1 /*
2  * Copyright 2012 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Ben Skeggs
23  */
24 #include "nv04.h"
25 
26 #include <core/gpuobj.h>
27 #include <core/option.h>
28 #include <subdev/timer.h>
29 
30 #define NV44_GART_SIZE (512 * 1024 * 1024)
31 #define NV44_GART_PAGE (  4 * 1024)
32 
33 /*******************************************************************************
34  * VM map/unmap callbacks
35  ******************************************************************************/
36 
37 static void
38 nv44_vm_fill(struct nvkm_memory *pgt, dma_addr_t null,
39 	     dma_addr_t *list, u32 pte, u32 cnt)
40 {
41 	u32 base = (pte << 2) & ~0x0000000f;
42 	u32 tmp[4];
43 
44 	tmp[0] = nvkm_ro32(pgt, base + 0x0);
45 	tmp[1] = nvkm_ro32(pgt, base + 0x4);
46 	tmp[2] = nvkm_ro32(pgt, base + 0x8);
47 	tmp[3] = nvkm_ro32(pgt, base + 0xc);
48 
49 	while (cnt--) {
50 		u32 addr = list ? (*list++ >> 12) : (null >> 12);
51 		switch (pte++ & 0x3) {
52 		case 0:
53 			tmp[0] &= ~0x07ffffff;
54 			tmp[0] |= addr;
55 			break;
56 		case 1:
57 			tmp[0] &= ~0xf8000000;
58 			tmp[0] |= addr << 27;
59 			tmp[1] &= ~0x003fffff;
60 			tmp[1] |= addr >> 5;
61 			break;
62 		case 2:
63 			tmp[1] &= ~0xffc00000;
64 			tmp[1] |= addr << 22;
65 			tmp[2] &= ~0x0001ffff;
66 			tmp[2] |= addr >> 10;
67 			break;
68 		case 3:
69 			tmp[2] &= ~0xfffe0000;
70 			tmp[2] |= addr << 17;
71 			tmp[3] &= ~0x00000fff;
72 			tmp[3] |= addr >> 15;
73 			break;
74 		}
75 	}
76 
77 	nvkm_wo32(pgt, base + 0x0, tmp[0]);
78 	nvkm_wo32(pgt, base + 0x4, tmp[1]);
79 	nvkm_wo32(pgt, base + 0x8, tmp[2]);
80 	nvkm_wo32(pgt, base + 0xc, tmp[3] | 0x40000000);
81 }
82 
83 static void
84 nv44_vm_map_sg(struct nvkm_vma *vma, struct nvkm_memory *pgt,
85 	       struct nvkm_mem *mem, u32 pte, u32 cnt, dma_addr_t *list)
86 {
87 	struct nv04_mmu *mmu = nv04_mmu(vma->vm->mmu);
88 	u32 tmp[4];
89 	int i;
90 
91 	nvkm_kmap(pgt);
92 	if (pte & 3) {
93 		u32  max = 4 - (pte & 3);
94 		u32 part = (cnt > max) ? max : cnt;
95 		nv44_vm_fill(pgt, mmu->null, list, pte, part);
96 		pte  += part;
97 		list += part;
98 		cnt  -= part;
99 	}
100 
101 	while (cnt >= 4) {
102 		for (i = 0; i < 4; i++)
103 			tmp[i] = *list++ >> 12;
104 		nvkm_wo32(pgt, pte++ * 4, tmp[0] >>  0 | tmp[1] << 27);
105 		nvkm_wo32(pgt, pte++ * 4, tmp[1] >>  5 | tmp[2] << 22);
106 		nvkm_wo32(pgt, pte++ * 4, tmp[2] >> 10 | tmp[3] << 17);
107 		nvkm_wo32(pgt, pte++ * 4, tmp[3] >> 15 | 0x40000000);
108 		cnt -= 4;
109 	}
110 
111 	if (cnt)
112 		nv44_vm_fill(pgt, mmu->null, list, pte, cnt);
113 	nvkm_done(pgt);
114 }
115 
116 static void
117 nv44_vm_unmap(struct nvkm_vma *vma, struct nvkm_memory *pgt, u32 pte, u32 cnt)
118 {
119 	struct nv04_mmu *mmu = nv04_mmu(vma->vm->mmu);
120 
121 	nvkm_kmap(pgt);
122 	if (pte & 3) {
123 		u32  max = 4 - (pte & 3);
124 		u32 part = (cnt > max) ? max : cnt;
125 		nv44_vm_fill(pgt, mmu->null, NULL, pte, part);
126 		pte  += part;
127 		cnt  -= part;
128 	}
129 
130 	while (cnt >= 4) {
131 		nvkm_wo32(pgt, pte++ * 4, 0x00000000);
132 		nvkm_wo32(pgt, pte++ * 4, 0x00000000);
133 		nvkm_wo32(pgt, pte++ * 4, 0x00000000);
134 		nvkm_wo32(pgt, pte++ * 4, 0x00000000);
135 		cnt -= 4;
136 	}
137 
138 	if (cnt)
139 		nv44_vm_fill(pgt, mmu->null, NULL, pte, cnt);
140 	nvkm_done(pgt);
141 }
142 
143 static void
144 nv44_vm_flush(struct nvkm_vm *vm)
145 {
146 	struct nv04_mmu *mmu = nv04_mmu(vm->mmu);
147 	struct nvkm_device *device = mmu->base.subdev.device;
148 	nvkm_wr32(device, 0x100814, mmu->base.limit - NV44_GART_PAGE);
149 	nvkm_wr32(device, 0x100808, 0x00000020);
150 	nvkm_msec(device, 2000,
151 		if (nvkm_rd32(device, 0x100808) & 0x00000001)
152 			break;
153 	);
154 	nvkm_wr32(device, 0x100808, 0x00000000);
155 }
156 
157 /*******************************************************************************
158  * MMU subdev
159  ******************************************************************************/
160 
161 static int
162 nv44_mmu_oneinit(struct nvkm_mmu *base)
163 {
164 	struct nv04_mmu *mmu = nv04_mmu(base);
165 	struct nvkm_device *device = mmu->base.subdev.device;
166 	int ret;
167 
168 	mmu->nullp = dma_alloc_coherent(device->dev, 16 * 1024,
169 					&mmu->null, GFP_KERNEL);
170 	if (!mmu->nullp) {
171 		nvkm_warn(&mmu->base.subdev, "unable to allocate dummy pages\n");
172 		mmu->null = 0;
173 	}
174 
175 	ret = nvkm_vm_create(&mmu->base, 0, NV44_GART_SIZE, 0, 4096, NULL,
176 			     &mmu->vm);
177 	if (ret)
178 		return ret;
179 
180 	ret = nvkm_memory_new(device, NVKM_MEM_TARGET_INST,
181 			      (NV44_GART_SIZE / NV44_GART_PAGE) * 4,
182 			      512 * 1024, true,
183 			      &mmu->vm->pgt[0].mem[0]);
184 	mmu->vm->pgt[0].refcount[0] = 1;
185 	return ret;
186 }
187 
188 static void
189 nv44_mmu_init(struct nvkm_mmu *base)
190 {
191 	struct nv04_mmu *mmu = nv04_mmu(base);
192 	struct nvkm_device *device = mmu->base.subdev.device;
193 	struct nvkm_memory *gart = mmu->vm->pgt[0].mem[0];
194 	u32 addr;
195 
196 	/* calculate vram address of this PRAMIN block, object must be
197 	 * allocated on 512KiB alignment, and not exceed a total size
198 	 * of 512KiB for this to work correctly
199 	 */
200 	addr  = nvkm_rd32(device, 0x10020c);
201 	addr -= ((nvkm_memory_addr(gart) >> 19) + 1) << 19;
202 
203 	nvkm_wr32(device, 0x100850, 0x80000000);
204 	nvkm_wr32(device, 0x100818, mmu->null);
205 	nvkm_wr32(device, 0x100804, NV44_GART_SIZE);
206 	nvkm_wr32(device, 0x100850, 0x00008000);
207 	nvkm_mask(device, 0x10008c, 0x00000200, 0x00000200);
208 	nvkm_wr32(device, 0x100820, 0x00000000);
209 	nvkm_wr32(device, 0x10082c, 0x00000001);
210 	nvkm_wr32(device, 0x100800, addr | 0x00000010);
211 }
212 
213 static const struct nvkm_mmu_func
214 nv44_mmu = {
215 	.dtor = nv04_mmu_dtor,
216 	.oneinit = nv44_mmu_oneinit,
217 	.init = nv44_mmu_init,
218 	.limit = NV44_GART_SIZE,
219 	.dma_bits = 39,
220 	.pgt_bits = 32 - 12,
221 	.spg_shift = 12,
222 	.lpg_shift = 12,
223 	.map_sg = nv44_vm_map_sg,
224 	.unmap = nv44_vm_unmap,
225 	.flush = nv44_vm_flush,
226 };
227 
228 int
229 nv44_mmu_new(struct nvkm_device *device, int index, struct nvkm_mmu **pmmu)
230 {
231 	if (device->type == NVKM_DEVICE_AGP ||
232 	    !nvkm_boolopt(device->cfgopt, "NvPCIE", true))
233 		return nv04_mmu_new(device, index, pmmu);
234 
235 	return nv04_mmu_new_(&nv44_mmu, device, index, pmmu);
236 }
237