1 /* 2 * Copyright 2012 Red Hat Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 * Authors: Ben Skeggs 23 */ 24 #include "priv.h" 25 26 #include <subdev/fb.h> 27 #include <subdev/timer.h> 28 29 void 30 gf100_ltc_cbc_clear(struct nvkm_ltc *ltc, u32 start, u32 limit) 31 { 32 struct nvkm_device *device = ltc->subdev.device; 33 nvkm_wr32(device, 0x17e8cc, start); 34 nvkm_wr32(device, 0x17e8d0, limit); 35 nvkm_wr32(device, 0x17e8c8, 0x00000004); 36 } 37 38 void 39 gf100_ltc_cbc_wait(struct nvkm_ltc *ltc) 40 { 41 struct nvkm_device *device = ltc->subdev.device; 42 int c, s; 43 for (c = 0; c < ltc->ltc_nr; c++) { 44 for (s = 0; s < ltc->lts_nr; s++) { 45 const u32 addr = 0x1410c8 + (c * 0x2000) + (s * 0x400); 46 nvkm_msec(device, 2000, 47 if (!nvkm_rd32(device, addr)) 48 break; 49 ); 50 } 51 } 52 } 53 54 void 55 gf100_ltc_zbc_clear_color(struct nvkm_ltc *ltc, int i, const u32 color[4]) 56 { 57 struct nvkm_device *device = ltc->subdev.device; 58 nvkm_mask(device, 0x17ea44, 0x0000000f, i); 59 nvkm_wr32(device, 0x17ea48, color[0]); 60 nvkm_wr32(device, 0x17ea4c, color[1]); 61 nvkm_wr32(device, 0x17ea50, color[2]); 62 nvkm_wr32(device, 0x17ea54, color[3]); 63 } 64 65 void 66 gf100_ltc_zbc_clear_depth(struct nvkm_ltc *ltc, int i, const u32 depth) 67 { 68 struct nvkm_device *device = ltc->subdev.device; 69 nvkm_mask(device, 0x17ea44, 0x0000000f, i); 70 nvkm_wr32(device, 0x17ea58, depth); 71 } 72 73 const struct nvkm_bitfield 74 gf100_ltc_lts_intr_name[] = { 75 { 0x00000001, "IDLE_ERROR_IQ" }, 76 { 0x00000002, "IDLE_ERROR_CBC" }, 77 { 0x00000004, "IDLE_ERROR_TSTG" }, 78 { 0x00000008, "IDLE_ERROR_DSTG" }, 79 { 0x00000010, "EVICTED_CB" }, 80 { 0x00000020, "ILLEGAL_COMPSTAT" }, 81 { 0x00000040, "BLOCKLINEAR_CB" }, 82 { 0x00000100, "ECC_SEC_ERROR" }, 83 { 0x00000200, "ECC_DED_ERROR" }, 84 { 0x00000400, "DEBUG" }, 85 { 0x00000800, "ATOMIC_TO_Z" }, 86 { 0x00001000, "ILLEGAL_ATOMIC" }, 87 { 0x00002000, "BLKACTIVITY_ERR" }, 88 {} 89 }; 90 91 static void 92 gf100_ltc_lts_intr(struct nvkm_ltc *ltc, int c, int s) 93 { 94 struct nvkm_subdev *subdev = <c->subdev; 95 struct nvkm_device *device = subdev->device; 96 u32 base = 0x141000 + (c * 0x2000) + (s * 0x400); 97 u32 intr = nvkm_rd32(device, base + 0x020); 98 u32 stat = intr & 0x0000ffff; 99 char msg[128]; 100 101 if (stat) { 102 nvkm_snprintbf(msg, sizeof(msg), gf100_ltc_lts_intr_name, stat); 103 nvkm_error(subdev, "LTC%d_LTS%d: %08x [%s]\n", c, s, stat, msg); 104 } 105 106 nvkm_wr32(device, base + 0x020, intr); 107 } 108 109 void 110 gf100_ltc_intr(struct nvkm_ltc *ltc) 111 { 112 struct nvkm_device *device = ltc->subdev.device; 113 u32 mask; 114 115 mask = nvkm_rd32(device, 0x00017c); 116 while (mask) { 117 u32 s, c = __ffs(mask); 118 for (s = 0; s < ltc->lts_nr; s++) 119 gf100_ltc_lts_intr(ltc, c, s); 120 mask &= ~(1 << c); 121 } 122 } 123 124 void 125 gf100_ltc_invalidate(struct nvkm_ltc *ltc) 126 { 127 struct nvkm_device *device = ltc->subdev.device; 128 s64 taken; 129 130 nvkm_wr32(device, 0x70004, 0x00000001); 131 taken = nvkm_wait_msec(device, 2000, 0x70004, 0x00000003, 0x00000000); 132 133 if (taken > 0) 134 nvkm_debug(<c->subdev, "LTC invalidate took %lld ns\n", taken); 135 } 136 137 void 138 gf100_ltc_flush(struct nvkm_ltc *ltc) 139 { 140 struct nvkm_device *device = ltc->subdev.device; 141 s64 taken; 142 143 nvkm_wr32(device, 0x70010, 0x00000001); 144 taken = nvkm_wait_msec(device, 2000, 0x70010, 0x00000003, 0x00000000); 145 146 if (taken > 0) 147 nvkm_debug(<c->subdev, "LTC flush took %lld ns\n", taken); 148 } 149 150 /* TODO: Figure out tag memory details and drop the over-cautious allocation. 151 */ 152 int 153 gf100_ltc_oneinit_tag_ram(struct nvkm_ltc *ltc) 154 { 155 struct nvkm_ram *ram = ltc->subdev.device->fb->ram; 156 u32 tag_size, tag_margin, tag_align; 157 int ret; 158 159 /* No VRAM, no tags for now. */ 160 if (!ram) { 161 ltc->num_tags = 0; 162 goto mm_init; 163 } 164 165 /* tags for 1/4 of VRAM should be enough (8192/4 per GiB of VRAM) */ 166 ltc->num_tags = (ram->size >> 17) / 4; 167 if (ltc->num_tags > (1 << 17)) 168 ltc->num_tags = 1 << 17; /* we have 17 bits in PTE */ 169 ltc->num_tags = (ltc->num_tags + 63) & ~63; /* round up to 64 */ 170 171 tag_align = ltc->ltc_nr * 0x800; 172 tag_margin = (tag_align < 0x6000) ? 0x6000 : tag_align; 173 174 /* 4 part 4 sub: 0x2000 bytes for 56 tags */ 175 /* 3 part 4 sub: 0x6000 bytes for 168 tags */ 176 /* 177 * About 147 bytes per tag. Let's be safe and allocate x2, which makes 178 * 0x4980 bytes for 64 tags, and round up to 0x6000 bytes for 64 tags. 179 * 180 * For 4 GiB of memory we'll have 8192 tags which makes 3 MiB, < 0.1 %. 181 */ 182 tag_size = (ltc->num_tags / 64) * 0x6000 + tag_margin; 183 tag_size += tag_align; 184 tag_size = (tag_size + 0xfff) >> 12; /* round up */ 185 186 ret = nvkm_mm_tail(&ram->vram, 1, 1, tag_size, tag_size, 1, 187 <c->tag_ram); 188 if (ret) { 189 ltc->num_tags = 0; 190 } else { 191 u64 tag_base = ((u64)ltc->tag_ram->offset << 12) + tag_margin; 192 193 tag_base += tag_align - 1; 194 do_div(tag_base, tag_align); 195 196 ltc->tag_base = tag_base; 197 } 198 199 mm_init: 200 return nvkm_mm_init(<c->tags, 0, ltc->num_tags, 1); 201 } 202 203 int 204 gf100_ltc_oneinit(struct nvkm_ltc *ltc) 205 { 206 struct nvkm_device *device = ltc->subdev.device; 207 const u32 parts = nvkm_rd32(device, 0x022438); 208 const u32 mask = nvkm_rd32(device, 0x022554); 209 const u32 slice = nvkm_rd32(device, 0x17e8dc) >> 28; 210 int i; 211 212 for (i = 0; i < parts; i++) { 213 if (!(mask & (1 << i))) 214 ltc->ltc_nr++; 215 } 216 ltc->lts_nr = slice; 217 218 return gf100_ltc_oneinit_tag_ram(ltc); 219 } 220 221 static void 222 gf100_ltc_init(struct nvkm_ltc *ltc) 223 { 224 struct nvkm_device *device = ltc->subdev.device; 225 u32 lpg128 = !(nvkm_rd32(device, 0x100c80) & 0x00000001); 226 227 nvkm_mask(device, 0x17e820, 0x00100000, 0x00000000); /* INTR_EN &= ~0x10 */ 228 nvkm_wr32(device, 0x17e8d8, ltc->ltc_nr); 229 nvkm_wr32(device, 0x17e8d4, ltc->tag_base); 230 nvkm_mask(device, 0x17e8c0, 0x00000002, lpg128 ? 0x00000002 : 0x00000000); 231 } 232 233 static const struct nvkm_ltc_func 234 gf100_ltc = { 235 .oneinit = gf100_ltc_oneinit, 236 .init = gf100_ltc_init, 237 .intr = gf100_ltc_intr, 238 .cbc_clear = gf100_ltc_cbc_clear, 239 .cbc_wait = gf100_ltc_cbc_wait, 240 .zbc = 16, 241 .zbc_clear_color = gf100_ltc_zbc_clear_color, 242 .zbc_clear_depth = gf100_ltc_zbc_clear_depth, 243 .invalidate = gf100_ltc_invalidate, 244 .flush = gf100_ltc_flush, 245 }; 246 247 int 248 gf100_ltc_new(struct nvkm_device *device, int index, struct nvkm_ltc **pltc) 249 { 250 return nvkm_ltc_new_(&gf100_ltc, device, index, pltc); 251 } 252