1 /*
2  * Copyright 2012 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Ben Skeggs
23  */
24 #include "priv.h"
25 
26 #include <core/enum.h>
27 #include <subdev/fb.h>
28 #include <subdev/timer.h>
29 
30 void
31 gf100_ltc_cbc_clear(struct nvkm_ltc_priv *ltc, u32 start, u32 limit)
32 {
33 	nv_wr32(ltc, 0x17e8cc, start);
34 	nv_wr32(ltc, 0x17e8d0, limit);
35 	nv_wr32(ltc, 0x17e8c8, 0x00000004);
36 }
37 
38 void
39 gf100_ltc_cbc_wait(struct nvkm_ltc_priv *ltc)
40 {
41 	int c, s;
42 	for (c = 0; c < ltc->ltc_nr; c++) {
43 		for (s = 0; s < ltc->lts_nr; s++)
44 			nv_wait(ltc, 0x1410c8 + c * 0x2000 + s * 0x400, ~0, 0);
45 	}
46 }
47 
48 void
49 gf100_ltc_zbc_clear_color(struct nvkm_ltc_priv *ltc, int i, const u32 color[4])
50 {
51 	nv_mask(ltc, 0x17ea44, 0x0000000f, i);
52 	nv_wr32(ltc, 0x17ea48, color[0]);
53 	nv_wr32(ltc, 0x17ea4c, color[1]);
54 	nv_wr32(ltc, 0x17ea50, color[2]);
55 	nv_wr32(ltc, 0x17ea54, color[3]);
56 }
57 
58 void
59 gf100_ltc_zbc_clear_depth(struct nvkm_ltc_priv *ltc, int i, const u32 depth)
60 {
61 	nv_mask(ltc, 0x17ea44, 0x0000000f, i);
62 	nv_wr32(ltc, 0x17ea58, depth);
63 }
64 
65 static const struct nvkm_bitfield
66 gf100_ltc_lts_intr_name[] = {
67 	{ 0x00000001, "IDLE_ERROR_IQ" },
68 	{ 0x00000002, "IDLE_ERROR_CBC" },
69 	{ 0x00000004, "IDLE_ERROR_TSTG" },
70 	{ 0x00000008, "IDLE_ERROR_DSTG" },
71 	{ 0x00000010, "EVICTED_CB" },
72 	{ 0x00000020, "ILLEGAL_COMPSTAT" },
73 	{ 0x00000040, "BLOCKLINEAR_CB" },
74 	{ 0x00000100, "ECC_SEC_ERROR" },
75 	{ 0x00000200, "ECC_DED_ERROR" },
76 	{ 0x00000400, "DEBUG" },
77 	{ 0x00000800, "ATOMIC_TO_Z" },
78 	{ 0x00001000, "ILLEGAL_ATOMIC" },
79 	{ 0x00002000, "BLKACTIVITY_ERR" },
80 	{}
81 };
82 
83 static void
84 gf100_ltc_lts_intr(struct nvkm_ltc_priv *ltc, int c, int s)
85 {
86 	u32 base = 0x141000 + (c * 0x2000) + (s * 0x400);
87 	u32 intr = nv_rd32(ltc, base + 0x020);
88 	u32 stat = intr & 0x0000ffff;
89 
90 	if (stat) {
91 		nv_info(ltc, "LTC%d_LTS%d:", c, s);
92 		nvkm_bitfield_print(gf100_ltc_lts_intr_name, stat);
93 		pr_cont("\n");
94 	}
95 
96 	nv_wr32(ltc, base + 0x020, intr);
97 }
98 
99 void
100 gf100_ltc_intr(struct nvkm_subdev *subdev)
101 {
102 	struct nvkm_ltc_priv *ltc = (void *)subdev;
103 	u32 mask;
104 
105 	mask = nv_rd32(ltc, 0x00017c);
106 	while (mask) {
107 		u32 s, c = __ffs(mask);
108 		for (s = 0; s < ltc->lts_nr; s++)
109 			gf100_ltc_lts_intr(ltc, c, s);
110 		mask &= ~(1 << c);
111 	}
112 }
113 
114 static int
115 gf100_ltc_init(struct nvkm_object *object)
116 {
117 	struct nvkm_ltc_priv *ltc = (void *)object;
118 	u32 lpg128 = !(nv_rd32(ltc, 0x100c80) & 0x00000001);
119 	int ret;
120 
121 	ret = nvkm_ltc_init(ltc);
122 	if (ret)
123 		return ret;
124 
125 	nv_mask(ltc, 0x17e820, 0x00100000, 0x00000000); /* INTR_EN &= ~0x10 */
126 	nv_wr32(ltc, 0x17e8d8, ltc->ltc_nr);
127 	nv_wr32(ltc, 0x17e8d4, ltc->tag_base);
128 	nv_mask(ltc, 0x17e8c0, 0x00000002, lpg128 ? 0x00000002 : 0x00000000);
129 	return 0;
130 }
131 
132 void
133 gf100_ltc_dtor(struct nvkm_object *object)
134 {
135 	struct nvkm_fb *fb = nvkm_fb(object);
136 	struct nvkm_ltc_priv *ltc = (void *)object;
137 
138 	nvkm_mm_fini(&ltc->tags);
139 	if (fb->ram)
140 		nvkm_mm_free(&fb->vram, &ltc->tag_ram);
141 
142 	nvkm_ltc_destroy(ltc);
143 }
144 
145 /* TODO: Figure out tag memory details and drop the over-cautious allocation.
146  */
147 int
148 gf100_ltc_init_tag_ram(struct nvkm_fb *fb, struct nvkm_ltc_priv *ltc)
149 {
150 	u32 tag_size, tag_margin, tag_align;
151 	int ret;
152 
153 	/* No VRAM, no tags for now. */
154 	if (!fb->ram) {
155 		ltc->num_tags = 0;
156 		goto mm_init;
157 	}
158 
159 	/* tags for 1/4 of VRAM should be enough (8192/4 per GiB of VRAM) */
160 	ltc->num_tags = (fb->ram->size >> 17) / 4;
161 	if (ltc->num_tags > (1 << 17))
162 		ltc->num_tags = 1 << 17; /* we have 17 bits in PTE */
163 	ltc->num_tags = (ltc->num_tags + 63) & ~63; /* round up to 64 */
164 
165 	tag_align = ltc->ltc_nr * 0x800;
166 	tag_margin = (tag_align < 0x6000) ? 0x6000 : tag_align;
167 
168 	/* 4 part 4 sub: 0x2000 bytes for 56 tags */
169 	/* 3 part 4 sub: 0x6000 bytes for 168 tags */
170 	/*
171 	 * About 147 bytes per tag. Let's be safe and allocate x2, which makes
172 	 * 0x4980 bytes for 64 tags, and round up to 0x6000 bytes for 64 tags.
173 	 *
174 	 * For 4 GiB of memory we'll have 8192 tags which makes 3 MiB, < 0.1 %.
175 	 */
176 	tag_size  = (ltc->num_tags / 64) * 0x6000 + tag_margin;
177 	tag_size += tag_align;
178 	tag_size  = (tag_size + 0xfff) >> 12; /* round up */
179 
180 	ret = nvkm_mm_tail(&fb->vram, 1, 1, tag_size, tag_size, 1,
181 			   &ltc->tag_ram);
182 	if (ret) {
183 		ltc->num_tags = 0;
184 	} else {
185 		u64 tag_base = ((u64)ltc->tag_ram->offset << 12) + tag_margin;
186 
187 		tag_base += tag_align - 1;
188 		do_div(tag_base, tag_align);
189 
190 		ltc->tag_base = tag_base;
191 	}
192 
193 mm_init:
194 	ret = nvkm_mm_init(&ltc->tags, 0, ltc->num_tags, 1);
195 	return ret;
196 }
197 
198 int
199 gf100_ltc_ctor(struct nvkm_object *parent, struct nvkm_object *engine,
200 	       struct nvkm_oclass *oclass, void *data, u32 size,
201 	       struct nvkm_object **pobject)
202 {
203 	struct nvkm_fb *fb = nvkm_fb(parent);
204 	struct nvkm_ltc_priv *ltc;
205 	u32 parts, mask;
206 	int ret, i;
207 
208 	ret = nvkm_ltc_create(parent, engine, oclass, &ltc);
209 	*pobject = nv_object(ltc);
210 	if (ret)
211 		return ret;
212 
213 	parts = nv_rd32(ltc, 0x022438);
214 	mask = nv_rd32(ltc, 0x022554);
215 	for (i = 0; i < parts; i++) {
216 		if (!(mask & (1 << i)))
217 			ltc->ltc_nr++;
218 	}
219 	ltc->lts_nr = nv_rd32(ltc, 0x17e8dc) >> 28;
220 
221 	ret = gf100_ltc_init_tag_ram(fb, ltc);
222 	if (ret)
223 		return ret;
224 
225 	nv_subdev(ltc)->intr = gf100_ltc_intr;
226 	return 0;
227 }
228 
229 struct nvkm_oclass *
230 gf100_ltc_oclass = &(struct nvkm_ltc_impl) {
231 	.base.handle = NV_SUBDEV(LTC, 0xc0),
232 	.base.ofuncs = &(struct nvkm_ofuncs) {
233 		.ctor = gf100_ltc_ctor,
234 		.dtor = gf100_ltc_dtor,
235 		.init = gf100_ltc_init,
236 		.fini = _nvkm_ltc_fini,
237 	},
238 	.intr = gf100_ltc_intr,
239 	.cbc_clear = gf100_ltc_cbc_clear,
240 	.cbc_wait = gf100_ltc_cbc_wait,
241 	.zbc = 16,
242 	.zbc_clear_color = gf100_ltc_zbc_clear_color,
243 	.zbc_clear_depth = gf100_ltc_zbc_clear_depth,
244 }.base;
245