1 /* 2 * Copyright 2012 Red Hat Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 * Authors: Ben Skeggs 23 */ 24 #include "nv04.h" 25 26 #include <core/gpuobj.h> 27 #include <core/option.h> 28 #include <subdev/timer.h> 29 30 #define NV44_GART_SIZE (512 * 1024 * 1024) 31 #define NV44_GART_PAGE ( 4 * 1024) 32 33 /******************************************************************************* 34 * VM map/unmap callbacks 35 ******************************************************************************/ 36 37 static void 38 nv44_vm_fill(struct nvkm_memory *pgt, dma_addr_t null, 39 dma_addr_t *list, u32 pte, u32 cnt) 40 { 41 u32 base = (pte << 2) & ~0x0000000f; 42 u32 tmp[4]; 43 44 tmp[0] = nvkm_ro32(pgt, base + 0x0); 45 tmp[1] = nvkm_ro32(pgt, base + 0x4); 46 tmp[2] = nvkm_ro32(pgt, base + 0x8); 47 tmp[3] = nvkm_ro32(pgt, base + 0xc); 48 49 while (cnt--) { 50 u32 addr = list ? (*list++ >> 12) : (null >> 12); 51 switch (pte++ & 0x3) { 52 case 0: 53 tmp[0] &= ~0x07ffffff; 54 tmp[0] |= addr; 55 break; 56 case 1: 57 tmp[0] &= ~0xf8000000; 58 tmp[0] |= addr << 27; 59 tmp[1] &= ~0x003fffff; 60 tmp[1] |= addr >> 5; 61 break; 62 case 2: 63 tmp[1] &= ~0xffc00000; 64 tmp[1] |= addr << 22; 65 tmp[2] &= ~0x0001ffff; 66 tmp[2] |= addr >> 10; 67 break; 68 case 3: 69 tmp[2] &= ~0xfffe0000; 70 tmp[2] |= addr << 17; 71 tmp[3] &= ~0x00000fff; 72 tmp[3] |= addr >> 15; 73 break; 74 } 75 } 76 77 nvkm_wo32(pgt, base + 0x0, tmp[0]); 78 nvkm_wo32(pgt, base + 0x4, tmp[1]); 79 nvkm_wo32(pgt, base + 0x8, tmp[2]); 80 nvkm_wo32(pgt, base + 0xc, tmp[3] | 0x40000000); 81 } 82 83 static void 84 nv44_vm_map_sg(struct nvkm_vma *vma, struct nvkm_memory *pgt, 85 struct nvkm_mem *mem, u32 pte, u32 cnt, dma_addr_t *list) 86 { 87 struct nv04_mmu *mmu = nv04_mmu(vma->vm->mmu); 88 u32 tmp[4]; 89 int i; 90 91 nvkm_kmap(pgt); 92 if (pte & 3) { 93 u32 max = 4 - (pte & 3); 94 u32 part = (cnt > max) ? max : cnt; 95 nv44_vm_fill(pgt, mmu->null, list, pte, part); 96 pte += part; 97 list += part; 98 cnt -= part; 99 } 100 101 while (cnt >= 4) { 102 for (i = 0; i < 4; i++) 103 tmp[i] = *list++ >> 12; 104 nvkm_wo32(pgt, pte++ * 4, tmp[0] >> 0 | tmp[1] << 27); 105 nvkm_wo32(pgt, pte++ * 4, tmp[1] >> 5 | tmp[2] << 22); 106 nvkm_wo32(pgt, pte++ * 4, tmp[2] >> 10 | tmp[3] << 17); 107 nvkm_wo32(pgt, pte++ * 4, tmp[3] >> 15 | 0x40000000); 108 cnt -= 4; 109 } 110 111 if (cnt) 112 nv44_vm_fill(pgt, mmu->null, list, pte, cnt); 113 nvkm_done(pgt); 114 } 115 116 static void 117 nv44_vm_unmap(struct nvkm_vma *vma, struct nvkm_memory *pgt, u32 pte, u32 cnt) 118 { 119 struct nv04_mmu *mmu = nv04_mmu(vma->vm->mmu); 120 121 nvkm_kmap(pgt); 122 if (pte & 3) { 123 u32 max = 4 - (pte & 3); 124 u32 part = (cnt > max) ? max : cnt; 125 nv44_vm_fill(pgt, mmu->null, NULL, pte, part); 126 pte += part; 127 cnt -= part; 128 } 129 130 while (cnt >= 4) { 131 nvkm_wo32(pgt, pte++ * 4, 0x00000000); 132 nvkm_wo32(pgt, pte++ * 4, 0x00000000); 133 nvkm_wo32(pgt, pte++ * 4, 0x00000000); 134 nvkm_wo32(pgt, pte++ * 4, 0x00000000); 135 cnt -= 4; 136 } 137 138 if (cnt) 139 nv44_vm_fill(pgt, mmu->null, NULL, pte, cnt); 140 nvkm_done(pgt); 141 } 142 143 static void 144 nv44_vm_flush(struct nvkm_vm *vm) 145 { 146 struct nv04_mmu *mmu = nv04_mmu(vm->mmu); 147 struct nvkm_device *device = mmu->base.subdev.device; 148 nvkm_wr32(device, 0x100814, mmu->base.limit - NV44_GART_PAGE); 149 nvkm_wr32(device, 0x100808, 0x00000020); 150 nvkm_msec(device, 2000, 151 if (nvkm_rd32(device, 0x100808) & 0x00000001) 152 break; 153 ); 154 nvkm_wr32(device, 0x100808, 0x00000000); 155 } 156 157 /******************************************************************************* 158 * MMU subdev 159 ******************************************************************************/ 160 161 static int 162 nv44_mmu_oneinit(struct nvkm_mmu *base) 163 { 164 struct nv04_mmu *mmu = nv04_mmu(base); 165 struct nvkm_device *device = mmu->base.subdev.device; 166 int ret; 167 168 mmu->nullp = pci_alloc_consistent(device->pdev, 16 * 1024, &mmu->null); 169 if (!mmu->nullp) { 170 nvkm_warn(&mmu->base.subdev, "unable to allocate dummy pages\n"); 171 mmu->null = 0; 172 } 173 174 ret = nvkm_vm_create(&mmu->base, 0, NV44_GART_SIZE, 0, 4096, NULL, 175 &mmu->vm); 176 if (ret) 177 return ret; 178 179 ret = nvkm_memory_new(device, NVKM_MEM_TARGET_INST, 180 (NV44_GART_SIZE / NV44_GART_PAGE) * 4, 181 512 * 1024, true, 182 &mmu->vm->pgt[0].mem[0]); 183 mmu->vm->pgt[0].refcount[0] = 1; 184 return ret; 185 } 186 187 static void 188 nv44_mmu_init(struct nvkm_mmu *base) 189 { 190 struct nv04_mmu *mmu = nv04_mmu(base); 191 struct nvkm_device *device = mmu->base.subdev.device; 192 struct nvkm_memory *gart = mmu->vm->pgt[0].mem[0]; 193 u32 addr; 194 195 /* calculate vram address of this PRAMIN block, object must be 196 * allocated on 512KiB alignment, and not exceed a total size 197 * of 512KiB for this to work correctly 198 */ 199 addr = nvkm_rd32(device, 0x10020c); 200 addr -= ((nvkm_memory_addr(gart) >> 19) + 1) << 19; 201 202 nvkm_wr32(device, 0x100850, 0x80000000); 203 nvkm_wr32(device, 0x100818, mmu->null); 204 nvkm_wr32(device, 0x100804, NV44_GART_SIZE); 205 nvkm_wr32(device, 0x100850, 0x00008000); 206 nvkm_mask(device, 0x10008c, 0x00000200, 0x00000200); 207 nvkm_wr32(device, 0x100820, 0x00000000); 208 nvkm_wr32(device, 0x10082c, 0x00000001); 209 nvkm_wr32(device, 0x100800, addr | 0x00000010); 210 } 211 212 static const struct nvkm_mmu_func 213 nv44_mmu = { 214 .dtor = nv04_mmu_dtor, 215 .oneinit = nv44_mmu_oneinit, 216 .init = nv44_mmu_init, 217 .limit = NV44_GART_SIZE, 218 .dma_bits = 39, 219 .pgt_bits = 32 - 12, 220 .spg_shift = 12, 221 .lpg_shift = 12, 222 .map_sg = nv44_vm_map_sg, 223 .unmap = nv44_vm_unmap, 224 .flush = nv44_vm_flush, 225 }; 226 227 int 228 nv44_mmu_new(struct nvkm_device *device, int index, struct nvkm_mmu **pmmu) 229 { 230 if (pci_find_capability(device->pdev, PCI_CAP_ID_AGP) || 231 !nvkm_boolopt(device->cfgopt, "NvPCIE", true)) 232 return nv04_mmu_new(device, index, pmmu); 233 234 return nv04_mmu_new_(&nv44_mmu, device, index, pmmu); 235 } 236