xref: /openbmc/linux/drivers/gpu/drm/nouveau/nvkm/subdev/mmu/vmm.c (revision 05cf4fe738242183f1237f1b3a28b4479348c0a1)
1 /*
2  * Copyright 2017 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 #define NVKM_VMM_LEVELS_MAX 5
23 #include "vmm.h"
24 
25 #include <subdev/fb.h>
26 
27 static void
28 nvkm_vmm_pt_del(struct nvkm_vmm_pt **ppgt)
29 {
30 	struct nvkm_vmm_pt *pgt = *ppgt;
31 	if (pgt) {
32 		kvfree(pgt->pde);
33 		kfree(pgt);
34 		*ppgt = NULL;
35 	}
36 }
37 
38 
39 static struct nvkm_vmm_pt *
40 nvkm_vmm_pt_new(const struct nvkm_vmm_desc *desc, bool sparse,
41 		const struct nvkm_vmm_page *page)
42 {
43 	const u32 pten = 1 << desc->bits;
44 	struct nvkm_vmm_pt *pgt;
45 	u32 lpte = 0;
46 
47 	if (desc->type > PGT) {
48 		if (desc->type == SPT) {
49 			const struct nvkm_vmm_desc *pair = page[-1].desc;
50 			lpte = pten >> (desc->bits - pair->bits);
51 		} else {
52 			lpte = pten;
53 		}
54 	}
55 
56 	if (!(pgt = kzalloc(sizeof(*pgt) + lpte, GFP_KERNEL)))
57 		return NULL;
58 	pgt->page = page ? page->shift : 0;
59 	pgt->sparse = sparse;
60 
61 	if (desc->type == PGD) {
62 		pgt->pde = kvcalloc(pten, sizeof(*pgt->pde), GFP_KERNEL);
63 		if (!pgt->pde) {
64 			kfree(pgt);
65 			return NULL;
66 		}
67 	}
68 
69 	return pgt;
70 }
71 
72 struct nvkm_vmm_iter {
73 	const struct nvkm_vmm_page *page;
74 	const struct nvkm_vmm_desc *desc;
75 	struct nvkm_vmm *vmm;
76 	u64 cnt;
77 	u16 max, lvl;
78 	u32 pte[NVKM_VMM_LEVELS_MAX];
79 	struct nvkm_vmm_pt *pt[NVKM_VMM_LEVELS_MAX];
80 	int flush;
81 };
82 
83 #ifdef CONFIG_NOUVEAU_DEBUG_MMU
84 static const char *
85 nvkm_vmm_desc_type(const struct nvkm_vmm_desc *desc)
86 {
87 	switch (desc->type) {
88 	case PGD: return "PGD";
89 	case PGT: return "PGT";
90 	case SPT: return "SPT";
91 	case LPT: return "LPT";
92 	default:
93 		return "UNKNOWN";
94 	}
95 }
96 
97 static void
98 nvkm_vmm_trace(struct nvkm_vmm_iter *it, char *buf)
99 {
100 	int lvl;
101 	for (lvl = it->max; lvl >= 0; lvl--) {
102 		if (lvl >= it->lvl)
103 			buf += sprintf(buf,  "%05x:", it->pte[lvl]);
104 		else
105 			buf += sprintf(buf, "xxxxx:");
106 	}
107 }
108 
109 #define TRA(i,f,a...) do {                                                     \
110 	char _buf[NVKM_VMM_LEVELS_MAX * 7];                                    \
111 	struct nvkm_vmm_iter *_it = (i);                                       \
112 	nvkm_vmm_trace(_it, _buf);                                             \
113 	VMM_TRACE(_it->vmm, "%s "f, _buf, ##a);                                \
114 } while(0)
115 #else
116 #define TRA(i,f,a...)
117 #endif
118 
119 static inline void
120 nvkm_vmm_flush_mark(struct nvkm_vmm_iter *it)
121 {
122 	it->flush = min(it->flush, it->max - it->lvl);
123 }
124 
125 static inline void
126 nvkm_vmm_flush(struct nvkm_vmm_iter *it)
127 {
128 	if (it->flush != NVKM_VMM_LEVELS_MAX) {
129 		if (it->vmm->func->flush) {
130 			TRA(it, "flush: %d", it->flush);
131 			it->vmm->func->flush(it->vmm, it->flush);
132 		}
133 		it->flush = NVKM_VMM_LEVELS_MAX;
134 	}
135 }
136 
137 static void
138 nvkm_vmm_unref_pdes(struct nvkm_vmm_iter *it)
139 {
140 	const struct nvkm_vmm_desc *desc = it->desc;
141 	const int type = desc[it->lvl].type == SPT;
142 	struct nvkm_vmm_pt *pgd = it->pt[it->lvl + 1];
143 	struct nvkm_vmm_pt *pgt = it->pt[it->lvl];
144 	struct nvkm_mmu_pt *pt = pgt->pt[type];
145 	struct nvkm_vmm *vmm = it->vmm;
146 	u32 pdei = it->pte[it->lvl + 1];
147 
148 	/* Recurse up the tree, unreferencing/destroying unneeded PDs. */
149 	it->lvl++;
150 	if (--pgd->refs[0]) {
151 		const struct nvkm_vmm_desc_func *func = desc[it->lvl].func;
152 		/* PD has other valid PDEs, so we need a proper update. */
153 		TRA(it, "PDE unmap %s", nvkm_vmm_desc_type(&desc[it->lvl - 1]));
154 		pgt->pt[type] = NULL;
155 		if (!pgt->refs[!type]) {
156 			/* PDE no longer required. */
157 			if (pgd->pt[0]) {
158 				if (pgt->sparse) {
159 					func->sparse(vmm, pgd->pt[0], pdei, 1);
160 					pgd->pde[pdei] = NVKM_VMM_PDE_SPARSE;
161 				} else {
162 					func->unmap(vmm, pgd->pt[0], pdei, 1);
163 					pgd->pde[pdei] = NULL;
164 				}
165 			} else {
166 				/* Special handling for Tesla-class GPUs,
167 				 * where there's no central PD, but each
168 				 * instance has its own embedded PD.
169 				 */
170 				func->pde(vmm, pgd, pdei);
171 				pgd->pde[pdei] = NULL;
172 			}
173 		} else {
174 			/* PDE was pointing at dual-PTs and we're removing
175 			 * one of them, leaving the other in place.
176 			 */
177 			func->pde(vmm, pgd, pdei);
178 		}
179 
180 		/* GPU may have cached the PTs, flush before freeing. */
181 		nvkm_vmm_flush_mark(it);
182 		nvkm_vmm_flush(it);
183 	} else {
184 		/* PD has no valid PDEs left, so we can just destroy it. */
185 		nvkm_vmm_unref_pdes(it);
186 	}
187 
188 	/* Destroy PD/PT. */
189 	TRA(it, "PDE free %s", nvkm_vmm_desc_type(&desc[it->lvl - 1]));
190 	nvkm_mmu_ptc_put(vmm->mmu, vmm->bootstrapped, &pt);
191 	if (!pgt->refs[!type])
192 		nvkm_vmm_pt_del(&pgt);
193 	it->lvl--;
194 }
195 
196 static void
197 nvkm_vmm_unref_sptes(struct nvkm_vmm_iter *it, struct nvkm_vmm_pt *pgt,
198 		     const struct nvkm_vmm_desc *desc, u32 ptei, u32 ptes)
199 {
200 	const struct nvkm_vmm_desc *pair = it->page[-1].desc;
201 	const u32 sptb = desc->bits - pair->bits;
202 	const u32 sptn = 1 << sptb;
203 	struct nvkm_vmm *vmm = it->vmm;
204 	u32 spti = ptei & (sptn - 1), lpti, pteb;
205 
206 	/* Determine how many SPTEs are being touched under each LPTE,
207 	 * and drop reference counts.
208 	 */
209 	for (lpti = ptei >> sptb; ptes; spti = 0, lpti++) {
210 		const u32 pten = min(sptn - spti, ptes);
211 		pgt->pte[lpti] -= pten;
212 		ptes -= pten;
213 	}
214 
215 	/* We're done here if there's no corresponding LPT. */
216 	if (!pgt->refs[0])
217 		return;
218 
219 	for (ptei = pteb = ptei >> sptb; ptei < lpti; pteb = ptei) {
220 		/* Skip over any LPTEs that still have valid SPTEs. */
221 		if (pgt->pte[pteb] & NVKM_VMM_PTE_SPTES) {
222 			for (ptes = 1, ptei++; ptei < lpti; ptes++, ptei++) {
223 				if (!(pgt->pte[ptei] & NVKM_VMM_PTE_SPTES))
224 					break;
225 			}
226 			continue;
227 		}
228 
229 		/* As there's no more non-UNMAPPED SPTEs left in the range
230 		 * covered by a number of LPTEs, the LPTEs once again take
231 		 * control over their address range.
232 		 *
233 		 * Determine how many LPTEs need to transition state.
234 		 */
235 		pgt->pte[ptei] &= ~NVKM_VMM_PTE_VALID;
236 		for (ptes = 1, ptei++; ptei < lpti; ptes++, ptei++) {
237 			if (pgt->pte[ptei] & NVKM_VMM_PTE_SPTES)
238 				break;
239 			pgt->pte[ptei] &= ~NVKM_VMM_PTE_VALID;
240 		}
241 
242 		if (pgt->pte[pteb] & NVKM_VMM_PTE_SPARSE) {
243 			TRA(it, "LPTE %05x: U -> S %d PTEs", pteb, ptes);
244 			pair->func->sparse(vmm, pgt->pt[0], pteb, ptes);
245 		} else
246 		if (pair->func->invalid) {
247 			/* If the MMU supports it, restore the LPTE to the
248 			 * INVALID state to tell the MMU there is no point
249 			 * trying to fetch the corresponding SPTEs.
250 			 */
251 			TRA(it, "LPTE %05x: U -> I %d PTEs", pteb, ptes);
252 			pair->func->invalid(vmm, pgt->pt[0], pteb, ptes);
253 		}
254 	}
255 }
256 
257 static bool
258 nvkm_vmm_unref_ptes(struct nvkm_vmm_iter *it, u32 ptei, u32 ptes)
259 {
260 	const struct nvkm_vmm_desc *desc = it->desc;
261 	const int type = desc->type == SPT;
262 	struct nvkm_vmm_pt *pgt = it->pt[0];
263 
264 	/* Drop PTE references. */
265 	pgt->refs[type] -= ptes;
266 
267 	/* Dual-PTs need special handling, unless PDE becoming invalid. */
268 	if (desc->type == SPT && (pgt->refs[0] || pgt->refs[1]))
269 		nvkm_vmm_unref_sptes(it, pgt, desc, ptei, ptes);
270 
271 	/* PT no longer neeed?  Destroy it. */
272 	if (!pgt->refs[type]) {
273 		it->lvl++;
274 		TRA(it, "%s empty", nvkm_vmm_desc_type(desc));
275 		it->lvl--;
276 		nvkm_vmm_unref_pdes(it);
277 		return false; /* PTE writes for unmap() not necessary. */
278 	}
279 
280 	return true;
281 }
282 
283 static void
284 nvkm_vmm_ref_sptes(struct nvkm_vmm_iter *it, struct nvkm_vmm_pt *pgt,
285 		   const struct nvkm_vmm_desc *desc, u32 ptei, u32 ptes)
286 {
287 	const struct nvkm_vmm_desc *pair = it->page[-1].desc;
288 	const u32 sptb = desc->bits - pair->bits;
289 	const u32 sptn = 1 << sptb;
290 	struct nvkm_vmm *vmm = it->vmm;
291 	u32 spti = ptei & (sptn - 1), lpti, pteb;
292 
293 	/* Determine how many SPTEs are being touched under each LPTE,
294 	 * and increase reference counts.
295 	 */
296 	for (lpti = ptei >> sptb; ptes; spti = 0, lpti++) {
297 		const u32 pten = min(sptn - spti, ptes);
298 		pgt->pte[lpti] += pten;
299 		ptes -= pten;
300 	}
301 
302 	/* We're done here if there's no corresponding LPT. */
303 	if (!pgt->refs[0])
304 		return;
305 
306 	for (ptei = pteb = ptei >> sptb; ptei < lpti; pteb = ptei) {
307 		/* Skip over any LPTEs that already have valid SPTEs. */
308 		if (pgt->pte[pteb] & NVKM_VMM_PTE_VALID) {
309 			for (ptes = 1, ptei++; ptei < lpti; ptes++, ptei++) {
310 				if (!(pgt->pte[ptei] & NVKM_VMM_PTE_VALID))
311 					break;
312 			}
313 			continue;
314 		}
315 
316 		/* As there are now non-UNMAPPED SPTEs in the range covered
317 		 * by a number of LPTEs, we need to transfer control of the
318 		 * address range to the SPTEs.
319 		 *
320 		 * Determine how many LPTEs need to transition state.
321 		 */
322 		pgt->pte[ptei] |= NVKM_VMM_PTE_VALID;
323 		for (ptes = 1, ptei++; ptei < lpti; ptes++, ptei++) {
324 			if (pgt->pte[ptei] & NVKM_VMM_PTE_VALID)
325 				break;
326 			pgt->pte[ptei] |= NVKM_VMM_PTE_VALID;
327 		}
328 
329 		if (pgt->pte[pteb] & NVKM_VMM_PTE_SPARSE) {
330 			const u32 spti = pteb * sptn;
331 			const u32 sptc = ptes * sptn;
332 			/* The entire LPTE is marked as sparse, we need
333 			 * to make sure that the SPTEs are too.
334 			 */
335 			TRA(it, "SPTE %05x: U -> S %d PTEs", spti, sptc);
336 			desc->func->sparse(vmm, pgt->pt[1], spti, sptc);
337 			/* Sparse LPTEs prevent SPTEs from being accessed. */
338 			TRA(it, "LPTE %05x: S -> U %d PTEs", pteb, ptes);
339 			pair->func->unmap(vmm, pgt->pt[0], pteb, ptes);
340 		} else
341 		if (pair->func->invalid) {
342 			/* MMU supports blocking SPTEs by marking an LPTE
343 			 * as INVALID.  We need to reverse that here.
344 			 */
345 			TRA(it, "LPTE %05x: I -> U %d PTEs", pteb, ptes);
346 			pair->func->unmap(vmm, pgt->pt[0], pteb, ptes);
347 		}
348 	}
349 }
350 
351 static bool
352 nvkm_vmm_ref_ptes(struct nvkm_vmm_iter *it, u32 ptei, u32 ptes)
353 {
354 	const struct nvkm_vmm_desc *desc = it->desc;
355 	const int type = desc->type == SPT;
356 	struct nvkm_vmm_pt *pgt = it->pt[0];
357 
358 	/* Take PTE references. */
359 	pgt->refs[type] += ptes;
360 
361 	/* Dual-PTs need special handling. */
362 	if (desc->type == SPT)
363 		nvkm_vmm_ref_sptes(it, pgt, desc, ptei, ptes);
364 
365 	return true;
366 }
367 
368 static void
369 nvkm_vmm_sparse_ptes(const struct nvkm_vmm_desc *desc,
370 		     struct nvkm_vmm_pt *pgt, u32 ptei, u32 ptes)
371 {
372 	if (desc->type == PGD) {
373 		while (ptes--)
374 			pgt->pde[ptei++] = NVKM_VMM_PDE_SPARSE;
375 	} else
376 	if (desc->type == LPT) {
377 		memset(&pgt->pte[ptei], NVKM_VMM_PTE_SPARSE, ptes);
378 	}
379 }
380 
381 static bool
382 nvkm_vmm_sparse_unref_ptes(struct nvkm_vmm_iter *it, u32 ptei, u32 ptes)
383 {
384 	struct nvkm_vmm_pt *pt = it->pt[0];
385 	if (it->desc->type == PGD)
386 		memset(&pt->pde[ptei], 0x00, sizeof(pt->pde[0]) * ptes);
387 	else
388 	if (it->desc->type == LPT)
389 		memset(&pt->pte[ptei], 0x00, sizeof(pt->pte[0]) * ptes);
390 	return nvkm_vmm_unref_ptes(it, ptei, ptes);
391 }
392 
393 static bool
394 nvkm_vmm_sparse_ref_ptes(struct nvkm_vmm_iter *it, u32 ptei, u32 ptes)
395 {
396 	nvkm_vmm_sparse_ptes(it->desc, it->pt[0], ptei, ptes);
397 	return nvkm_vmm_ref_ptes(it, ptei, ptes);
398 }
399 
400 static bool
401 nvkm_vmm_ref_hwpt(struct nvkm_vmm_iter *it, struct nvkm_vmm_pt *pgd, u32 pdei)
402 {
403 	const struct nvkm_vmm_desc *desc = &it->desc[it->lvl - 1];
404 	const int type = desc->type == SPT;
405 	struct nvkm_vmm_pt *pgt = pgd->pde[pdei];
406 	const bool zero = !pgt->sparse && !desc->func->invalid;
407 	struct nvkm_vmm *vmm = it->vmm;
408 	struct nvkm_mmu *mmu = vmm->mmu;
409 	struct nvkm_mmu_pt *pt;
410 	u32 pten = 1 << desc->bits;
411 	u32 pteb, ptei, ptes;
412 	u32 size = desc->size * pten;
413 
414 	pgd->refs[0]++;
415 
416 	pgt->pt[type] = nvkm_mmu_ptc_get(mmu, size, desc->align, zero);
417 	if (!pgt->pt[type]) {
418 		it->lvl--;
419 		nvkm_vmm_unref_pdes(it);
420 		return false;
421 	}
422 
423 	if (zero)
424 		goto done;
425 
426 	pt = pgt->pt[type];
427 
428 	if (desc->type == LPT && pgt->refs[1]) {
429 		/* SPT already exists covering the same range as this LPT,
430 		 * which means we need to be careful that any LPTEs which
431 		 * overlap valid SPTEs are unmapped as opposed to invalid
432 		 * or sparse, which would prevent the MMU from looking at
433 		 * the SPTEs on some GPUs.
434 		 */
435 		for (ptei = pteb = 0; ptei < pten; pteb = ptei) {
436 			bool spte = pgt->pte[ptei] & NVKM_VMM_PTE_SPTES;
437 			for (ptes = 1, ptei++; ptei < pten; ptes++, ptei++) {
438 				bool next = pgt->pte[ptei] & NVKM_VMM_PTE_SPTES;
439 				if (spte != next)
440 					break;
441 			}
442 
443 			if (!spte) {
444 				if (pgt->sparse)
445 					desc->func->sparse(vmm, pt, pteb, ptes);
446 				else
447 					desc->func->invalid(vmm, pt, pteb, ptes);
448 				memset(&pgt->pte[pteb], 0x00, ptes);
449 			} else {
450 				desc->func->unmap(vmm, pt, pteb, ptes);
451 				while (ptes--)
452 					pgt->pte[pteb++] |= NVKM_VMM_PTE_VALID;
453 			}
454 		}
455 	} else {
456 		if (pgt->sparse) {
457 			nvkm_vmm_sparse_ptes(desc, pgt, 0, pten);
458 			desc->func->sparse(vmm, pt, 0, pten);
459 		} else {
460 			desc->func->invalid(vmm, pt, 0, pten);
461 		}
462 	}
463 
464 done:
465 	TRA(it, "PDE write %s", nvkm_vmm_desc_type(desc));
466 	it->desc[it->lvl].func->pde(it->vmm, pgd, pdei);
467 	nvkm_vmm_flush_mark(it);
468 	return true;
469 }
470 
471 static bool
472 nvkm_vmm_ref_swpt(struct nvkm_vmm_iter *it, struct nvkm_vmm_pt *pgd, u32 pdei)
473 {
474 	const struct nvkm_vmm_desc *desc = &it->desc[it->lvl - 1];
475 	struct nvkm_vmm_pt *pgt = pgd->pde[pdei];
476 
477 	pgt = nvkm_vmm_pt_new(desc, NVKM_VMM_PDE_SPARSED(pgt), it->page);
478 	if (!pgt) {
479 		if (!pgd->refs[0])
480 			nvkm_vmm_unref_pdes(it);
481 		return false;
482 	}
483 
484 	pgd->pde[pdei] = pgt;
485 	return true;
486 }
487 
488 static inline u64
489 nvkm_vmm_iter(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page,
490 	      u64 addr, u64 size, const char *name, bool ref,
491 	      bool (*REF_PTES)(struct nvkm_vmm_iter *, u32, u32),
492 	      nvkm_vmm_pte_func MAP_PTES, struct nvkm_vmm_map *map,
493 	      nvkm_vmm_pxe_func CLR_PTES)
494 {
495 	const struct nvkm_vmm_desc *desc = page->desc;
496 	struct nvkm_vmm_iter it;
497 	u64 bits = addr >> page->shift;
498 
499 	it.page = page;
500 	it.desc = desc;
501 	it.vmm = vmm;
502 	it.cnt = size >> page->shift;
503 	it.flush = NVKM_VMM_LEVELS_MAX;
504 
505 	/* Deconstruct address into PTE indices for each mapping level. */
506 	for (it.lvl = 0; desc[it.lvl].bits; it.lvl++) {
507 		it.pte[it.lvl] = bits & ((1 << desc[it.lvl].bits) - 1);
508 		bits >>= desc[it.lvl].bits;
509 	}
510 	it.max = --it.lvl;
511 	it.pt[it.max] = vmm->pd;
512 
513 	it.lvl = 0;
514 	TRA(&it, "%s: %016llx %016llx %d %lld PTEs", name,
515 	         addr, size, page->shift, it.cnt);
516 	it.lvl = it.max;
517 
518 	/* Depth-first traversal of page tables. */
519 	while (it.cnt) {
520 		struct nvkm_vmm_pt *pgt = it.pt[it.lvl];
521 		const int type = desc->type == SPT;
522 		const u32 pten = 1 << desc->bits;
523 		const u32 ptei = it.pte[0];
524 		const u32 ptes = min_t(u64, it.cnt, pten - ptei);
525 
526 		/* Walk down the tree, finding page tables for each level. */
527 		for (; it.lvl; it.lvl--) {
528 			const u32 pdei = it.pte[it.lvl];
529 			struct nvkm_vmm_pt *pgd = pgt;
530 
531 			/* Software PT. */
532 			if (ref && NVKM_VMM_PDE_INVALID(pgd->pde[pdei])) {
533 				if (!nvkm_vmm_ref_swpt(&it, pgd, pdei))
534 					goto fail;
535 			}
536 			it.pt[it.lvl - 1] = pgt = pgd->pde[pdei];
537 
538 			/* Hardware PT.
539 			 *
540 			 * This is a separate step from above due to GF100 and
541 			 * newer having dual page tables at some levels, which
542 			 * are refcounted independently.
543 			 */
544 			if (ref && !pgt->refs[desc[it.lvl - 1].type == SPT]) {
545 				if (!nvkm_vmm_ref_hwpt(&it, pgd, pdei))
546 					goto fail;
547 			}
548 		}
549 
550 		/* Handle PTE updates. */
551 		if (!REF_PTES || REF_PTES(&it, ptei, ptes)) {
552 			struct nvkm_mmu_pt *pt = pgt->pt[type];
553 			if (MAP_PTES || CLR_PTES) {
554 				if (MAP_PTES)
555 					MAP_PTES(vmm, pt, ptei, ptes, map);
556 				else
557 					CLR_PTES(vmm, pt, ptei, ptes);
558 				nvkm_vmm_flush_mark(&it);
559 			}
560 		}
561 
562 		/* Walk back up the tree to the next position. */
563 		it.pte[it.lvl] += ptes;
564 		it.cnt -= ptes;
565 		if (it.cnt) {
566 			while (it.pte[it.lvl] == (1 << desc[it.lvl].bits)) {
567 				it.pte[it.lvl++] = 0;
568 				it.pte[it.lvl]++;
569 			}
570 		}
571 	};
572 
573 	nvkm_vmm_flush(&it);
574 	return ~0ULL;
575 
576 fail:
577 	/* Reconstruct the failure address so the caller is able to
578 	 * reverse any partially completed operations.
579 	 */
580 	addr = it.pte[it.max--];
581 	do {
582 		addr  = addr << desc[it.max].bits;
583 		addr |= it.pte[it.max];
584 	} while (it.max--);
585 
586 	return addr << page->shift;
587 }
588 
589 static void
590 nvkm_vmm_ptes_sparse_put(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page,
591 			 u64 addr, u64 size)
592 {
593 	nvkm_vmm_iter(vmm, page, addr, size, "sparse unref", false,
594 		      nvkm_vmm_sparse_unref_ptes, NULL, NULL,
595 		      page->desc->func->invalid ?
596 		      page->desc->func->invalid : page->desc->func->unmap);
597 }
598 
599 static int
600 nvkm_vmm_ptes_sparse_get(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page,
601 			 u64 addr, u64 size)
602 {
603 	if ((page->type & NVKM_VMM_PAGE_SPARSE)) {
604 		u64 fail = nvkm_vmm_iter(vmm, page, addr, size, "sparse ref",
605 					 true, nvkm_vmm_sparse_ref_ptes, NULL,
606 					 NULL, page->desc->func->sparse);
607 		if (fail != ~0ULL) {
608 			if ((size = fail - addr))
609 				nvkm_vmm_ptes_sparse_put(vmm, page, addr, size);
610 			return -ENOMEM;
611 		}
612 		return 0;
613 	}
614 	return -EINVAL;
615 }
616 
617 static int
618 nvkm_vmm_ptes_sparse(struct nvkm_vmm *vmm, u64 addr, u64 size, bool ref)
619 {
620 	const struct nvkm_vmm_page *page = vmm->func->page;
621 	int m = 0, i;
622 	u64 start = addr;
623 	u64 block;
624 
625 	while (size) {
626 		/* Limit maximum page size based on remaining size. */
627 		while (size < (1ULL << page[m].shift))
628 			m++;
629 		i = m;
630 
631 		/* Find largest page size suitable for alignment. */
632 		while (!IS_ALIGNED(addr, 1ULL << page[i].shift))
633 			i++;
634 
635 		/* Determine number of PTEs at this page size. */
636 		if (i != m) {
637 			/* Limited to alignment boundary of next page size. */
638 			u64 next = 1ULL << page[i - 1].shift;
639 			u64 part = ALIGN(addr, next) - addr;
640 			if (size - part >= next)
641 				block = (part >> page[i].shift) << page[i].shift;
642 			else
643 				block = (size >> page[i].shift) << page[i].shift;
644 		} else {
645 			block = (size >> page[i].shift) << page[i].shift;
646 		}
647 
648 		/* Perform operation. */
649 		if (ref) {
650 			int ret = nvkm_vmm_ptes_sparse_get(vmm, &page[i], addr, block);
651 			if (ret) {
652 				if ((size = addr - start))
653 					nvkm_vmm_ptes_sparse(vmm, start, size, false);
654 				return ret;
655 			}
656 		} else {
657 			nvkm_vmm_ptes_sparse_put(vmm, &page[i], addr, block);
658 		}
659 
660 		size -= block;
661 		addr += block;
662 	}
663 
664 	return 0;
665 }
666 
667 static void
668 nvkm_vmm_ptes_unmap_put(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page,
669 			u64 addr, u64 size, bool sparse)
670 {
671 	const struct nvkm_vmm_desc_func *func = page->desc->func;
672 	nvkm_vmm_iter(vmm, page, addr, size, "unmap + unref",
673 		      false, nvkm_vmm_unref_ptes, NULL, NULL,
674 		      sparse ? func->sparse : func->invalid ? func->invalid :
675 							      func->unmap);
676 }
677 
678 static int
679 nvkm_vmm_ptes_get_map(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page,
680 		      u64 addr, u64 size, struct nvkm_vmm_map *map,
681 		      nvkm_vmm_pte_func func)
682 {
683 	u64 fail = nvkm_vmm_iter(vmm, page, addr, size, "ref + map", true,
684 				 nvkm_vmm_ref_ptes, func, map, NULL);
685 	if (fail != ~0ULL) {
686 		if ((size = fail - addr))
687 			nvkm_vmm_ptes_unmap_put(vmm, page, addr, size, false);
688 		return -ENOMEM;
689 	}
690 	return 0;
691 }
692 
693 static void
694 nvkm_vmm_ptes_unmap(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page,
695 		    u64 addr, u64 size, bool sparse)
696 {
697 	const struct nvkm_vmm_desc_func *func = page->desc->func;
698 	nvkm_vmm_iter(vmm, page, addr, size, "unmap", false, NULL, NULL, NULL,
699 		      sparse ? func->sparse : func->invalid ? func->invalid :
700 							      func->unmap);
701 }
702 
703 static void
704 nvkm_vmm_ptes_map(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page,
705 		  u64 addr, u64 size, struct nvkm_vmm_map *map,
706 		  nvkm_vmm_pte_func func)
707 {
708 	nvkm_vmm_iter(vmm, page, addr, size, "map", false,
709 		      NULL, func, map, NULL);
710 }
711 
712 static void
713 nvkm_vmm_ptes_put(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page,
714 		  u64 addr, u64 size)
715 {
716 	nvkm_vmm_iter(vmm, page, addr, size, "unref", false,
717 		      nvkm_vmm_unref_ptes, NULL, NULL, NULL);
718 }
719 
720 static int
721 nvkm_vmm_ptes_get(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page,
722 		  u64 addr, u64 size)
723 {
724 	u64 fail = nvkm_vmm_iter(vmm, page, addr, size, "ref", true,
725 				 nvkm_vmm_ref_ptes, NULL, NULL, NULL);
726 	if (fail != ~0ULL) {
727 		if (fail != addr)
728 			nvkm_vmm_ptes_put(vmm, page, addr, fail - addr);
729 		return -ENOMEM;
730 	}
731 	return 0;
732 }
733 
734 static inline struct nvkm_vma *
735 nvkm_vma_new(u64 addr, u64 size)
736 {
737 	struct nvkm_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
738 	if (vma) {
739 		vma->addr = addr;
740 		vma->size = size;
741 		vma->page = NVKM_VMA_PAGE_NONE;
742 		vma->refd = NVKM_VMA_PAGE_NONE;
743 	}
744 	return vma;
745 }
746 
747 struct nvkm_vma *
748 nvkm_vma_tail(struct nvkm_vma *vma, u64 tail)
749 {
750 	struct nvkm_vma *new;
751 
752 	BUG_ON(vma->size == tail);
753 
754 	if (!(new = nvkm_vma_new(vma->addr + (vma->size - tail), tail)))
755 		return NULL;
756 	vma->size -= tail;
757 
758 	new->mapref = vma->mapref;
759 	new->sparse = vma->sparse;
760 	new->page = vma->page;
761 	new->refd = vma->refd;
762 	new->used = vma->used;
763 	new->part = vma->part;
764 	new->user = vma->user;
765 	new->busy = vma->busy;
766 	list_add(&new->head, &vma->head);
767 	return new;
768 }
769 
770 static void
771 nvkm_vmm_free_insert(struct nvkm_vmm *vmm, struct nvkm_vma *vma)
772 {
773 	struct rb_node **ptr = &vmm->free.rb_node;
774 	struct rb_node *parent = NULL;
775 
776 	while (*ptr) {
777 		struct nvkm_vma *this = rb_entry(*ptr, typeof(*this), tree);
778 		parent = *ptr;
779 		if (vma->size < this->size)
780 			ptr = &parent->rb_left;
781 		else
782 		if (vma->size > this->size)
783 			ptr = &parent->rb_right;
784 		else
785 		if (vma->addr < this->addr)
786 			ptr = &parent->rb_left;
787 		else
788 		if (vma->addr > this->addr)
789 			ptr = &parent->rb_right;
790 		else
791 			BUG();
792 	}
793 
794 	rb_link_node(&vma->tree, parent, ptr);
795 	rb_insert_color(&vma->tree, &vmm->free);
796 }
797 
798 void
799 nvkm_vmm_node_insert(struct nvkm_vmm *vmm, struct nvkm_vma *vma)
800 {
801 	struct rb_node **ptr = &vmm->root.rb_node;
802 	struct rb_node *parent = NULL;
803 
804 	while (*ptr) {
805 		struct nvkm_vma *this = rb_entry(*ptr, typeof(*this), tree);
806 		parent = *ptr;
807 		if (vma->addr < this->addr)
808 			ptr = &parent->rb_left;
809 		else
810 		if (vma->addr > this->addr)
811 			ptr = &parent->rb_right;
812 		else
813 			BUG();
814 	}
815 
816 	rb_link_node(&vma->tree, parent, ptr);
817 	rb_insert_color(&vma->tree, &vmm->root);
818 }
819 
820 struct nvkm_vma *
821 nvkm_vmm_node_search(struct nvkm_vmm *vmm, u64 addr)
822 {
823 	struct rb_node *node = vmm->root.rb_node;
824 	while (node) {
825 		struct nvkm_vma *vma = rb_entry(node, typeof(*vma), tree);
826 		if (addr < vma->addr)
827 			node = node->rb_left;
828 		else
829 		if (addr >= vma->addr + vma->size)
830 			node = node->rb_right;
831 		else
832 			return vma;
833 	}
834 	return NULL;
835 }
836 
837 static void
838 nvkm_vmm_dtor(struct nvkm_vmm *vmm)
839 {
840 	struct nvkm_vma *vma;
841 	struct rb_node *node;
842 
843 	while ((node = rb_first(&vmm->root))) {
844 		struct nvkm_vma *vma = rb_entry(node, typeof(*vma), tree);
845 		nvkm_vmm_put(vmm, &vma);
846 	}
847 
848 	if (vmm->bootstrapped) {
849 		const struct nvkm_vmm_page *page = vmm->func->page;
850 		const u64 limit = vmm->limit - vmm->start;
851 
852 		while (page[1].shift)
853 			page++;
854 
855 		nvkm_mmu_ptc_dump(vmm->mmu);
856 		nvkm_vmm_ptes_put(vmm, page, vmm->start, limit);
857 	}
858 
859 	vma = list_first_entry(&vmm->list, typeof(*vma), head);
860 	list_del(&vma->head);
861 	kfree(vma);
862 	WARN_ON(!list_empty(&vmm->list));
863 
864 	if (vmm->nullp) {
865 		dma_free_coherent(vmm->mmu->subdev.device->dev, 16 * 1024,
866 				  vmm->nullp, vmm->null);
867 	}
868 
869 	if (vmm->pd) {
870 		nvkm_mmu_ptc_put(vmm->mmu, true, &vmm->pd->pt[0]);
871 		nvkm_vmm_pt_del(&vmm->pd);
872 	}
873 }
874 
875 int
876 nvkm_vmm_ctor(const struct nvkm_vmm_func *func, struct nvkm_mmu *mmu,
877 	      u32 pd_header, u64 addr, u64 size, struct lock_class_key *key,
878 	      const char *name, struct nvkm_vmm *vmm)
879 {
880 	static struct lock_class_key _key;
881 	const struct nvkm_vmm_page *page = func->page;
882 	const struct nvkm_vmm_desc *desc;
883 	struct nvkm_vma *vma;
884 	int levels, bits = 0;
885 
886 	vmm->func = func;
887 	vmm->mmu = mmu;
888 	vmm->name = name;
889 	vmm->debug = mmu->subdev.debug;
890 	kref_init(&vmm->kref);
891 
892 	__mutex_init(&vmm->mutex, "&vmm->mutex", key ? key : &_key);
893 
894 	/* Locate the smallest page size supported by the backend, it will
895 	 * have the the deepest nesting of page tables.
896 	 */
897 	while (page[1].shift)
898 		page++;
899 
900 	/* Locate the structure that describes the layout of the top-level
901 	 * page table, and determine the number of valid bits in a virtual
902 	 * address.
903 	 */
904 	for (levels = 0, desc = page->desc; desc->bits; desc++, levels++)
905 		bits += desc->bits;
906 	bits += page->shift;
907 	desc--;
908 
909 	if (WARN_ON(levels > NVKM_VMM_LEVELS_MAX))
910 		return -EINVAL;
911 
912 	vmm->start = addr;
913 	vmm->limit = size ? (addr + size) : (1ULL << bits);
914 	if (vmm->start > vmm->limit || vmm->limit > (1ULL << bits))
915 		return -EINVAL;
916 
917 	/* Allocate top-level page table. */
918 	vmm->pd = nvkm_vmm_pt_new(desc, false, NULL);
919 	if (!vmm->pd)
920 		return -ENOMEM;
921 	vmm->pd->refs[0] = 1;
922 	INIT_LIST_HEAD(&vmm->join);
923 
924 	/* ... and the GPU storage for it, except on Tesla-class GPUs that
925 	 * have the PD embedded in the instance structure.
926 	 */
927 	if (desc->size) {
928 		const u32 size = pd_header + desc->size * (1 << desc->bits);
929 		vmm->pd->pt[0] = nvkm_mmu_ptc_get(mmu, size, desc->align, true);
930 		if (!vmm->pd->pt[0])
931 			return -ENOMEM;
932 	}
933 
934 	/* Initialise address-space MM. */
935 	INIT_LIST_HEAD(&vmm->list);
936 	vmm->free = RB_ROOT;
937 	vmm->root = RB_ROOT;
938 
939 	if (!(vma = nvkm_vma_new(vmm->start, vmm->limit - vmm->start)))
940 		return -ENOMEM;
941 
942 	nvkm_vmm_free_insert(vmm, vma);
943 	list_add(&vma->head, &vmm->list);
944 	return 0;
945 }
946 
947 int
948 nvkm_vmm_new_(const struct nvkm_vmm_func *func, struct nvkm_mmu *mmu,
949 	      u32 hdr, u64 addr, u64 size, struct lock_class_key *key,
950 	      const char *name, struct nvkm_vmm **pvmm)
951 {
952 	if (!(*pvmm = kzalloc(sizeof(**pvmm), GFP_KERNEL)))
953 		return -ENOMEM;
954 	return nvkm_vmm_ctor(func, mmu, hdr, addr, size, key, name, *pvmm);
955 }
956 
957 #define node(root, dir) ((root)->head.dir == &vmm->list) ? NULL :              \
958 	list_entry((root)->head.dir, struct nvkm_vma, head)
959 
960 void
961 nvkm_vmm_unmap_region(struct nvkm_vmm *vmm, struct nvkm_vma *vma)
962 {
963 	struct nvkm_vma *next;
964 
965 	nvkm_memory_tags_put(vma->memory, vmm->mmu->subdev.device, &vma->tags);
966 	nvkm_memory_unref(&vma->memory);
967 
968 	if (vma->part) {
969 		struct nvkm_vma *prev = node(vma, prev);
970 		if (!prev->memory) {
971 			prev->size += vma->size;
972 			rb_erase(&vma->tree, &vmm->root);
973 			list_del(&vma->head);
974 			kfree(vma);
975 			vma = prev;
976 		}
977 	}
978 
979 	next = node(vma, next);
980 	if (next && next->part) {
981 		if (!next->memory) {
982 			vma->size += next->size;
983 			rb_erase(&next->tree, &vmm->root);
984 			list_del(&next->head);
985 			kfree(next);
986 		}
987 	}
988 }
989 
990 void
991 nvkm_vmm_unmap_locked(struct nvkm_vmm *vmm, struct nvkm_vma *vma)
992 {
993 	const struct nvkm_vmm_page *page = &vmm->func->page[vma->refd];
994 
995 	if (vma->mapref) {
996 		nvkm_vmm_ptes_unmap_put(vmm, page, vma->addr, vma->size, vma->sparse);
997 		vma->refd = NVKM_VMA_PAGE_NONE;
998 	} else {
999 		nvkm_vmm_ptes_unmap(vmm, page, vma->addr, vma->size, vma->sparse);
1000 	}
1001 
1002 	nvkm_vmm_unmap_region(vmm, vma);
1003 }
1004 
1005 void
1006 nvkm_vmm_unmap(struct nvkm_vmm *vmm, struct nvkm_vma *vma)
1007 {
1008 	if (vma->memory) {
1009 		mutex_lock(&vmm->mutex);
1010 		nvkm_vmm_unmap_locked(vmm, vma);
1011 		mutex_unlock(&vmm->mutex);
1012 	}
1013 }
1014 
1015 static int
1016 nvkm_vmm_map_valid(struct nvkm_vmm *vmm, struct nvkm_vma *vma,
1017 		   void *argv, u32 argc, struct nvkm_vmm_map *map)
1018 {
1019 	switch (nvkm_memory_target(map->memory)) {
1020 	case NVKM_MEM_TARGET_VRAM:
1021 		if (!(map->page->type & NVKM_VMM_PAGE_VRAM)) {
1022 			VMM_DEBUG(vmm, "%d !VRAM", map->page->shift);
1023 			return -EINVAL;
1024 		}
1025 		break;
1026 	case NVKM_MEM_TARGET_HOST:
1027 	case NVKM_MEM_TARGET_NCOH:
1028 		if (!(map->page->type & NVKM_VMM_PAGE_HOST)) {
1029 			VMM_DEBUG(vmm, "%d !HOST", map->page->shift);
1030 			return -EINVAL;
1031 		}
1032 		break;
1033 	default:
1034 		WARN_ON(1);
1035 		return -ENOSYS;
1036 	}
1037 
1038 	if (!IS_ALIGNED(     vma->addr, 1ULL << map->page->shift) ||
1039 	    !IS_ALIGNED((u64)vma->size, 1ULL << map->page->shift) ||
1040 	    !IS_ALIGNED(   map->offset, 1ULL << map->page->shift) ||
1041 	    nvkm_memory_page(map->memory) < map->page->shift) {
1042 		VMM_DEBUG(vmm, "alignment %016llx %016llx %016llx %d %d",
1043 		    vma->addr, (u64)vma->size, map->offset, map->page->shift,
1044 		    nvkm_memory_page(map->memory));
1045 		return -EINVAL;
1046 	}
1047 
1048 	return vmm->func->valid(vmm, argv, argc, map);
1049 }
1050 
1051 static int
1052 nvkm_vmm_map_choose(struct nvkm_vmm *vmm, struct nvkm_vma *vma,
1053 		    void *argv, u32 argc, struct nvkm_vmm_map *map)
1054 {
1055 	for (map->page = vmm->func->page; map->page->shift; map->page++) {
1056 		VMM_DEBUG(vmm, "trying %d", map->page->shift);
1057 		if (!nvkm_vmm_map_valid(vmm, vma, argv, argc, map))
1058 			return 0;
1059 	}
1060 	return -EINVAL;
1061 }
1062 
1063 static int
1064 nvkm_vmm_map_locked(struct nvkm_vmm *vmm, struct nvkm_vma *vma,
1065 		    void *argv, u32 argc, struct nvkm_vmm_map *map)
1066 {
1067 	nvkm_vmm_pte_func func;
1068 	int ret;
1069 
1070 	/* Make sure we won't overrun the end of the memory object. */
1071 	if (unlikely(nvkm_memory_size(map->memory) < map->offset + vma->size)) {
1072 		VMM_DEBUG(vmm, "overrun %016llx %016llx %016llx",
1073 			  nvkm_memory_size(map->memory),
1074 			  map->offset, (u64)vma->size);
1075 		return -EINVAL;
1076 	}
1077 
1078 	/* Check remaining arguments for validity. */
1079 	if (vma->page == NVKM_VMA_PAGE_NONE &&
1080 	    vma->refd == NVKM_VMA_PAGE_NONE) {
1081 		/* Find the largest page size we can perform the mapping at. */
1082 		const u32 debug = vmm->debug;
1083 		vmm->debug = 0;
1084 		ret = nvkm_vmm_map_choose(vmm, vma, argv, argc, map);
1085 		vmm->debug = debug;
1086 		if (ret) {
1087 			VMM_DEBUG(vmm, "invalid at any page size");
1088 			nvkm_vmm_map_choose(vmm, vma, argv, argc, map);
1089 			return -EINVAL;
1090 		}
1091 	} else {
1092 		/* Page size of the VMA is already pre-determined. */
1093 		if (vma->refd != NVKM_VMA_PAGE_NONE)
1094 			map->page = &vmm->func->page[vma->refd];
1095 		else
1096 			map->page = &vmm->func->page[vma->page];
1097 
1098 		ret = nvkm_vmm_map_valid(vmm, vma, argv, argc, map);
1099 		if (ret) {
1100 			VMM_DEBUG(vmm, "invalid %d\n", ret);
1101 			return ret;
1102 		}
1103 	}
1104 
1105 	/* Deal with the 'offset' argument, and fetch the backend function. */
1106 	map->off = map->offset;
1107 	if (map->mem) {
1108 		for (; map->off; map->mem = map->mem->next) {
1109 			u64 size = (u64)map->mem->length << NVKM_RAM_MM_SHIFT;
1110 			if (size > map->off)
1111 				break;
1112 			map->off -= size;
1113 		}
1114 		func = map->page->desc->func->mem;
1115 	} else
1116 	if (map->sgl) {
1117 		for (; map->off; map->sgl = sg_next(map->sgl)) {
1118 			u64 size = sg_dma_len(map->sgl);
1119 			if (size > map->off)
1120 				break;
1121 			map->off -= size;
1122 		}
1123 		func = map->page->desc->func->sgl;
1124 	} else {
1125 		map->dma += map->offset >> PAGE_SHIFT;
1126 		map->off  = map->offset & PAGE_MASK;
1127 		func = map->page->desc->func->dma;
1128 	}
1129 
1130 	/* Perform the map. */
1131 	if (vma->refd == NVKM_VMA_PAGE_NONE) {
1132 		ret = nvkm_vmm_ptes_get_map(vmm, map->page, vma->addr, vma->size, map, func);
1133 		if (ret)
1134 			return ret;
1135 
1136 		vma->refd = map->page - vmm->func->page;
1137 	} else {
1138 		nvkm_vmm_ptes_map(vmm, map->page, vma->addr, vma->size, map, func);
1139 	}
1140 
1141 	nvkm_memory_tags_put(vma->memory, vmm->mmu->subdev.device, &vma->tags);
1142 	nvkm_memory_unref(&vma->memory);
1143 	vma->memory = nvkm_memory_ref(map->memory);
1144 	vma->tags = map->tags;
1145 	return 0;
1146 }
1147 
1148 int
1149 nvkm_vmm_map(struct nvkm_vmm *vmm, struct nvkm_vma *vma, void *argv, u32 argc,
1150 	     struct nvkm_vmm_map *map)
1151 {
1152 	int ret;
1153 	mutex_lock(&vmm->mutex);
1154 	ret = nvkm_vmm_map_locked(vmm, vma, argv, argc, map);
1155 	vma->busy = false;
1156 	mutex_unlock(&vmm->mutex);
1157 	return ret;
1158 }
1159 
1160 static void
1161 nvkm_vmm_put_region(struct nvkm_vmm *vmm, struct nvkm_vma *vma)
1162 {
1163 	struct nvkm_vma *prev, *next;
1164 
1165 	if ((prev = node(vma, prev)) && !prev->used) {
1166 		rb_erase(&prev->tree, &vmm->free);
1167 		list_del(&prev->head);
1168 		vma->addr  = prev->addr;
1169 		vma->size += prev->size;
1170 		kfree(prev);
1171 	}
1172 
1173 	if ((next = node(vma, next)) && !next->used) {
1174 		rb_erase(&next->tree, &vmm->free);
1175 		list_del(&next->head);
1176 		vma->size += next->size;
1177 		kfree(next);
1178 	}
1179 
1180 	nvkm_vmm_free_insert(vmm, vma);
1181 }
1182 
1183 void
1184 nvkm_vmm_put_locked(struct nvkm_vmm *vmm, struct nvkm_vma *vma)
1185 {
1186 	const struct nvkm_vmm_page *page = vmm->func->page;
1187 	struct nvkm_vma *next = vma;
1188 
1189 	BUG_ON(vma->part);
1190 
1191 	if (vma->mapref || !vma->sparse) {
1192 		do {
1193 			const bool map = next->memory != NULL;
1194 			const u8  refd = next->refd;
1195 			const u64 addr = next->addr;
1196 			u64 size = next->size;
1197 
1198 			/* Merge regions that are in the same state. */
1199 			while ((next = node(next, next)) && next->part &&
1200 			       (next->memory != NULL) == map &&
1201 			       (next->refd == refd))
1202 				size += next->size;
1203 
1204 			if (map) {
1205 				/* Region(s) are mapped, merge the unmap
1206 				 * and dereference into a single walk of
1207 				 * the page tree.
1208 				 */
1209 				nvkm_vmm_ptes_unmap_put(vmm, &page[refd], addr,
1210 							size, vma->sparse);
1211 			} else
1212 			if (refd != NVKM_VMA_PAGE_NONE) {
1213 				/* Drop allocation-time PTE references. */
1214 				nvkm_vmm_ptes_put(vmm, &page[refd], addr, size);
1215 			}
1216 		} while (next && next->part);
1217 	}
1218 
1219 	/* Merge any mapped regions that were split from the initial
1220 	 * address-space allocation back into the allocated VMA, and
1221 	 * release memory/compression resources.
1222 	 */
1223 	next = vma;
1224 	do {
1225 		if (next->memory)
1226 			nvkm_vmm_unmap_region(vmm, next);
1227 	} while ((next = node(vma, next)) && next->part);
1228 
1229 	if (vma->sparse && !vma->mapref) {
1230 		/* Sparse region that was allocated with a fixed page size,
1231 		 * meaning all relevant PTEs were referenced once when the
1232 		 * region was allocated, and remained that way, regardless
1233 		 * of whether memory was mapped into it afterwards.
1234 		 *
1235 		 * The process of unmapping, unsparsing, and dereferencing
1236 		 * PTEs can be done in a single page tree walk.
1237 		 */
1238 		nvkm_vmm_ptes_sparse_put(vmm, &page[vma->refd], vma->addr, vma->size);
1239 	} else
1240 	if (vma->sparse) {
1241 		/* Sparse region that wasn't allocated with a fixed page size,
1242 		 * PTE references were taken both at allocation time (to make
1243 		 * the GPU see the region as sparse), and when mapping memory
1244 		 * into the region.
1245 		 *
1246 		 * The latter was handled above, and the remaining references
1247 		 * are dealt with here.
1248 		 */
1249 		nvkm_vmm_ptes_sparse(vmm, vma->addr, vma->size, false);
1250 	}
1251 
1252 	/* Remove VMA from the list of allocated nodes. */
1253 	rb_erase(&vma->tree, &vmm->root);
1254 
1255 	/* Merge VMA back into the free list. */
1256 	vma->page = NVKM_VMA_PAGE_NONE;
1257 	vma->refd = NVKM_VMA_PAGE_NONE;
1258 	vma->used = false;
1259 	vma->user = false;
1260 	nvkm_vmm_put_region(vmm, vma);
1261 }
1262 
1263 void
1264 nvkm_vmm_put(struct nvkm_vmm *vmm, struct nvkm_vma **pvma)
1265 {
1266 	struct nvkm_vma *vma = *pvma;
1267 	if (vma) {
1268 		mutex_lock(&vmm->mutex);
1269 		nvkm_vmm_put_locked(vmm, vma);
1270 		mutex_unlock(&vmm->mutex);
1271 		*pvma = NULL;
1272 	}
1273 }
1274 
1275 int
1276 nvkm_vmm_get_locked(struct nvkm_vmm *vmm, bool getref, bool mapref, bool sparse,
1277 		    u8 shift, u8 align, u64 size, struct nvkm_vma **pvma)
1278 {
1279 	const struct nvkm_vmm_page *page = &vmm->func->page[NVKM_VMA_PAGE_NONE];
1280 	struct rb_node *node = NULL, *temp;
1281 	struct nvkm_vma *vma = NULL, *tmp;
1282 	u64 addr, tail;
1283 	int ret;
1284 
1285 	VMM_TRACE(vmm, "getref %d mapref %d sparse %d "
1286 		       "shift: %d align: %d size: %016llx",
1287 		  getref, mapref, sparse, shift, align, size);
1288 
1289 	/* Zero-sized, or lazily-allocated sparse VMAs, make no sense. */
1290 	if (unlikely(!size || (!getref && !mapref && sparse))) {
1291 		VMM_DEBUG(vmm, "args %016llx %d %d %d",
1292 			  size, getref, mapref, sparse);
1293 		return -EINVAL;
1294 	}
1295 
1296 	/* Tesla-class GPUs can only select page size per-PDE, which means
1297 	 * we're required to know the mapping granularity up-front to find
1298 	 * a suitable region of address-space.
1299 	 *
1300 	 * The same goes if we're requesting up-front allocation of PTES.
1301 	 */
1302 	if (unlikely((getref || vmm->func->page_block) && !shift)) {
1303 		VMM_DEBUG(vmm, "page size required: %d %016llx",
1304 			  getref, vmm->func->page_block);
1305 		return -EINVAL;
1306 	}
1307 
1308 	/* If a specific page size was requested, determine its index and
1309 	 * make sure the requested size is a multiple of the page size.
1310 	 */
1311 	if (shift) {
1312 		for (page = vmm->func->page; page->shift; page++) {
1313 			if (shift == page->shift)
1314 				break;
1315 		}
1316 
1317 		if (!page->shift || !IS_ALIGNED(size, 1ULL << page->shift)) {
1318 			VMM_DEBUG(vmm, "page %d %016llx", shift, size);
1319 			return -EINVAL;
1320 		}
1321 		align = max_t(u8, align, shift);
1322 	} else {
1323 		align = max_t(u8, align, 12);
1324 	}
1325 
1326 	/* Locate smallest block that can possibly satisfy the allocation. */
1327 	temp = vmm->free.rb_node;
1328 	while (temp) {
1329 		struct nvkm_vma *this = rb_entry(temp, typeof(*this), tree);
1330 		if (this->size < size) {
1331 			temp = temp->rb_right;
1332 		} else {
1333 			node = temp;
1334 			temp = temp->rb_left;
1335 		}
1336 	}
1337 
1338 	if (unlikely(!node))
1339 		return -ENOSPC;
1340 
1341 	/* Take into account alignment restrictions, trying larger blocks
1342 	 * in turn until we find a suitable free block.
1343 	 */
1344 	do {
1345 		struct nvkm_vma *this = rb_entry(node, typeof(*this), tree);
1346 		struct nvkm_vma *prev = node(this, prev);
1347 		struct nvkm_vma *next = node(this, next);
1348 		const int p = page - vmm->func->page;
1349 
1350 		addr = this->addr;
1351 		if (vmm->func->page_block && prev && prev->page != p)
1352 			addr = ALIGN(addr, vmm->func->page_block);
1353 		addr = ALIGN(addr, 1ULL << align);
1354 
1355 		tail = this->addr + this->size;
1356 		if (vmm->func->page_block && next && next->page != p)
1357 			tail = ALIGN_DOWN(tail, vmm->func->page_block);
1358 
1359 		if (addr <= tail && tail - addr >= size) {
1360 			rb_erase(&this->tree, &vmm->free);
1361 			vma = this;
1362 			break;
1363 		}
1364 	} while ((node = rb_next(node)));
1365 
1366 	if (unlikely(!vma))
1367 		return -ENOSPC;
1368 
1369 	/* If the VMA we found isn't already exactly the requested size,
1370 	 * it needs to be split, and the remaining free blocks returned.
1371 	 */
1372 	if (addr != vma->addr) {
1373 		if (!(tmp = nvkm_vma_tail(vma, vma->size + vma->addr - addr))) {
1374 			nvkm_vmm_put_region(vmm, vma);
1375 			return -ENOMEM;
1376 		}
1377 		nvkm_vmm_free_insert(vmm, vma);
1378 		vma = tmp;
1379 	}
1380 
1381 	if (size != vma->size) {
1382 		if (!(tmp = nvkm_vma_tail(vma, vma->size - size))) {
1383 			nvkm_vmm_put_region(vmm, vma);
1384 			return -ENOMEM;
1385 		}
1386 		nvkm_vmm_free_insert(vmm, tmp);
1387 	}
1388 
1389 	/* Pre-allocate page tables and/or setup sparse mappings. */
1390 	if (sparse && getref)
1391 		ret = nvkm_vmm_ptes_sparse_get(vmm, page, vma->addr, vma->size);
1392 	else if (sparse)
1393 		ret = nvkm_vmm_ptes_sparse(vmm, vma->addr, vma->size, true);
1394 	else if (getref)
1395 		ret = nvkm_vmm_ptes_get(vmm, page, vma->addr, vma->size);
1396 	else
1397 		ret = 0;
1398 	if (ret) {
1399 		nvkm_vmm_put_region(vmm, vma);
1400 		return ret;
1401 	}
1402 
1403 	vma->mapref = mapref && !getref;
1404 	vma->sparse = sparse;
1405 	vma->page = page - vmm->func->page;
1406 	vma->refd = getref ? vma->page : NVKM_VMA_PAGE_NONE;
1407 	vma->used = true;
1408 	nvkm_vmm_node_insert(vmm, vma);
1409 	*pvma = vma;
1410 	return 0;
1411 }
1412 
1413 int
1414 nvkm_vmm_get(struct nvkm_vmm *vmm, u8 page, u64 size, struct nvkm_vma **pvma)
1415 {
1416 	int ret;
1417 	mutex_lock(&vmm->mutex);
1418 	ret = nvkm_vmm_get_locked(vmm, false, true, false, page, 0, size, pvma);
1419 	mutex_unlock(&vmm->mutex);
1420 	return ret;
1421 }
1422 
1423 void
1424 nvkm_vmm_part(struct nvkm_vmm *vmm, struct nvkm_memory *inst)
1425 {
1426 	if (inst && vmm->func->part) {
1427 		mutex_lock(&vmm->mutex);
1428 		vmm->func->part(vmm, inst);
1429 		mutex_unlock(&vmm->mutex);
1430 	}
1431 }
1432 
1433 int
1434 nvkm_vmm_join(struct nvkm_vmm *vmm, struct nvkm_memory *inst)
1435 {
1436 	int ret = 0;
1437 	if (vmm->func->join) {
1438 		mutex_lock(&vmm->mutex);
1439 		ret = vmm->func->join(vmm, inst);
1440 		mutex_unlock(&vmm->mutex);
1441 	}
1442 	return ret;
1443 }
1444 
1445 static bool
1446 nvkm_vmm_boot_ptes(struct nvkm_vmm_iter *it, u32 ptei, u32 ptes)
1447 {
1448 	const struct nvkm_vmm_desc *desc = it->desc;
1449 	const int type = desc->type == SPT;
1450 	nvkm_memory_boot(it->pt[0]->pt[type]->memory, it->vmm);
1451 	return false;
1452 }
1453 
1454 int
1455 nvkm_vmm_boot(struct nvkm_vmm *vmm)
1456 {
1457 	const struct nvkm_vmm_page *page = vmm->func->page;
1458 	const u64 limit = vmm->limit - vmm->start;
1459 	int ret;
1460 
1461 	while (page[1].shift)
1462 		page++;
1463 
1464 	ret = nvkm_vmm_ptes_get(vmm, page, vmm->start, limit);
1465 	if (ret)
1466 		return ret;
1467 
1468 	nvkm_vmm_iter(vmm, page, vmm->start, limit, "bootstrap", false,
1469 		      nvkm_vmm_boot_ptes, NULL, NULL, NULL);
1470 	vmm->bootstrapped = true;
1471 	return 0;
1472 }
1473 
1474 static void
1475 nvkm_vmm_del(struct kref *kref)
1476 {
1477 	struct nvkm_vmm *vmm = container_of(kref, typeof(*vmm), kref);
1478 	nvkm_vmm_dtor(vmm);
1479 	kfree(vmm);
1480 }
1481 
1482 void
1483 nvkm_vmm_unref(struct nvkm_vmm **pvmm)
1484 {
1485 	struct nvkm_vmm *vmm = *pvmm;
1486 	if (vmm) {
1487 		kref_put(&vmm->kref, nvkm_vmm_del);
1488 		*pvmm = NULL;
1489 	}
1490 }
1491 
1492 struct nvkm_vmm *
1493 nvkm_vmm_ref(struct nvkm_vmm *vmm)
1494 {
1495 	if (vmm)
1496 		kref_get(&vmm->kref);
1497 	return vmm;
1498 }
1499 
1500 int
1501 nvkm_vmm_new(struct nvkm_device *device, u64 addr, u64 size, void *argv,
1502 	     u32 argc, struct lock_class_key *key, const char *name,
1503 	     struct nvkm_vmm **pvmm)
1504 {
1505 	struct nvkm_mmu *mmu = device->mmu;
1506 	struct nvkm_vmm *vmm = NULL;
1507 	int ret;
1508 	ret = mmu->func->vmm.ctor(mmu, addr, size, argv, argc, key, name, &vmm);
1509 	if (ret)
1510 		nvkm_vmm_unref(&vmm);
1511 	*pvmm = vmm;
1512 	return ret;
1513 }
1514