1 /* 2 * Copyright 2010 Red Hat Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 * Authors: Ben Skeggs 23 */ 24 #include "priv.h" 25 26 #include <subdev/fb.h> 27 #include <subdev/ltc.h> 28 #include <subdev/timer.h> 29 30 #include <core/gpuobj.h> 31 32 /* Map from compressed to corresponding uncompressed storage type. 33 * The value 0xff represents an invalid storage type. 34 */ 35 const u8 gf100_pte_storage_type_map[256] = 36 { 37 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0xff, 0x01, /* 0x00 */ 38 0x01, 0x01, 0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 39 0xff, 0x11, 0xff, 0xff, 0xff, 0xff, 0xff, 0x11, /* 0x10 */ 40 0x11, 0x11, 0x11, 0xff, 0xff, 0xff, 0xff, 0xff, 41 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x26, 0x27, /* 0x20 */ 42 0x28, 0x29, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 43 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 0x30 */ 44 0xff, 0xff, 0x26, 0x27, 0x28, 0x29, 0x26, 0x27, 45 0x28, 0x29, 0xff, 0xff, 0xff, 0xff, 0x46, 0xff, /* 0x40 */ 46 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 47 0xff, 0x46, 0x46, 0x46, 0x46, 0xff, 0xff, 0xff, /* 0x50 */ 48 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 49 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 0x60 */ 50 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 51 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 0x70 */ 52 0xff, 0xff, 0xff, 0x7b, 0xff, 0xff, 0xff, 0xff, 53 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7b, 0x7b, /* 0x80 */ 54 0x7b, 0x7b, 0xff, 0x8b, 0x8c, 0x8d, 0x8e, 0xff, 55 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 0x90 */ 56 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 57 0xff, 0xff, 0xff, 0x8b, 0x8c, 0x8d, 0x8e, 0xa7, /* 0xa0 */ 58 0xa8, 0xa9, 0xaa, 0xff, 0xff, 0xff, 0xff, 0xff, 59 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 0xb0 */ 60 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xa7, 61 0xa8, 0xa9, 0xaa, 0xc3, 0xff, 0xff, 0xff, 0xff, /* 0xc0 */ 62 0xff, 0xff, 0xff, 0xff, 0xfe, 0xfe, 0xc3, 0xc3, 63 0xc3, 0xc3, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 0xd0 */ 64 0xfe, 0xff, 0xff, 0xfe, 0xff, 0xfe, 0xff, 0xfe, 65 0xfe, 0xff, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xff, /* 0xe0 */ 66 0xff, 0xfe, 0xff, 0xfe, 0xff, 0xfe, 0xfe, 0xff, 67 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, /* 0xf0 */ 68 0xfe, 0xfe, 0xfe, 0xfe, 0xff, 0xfd, 0xfe, 0xff 69 }; 70 71 72 static void 73 gf100_vm_map_pgt(struct nvkm_gpuobj *pgd, u32 index, struct nvkm_memory *pgt[2]) 74 { 75 u32 pde[2] = { 0, 0 }; 76 77 if (pgt[0]) 78 pde[1] = 0x00000001 | (nvkm_memory_addr(pgt[0]) >> 8); 79 if (pgt[1]) 80 pde[0] = 0x00000001 | (nvkm_memory_addr(pgt[1]) >> 8); 81 82 nvkm_kmap(pgd); 83 nvkm_wo32(pgd, (index * 8) + 0, pde[0]); 84 nvkm_wo32(pgd, (index * 8) + 4, pde[1]); 85 nvkm_done(pgd); 86 } 87 88 static inline u64 89 gf100_vm_addr(struct nvkm_vma *vma, u64 phys, u32 memtype, u32 target) 90 { 91 phys >>= 8; 92 93 phys |= 0x00000001; /* present */ 94 if (vma->access & NV_MEM_ACCESS_SYS) 95 phys |= 0x00000002; 96 97 phys |= ((u64)target << 32); 98 phys |= ((u64)memtype << 36); 99 return phys; 100 } 101 102 static void 103 gf100_vm_map(struct nvkm_vma *vma, struct nvkm_memory *pgt, 104 struct nvkm_mem *mem, u32 pte, u32 cnt, u64 phys, u64 delta) 105 { 106 u64 next = 1 << (vma->node->type - 8); 107 108 phys = gf100_vm_addr(vma, phys, mem->memtype, 0); 109 pte <<= 3; 110 111 if (mem->tag) { 112 struct nvkm_ltc *ltc = vma->vm->mmu->subdev.device->ltc; 113 u32 tag = mem->tag->offset + (delta >> 17); 114 phys |= (u64)tag << (32 + 12); 115 next |= (u64)1 << (32 + 12); 116 nvkm_ltc_tags_clear(ltc, tag, cnt); 117 } 118 119 nvkm_kmap(pgt); 120 while (cnt--) { 121 nvkm_wo32(pgt, pte + 0, lower_32_bits(phys)); 122 nvkm_wo32(pgt, pte + 4, upper_32_bits(phys)); 123 phys += next; 124 pte += 8; 125 } 126 nvkm_done(pgt); 127 } 128 129 static void 130 gf100_vm_map_sg(struct nvkm_vma *vma, struct nvkm_memory *pgt, 131 struct nvkm_mem *mem, u32 pte, u32 cnt, dma_addr_t *list) 132 { 133 u32 target = (vma->access & NV_MEM_ACCESS_NOSNOOP) ? 7 : 5; 134 /* compressed storage types are invalid for system memory */ 135 u32 memtype = gf100_pte_storage_type_map[mem->memtype & 0xff]; 136 137 nvkm_kmap(pgt); 138 pte <<= 3; 139 while (cnt--) { 140 u64 phys = gf100_vm_addr(vma, *list++, memtype, target); 141 nvkm_wo32(pgt, pte + 0, lower_32_bits(phys)); 142 nvkm_wo32(pgt, pte + 4, upper_32_bits(phys)); 143 pte += 8; 144 } 145 nvkm_done(pgt); 146 } 147 148 static void 149 gf100_vm_unmap(struct nvkm_vma *vma, struct nvkm_memory *pgt, u32 pte, u32 cnt) 150 { 151 nvkm_kmap(pgt); 152 pte <<= 3; 153 while (cnt--) { 154 nvkm_wo32(pgt, pte + 0, 0x00000000); 155 nvkm_wo32(pgt, pte + 4, 0x00000000); 156 pte += 8; 157 } 158 nvkm_done(pgt); 159 } 160 161 static void 162 gf100_vm_flush(struct nvkm_vm *vm) 163 { 164 struct nvkm_mmu *mmu = vm->mmu; 165 struct nvkm_device *device = mmu->subdev.device; 166 struct nvkm_vm_pgd *vpgd; 167 u32 type; 168 169 type = 0x00000001; /* PAGE_ALL */ 170 if (atomic_read(&vm->engref[NVDEV_SUBDEV_BAR])) 171 type |= 0x00000004; /* HUB_ONLY */ 172 173 mutex_lock(&mmu->subdev.mutex); 174 list_for_each_entry(vpgd, &vm->pgd_list, head) { 175 /* looks like maybe a "free flush slots" counter, the 176 * faster you write to 0x100cbc to more it decreases 177 */ 178 nvkm_msec(device, 2000, 179 if (nvkm_rd32(device, 0x100c80) & 0x00ff0000) 180 break; 181 ); 182 183 nvkm_wr32(device, 0x100cb8, vpgd->obj->addr >> 8); 184 nvkm_wr32(device, 0x100cbc, 0x80000000 | type); 185 186 /* wait for flush to be queued? */ 187 nvkm_msec(device, 2000, 188 if (nvkm_rd32(device, 0x100c80) & 0x00008000) 189 break; 190 ); 191 } 192 mutex_unlock(&mmu->subdev.mutex); 193 } 194 195 static int 196 gf100_vm_create(struct nvkm_mmu *mmu, u64 offset, u64 length, u64 mm_offset, 197 struct lock_class_key *key, struct nvkm_vm **pvm) 198 { 199 return nvkm_vm_create(mmu, offset, length, mm_offset, 4096, key, pvm); 200 } 201 202 static const struct nvkm_mmu_func 203 gf100_mmu = { 204 .limit = (1ULL << 40), 205 .dma_bits = 40, 206 .pgt_bits = 27 - 12, 207 .spg_shift = 12, 208 .lpg_shift = 17, 209 .create = gf100_vm_create, 210 .map_pgt = gf100_vm_map_pgt, 211 .map = gf100_vm_map, 212 .map_sg = gf100_vm_map_sg, 213 .unmap = gf100_vm_unmap, 214 .flush = gf100_vm_flush, 215 }; 216 217 int 218 gf100_mmu_new(struct nvkm_device *device, int index, struct nvkm_mmu **pmmu) 219 { 220 return nvkm_mmu_new_(&gf100_mmu, device, index, pmmu); 221 } 222