp100_vmm_new(struct nvkm_mmu *mmu, bool managed, u64 addr, u64 size,
624 	      void *argv, u32 argc, struct lock_class_key *key,
625 	      const char *name, struct nvkm_vmm **pvmm)
626 {
627 	return gp100_vmm_new_(&gp100_vmm, mmu, managed, addr, size,
628 			      argv, argc, key, name, pvmm);
629 }
630