1 /* 2 * Copyright (c) 2015, NVIDIA CORPORATION. All rights reserved. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 19 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 20 * DEALINGS IN THE SOFTWARE. 21 */ 22 23 /* 24 * GK20A does not have dedicated video memory, and to accurately represent this 25 * fact Nouveau will not create a RAM device for it. Therefore its instmem 26 * implementation must be done directly on top of system memory, while providing 27 * coherent read and write operations. 28 * 29 * Instmem can be allocated through two means: 30 * 1) If an IOMMU mapping has been probed, the IOMMU API is used to make memory 31 * pages contiguous to the GPU. This is the preferred way. 32 * 2) If no IOMMU mapping is probed, the DMA API is used to allocate physically 33 * contiguous memory. 34 * 35 * In both cases CPU read and writes are performed using PRAMIN (i.e. using the 36 * GPU path) to ensure these operations are coherent for the GPU. This allows us 37 * to use more "relaxed" allocation parameters when using the DMA API, since we 38 * never need a kernel mapping. 39 */ 40 41 #include <subdev/fb.h> 42 #include <core/mm.h> 43 44 #ifdef __KERNEL__ 45 #include <linux/dma-attrs.h> 46 #include <linux/iommu.h> 47 #include <nouveau_platform.h> 48 #endif 49 50 #include "priv.h" 51 52 struct gk20a_instobj { 53 struct nvkm_instobj base; 54 /* Must be second member here - see nouveau_gpuobj_map_vm() */ 55 struct nvkm_mem *mem; 56 /* Pointed by mem */ 57 struct nvkm_mem _mem; 58 }; 59 60 /* 61 * Used for objects allocated using the DMA API 62 */ 63 struct gk20a_instobj_dma { 64 struct gk20a_instobj base; 65 66 void *cpuaddr; 67 dma_addr_t handle; 68 struct nvkm_mm_node r; 69 }; 70 71 /* 72 * Used for objects flattened using the IOMMU API 73 */ 74 struct gk20a_instobj_iommu { 75 struct gk20a_instobj base; 76 77 /* array of base.mem->size pages */ 78 struct page *pages[]; 79 }; 80 81 struct gk20a_instmem { 82 struct nvkm_instmem base; 83 spinlock_t lock; 84 u64 addr; 85 86 /* Only used if IOMMU if present */ 87 struct mutex *mm_mutex; 88 struct nvkm_mm *mm; 89 struct iommu_domain *domain; 90 unsigned long iommu_pgshift; 91 92 /* Only used by DMA API */ 93 struct dma_attrs attrs; 94 }; 95 96 /* 97 * Use PRAMIN to read/write data and avoid coherency issues. 98 * PRAMIN uses the GPU path and ensures data will always be coherent. 99 * 100 * A dynamic mapping based solution would be desirable in the future, but 101 * the issue remains of how to maintain coherency efficiently. On ARM it is 102 * not easy (if possible at all?) to create uncached temporary mappings. 103 */ 104 105 static u32 106 gk20a_instobj_rd32(struct nvkm_object *object, u64 offset) 107 { 108 struct gk20a_instmem *imem = (void *)nvkm_instmem(object); 109 struct gk20a_instobj *node = (void *)object; 110 struct nvkm_device *device = imem->base.subdev.device; 111 unsigned long flags; 112 u64 base = (node->mem->offset + offset) & 0xffffff00000ULL; 113 u64 addr = (node->mem->offset + offset) & 0x000000fffffULL; 114 u32 data; 115 116 spin_lock_irqsave(&imem->lock, flags); 117 if (unlikely(imem->addr != base)) { 118 nvkm_wr32(device, 0x001700, base >> 16); 119 imem->addr = base; 120 } 121 data = nvkm_rd32(device, 0x700000 + addr); 122 spin_unlock_irqrestore(&imem->lock, flags); 123 return data; 124 } 125 126 static void 127 gk20a_instobj_wr32(struct nvkm_object *object, u64 offset, u32 data) 128 { 129 struct gk20a_instmem *imem = (void *)nvkm_instmem(object); 130 struct gk20a_instobj *node = (void *)object; 131 struct nvkm_device *device = imem->base.subdev.device; 132 unsigned long flags; 133 u64 base = (node->mem->offset + offset) & 0xffffff00000ULL; 134 u64 addr = (node->mem->offset + offset) & 0x000000fffffULL; 135 136 spin_lock_irqsave(&imem->lock, flags); 137 if (unlikely(imem->addr != base)) { 138 nvkm_wr32(device, 0x001700, base >> 16); 139 imem->addr = base; 140 } 141 nvkm_wr32(device, 0x700000 + addr, data); 142 spin_unlock_irqrestore(&imem->lock, flags); 143 } 144 145 static void 146 gk20a_instobj_dtor_dma(struct gk20a_instobj *_node) 147 { 148 struct gk20a_instobj_dma *node = (void *)_node; 149 struct gk20a_instmem *imem = (void *)nvkm_instmem(node); 150 struct device *dev = nv_device_base(nv_device(imem)); 151 152 if (unlikely(!node->cpuaddr)) 153 return; 154 155 dma_free_attrs(dev, _node->mem->size << PAGE_SHIFT, node->cpuaddr, 156 node->handle, &imem->attrs); 157 } 158 159 static void 160 gk20a_instobj_dtor_iommu(struct gk20a_instobj *_node) 161 { 162 struct gk20a_instobj_iommu *node = (void *)_node; 163 struct gk20a_instmem *imem = (void *)nvkm_instmem(node); 164 struct nvkm_mm_node *r; 165 int i; 166 167 if (unlikely(list_empty(&_node->mem->regions))) 168 return; 169 170 r = list_first_entry(&_node->mem->regions, struct nvkm_mm_node, 171 rl_entry); 172 173 /* clear bit 34 to unmap pages */ 174 r->offset &= ~BIT(34 - imem->iommu_pgshift); 175 176 /* Unmap pages from GPU address space and free them */ 177 for (i = 0; i < _node->mem->size; i++) { 178 iommu_unmap(imem->domain, 179 (r->offset + i) << imem->iommu_pgshift, PAGE_SIZE); 180 __free_page(node->pages[i]); 181 } 182 183 /* Release area from GPU address space */ 184 mutex_lock(imem->mm_mutex); 185 nvkm_mm_free(imem->mm, &r); 186 mutex_unlock(imem->mm_mutex); 187 } 188 189 static void 190 gk20a_instobj_dtor(struct nvkm_object *object) 191 { 192 struct gk20a_instobj *node = (void *)object; 193 struct gk20a_instmem *imem = (void *)nvkm_instmem(node); 194 195 if (imem->domain) 196 gk20a_instobj_dtor_iommu(node); 197 else 198 gk20a_instobj_dtor_dma(node); 199 200 nvkm_instobj_destroy(&node->base); 201 } 202 203 static int 204 gk20a_instobj_ctor_dma(struct nvkm_object *parent, struct nvkm_object *engine, 205 struct nvkm_oclass *oclass, u32 npages, u32 align, 206 struct gk20a_instobj **_node) 207 { 208 struct gk20a_instobj_dma *node; 209 struct gk20a_instmem *imem = (void *)nvkm_instmem(parent); 210 struct device *dev = nv_device_base(nv_device(parent)); 211 int ret; 212 213 ret = nvkm_instobj_create_(parent, engine, oclass, sizeof(*node), 214 (void **)&node); 215 *_node = &node->base; 216 if (ret) 217 return ret; 218 219 node->cpuaddr = dma_alloc_attrs(dev, npages << PAGE_SHIFT, 220 &node->handle, GFP_KERNEL, 221 &imem->attrs); 222 if (!node->cpuaddr) { 223 nv_error(imem, "cannot allocate DMA memory\n"); 224 return -ENOMEM; 225 } 226 227 /* alignment check */ 228 if (unlikely(node->handle & (align - 1))) 229 nv_warn(imem, "memory not aligned as requested: %pad (0x%x)\n", 230 &node->handle, align); 231 232 /* present memory for being mapped using small pages */ 233 node->r.type = 12; 234 node->r.offset = node->handle >> 12; 235 node->r.length = (npages << PAGE_SHIFT) >> 12; 236 237 node->base._mem.offset = node->handle; 238 239 INIT_LIST_HEAD(&node->base._mem.regions); 240 list_add_tail(&node->r.rl_entry, &node->base._mem.regions); 241 242 return 0; 243 } 244 245 static int 246 gk20a_instobj_ctor_iommu(struct nvkm_object *parent, struct nvkm_object *engine, 247 struct nvkm_oclass *oclass, u32 npages, u32 align, 248 struct gk20a_instobj **_node) 249 { 250 struct gk20a_instobj_iommu *node; 251 struct gk20a_instmem *imem = (void *)nvkm_instmem(parent); 252 struct nvkm_mm_node *r; 253 int ret; 254 int i; 255 256 ret = nvkm_instobj_create_(parent, engine, oclass, 257 sizeof(*node) + sizeof(node->pages[0]) * npages, 258 (void **)&node); 259 *_node = &node->base; 260 if (ret) 261 return ret; 262 263 /* Allocate backing memory */ 264 for (i = 0; i < npages; i++) { 265 struct page *p = alloc_page(GFP_KERNEL); 266 267 if (p == NULL) { 268 ret = -ENOMEM; 269 goto free_pages; 270 } 271 node->pages[i] = p; 272 } 273 274 mutex_lock(imem->mm_mutex); 275 /* Reserve area from GPU address space */ 276 ret = nvkm_mm_head(imem->mm, 0, 1, npages, npages, 277 align >> imem->iommu_pgshift, &r); 278 mutex_unlock(imem->mm_mutex); 279 if (ret) { 280 nv_error(imem, "virtual space is full!\n"); 281 goto free_pages; 282 } 283 284 /* Map into GPU address space */ 285 for (i = 0; i < npages; i++) { 286 struct page *p = node->pages[i]; 287 u32 offset = (r->offset + i) << imem->iommu_pgshift; 288 289 ret = iommu_map(imem->domain, offset, page_to_phys(p), 290 PAGE_SIZE, IOMMU_READ | IOMMU_WRITE); 291 if (ret < 0) { 292 nv_error(imem, "IOMMU mapping failure: %d\n", ret); 293 294 while (i-- > 0) { 295 offset -= PAGE_SIZE; 296 iommu_unmap(imem->domain, offset, PAGE_SIZE); 297 } 298 goto release_area; 299 } 300 } 301 302 /* Bit 34 tells that an address is to be resolved through the IOMMU */ 303 r->offset |= BIT(34 - imem->iommu_pgshift); 304 305 node->base._mem.offset = ((u64)r->offset) << imem->iommu_pgshift; 306 307 INIT_LIST_HEAD(&node->base._mem.regions); 308 list_add_tail(&r->rl_entry, &node->base._mem.regions); 309 310 return 0; 311 312 release_area: 313 mutex_lock(imem->mm_mutex); 314 nvkm_mm_free(imem->mm, &r); 315 mutex_unlock(imem->mm_mutex); 316 317 free_pages: 318 for (i = 0; i < npages && node->pages[i] != NULL; i++) 319 __free_page(node->pages[i]); 320 321 return ret; 322 } 323 324 static int 325 gk20a_instobj_ctor(struct nvkm_object *parent, struct nvkm_object *engine, 326 struct nvkm_oclass *oclass, void *data, u32 _size, 327 struct nvkm_object **pobject) 328 { 329 struct nvkm_instobj_args *args = data; 330 struct gk20a_instmem *imem = (void *)nvkm_instmem(parent); 331 struct gk20a_instobj *node; 332 u32 size, align; 333 int ret; 334 335 nv_debug(parent, "%s (%s): size: %x align: %x\n", __func__, 336 imem->domain ? "IOMMU" : "DMA", args->size, args->align); 337 338 /* Round size and align to page bounds */ 339 size = max(roundup(args->size, PAGE_SIZE), PAGE_SIZE); 340 align = max(roundup(args->align, PAGE_SIZE), PAGE_SIZE); 341 342 if (imem->domain) 343 ret = gk20a_instobj_ctor_iommu(parent, engine, oclass, 344 size >> PAGE_SHIFT, align, &node); 345 else 346 ret = gk20a_instobj_ctor_dma(parent, engine, oclass, 347 size >> PAGE_SHIFT, align, &node); 348 *pobject = nv_object(node); 349 if (ret) 350 return ret; 351 352 node->mem = &node->_mem; 353 354 /* present memory for being mapped using small pages */ 355 node->mem->size = size >> 12; 356 node->mem->memtype = 0; 357 node->mem->page_shift = 12; 358 359 node->base.addr = node->mem->offset; 360 node->base.size = size; 361 362 nv_debug(parent, "alloc size: 0x%x, align: 0x%x, gaddr: 0x%llx\n", 363 size, align, node->mem->offset); 364 365 return 0; 366 } 367 368 static struct nvkm_instobj_impl 369 gk20a_instobj_oclass = { 370 .base.ofuncs = &(struct nvkm_ofuncs) { 371 .ctor = gk20a_instobj_ctor, 372 .dtor = gk20a_instobj_dtor, 373 .init = _nvkm_instobj_init, 374 .fini = _nvkm_instobj_fini, 375 .rd32 = gk20a_instobj_rd32, 376 .wr32 = gk20a_instobj_wr32, 377 }, 378 }; 379 380 381 382 static int 383 gk20a_instmem_fini(struct nvkm_object *object, bool suspend) 384 { 385 struct gk20a_instmem *imem = (void *)object; 386 imem->addr = ~0ULL; 387 return nvkm_instmem_fini(&imem->base, suspend); 388 } 389 390 static int 391 gk20a_instmem_ctor(struct nvkm_object *parent, struct nvkm_object *engine, 392 struct nvkm_oclass *oclass, void *data, u32 size, 393 struct nvkm_object **pobject) 394 { 395 struct gk20a_instmem *imem; 396 struct nouveau_platform_device *plat; 397 int ret; 398 399 ret = nvkm_instmem_create(parent, engine, oclass, &imem); 400 *pobject = nv_object(imem); 401 if (ret) 402 return ret; 403 404 spin_lock_init(&imem->lock); 405 406 plat = nv_device_to_platform(nv_device(parent)); 407 if (plat->gpu->iommu.domain) { 408 imem->domain = plat->gpu->iommu.domain; 409 imem->mm = plat->gpu->iommu.mm; 410 imem->iommu_pgshift = plat->gpu->iommu.pgshift; 411 imem->mm_mutex = &plat->gpu->iommu.mutex; 412 413 nv_info(imem, "using IOMMU\n"); 414 } else { 415 init_dma_attrs(&imem->attrs); 416 /* 417 * We will access instmem through PRAMIN and thus do not need a 418 * consistent CPU pointer or kernel mapping 419 */ 420 dma_set_attr(DMA_ATTR_NON_CONSISTENT, &imem->attrs); 421 dma_set_attr(DMA_ATTR_WEAK_ORDERING, &imem->attrs); 422 dma_set_attr(DMA_ATTR_WRITE_COMBINE, &imem->attrs); 423 dma_set_attr(DMA_ATTR_NO_KERNEL_MAPPING, &imem->attrs); 424 425 nv_info(imem, "using DMA API\n"); 426 } 427 428 return 0; 429 } 430 431 struct nvkm_oclass * 432 gk20a_instmem_oclass = &(struct nvkm_instmem_impl) { 433 .base.handle = NV_SUBDEV(INSTMEM, 0xea), 434 .base.ofuncs = &(struct nvkm_ofuncs) { 435 .ctor = gk20a_instmem_ctor, 436 .dtor = _nvkm_instmem_dtor, 437 .init = _nvkm_instmem_init, 438 .fini = gk20a_instmem_fini, 439 }, 440 .instobj = &gk20a_instobj_oclass.base, 441 }.base; 442