1 /* 2 * Copyright 2010 Red Hat Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 * Authors: Ben Skeggs 23 */ 24 #include <subdev/mmu.h> 25 #include <subdev/fb.h> 26 #include <subdev/ltc.h> 27 #include <subdev/timer.h> 28 29 #include <core/gpuobj.h> 30 31 /* Map from compressed to corresponding uncompressed storage type. 32 * The value 0xff represents an invalid storage type. 33 */ 34 const u8 gf100_pte_storage_type_map[256] = 35 { 36 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0xff, 0x01, /* 0x00 */ 37 0x01, 0x01, 0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 38 0xff, 0x11, 0xff, 0xff, 0xff, 0xff, 0xff, 0x11, /* 0x10 */ 39 0x11, 0x11, 0x11, 0xff, 0xff, 0xff, 0xff, 0xff, 40 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x26, 0x27, /* 0x20 */ 41 0x28, 0x29, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 42 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 0x30 */ 43 0xff, 0xff, 0x26, 0x27, 0x28, 0x29, 0x26, 0x27, 44 0x28, 0x29, 0xff, 0xff, 0xff, 0xff, 0x46, 0xff, /* 0x40 */ 45 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 46 0xff, 0x46, 0x46, 0x46, 0x46, 0xff, 0xff, 0xff, /* 0x50 */ 47 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 48 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 0x60 */ 49 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 50 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 0x70 */ 51 0xff, 0xff, 0xff, 0x7b, 0xff, 0xff, 0xff, 0xff, 52 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7b, 0x7b, /* 0x80 */ 53 0x7b, 0x7b, 0xff, 0x8b, 0x8c, 0x8d, 0x8e, 0xff, 54 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 0x90 */ 55 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 56 0xff, 0xff, 0xff, 0x8b, 0x8c, 0x8d, 0x8e, 0xa7, /* 0xa0 */ 57 0xa8, 0xa9, 0xaa, 0xff, 0xff, 0xff, 0xff, 0xff, 58 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 0xb0 */ 59 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xa7, 60 0xa8, 0xa9, 0xaa, 0xc3, 0xff, 0xff, 0xff, 0xff, /* 0xc0 */ 61 0xff, 0xff, 0xff, 0xff, 0xfe, 0xfe, 0xc3, 0xc3, 62 0xc3, 0xc3, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 0xd0 */ 63 0xfe, 0xff, 0xff, 0xfe, 0xff, 0xfe, 0xff, 0xfe, 64 0xfe, 0xff, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xff, /* 0xe0 */ 65 0xff, 0xfe, 0xff, 0xfe, 0xff, 0xfe, 0xfe, 0xff, 66 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, /* 0xf0 */ 67 0xfe, 0xfe, 0xfe, 0xfe, 0xff, 0xfd, 0xfe, 0xff 68 }; 69 70 71 static void 72 gf100_vm_map_pgt(struct nvkm_gpuobj *pgd, u32 index, struct nvkm_memory *pgt[2]) 73 { 74 u32 pde[2] = { 0, 0 }; 75 76 if (pgt[0]) 77 pde[1] = 0x00000001 | (nvkm_memory_addr(pgt[0]) >> 8); 78 if (pgt[1]) 79 pde[0] = 0x00000001 | (nvkm_memory_addr(pgt[1]) >> 8); 80 81 nvkm_kmap(pgd); 82 nvkm_wo32(pgd, (index * 8) + 0, pde[0]); 83 nvkm_wo32(pgd, (index * 8) + 4, pde[1]); 84 nvkm_done(pgd); 85 } 86 87 static inline u64 88 gf100_vm_addr(struct nvkm_vma *vma, u64 phys, u32 memtype, u32 target) 89 { 90 phys >>= 8; 91 92 phys |= 0x00000001; /* present */ 93 if (vma->access & NV_MEM_ACCESS_SYS) 94 phys |= 0x00000002; 95 96 phys |= ((u64)target << 32); 97 phys |= ((u64)memtype << 36); 98 return phys; 99 } 100 101 static void 102 gf100_vm_map(struct nvkm_vma *vma, struct nvkm_memory *pgt, 103 struct nvkm_mem *mem, u32 pte, u32 cnt, u64 phys, u64 delta) 104 { 105 u64 next = 1 << (vma->node->type - 8); 106 107 phys = gf100_vm_addr(vma, phys, mem->memtype, 0); 108 pte <<= 3; 109 110 if (mem->tag) { 111 struct nvkm_ltc *ltc = nvkm_ltc(vma->vm->mmu); 112 u32 tag = mem->tag->offset + (delta >> 17); 113 phys |= (u64)tag << (32 + 12); 114 next |= (u64)1 << (32 + 12); 115 ltc->tags_clear(ltc, tag, cnt); 116 } 117 118 nvkm_kmap(pgt); 119 while (cnt--) { 120 nvkm_wo32(pgt, pte + 0, lower_32_bits(phys)); 121 nvkm_wo32(pgt, pte + 4, upper_32_bits(phys)); 122 phys += next; 123 pte += 8; 124 } 125 nvkm_done(pgt); 126 } 127 128 static void 129 gf100_vm_map_sg(struct nvkm_vma *vma, struct nvkm_memory *pgt, 130 struct nvkm_mem *mem, u32 pte, u32 cnt, dma_addr_t *list) 131 { 132 u32 target = (vma->access & NV_MEM_ACCESS_NOSNOOP) ? 7 : 5; 133 /* compressed storage types are invalid for system memory */ 134 u32 memtype = gf100_pte_storage_type_map[mem->memtype & 0xff]; 135 136 nvkm_kmap(pgt); 137 pte <<= 3; 138 while (cnt--) { 139 u64 phys = gf100_vm_addr(vma, *list++, memtype, target); 140 nvkm_wo32(pgt, pte + 0, lower_32_bits(phys)); 141 nvkm_wo32(pgt, pte + 4, upper_32_bits(phys)); 142 pte += 8; 143 } 144 nvkm_done(pgt); 145 } 146 147 static void 148 gf100_vm_unmap(struct nvkm_vma *vma, struct nvkm_memory *pgt, u32 pte, u32 cnt) 149 { 150 nvkm_kmap(pgt); 151 pte <<= 3; 152 while (cnt--) { 153 nvkm_wo32(pgt, pte + 0, 0x00000000); 154 nvkm_wo32(pgt, pte + 4, 0x00000000); 155 pte += 8; 156 } 157 nvkm_done(pgt); 158 } 159 160 static void 161 gf100_vm_flush(struct nvkm_vm *vm) 162 { 163 struct nvkm_mmu *mmu = (void *)vm->mmu; 164 struct nvkm_device *device = mmu->subdev.device; 165 struct nvkm_vm_pgd *vpgd; 166 u32 type; 167 168 type = 0x00000001; /* PAGE_ALL */ 169 if (atomic_read(&vm->engref[NVDEV_SUBDEV_BAR])) 170 type |= 0x00000004; /* HUB_ONLY */ 171 172 mutex_lock(&nv_subdev(mmu)->mutex); 173 list_for_each_entry(vpgd, &vm->pgd_list, head) { 174 /* looks like maybe a "free flush slots" counter, the 175 * faster you write to 0x100cbc to more it decreases 176 */ 177 nvkm_msec(device, 2000, 178 if (nvkm_rd32(device, 0x100c80) & 0x00ff0000) 179 break; 180 ); 181 182 nvkm_wr32(device, 0x100cb8, vpgd->obj->addr >> 8); 183 nvkm_wr32(device, 0x100cbc, 0x80000000 | type); 184 185 /* wait for flush to be queued? */ 186 nvkm_msec(device, 2000, 187 if (nvkm_rd32(device, 0x100c80) & 0x00008000) 188 break; 189 ); 190 } 191 mutex_unlock(&nv_subdev(mmu)->mutex); 192 } 193 194 static int 195 gf100_vm_create(struct nvkm_mmu *mmu, u64 offset, u64 length, u64 mm_offset, 196 struct lock_class_key *key, struct nvkm_vm **pvm) 197 { 198 return nvkm_vm_create(mmu, offset, length, mm_offset, 4096, key, pvm); 199 } 200 201 static int 202 gf100_mmu_ctor(struct nvkm_object *parent, struct nvkm_object *engine, 203 struct nvkm_oclass *oclass, void *data, u32 size, 204 struct nvkm_object **pobject) 205 { 206 struct nvkm_mmu *mmu; 207 int ret; 208 209 ret = nvkm_mmu_create(parent, engine, oclass, "VM", "mmu", &mmu); 210 *pobject = nv_object(mmu); 211 if (ret) 212 return ret; 213 214 mmu->limit = 1ULL << 40; 215 mmu->dma_bits = 40; 216 mmu->pgt_bits = 27 - 12; 217 mmu->spg_shift = 12; 218 mmu->lpg_shift = 17; 219 mmu->create = gf100_vm_create; 220 mmu->map_pgt = gf100_vm_map_pgt; 221 mmu->map = gf100_vm_map; 222 mmu->map_sg = gf100_vm_map_sg; 223 mmu->unmap = gf100_vm_unmap; 224 mmu->flush = gf100_vm_flush; 225 return 0; 226 } 227 228 struct nvkm_oclass 229 gf100_mmu_oclass = { 230 .handle = NV_SUBDEV(MMU, 0xc0), 231 .ofuncs = &(struct nvkm_ofuncs) { 232 .ctor = gf100_mmu_ctor, 233 .dtor = _nvkm_mmu_dtor, 234 .init = _nvkm_mmu_init, 235 .fini = _nvkm_mmu_fini, 236 }, 237 }; 238