1 /*
2  * Copyright (c) 2015, NVIDIA CORPORATION. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20  * DEALINGS IN THE SOFTWARE.
21  */
22 
23 /*
24  * GK20A does not have dedicated video memory, and to accurately represent this
25  * fact Nouveau will not create a RAM device for it. Therefore its instmem
26  * implementation must be done directly on top of system memory, while
27  * preserving coherency for read and write operations.
28  *
29  * Instmem can be allocated through two means:
30  * 1) If an IOMMU unit has been probed, the IOMMU API is used to make memory
31  *    pages contiguous to the GPU. This is the preferred way.
32  * 2) If no IOMMU unit is probed, the DMA API is used to allocate physically
33  *    contiguous memory.
34  *
35  * In both cases CPU read and writes are performed by creating a write-combined
36  * mapping. The GPU L2 cache must thus be flushed/invalidated when required. To
37  * be conservative we do this every time we acquire or release an instobj, but
38  * ideally L2 management should be handled at a higher level.
39  *
40  * To improve performance, CPU mappings are not removed upon instobj release.
41  * Instead they are placed into a LRU list to be recycled when the mapped space
42  * goes beyond a certain threshold. At the moment this limit is 1MB.
43  */
44 #include "priv.h"
45 
46 #include <core/memory.h>
47 #include <core/mm.h>
48 #include <core/tegra.h>
49 #include <subdev/fb.h>
50 #include <subdev/ltc.h>
51 
52 struct gk20a_instobj {
53 	struct nvkm_memory memory;
54 	struct nvkm_mem mem;
55 	struct gk20a_instmem *imem;
56 
57 	/* CPU mapping */
58 	u32 *vaddr;
59 	struct list_head vaddr_node;
60 };
61 #define gk20a_instobj(p) container_of((p), struct gk20a_instobj, memory)
62 
63 /*
64  * Used for objects allocated using the DMA API
65  */
66 struct gk20a_instobj_dma {
67 	struct gk20a_instobj base;
68 
69 	u32 *cpuaddr;
70 	dma_addr_t handle;
71 	struct nvkm_mm_node r;
72 };
73 #define gk20a_instobj_dma(p) \
74 	container_of(gk20a_instobj(p), struct gk20a_instobj_dma, base)
75 
76 /*
77  * Used for objects flattened using the IOMMU API
78  */
79 struct gk20a_instobj_iommu {
80 	struct gk20a_instobj base;
81 
82 	/* will point to the higher half of pages */
83 	dma_addr_t *dma_addrs;
84 	/* array of base.mem->size pages (+ dma_addr_ts) */
85 	struct page *pages[];
86 };
87 #define gk20a_instobj_iommu(p) \
88 	container_of(gk20a_instobj(p), struct gk20a_instobj_iommu, base)
89 
90 struct gk20a_instmem {
91 	struct nvkm_instmem base;
92 
93 	/* protects vaddr_* and gk20a_instobj::vaddr* */
94 	spinlock_t lock;
95 
96 	/* CPU mappings LRU */
97 	unsigned int vaddr_use;
98 	unsigned int vaddr_max;
99 	struct list_head vaddr_lru;
100 
101 	/* Only used if IOMMU if present */
102 	struct mutex *mm_mutex;
103 	struct nvkm_mm *mm;
104 	struct iommu_domain *domain;
105 	unsigned long iommu_pgshift;
106 	u16 iommu_bit;
107 
108 	/* Only used by DMA API */
109 	struct dma_attrs attrs;
110 
111 	void __iomem * (*cpu_map)(struct nvkm_memory *);
112 };
113 #define gk20a_instmem(p) container_of((p), struct gk20a_instmem, base)
114 
115 static enum nvkm_memory_target
116 gk20a_instobj_target(struct nvkm_memory *memory)
117 {
118 	return NVKM_MEM_TARGET_HOST;
119 }
120 
121 static u64
122 gk20a_instobj_addr(struct nvkm_memory *memory)
123 {
124 	return gk20a_instobj(memory)->mem.offset;
125 }
126 
127 static u64
128 gk20a_instobj_size(struct nvkm_memory *memory)
129 {
130 	return (u64)gk20a_instobj(memory)->mem.size << 12;
131 }
132 
133 static void __iomem *
134 gk20a_instobj_cpu_map_dma(struct nvkm_memory *memory)
135 {
136 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
137 	struct gk20a_instobj_dma *node = gk20a_instobj_dma(memory);
138 	struct device *dev = node->base.imem->base.subdev.device->dev;
139 	int npages = nvkm_memory_size(memory) >> 12;
140 	struct page *pages[npages];
141 	int i;
142 
143 	/* we shouldn't see a gk20a on anything but arm/arm64 anyways */
144 	/* phys_to_page does not exist on all platforms... */
145 	pages[0] = pfn_to_page(dma_to_phys(dev, node->handle) >> PAGE_SHIFT);
146 	for (i = 1; i < npages; i++)
147 		pages[i] = pages[0] + i;
148 
149 	return vmap(pages, npages, VM_MAP, pgprot_writecombine(PAGE_KERNEL));
150 #else
151 	BUG();
152 	return NULL;
153 #endif
154 }
155 
156 static void __iomem *
157 gk20a_instobj_cpu_map_iommu(struct nvkm_memory *memory)
158 {
159 	struct gk20a_instobj_iommu *node = gk20a_instobj_iommu(memory);
160 	int npages = nvkm_memory_size(memory) >> 12;
161 
162 	return vmap(node->pages, npages, VM_MAP,
163 		    pgprot_writecombine(PAGE_KERNEL));
164 }
165 
166 /*
167  * Must be called while holding gk20a_instmem_lock
168  */
169 static void
170 gk20a_instmem_vaddr_gc(struct gk20a_instmem *imem, const u64 size)
171 {
172 	while (imem->vaddr_use + size > imem->vaddr_max) {
173 		struct gk20a_instobj *obj;
174 
175 		/* no candidate that can be unmapped, abort... */
176 		if (list_empty(&imem->vaddr_lru))
177 			break;
178 
179 		obj = list_first_entry(&imem->vaddr_lru, struct gk20a_instobj,
180 				       vaddr_node);
181 		list_del(&obj->vaddr_node);
182 		vunmap(obj->vaddr);
183 		obj->vaddr = NULL;
184 		imem->vaddr_use -= nvkm_memory_size(&obj->memory);
185 		nvkm_debug(&imem->base.subdev, "(GC) vaddr used: %x/%x\n",
186 			   imem->vaddr_use, imem->vaddr_max);
187 
188 	}
189 }
190 
191 static void __iomem *
192 gk20a_instobj_acquire(struct nvkm_memory *memory)
193 {
194 	struct gk20a_instobj *node = gk20a_instobj(memory);
195 	struct gk20a_instmem *imem = node->imem;
196 	struct nvkm_ltc *ltc = imem->base.subdev.device->ltc;
197 	const u64 size = nvkm_memory_size(memory);
198 	unsigned long flags;
199 
200 	nvkm_ltc_flush(ltc);
201 
202 	spin_lock_irqsave(&imem->lock, flags);
203 
204 	if (node->vaddr) {
205 		/* remove us from the LRU list since we cannot be unmapped */
206 		list_del(&node->vaddr_node);
207 
208 		goto out;
209 	}
210 
211 	/* try to free some address space if we reached the limit */
212 	gk20a_instmem_vaddr_gc(imem, size);
213 
214 	node->vaddr = imem->cpu_map(memory);
215 
216 	if (!node->vaddr) {
217 		nvkm_error(&imem->base.subdev, "cannot map instobj - "
218 			   "this is not going to end well...\n");
219 		goto out;
220 	}
221 
222 	imem->vaddr_use += size;
223 	nvkm_debug(&imem->base.subdev, "vaddr used: %x/%x\n",
224 		   imem->vaddr_use, imem->vaddr_max);
225 
226 out:
227 	spin_unlock_irqrestore(&imem->lock, flags);
228 
229 	return node->vaddr;
230 }
231 
232 static void
233 gk20a_instobj_release(struct nvkm_memory *memory)
234 {
235 	struct gk20a_instobj *node = gk20a_instobj(memory);
236 	struct gk20a_instmem *imem = node->imem;
237 	struct nvkm_ltc *ltc = imem->base.subdev.device->ltc;
238 	unsigned long flags;
239 
240 	spin_lock_irqsave(&imem->lock, flags);
241 
242 	/* add ourselves to the LRU list so our CPU mapping can be freed */
243 	list_add_tail(&node->vaddr_node, &imem->vaddr_lru);
244 
245 	spin_unlock_irqrestore(&imem->lock, flags);
246 
247 	wmb();
248 	nvkm_ltc_invalidate(ltc);
249 }
250 
251 static u32
252 gk20a_instobj_rd32(struct nvkm_memory *memory, u64 offset)
253 {
254 	struct gk20a_instobj *node = gk20a_instobj(memory);
255 
256 	return node->vaddr[offset / 4];
257 }
258 
259 static void
260 gk20a_instobj_wr32(struct nvkm_memory *memory, u64 offset, u32 data)
261 {
262 	struct gk20a_instobj *node = gk20a_instobj(memory);
263 
264 	node->vaddr[offset / 4] = data;
265 }
266 
267 static void
268 gk20a_instobj_map(struct nvkm_memory *memory, struct nvkm_vma *vma, u64 offset)
269 {
270 	struct gk20a_instobj *node = gk20a_instobj(memory);
271 
272 	nvkm_vm_map_at(vma, offset, &node->mem);
273 }
274 
275 /*
276  * Clear the CPU mapping of an instobj if it exists
277  */
278 static void
279 gk20a_instobj_dtor(struct gk20a_instobj *node)
280 {
281 	struct gk20a_instmem *imem = node->imem;
282 	struct gk20a_instobj *obj;
283 	unsigned long flags;
284 
285 	spin_lock_irqsave(&imem->lock, flags);
286 
287 	if (!node->vaddr)
288 		goto out;
289 
290 	list_for_each_entry(obj, &imem->vaddr_lru, vaddr_node) {
291 		if (obj == node) {
292 			list_del(&obj->vaddr_node);
293 			break;
294 		}
295 	}
296 	vunmap(node->vaddr);
297 	node->vaddr = NULL;
298 	imem->vaddr_use -= nvkm_memory_size(&node->memory);
299 	nvkm_debug(&imem->base.subdev, "vaddr used: %x/%x\n",
300 		   imem->vaddr_use, imem->vaddr_max);
301 
302 out:
303 	spin_unlock_irqrestore(&imem->lock, flags);
304 }
305 
306 static void *
307 gk20a_instobj_dtor_dma(struct nvkm_memory *memory)
308 {
309 	struct gk20a_instobj_dma *node = gk20a_instobj_dma(memory);
310 	struct gk20a_instmem *imem = node->base.imem;
311 	struct device *dev = imem->base.subdev.device->dev;
312 
313 	gk20a_instobj_dtor(&node->base);
314 
315 	if (unlikely(!node->cpuaddr))
316 		goto out;
317 
318 	dma_free_attrs(dev, node->base.mem.size << PAGE_SHIFT, node->cpuaddr,
319 		       node->handle, &imem->attrs);
320 
321 out:
322 	return node;
323 }
324 
325 static void *
326 gk20a_instobj_dtor_iommu(struct nvkm_memory *memory)
327 {
328 	struct gk20a_instobj_iommu *node = gk20a_instobj_iommu(memory);
329 	struct gk20a_instmem *imem = node->base.imem;
330 	struct device *dev = imem->base.subdev.device->dev;
331 	struct nvkm_mm_node *r;
332 	int i;
333 
334 	gk20a_instobj_dtor(&node->base);
335 
336 	if (unlikely(list_empty(&node->base.mem.regions)))
337 		goto out;
338 
339 	r = list_first_entry(&node->base.mem.regions, struct nvkm_mm_node,
340 			     rl_entry);
341 
342 	/* clear IOMMU bit to unmap pages */
343 	r->offset &= ~BIT(imem->iommu_bit - imem->iommu_pgshift);
344 
345 	/* Unmap pages from GPU address space and free them */
346 	for (i = 0; i < node->base.mem.size; i++) {
347 		iommu_unmap(imem->domain,
348 			    (r->offset + i) << imem->iommu_pgshift, PAGE_SIZE);
349 		dma_unmap_page(dev, node->dma_addrs[i], PAGE_SIZE,
350 			       DMA_BIDIRECTIONAL);
351 		__free_page(node->pages[i]);
352 	}
353 
354 	/* Release area from GPU address space */
355 	mutex_lock(imem->mm_mutex);
356 	nvkm_mm_free(imem->mm, &r);
357 	mutex_unlock(imem->mm_mutex);
358 
359 out:
360 	return node;
361 }
362 
363 static const struct nvkm_memory_func
364 gk20a_instobj_func_dma = {
365 	.dtor = gk20a_instobj_dtor_dma,
366 	.target = gk20a_instobj_target,
367 	.addr = gk20a_instobj_addr,
368 	.size = gk20a_instobj_size,
369 	.acquire = gk20a_instobj_acquire,
370 	.release = gk20a_instobj_release,
371 	.rd32 = gk20a_instobj_rd32,
372 	.wr32 = gk20a_instobj_wr32,
373 	.map = gk20a_instobj_map,
374 };
375 
376 static const struct nvkm_memory_func
377 gk20a_instobj_func_iommu = {
378 	.dtor = gk20a_instobj_dtor_iommu,
379 	.target = gk20a_instobj_target,
380 	.addr = gk20a_instobj_addr,
381 	.size = gk20a_instobj_size,
382 	.acquire = gk20a_instobj_acquire,
383 	.release = gk20a_instobj_release,
384 	.rd32 = gk20a_instobj_rd32,
385 	.wr32 = gk20a_instobj_wr32,
386 	.map = gk20a_instobj_map,
387 };
388 
389 static int
390 gk20a_instobj_ctor_dma(struct gk20a_instmem *imem, u32 npages, u32 align,
391 		       struct gk20a_instobj **_node)
392 {
393 	struct gk20a_instobj_dma *node;
394 	struct nvkm_subdev *subdev = &imem->base.subdev;
395 	struct device *dev = subdev->device->dev;
396 
397 	if (!(node = kzalloc(sizeof(*node), GFP_KERNEL)))
398 		return -ENOMEM;
399 	*_node = &node->base;
400 
401 	nvkm_memory_ctor(&gk20a_instobj_func_dma, &node->base.memory);
402 
403 	node->cpuaddr = dma_alloc_attrs(dev, npages << PAGE_SHIFT,
404 					&node->handle, GFP_KERNEL,
405 					&imem->attrs);
406 	if (!node->cpuaddr) {
407 		nvkm_error(subdev, "cannot allocate DMA memory\n");
408 		return -ENOMEM;
409 	}
410 
411 	/* alignment check */
412 	if (unlikely(node->handle & (align - 1)))
413 		nvkm_warn(subdev,
414 			  "memory not aligned as requested: %pad (0x%x)\n",
415 			  &node->handle, align);
416 
417 	/* present memory for being mapped using small pages */
418 	node->r.type = 12;
419 	node->r.offset = node->handle >> 12;
420 	node->r.length = (npages << PAGE_SHIFT) >> 12;
421 
422 	node->base.mem.offset = node->handle;
423 
424 	INIT_LIST_HEAD(&node->base.mem.regions);
425 	list_add_tail(&node->r.rl_entry, &node->base.mem.regions);
426 
427 	return 0;
428 }
429 
430 static int
431 gk20a_instobj_ctor_iommu(struct gk20a_instmem *imem, u32 npages, u32 align,
432 			 struct gk20a_instobj **_node)
433 {
434 	struct gk20a_instobj_iommu *node;
435 	struct nvkm_subdev *subdev = &imem->base.subdev;
436 	struct device *dev = subdev->device->dev;
437 	struct nvkm_mm_node *r;
438 	int ret;
439 	int i;
440 
441 	/*
442 	 * despite their variable size, instmem allocations are small enough
443 	 * (< 1 page) to be handled by kzalloc
444 	 */
445 	if (!(node = kzalloc(sizeof(*node) + ((sizeof(node->pages[0]) +
446 			     sizeof(*node->dma_addrs)) * npages), GFP_KERNEL)))
447 		return -ENOMEM;
448 	*_node = &node->base;
449 	node->dma_addrs = (void *)(node->pages + npages);
450 
451 	nvkm_memory_ctor(&gk20a_instobj_func_iommu, &node->base.memory);
452 
453 	/* Allocate backing memory */
454 	for (i = 0; i < npages; i++) {
455 		struct page *p = alloc_page(GFP_KERNEL);
456 		dma_addr_t dma_adr;
457 
458 		if (p == NULL) {
459 			ret = -ENOMEM;
460 			goto free_pages;
461 		}
462 		node->pages[i] = p;
463 		dma_adr = dma_map_page(dev, p, 0, PAGE_SIZE, DMA_BIDIRECTIONAL);
464 		if (dma_mapping_error(dev, dma_adr)) {
465 			nvkm_error(subdev, "DMA mapping error!\n");
466 			ret = -ENOMEM;
467 			goto free_pages;
468 		}
469 		node->dma_addrs[i] = dma_adr;
470 	}
471 
472 	mutex_lock(imem->mm_mutex);
473 	/* Reserve area from GPU address space */
474 	ret = nvkm_mm_head(imem->mm, 0, 1, npages, npages,
475 			   align >> imem->iommu_pgshift, &r);
476 	mutex_unlock(imem->mm_mutex);
477 	if (ret) {
478 		nvkm_error(subdev, "IOMMU space is full!\n");
479 		goto free_pages;
480 	}
481 
482 	/* Map into GPU address space */
483 	for (i = 0; i < npages; i++) {
484 		u32 offset = (r->offset + i) << imem->iommu_pgshift;
485 
486 		ret = iommu_map(imem->domain, offset, node->dma_addrs[i],
487 				PAGE_SIZE, IOMMU_READ | IOMMU_WRITE);
488 		if (ret < 0) {
489 			nvkm_error(subdev, "IOMMU mapping failure: %d\n", ret);
490 
491 			while (i-- > 0) {
492 				offset -= PAGE_SIZE;
493 				iommu_unmap(imem->domain, offset, PAGE_SIZE);
494 			}
495 			goto release_area;
496 		}
497 	}
498 
499 	/* IOMMU bit tells that an address is to be resolved through the IOMMU */
500 	r->offset |= BIT(imem->iommu_bit - imem->iommu_pgshift);
501 
502 	node->base.mem.offset = ((u64)r->offset) << imem->iommu_pgshift;
503 
504 	INIT_LIST_HEAD(&node->base.mem.regions);
505 	list_add_tail(&r->rl_entry, &node->base.mem.regions);
506 
507 	return 0;
508 
509 release_area:
510 	mutex_lock(imem->mm_mutex);
511 	nvkm_mm_free(imem->mm, &r);
512 	mutex_unlock(imem->mm_mutex);
513 
514 free_pages:
515 	for (i = 0; i < npages && node->pages[i] != NULL; i++) {
516 		dma_addr_t dma_addr = node->dma_addrs[i];
517 		if (dma_addr)
518 			dma_unmap_page(dev, dma_addr, PAGE_SIZE,
519 				       DMA_BIDIRECTIONAL);
520 		__free_page(node->pages[i]);
521 	}
522 
523 	return ret;
524 }
525 
526 static int
527 gk20a_instobj_new(struct nvkm_instmem *base, u32 size, u32 align, bool zero,
528 		  struct nvkm_memory **pmemory)
529 {
530 	struct gk20a_instmem *imem = gk20a_instmem(base);
531 	struct nvkm_subdev *subdev = &imem->base.subdev;
532 	struct gk20a_instobj *node = NULL;
533 	int ret;
534 
535 	nvkm_debug(subdev, "%s (%s): size: %x align: %x\n", __func__,
536 		   imem->domain ? "IOMMU" : "DMA", size, align);
537 
538 	/* Round size and align to page bounds */
539 	size = max(roundup(size, PAGE_SIZE), PAGE_SIZE);
540 	align = max(roundup(align, PAGE_SIZE), PAGE_SIZE);
541 
542 	if (imem->domain)
543 		ret = gk20a_instobj_ctor_iommu(imem, size >> PAGE_SHIFT,
544 					       align, &node);
545 	else
546 		ret = gk20a_instobj_ctor_dma(imem, size >> PAGE_SHIFT,
547 					     align, &node);
548 	*pmemory = node ? &node->memory : NULL;
549 	if (ret)
550 		return ret;
551 
552 	node->imem = imem;
553 
554 	/* present memory for being mapped using small pages */
555 	node->mem.size = size >> 12;
556 	node->mem.memtype = 0;
557 	node->mem.page_shift = 12;
558 
559 	nvkm_debug(subdev, "alloc size: 0x%x, align: 0x%x, gaddr: 0x%llx\n",
560 		   size, align, node->mem.offset);
561 
562 	return 0;
563 }
564 
565 static void *
566 gk20a_instmem_dtor(struct nvkm_instmem *base)
567 {
568 	struct gk20a_instmem *imem = gk20a_instmem(base);
569 
570 	/* perform some sanity checks... */
571 	if (!list_empty(&imem->vaddr_lru))
572 		nvkm_warn(&base->subdev, "instobj LRU not empty!\n");
573 
574 	if (imem->vaddr_use != 0)
575 		nvkm_warn(&base->subdev, "instobj vmap area not empty! "
576 			  "0x%x bytes still mapped\n", imem->vaddr_use);
577 
578 	return imem;
579 }
580 
581 static const struct nvkm_instmem_func
582 gk20a_instmem = {
583 	.dtor = gk20a_instmem_dtor,
584 	.memory_new = gk20a_instobj_new,
585 	.persistent = true,
586 	.zero = false,
587 };
588 
589 int
590 gk20a_instmem_new(struct nvkm_device *device, int index,
591 		  struct nvkm_instmem **pimem)
592 {
593 	struct nvkm_device_tegra *tdev = device->func->tegra(device);
594 	struct gk20a_instmem *imem;
595 
596 	if (!(imem = kzalloc(sizeof(*imem), GFP_KERNEL)))
597 		return -ENOMEM;
598 	nvkm_instmem_ctor(&gk20a_instmem, device, index, &imem->base);
599 	spin_lock_init(&imem->lock);
600 	*pimem = &imem->base;
601 
602 	/* do not allow more than 1MB of CPU-mapped instmem */
603 	imem->vaddr_use = 0;
604 	imem->vaddr_max = 0x100000;
605 	INIT_LIST_HEAD(&imem->vaddr_lru);
606 
607 	if (tdev->iommu.domain) {
608 		imem->mm_mutex = &tdev->iommu.mutex;
609 		imem->mm = &tdev->iommu.mm;
610 		imem->domain = tdev->iommu.domain;
611 		imem->iommu_pgshift = tdev->iommu.pgshift;
612 		imem->cpu_map = gk20a_instobj_cpu_map_iommu;
613 		imem->iommu_bit = tdev->func->iommu_bit;
614 
615 		nvkm_info(&imem->base.subdev, "using IOMMU\n");
616 	} else {
617 		init_dma_attrs(&imem->attrs);
618 		/* We will access the memory through our own mapping */
619 		dma_set_attr(DMA_ATTR_NON_CONSISTENT, &imem->attrs);
620 		dma_set_attr(DMA_ATTR_WEAK_ORDERING, &imem->attrs);
621 		dma_set_attr(DMA_ATTR_WRITE_COMBINE, &imem->attrs);
622 		dma_set_attr(DMA_ATTR_NO_KERNEL_MAPPING, &imem->attrs);
623 		imem->cpu_map = gk20a_instobj_cpu_map_dma;
624 
625 		nvkm_info(&imem->base.subdev, "using DMA API\n");
626 	}
627 
628 	return 0;
629 }
630