1 /* 2 * Copyright (c) 2015, NVIDIA CORPORATION. All rights reserved. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 19 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 20 * DEALINGS IN THE SOFTWARE. 21 */ 22 23 /* 24 * GK20A does not have dedicated video memory, and to accurately represent this 25 * fact Nouveau will not create a RAM device for it. Therefore its instmem 26 * implementation must be done directly on top of system memory, while 27 * preserving coherency for read and write operations. 28 * 29 * Instmem can be allocated through two means: 30 * 1) If an IOMMU unit has been probed, the IOMMU API is used to make memory 31 * pages contiguous to the GPU. This is the preferred way. 32 * 2) If no IOMMU unit is probed, the DMA API is used to allocate physically 33 * contiguous memory. 34 * 35 * In both cases CPU read and writes are performed by creating a write-combined 36 * mapping. The GPU L2 cache must thus be flushed/invalidated when required. To 37 * be conservative we do this every time we acquire or release an instobj, but 38 * ideally L2 management should be handled at a higher level. 39 * 40 * To improve performance, CPU mappings are not removed upon instobj release. 41 * Instead they are placed into a LRU list to be recycled when the mapped space 42 * goes beyond a certain threshold. At the moment this limit is 1MB. 43 */ 44 #include "priv.h" 45 46 #include <core/memory.h> 47 #include <core/mm.h> 48 #include <core/tegra.h> 49 #include <subdev/fb.h> 50 #include <subdev/ltc.h> 51 52 struct gk20a_instobj { 53 struct nvkm_memory memory; 54 struct nvkm_mem mem; 55 struct gk20a_instmem *imem; 56 57 /* CPU mapping */ 58 u32 *vaddr; 59 }; 60 #define gk20a_instobj(p) container_of((p), struct gk20a_instobj, memory) 61 62 /* 63 * Used for objects allocated using the DMA API 64 */ 65 struct gk20a_instobj_dma { 66 struct gk20a_instobj base; 67 68 dma_addr_t handle; 69 struct nvkm_mm_node r; 70 }; 71 #define gk20a_instobj_dma(p) \ 72 container_of(gk20a_instobj(p), struct gk20a_instobj_dma, base) 73 74 /* 75 * Used for objects flattened using the IOMMU API 76 */ 77 struct gk20a_instobj_iommu { 78 struct gk20a_instobj base; 79 80 /* to link into gk20a_instmem::vaddr_lru */ 81 struct list_head vaddr_node; 82 /* how many clients are using vaddr? */ 83 u32 use_cpt; 84 85 /* will point to the higher half of pages */ 86 dma_addr_t *dma_addrs; 87 /* array of base.mem->size pages (+ dma_addr_ts) */ 88 struct page *pages[]; 89 }; 90 #define gk20a_instobj_iommu(p) \ 91 container_of(gk20a_instobj(p), struct gk20a_instobj_iommu, base) 92 93 struct gk20a_instmem { 94 struct nvkm_instmem base; 95 96 /* protects vaddr_* and gk20a_instobj::vaddr* */ 97 struct mutex lock; 98 99 /* CPU mappings LRU */ 100 unsigned int vaddr_use; 101 unsigned int vaddr_max; 102 struct list_head vaddr_lru; 103 104 /* Only used if IOMMU if present */ 105 struct mutex *mm_mutex; 106 struct nvkm_mm *mm; 107 struct iommu_domain *domain; 108 unsigned long iommu_pgshift; 109 u16 iommu_bit; 110 111 /* Only used by DMA API */ 112 unsigned long attrs; 113 }; 114 #define gk20a_instmem(p) container_of((p), struct gk20a_instmem, base) 115 116 static enum nvkm_memory_target 117 gk20a_instobj_target(struct nvkm_memory *memory) 118 { 119 return NVKM_MEM_TARGET_NCOH; 120 } 121 122 static u64 123 gk20a_instobj_addr(struct nvkm_memory *memory) 124 { 125 return gk20a_instobj(memory)->mem.offset; 126 } 127 128 static u64 129 gk20a_instobj_size(struct nvkm_memory *memory) 130 { 131 return (u64)gk20a_instobj(memory)->mem.size << 12; 132 } 133 134 /* 135 * Recycle the vaddr of obj. Must be called with gk20a_instmem::lock held. 136 */ 137 static void 138 gk20a_instobj_iommu_recycle_vaddr(struct gk20a_instobj_iommu *obj) 139 { 140 struct gk20a_instmem *imem = obj->base.imem; 141 /* there should not be any user left... */ 142 WARN_ON(obj->use_cpt); 143 list_del(&obj->vaddr_node); 144 vunmap(obj->base.vaddr); 145 obj->base.vaddr = NULL; 146 imem->vaddr_use -= nvkm_memory_size(&obj->base.memory); 147 nvkm_debug(&imem->base.subdev, "vaddr used: %x/%x\n", imem->vaddr_use, 148 imem->vaddr_max); 149 } 150 151 /* 152 * Must be called while holding gk20a_instmem::lock 153 */ 154 static void 155 gk20a_instmem_vaddr_gc(struct gk20a_instmem *imem, const u64 size) 156 { 157 while (imem->vaddr_use + size > imem->vaddr_max) { 158 /* no candidate that can be unmapped, abort... */ 159 if (list_empty(&imem->vaddr_lru)) 160 break; 161 162 gk20a_instobj_iommu_recycle_vaddr( 163 list_first_entry(&imem->vaddr_lru, 164 struct gk20a_instobj_iommu, vaddr_node)); 165 } 166 } 167 168 static void __iomem * 169 gk20a_instobj_acquire_dma(struct nvkm_memory *memory) 170 { 171 struct gk20a_instobj *node = gk20a_instobj(memory); 172 struct gk20a_instmem *imem = node->imem; 173 struct nvkm_ltc *ltc = imem->base.subdev.device->ltc; 174 175 nvkm_ltc_flush(ltc); 176 177 return node->vaddr; 178 } 179 180 static void __iomem * 181 gk20a_instobj_acquire_iommu(struct nvkm_memory *memory) 182 { 183 struct gk20a_instobj_iommu *node = gk20a_instobj_iommu(memory); 184 struct gk20a_instmem *imem = node->base.imem; 185 struct nvkm_ltc *ltc = imem->base.subdev.device->ltc; 186 const u64 size = nvkm_memory_size(memory); 187 188 nvkm_ltc_flush(ltc); 189 190 mutex_lock(&imem->lock); 191 192 if (node->base.vaddr) { 193 if (!node->use_cpt) { 194 /* remove from LRU list since mapping in use again */ 195 list_del(&node->vaddr_node); 196 } 197 goto out; 198 } 199 200 /* try to free some address space if we reached the limit */ 201 gk20a_instmem_vaddr_gc(imem, size); 202 203 /* map the pages */ 204 node->base.vaddr = vmap(node->pages, size >> PAGE_SHIFT, VM_MAP, 205 pgprot_writecombine(PAGE_KERNEL)); 206 if (!node->base.vaddr) { 207 nvkm_error(&imem->base.subdev, "cannot map instobj - " 208 "this is not going to end well...\n"); 209 goto out; 210 } 211 212 imem->vaddr_use += size; 213 nvkm_debug(&imem->base.subdev, "vaddr used: %x/%x\n", 214 imem->vaddr_use, imem->vaddr_max); 215 216 out: 217 node->use_cpt++; 218 mutex_unlock(&imem->lock); 219 220 return node->base.vaddr; 221 } 222 223 static void 224 gk20a_instobj_release_dma(struct nvkm_memory *memory) 225 { 226 struct gk20a_instobj *node = gk20a_instobj(memory); 227 struct gk20a_instmem *imem = node->imem; 228 struct nvkm_ltc *ltc = imem->base.subdev.device->ltc; 229 230 /* in case we got a write-combined mapping */ 231 wmb(); 232 nvkm_ltc_invalidate(ltc); 233 } 234 235 static void 236 gk20a_instobj_release_iommu(struct nvkm_memory *memory) 237 { 238 struct gk20a_instobj_iommu *node = gk20a_instobj_iommu(memory); 239 struct gk20a_instmem *imem = node->base.imem; 240 struct nvkm_ltc *ltc = imem->base.subdev.device->ltc; 241 242 mutex_lock(&imem->lock); 243 244 /* we should at least have one user to release... */ 245 if (WARN_ON(node->use_cpt == 0)) 246 goto out; 247 248 /* add unused objs to the LRU list to recycle their mapping */ 249 if (--node->use_cpt == 0) 250 list_add_tail(&node->vaddr_node, &imem->vaddr_lru); 251 252 out: 253 mutex_unlock(&imem->lock); 254 255 wmb(); 256 nvkm_ltc_invalidate(ltc); 257 } 258 259 static u32 260 gk20a_instobj_rd32(struct nvkm_memory *memory, u64 offset) 261 { 262 struct gk20a_instobj *node = gk20a_instobj(memory); 263 264 return node->vaddr[offset / 4]; 265 } 266 267 static void 268 gk20a_instobj_wr32(struct nvkm_memory *memory, u64 offset, u32 data) 269 { 270 struct gk20a_instobj *node = gk20a_instobj(memory); 271 272 node->vaddr[offset / 4] = data; 273 } 274 275 static void 276 gk20a_instobj_map(struct nvkm_memory *memory, struct nvkm_vma *vma, u64 offset) 277 { 278 struct gk20a_instobj *node = gk20a_instobj(memory); 279 280 nvkm_vm_map_at(vma, offset, &node->mem); 281 } 282 283 static void * 284 gk20a_instobj_dtor_dma(struct nvkm_memory *memory) 285 { 286 struct gk20a_instobj_dma *node = gk20a_instobj_dma(memory); 287 struct gk20a_instmem *imem = node->base.imem; 288 struct device *dev = imem->base.subdev.device->dev; 289 290 if (unlikely(!node->base.vaddr)) 291 goto out; 292 293 dma_free_attrs(dev, node->base.mem.size << PAGE_SHIFT, node->base.vaddr, 294 node->handle, imem->attrs); 295 296 out: 297 return node; 298 } 299 300 static void * 301 gk20a_instobj_dtor_iommu(struct nvkm_memory *memory) 302 { 303 struct gk20a_instobj_iommu *node = gk20a_instobj_iommu(memory); 304 struct gk20a_instmem *imem = node->base.imem; 305 struct device *dev = imem->base.subdev.device->dev; 306 struct nvkm_mm_node *r = node->base.mem.mem; 307 int i; 308 309 if (unlikely(!r)) 310 goto out; 311 312 mutex_lock(&imem->lock); 313 314 /* vaddr has already been recycled */ 315 if (node->base.vaddr) 316 gk20a_instobj_iommu_recycle_vaddr(node); 317 318 mutex_unlock(&imem->lock); 319 320 /* clear IOMMU bit to unmap pages */ 321 r->offset &= ~BIT(imem->iommu_bit - imem->iommu_pgshift); 322 323 /* Unmap pages from GPU address space and free them */ 324 for (i = 0; i < node->base.mem.size; i++) { 325 iommu_unmap(imem->domain, 326 (r->offset + i) << imem->iommu_pgshift, PAGE_SIZE); 327 dma_unmap_page(dev, node->dma_addrs[i], PAGE_SIZE, 328 DMA_BIDIRECTIONAL); 329 __free_page(node->pages[i]); 330 } 331 332 /* Release area from GPU address space */ 333 mutex_lock(imem->mm_mutex); 334 nvkm_mm_free(imem->mm, &r); 335 mutex_unlock(imem->mm_mutex); 336 337 out: 338 return node; 339 } 340 341 static const struct nvkm_memory_func 342 gk20a_instobj_func_dma = { 343 .dtor = gk20a_instobj_dtor_dma, 344 .target = gk20a_instobj_target, 345 .addr = gk20a_instobj_addr, 346 .size = gk20a_instobj_size, 347 .acquire = gk20a_instobj_acquire_dma, 348 .release = gk20a_instobj_release_dma, 349 .rd32 = gk20a_instobj_rd32, 350 .wr32 = gk20a_instobj_wr32, 351 .map = gk20a_instobj_map, 352 }; 353 354 static const struct nvkm_memory_func 355 gk20a_instobj_func_iommu = { 356 .dtor = gk20a_instobj_dtor_iommu, 357 .target = gk20a_instobj_target, 358 .addr = gk20a_instobj_addr, 359 .size = gk20a_instobj_size, 360 .acquire = gk20a_instobj_acquire_iommu, 361 .release = gk20a_instobj_release_iommu, 362 .rd32 = gk20a_instobj_rd32, 363 .wr32 = gk20a_instobj_wr32, 364 .map = gk20a_instobj_map, 365 }; 366 367 static int 368 gk20a_instobj_ctor_dma(struct gk20a_instmem *imem, u32 npages, u32 align, 369 struct gk20a_instobj **_node) 370 { 371 struct gk20a_instobj_dma *node; 372 struct nvkm_subdev *subdev = &imem->base.subdev; 373 struct device *dev = subdev->device->dev; 374 375 if (!(node = kzalloc(sizeof(*node), GFP_KERNEL))) 376 return -ENOMEM; 377 *_node = &node->base; 378 379 nvkm_memory_ctor(&gk20a_instobj_func_dma, &node->base.memory); 380 381 node->base.vaddr = dma_alloc_attrs(dev, npages << PAGE_SHIFT, 382 &node->handle, GFP_KERNEL, 383 imem->attrs); 384 if (!node->base.vaddr) { 385 nvkm_error(subdev, "cannot allocate DMA memory\n"); 386 return -ENOMEM; 387 } 388 389 /* alignment check */ 390 if (unlikely(node->handle & (align - 1))) 391 nvkm_warn(subdev, 392 "memory not aligned as requested: %pad (0x%x)\n", 393 &node->handle, align); 394 395 /* present memory for being mapped using small pages */ 396 node->r.type = 12; 397 node->r.offset = node->handle >> 12; 398 node->r.length = (npages << PAGE_SHIFT) >> 12; 399 400 node->base.mem.offset = node->handle; 401 node->base.mem.mem = &node->r; 402 return 0; 403 } 404 405 static int 406 gk20a_instobj_ctor_iommu(struct gk20a_instmem *imem, u32 npages, u32 align, 407 struct gk20a_instobj **_node) 408 { 409 struct gk20a_instobj_iommu *node; 410 struct nvkm_subdev *subdev = &imem->base.subdev; 411 struct device *dev = subdev->device->dev; 412 struct nvkm_mm_node *r; 413 int ret; 414 int i; 415 416 /* 417 * despite their variable size, instmem allocations are small enough 418 * (< 1 page) to be handled by kzalloc 419 */ 420 if (!(node = kzalloc(sizeof(*node) + ((sizeof(node->pages[0]) + 421 sizeof(*node->dma_addrs)) * npages), GFP_KERNEL))) 422 return -ENOMEM; 423 *_node = &node->base; 424 node->dma_addrs = (void *)(node->pages + npages); 425 426 nvkm_memory_ctor(&gk20a_instobj_func_iommu, &node->base.memory); 427 428 /* Allocate backing memory */ 429 for (i = 0; i < npages; i++) { 430 struct page *p = alloc_page(GFP_KERNEL); 431 dma_addr_t dma_adr; 432 433 if (p == NULL) { 434 ret = -ENOMEM; 435 goto free_pages; 436 } 437 node->pages[i] = p; 438 dma_adr = dma_map_page(dev, p, 0, PAGE_SIZE, DMA_BIDIRECTIONAL); 439 if (dma_mapping_error(dev, dma_adr)) { 440 nvkm_error(subdev, "DMA mapping error!\n"); 441 ret = -ENOMEM; 442 goto free_pages; 443 } 444 node->dma_addrs[i] = dma_adr; 445 } 446 447 mutex_lock(imem->mm_mutex); 448 /* Reserve area from GPU address space */ 449 ret = nvkm_mm_head(imem->mm, 0, 1, npages, npages, 450 align >> imem->iommu_pgshift, &r); 451 mutex_unlock(imem->mm_mutex); 452 if (ret) { 453 nvkm_error(subdev, "IOMMU space is full!\n"); 454 goto free_pages; 455 } 456 457 /* Map into GPU address space */ 458 for (i = 0; i < npages; i++) { 459 u32 offset = (r->offset + i) << imem->iommu_pgshift; 460 461 ret = iommu_map(imem->domain, offset, node->dma_addrs[i], 462 PAGE_SIZE, IOMMU_READ | IOMMU_WRITE); 463 if (ret < 0) { 464 nvkm_error(subdev, "IOMMU mapping failure: %d\n", ret); 465 466 while (i-- > 0) { 467 offset -= PAGE_SIZE; 468 iommu_unmap(imem->domain, offset, PAGE_SIZE); 469 } 470 goto release_area; 471 } 472 } 473 474 /* IOMMU bit tells that an address is to be resolved through the IOMMU */ 475 r->offset |= BIT(imem->iommu_bit - imem->iommu_pgshift); 476 477 node->base.mem.offset = ((u64)r->offset) << imem->iommu_pgshift; 478 node->base.mem.mem = r; 479 return 0; 480 481 release_area: 482 mutex_lock(imem->mm_mutex); 483 nvkm_mm_free(imem->mm, &r); 484 mutex_unlock(imem->mm_mutex); 485 486 free_pages: 487 for (i = 0; i < npages && node->pages[i] != NULL; i++) { 488 dma_addr_t dma_addr = node->dma_addrs[i]; 489 if (dma_addr) 490 dma_unmap_page(dev, dma_addr, PAGE_SIZE, 491 DMA_BIDIRECTIONAL); 492 __free_page(node->pages[i]); 493 } 494 495 return ret; 496 } 497 498 static int 499 gk20a_instobj_new(struct nvkm_instmem *base, u32 size, u32 align, bool zero, 500 struct nvkm_memory **pmemory) 501 { 502 struct gk20a_instmem *imem = gk20a_instmem(base); 503 struct nvkm_subdev *subdev = &imem->base.subdev; 504 struct gk20a_instobj *node = NULL; 505 int ret; 506 507 nvkm_debug(subdev, "%s (%s): size: %x align: %x\n", __func__, 508 imem->domain ? "IOMMU" : "DMA", size, align); 509 510 /* Round size and align to page bounds */ 511 size = max(roundup(size, PAGE_SIZE), PAGE_SIZE); 512 align = max(roundup(align, PAGE_SIZE), PAGE_SIZE); 513 514 if (imem->domain) 515 ret = gk20a_instobj_ctor_iommu(imem, size >> PAGE_SHIFT, 516 align, &node); 517 else 518 ret = gk20a_instobj_ctor_dma(imem, size >> PAGE_SHIFT, 519 align, &node); 520 *pmemory = node ? &node->memory : NULL; 521 if (ret) 522 return ret; 523 524 node->imem = imem; 525 526 /* present memory for being mapped using small pages */ 527 node->mem.size = size >> 12; 528 node->mem.memtype = 0; 529 node->mem.page_shift = 12; 530 531 nvkm_debug(subdev, "alloc size: 0x%x, align: 0x%x, gaddr: 0x%llx\n", 532 size, align, node->mem.offset); 533 534 return 0; 535 } 536 537 static void * 538 gk20a_instmem_dtor(struct nvkm_instmem *base) 539 { 540 struct gk20a_instmem *imem = gk20a_instmem(base); 541 542 /* perform some sanity checks... */ 543 if (!list_empty(&imem->vaddr_lru)) 544 nvkm_warn(&base->subdev, "instobj LRU not empty!\n"); 545 546 if (imem->vaddr_use != 0) 547 nvkm_warn(&base->subdev, "instobj vmap area not empty! " 548 "0x%x bytes still mapped\n", imem->vaddr_use); 549 550 return imem; 551 } 552 553 static const struct nvkm_instmem_func 554 gk20a_instmem = { 555 .dtor = gk20a_instmem_dtor, 556 .memory_new = gk20a_instobj_new, 557 .persistent = true, 558 .zero = false, 559 }; 560 561 int 562 gk20a_instmem_new(struct nvkm_device *device, int index, 563 struct nvkm_instmem **pimem) 564 { 565 struct nvkm_device_tegra *tdev = device->func->tegra(device); 566 struct gk20a_instmem *imem; 567 568 if (!(imem = kzalloc(sizeof(*imem), GFP_KERNEL))) 569 return -ENOMEM; 570 nvkm_instmem_ctor(&gk20a_instmem, device, index, &imem->base); 571 mutex_init(&imem->lock); 572 *pimem = &imem->base; 573 574 /* do not allow more than 1MB of CPU-mapped instmem */ 575 imem->vaddr_use = 0; 576 imem->vaddr_max = 0x100000; 577 INIT_LIST_HEAD(&imem->vaddr_lru); 578 579 if (tdev->iommu.domain) { 580 imem->mm_mutex = &tdev->iommu.mutex; 581 imem->mm = &tdev->iommu.mm; 582 imem->domain = tdev->iommu.domain; 583 imem->iommu_pgshift = tdev->iommu.pgshift; 584 imem->iommu_bit = tdev->func->iommu_bit; 585 586 nvkm_info(&imem->base.subdev, "using IOMMU\n"); 587 } else { 588 imem->attrs = DMA_ATTR_NON_CONSISTENT | 589 DMA_ATTR_WEAK_ORDERING | 590 DMA_ATTR_WRITE_COMBINE; 591 592 nvkm_info(&imem->base.subdev, "using DMA API\n"); 593 } 594 595 return 0; 596 } 597