xref: /openbmc/linux/drivers/gpu/drm/nouveau/nvkm/subdev/instmem/gk20a.c (revision bbde9fc1824aab58bc78c084163007dd6c03fe5b)
1 /*
2  * Copyright (c) 2015, NVIDIA CORPORATION. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20  * DEALINGS IN THE SOFTWARE.
21  */
22 
23 /*
24  * GK20A does not have dedicated video memory, and to accurately represent this
25  * fact Nouveau will not create a RAM device for it. Therefore its instmem
26  * implementation must be done directly on top of system memory, while providing
27  * coherent read and write operations.
28  *
29  * Instmem can be allocated through two means:
30  * 1) If an IOMMU mapping has been probed, the IOMMU API is used to make memory
31  *    pages contiguous to the GPU. This is the preferred way.
32  * 2) If no IOMMU mapping is probed, the DMA API is used to allocate physically
33  *    contiguous memory.
34  *
35  * In both cases CPU read and writes are performed using PRAMIN (i.e. using the
36  * GPU path) to ensure these operations are coherent for the GPU. This allows us
37  * to use more "relaxed" allocation parameters when using the DMA API, since we
38  * never need a kernel mapping.
39  */
40 
41 #include <subdev/fb.h>
42 #include <core/mm.h>
43 #include <core/device.h>
44 
45 #ifdef __KERNEL__
46 #include <linux/dma-attrs.h>
47 #include <linux/iommu.h>
48 #include <nouveau_platform.h>
49 #endif
50 
51 #include "priv.h"
52 
53 struct gk20a_instobj_priv {
54 	struct nvkm_instobj base;
55 	/* Must be second member here - see nouveau_gpuobj_map_vm() */
56 	struct nvkm_mem *mem;
57 	/* Pointed by mem */
58 	struct nvkm_mem _mem;
59 };
60 
61 /*
62  * Used for objects allocated using the DMA API
63  */
64 struct gk20a_instobj_dma {
65 	struct gk20a_instobj_priv base;
66 
67 	void *cpuaddr;
68 	dma_addr_t handle;
69 	struct nvkm_mm_node r;
70 };
71 
72 /*
73  * Used for objects flattened using the IOMMU API
74  */
75 struct gk20a_instobj_iommu {
76 	struct gk20a_instobj_priv base;
77 
78 	/* array of base.mem->size pages */
79 	struct page *pages[];
80 };
81 
82 struct gk20a_instmem_priv {
83 	struct nvkm_instmem base;
84 	spinlock_t lock;
85 	u64 addr;
86 
87 	/* Only used if IOMMU if present */
88 	struct mutex *mm_mutex;
89 	struct nvkm_mm *mm;
90 	struct iommu_domain *domain;
91 	unsigned long iommu_pgshift;
92 
93 	/* Only used by DMA API */
94 	struct dma_attrs attrs;
95 };
96 
97 /*
98  * Use PRAMIN to read/write data and avoid coherency issues.
99  * PRAMIN uses the GPU path and ensures data will always be coherent.
100  *
101  * A dynamic mapping based solution would be desirable in the future, but
102  * the issue remains of how to maintain coherency efficiently. On ARM it is
103  * not easy (if possible at all?) to create uncached temporary mappings.
104  */
105 
106 static u32
107 gk20a_instobj_rd32(struct nvkm_object *object, u64 offset)
108 {
109 	struct gk20a_instmem_priv *priv = (void *)nvkm_instmem(object);
110 	struct gk20a_instobj_priv *node = (void *)object;
111 	unsigned long flags;
112 	u64 base = (node->mem->offset + offset) & 0xffffff00000ULL;
113 	u64 addr = (node->mem->offset + offset) & 0x000000fffffULL;
114 	u32 data;
115 
116 	spin_lock_irqsave(&priv->lock, flags);
117 	if (unlikely(priv->addr != base)) {
118 		nv_wr32(priv, 0x001700, base >> 16);
119 		priv->addr = base;
120 	}
121 	data = nv_rd32(priv, 0x700000 + addr);
122 	spin_unlock_irqrestore(&priv->lock, flags);
123 	return data;
124 }
125 
126 static void
127 gk20a_instobj_wr32(struct nvkm_object *object, u64 offset, u32 data)
128 {
129 	struct gk20a_instmem_priv *priv = (void *)nvkm_instmem(object);
130 	struct gk20a_instobj_priv *node = (void *)object;
131 	unsigned long flags;
132 	u64 base = (node->mem->offset + offset) & 0xffffff00000ULL;
133 	u64 addr = (node->mem->offset + offset) & 0x000000fffffULL;
134 
135 	spin_lock_irqsave(&priv->lock, flags);
136 	if (unlikely(priv->addr != base)) {
137 		nv_wr32(priv, 0x001700, base >> 16);
138 		priv->addr = base;
139 	}
140 	nv_wr32(priv, 0x700000 + addr, data);
141 	spin_unlock_irqrestore(&priv->lock, flags);
142 }
143 
144 static void
145 gk20a_instobj_dtor_dma(struct gk20a_instobj_priv *_node)
146 {
147 	struct gk20a_instobj_dma *node = (void *)_node;
148 	struct gk20a_instmem_priv *priv = (void *)nvkm_instmem(node);
149 	struct device *dev = nv_device_base(nv_device(priv));
150 
151 	if (unlikely(!node->cpuaddr))
152 		return;
153 
154 	dma_free_attrs(dev, _node->mem->size << PAGE_SHIFT, node->cpuaddr,
155 		       node->handle, &priv->attrs);
156 }
157 
158 static void
159 gk20a_instobj_dtor_iommu(struct gk20a_instobj_priv *_node)
160 {
161 	struct gk20a_instobj_iommu *node = (void *)_node;
162 	struct gk20a_instmem_priv *priv = (void *)nvkm_instmem(node);
163 	struct nvkm_mm_node *r;
164 	int i;
165 
166 	if (unlikely(list_empty(&_node->mem->regions)))
167 		return;
168 
169 	r = list_first_entry(&_node->mem->regions, struct nvkm_mm_node,
170 			     rl_entry);
171 
172 	/* clear bit 34 to unmap pages */
173 	r->offset &= ~BIT(34 - priv->iommu_pgshift);
174 
175 	/* Unmap pages from GPU address space and free them */
176 	for (i = 0; i < _node->mem->size; i++) {
177 		iommu_unmap(priv->domain,
178 			    (r->offset + i) << priv->iommu_pgshift, PAGE_SIZE);
179 		__free_page(node->pages[i]);
180 	}
181 
182 	/* Release area from GPU address space */
183 	mutex_lock(priv->mm_mutex);
184 	nvkm_mm_free(priv->mm, &r);
185 	mutex_unlock(priv->mm_mutex);
186 }
187 
188 static void
189 gk20a_instobj_dtor(struct nvkm_object *object)
190 {
191 	struct gk20a_instobj_priv *node = (void *)object;
192 	struct gk20a_instmem_priv *priv = (void *)nvkm_instmem(node);
193 
194 	if (priv->domain)
195 		gk20a_instobj_dtor_iommu(node);
196 	else
197 		gk20a_instobj_dtor_dma(node);
198 
199 	nvkm_instobj_destroy(&node->base);
200 }
201 
202 static int
203 gk20a_instobj_ctor_dma(struct nvkm_object *parent, struct nvkm_object *engine,
204 		       struct nvkm_oclass *oclass, u32 npages, u32 align,
205 		       struct gk20a_instobj_priv **_node)
206 {
207 	struct gk20a_instobj_dma *node;
208 	struct gk20a_instmem_priv *priv = (void *)nvkm_instmem(parent);
209 	struct device *dev = nv_device_base(nv_device(parent));
210 	int ret;
211 
212 	ret = nvkm_instobj_create_(parent, engine, oclass, sizeof(*node),
213 				   (void **)&node);
214 	*_node = &node->base;
215 	if (ret)
216 		return ret;
217 
218 	node->cpuaddr = dma_alloc_attrs(dev, npages << PAGE_SHIFT,
219 					&node->handle, GFP_KERNEL,
220 					&priv->attrs);
221 	if (!node->cpuaddr) {
222 		nv_error(priv, "cannot allocate DMA memory\n");
223 		return -ENOMEM;
224 	}
225 
226 	/* alignment check */
227 	if (unlikely(node->handle & (align - 1)))
228 		nv_warn(priv, "memory not aligned as requested: %pad (0x%x)\n",
229 			&node->handle, align);
230 
231 	/* present memory for being mapped using small pages */
232 	node->r.type = 12;
233 	node->r.offset = node->handle >> 12;
234 	node->r.length = (npages << PAGE_SHIFT) >> 12;
235 
236 	node->base._mem.offset = node->handle;
237 
238 	INIT_LIST_HEAD(&node->base._mem.regions);
239 	list_add_tail(&node->r.rl_entry, &node->base._mem.regions);
240 
241 	return 0;
242 }
243 
244 static int
245 gk20a_instobj_ctor_iommu(struct nvkm_object *parent, struct nvkm_object *engine,
246 			 struct nvkm_oclass *oclass, u32 npages, u32 align,
247 			 struct gk20a_instobj_priv **_node)
248 {
249 	struct gk20a_instobj_iommu *node;
250 	struct gk20a_instmem_priv *priv = (void *)nvkm_instmem(parent);
251 	struct nvkm_mm_node *r;
252 	int ret;
253 	int i;
254 
255 	ret = nvkm_instobj_create_(parent, engine, oclass,
256 				sizeof(*node) + sizeof(node->pages[0]) * npages,
257 				(void **)&node);
258 	*_node = &node->base;
259 	if (ret)
260 		return ret;
261 
262 	/* Allocate backing memory */
263 	for (i = 0; i < npages; i++) {
264 		struct page *p = alloc_page(GFP_KERNEL);
265 
266 		if (p == NULL) {
267 			ret = -ENOMEM;
268 			goto free_pages;
269 		}
270 		node->pages[i] = p;
271 	}
272 
273 	mutex_lock(priv->mm_mutex);
274 	/* Reserve area from GPU address space */
275 	ret = nvkm_mm_head(priv->mm, 0, 1, npages, npages,
276 			   align >> priv->iommu_pgshift, &r);
277 	mutex_unlock(priv->mm_mutex);
278 	if (ret) {
279 		nv_error(priv, "virtual space is full!\n");
280 		goto free_pages;
281 	}
282 
283 	/* Map into GPU address space */
284 	for (i = 0; i < npages; i++) {
285 		struct page *p = node->pages[i];
286 		u32 offset = (r->offset + i) << priv->iommu_pgshift;
287 
288 		ret = iommu_map(priv->domain, offset, page_to_phys(p),
289 				PAGE_SIZE, IOMMU_READ | IOMMU_WRITE);
290 		if (ret < 0) {
291 			nv_error(priv, "IOMMU mapping failure: %d\n", ret);
292 
293 			while (i-- > 0) {
294 				offset -= PAGE_SIZE;
295 				iommu_unmap(priv->domain, offset, PAGE_SIZE);
296 			}
297 			goto release_area;
298 		}
299 	}
300 
301 	/* Bit 34 tells that an address is to be resolved through the IOMMU */
302 	r->offset |= BIT(34 - priv->iommu_pgshift);
303 
304 	node->base._mem.offset = ((u64)r->offset) << priv->iommu_pgshift;
305 
306 	INIT_LIST_HEAD(&node->base._mem.regions);
307 	list_add_tail(&r->rl_entry, &node->base._mem.regions);
308 
309 	return 0;
310 
311 release_area:
312 	mutex_lock(priv->mm_mutex);
313 	nvkm_mm_free(priv->mm, &r);
314 	mutex_unlock(priv->mm_mutex);
315 
316 free_pages:
317 	for (i = 0; i < npages && node->pages[i] != NULL; i++)
318 		__free_page(node->pages[i]);
319 
320 	return ret;
321 }
322 
323 static int
324 gk20a_instobj_ctor(struct nvkm_object *parent, struct nvkm_object *engine,
325 		   struct nvkm_oclass *oclass, void *data, u32 _size,
326 		   struct nvkm_object **pobject)
327 {
328 	struct nvkm_instobj_args *args = data;
329 	struct gk20a_instmem_priv *priv = (void *)nvkm_instmem(parent);
330 	struct gk20a_instobj_priv *node;
331 	u32 size, align;
332 	int ret;
333 
334 	nv_debug(parent, "%s (%s): size: %x align: %x\n", __func__,
335 		 priv->domain ? "IOMMU" : "DMA", args->size, args->align);
336 
337 	/* Round size and align to page bounds */
338 	size = max(roundup(args->size, PAGE_SIZE), PAGE_SIZE);
339 	align = max(roundup(args->align, PAGE_SIZE), PAGE_SIZE);
340 
341 	if (priv->domain)
342 		ret = gk20a_instobj_ctor_iommu(parent, engine, oclass,
343 					      size >> PAGE_SHIFT, align, &node);
344 	else
345 		ret = gk20a_instobj_ctor_dma(parent, engine, oclass,
346 					     size >> PAGE_SHIFT, align, &node);
347 	*pobject = nv_object(node);
348 	if (ret)
349 		return ret;
350 
351 	node->mem = &node->_mem;
352 
353 	/* present memory for being mapped using small pages */
354 	node->mem->size = size >> 12;
355 	node->mem->memtype = 0;
356 	node->mem->page_shift = 12;
357 
358 	node->base.addr = node->mem->offset;
359 	node->base.size = size;
360 
361 	nv_debug(parent, "alloc size: 0x%x, align: 0x%x, gaddr: 0x%llx\n",
362 		 size, align, node->mem->offset);
363 
364 	return 0;
365 }
366 
367 static struct nvkm_instobj_impl
368 gk20a_instobj_oclass = {
369 	.base.ofuncs = &(struct nvkm_ofuncs) {
370 		.ctor = gk20a_instobj_ctor,
371 		.dtor = gk20a_instobj_dtor,
372 		.init = _nvkm_instobj_init,
373 		.fini = _nvkm_instobj_fini,
374 		.rd32 = gk20a_instobj_rd32,
375 		.wr32 = gk20a_instobj_wr32,
376 	},
377 };
378 
379 
380 
381 static int
382 gk20a_instmem_fini(struct nvkm_object *object, bool suspend)
383 {
384 	struct gk20a_instmem_priv *priv = (void *)object;
385 	priv->addr = ~0ULL;
386 	return nvkm_instmem_fini(&priv->base, suspend);
387 }
388 
389 static int
390 gk20a_instmem_ctor(struct nvkm_object *parent, struct nvkm_object *engine,
391 		   struct nvkm_oclass *oclass, void *data, u32 size,
392 		   struct nvkm_object **pobject)
393 {
394 	struct gk20a_instmem_priv *priv;
395 	struct nouveau_platform_device *plat;
396 	int ret;
397 
398 	ret = nvkm_instmem_create(parent, engine, oclass, &priv);
399 	*pobject = nv_object(priv);
400 	if (ret)
401 		return ret;
402 
403 	spin_lock_init(&priv->lock);
404 
405 	plat = nv_device_to_platform(nv_device(parent));
406 	if (plat->gpu->iommu.domain) {
407 		priv->domain = plat->gpu->iommu.domain;
408 		priv->mm = plat->gpu->iommu.mm;
409 		priv->iommu_pgshift = plat->gpu->iommu.pgshift;
410 		priv->mm_mutex = &plat->gpu->iommu.mutex;
411 
412 		nv_info(priv, "using IOMMU\n");
413 	} else {
414 		init_dma_attrs(&priv->attrs);
415 		/*
416 		 * We will access instmem through PRAMIN and thus do not need a
417 		 * consistent CPU pointer or kernel mapping
418 		 */
419 		dma_set_attr(DMA_ATTR_NON_CONSISTENT, &priv->attrs);
420 		dma_set_attr(DMA_ATTR_WEAK_ORDERING, &priv->attrs);
421 		dma_set_attr(DMA_ATTR_WRITE_COMBINE, &priv->attrs);
422 		dma_set_attr(DMA_ATTR_NO_KERNEL_MAPPING, &priv->attrs);
423 
424 		nv_info(priv, "using DMA API\n");
425 	}
426 
427 	return 0;
428 }
429 
430 struct nvkm_oclass *
431 gk20a_instmem_oclass = &(struct nvkm_instmem_impl) {
432 	.base.handle = NV_SUBDEV(INSTMEM, 0xea),
433 	.base.ofuncs = &(struct nvkm_ofuncs) {
434 		.ctor = gk20a_instmem_ctor,
435 		.dtor = _nvkm_instmem_dtor,
436 		.init = _nvkm_instmem_init,
437 		.fini = gk20a_instmem_fini,
438 	},
439 	.instobj = &gk20a_instobj_oclass.base,
440 }.base;
441