1 /*
2  * Copyright 2013 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Ben Skeggs
23  */
24 #include "nv50.h"
25 #include "ramseq.h"
26 
27 #include <core/device.h>
28 #include <core/option.h>
29 #include <subdev/bios.h>
30 #include <subdev/bios/perf.h>
31 #include <subdev/bios/pll.h>
32 #include <subdev/bios/timing.h>
33 #include <subdev/clk/pll.h>
34 
35 struct nv50_ramseq {
36 	struct hwsq base;
37 	struct hwsq_reg r_0x002504;
38 	struct hwsq_reg r_0x004008;
39 	struct hwsq_reg r_0x00400c;
40 	struct hwsq_reg r_0x00c040;
41 	struct hwsq_reg r_0x100210;
42 	struct hwsq_reg r_0x1002d0;
43 	struct hwsq_reg r_0x1002d4;
44 	struct hwsq_reg r_0x1002dc;
45 	struct hwsq_reg r_0x100da0[8];
46 	struct hwsq_reg r_0x100e20;
47 	struct hwsq_reg r_0x100e24;
48 	struct hwsq_reg r_0x611200;
49 	struct hwsq_reg r_timing[9];
50 	struct hwsq_reg r_mr[4];
51 };
52 
53 struct nv50_ram {
54 	struct nvkm_ram base;
55 	struct nv50_ramseq hwsq;
56 };
57 
58 #define QFX5800NVA0 1
59 
60 static int
61 nv50_ram_calc(struct nvkm_fb *pfb, u32 freq)
62 {
63 	struct nvkm_bios *bios = nvkm_bios(pfb);
64 	struct nv50_ram *ram = (void *)pfb->ram;
65 	struct nv50_ramseq *hwsq = &ram->hwsq;
66 	struct nvbios_perfE perfE;
67 	struct nvbios_pll mpll;
68 	struct {
69 		u32 data;
70 		u8  size;
71 	} ramcfg, timing;
72 	u8  ver, hdr, cnt, len, strap;
73 	int N1, M1, N2, M2, P;
74 	int ret, i;
75 
76 	/* lookup closest matching performance table entry for frequency */
77 	i = 0;
78 	do {
79 		ramcfg.data = nvbios_perfEp(bios, i++, &ver, &hdr, &cnt,
80 					    &ramcfg.size, &perfE);
81 		if (!ramcfg.data || (ver < 0x25 || ver >= 0x40) ||
82 		    (ramcfg.size < 2)) {
83 			nv_error(pfb, "invalid/missing perftab entry\n");
84 			return -EINVAL;
85 		}
86 	} while (perfE.memory < freq);
87 
88 	/* locate specific data set for the attached memory */
89 	strap = nvbios_ramcfg_index(nv_subdev(pfb));
90 	if (strap >= cnt) {
91 		nv_error(pfb, "invalid ramcfg strap\n");
92 		return -EINVAL;
93 	}
94 
95 	ramcfg.data += hdr + (strap * ramcfg.size);
96 
97 	/* lookup memory timings, if bios says they're present */
98 	strap = nv_ro08(bios, ramcfg.data + 0x01);
99 	if (strap != 0xff) {
100 		timing.data = nvbios_timingEe(bios, strap, &ver, &hdr,
101 					      &cnt, &len);
102 		if (!timing.data || ver != 0x10 || hdr < 0x12) {
103 			nv_error(pfb, "invalid/missing timing entry "
104 				 "%02x %04x %02x %02x\n",
105 				 strap, timing.data, ver, hdr);
106 			return -EINVAL;
107 		}
108 	} else {
109 		timing.data = 0;
110 	}
111 
112 	ret = ram_init(hwsq, nv_subdev(pfb));
113 	if (ret)
114 		return ret;
115 
116 	ram_wait(hwsq, 0x01, 0x00); /* wait for !vblank */
117 	ram_wait(hwsq, 0x01, 0x01); /* wait for vblank */
118 	ram_wr32(hwsq, 0x611200, 0x00003300);
119 	ram_wr32(hwsq, 0x002504, 0x00000001); /* block fifo */
120 	ram_nsec(hwsq, 8000);
121 	ram_setf(hwsq, 0x10, 0x00); /* disable fb */
122 	ram_wait(hwsq, 0x00, 0x01); /* wait for fb disabled */
123 
124 	ram_wr32(hwsq, 0x1002d4, 0x00000001); /* precharge */
125 	ram_wr32(hwsq, 0x1002d0, 0x00000001); /* refresh */
126 	ram_wr32(hwsq, 0x1002d0, 0x00000001); /* refresh */
127 	ram_wr32(hwsq, 0x100210, 0x00000000); /* disable auto-refresh */
128 	ram_wr32(hwsq, 0x1002dc, 0x00000001); /* enable self-refresh */
129 
130 	ret = nvbios_pll_parse(bios, 0x004008, &mpll);
131 	mpll.vco2.max_freq = 0;
132 	if (ret == 0) {
133 		ret = nv04_pll_calc(nv_subdev(pfb), &mpll, freq,
134 				    &N1, &M1, &N2, &M2, &P);
135 		if (ret == 0)
136 			ret = -EINVAL;
137 	}
138 
139 	if (ret < 0)
140 		return ret;
141 
142 	ram_mask(hwsq, 0x00c040, 0xc000c000, 0x0000c000);
143 	ram_mask(hwsq, 0x004008, 0x00000200, 0x00000200);
144 	ram_mask(hwsq, 0x00400c, 0x0000ffff, (N1 << 8) | M1);
145 	ram_mask(hwsq, 0x004008, 0x81ff0000, 0x80000000 | (mpll.bias_p << 19) |
146 					     (P << 22) | (P << 16));
147 #if QFX5800NVA0
148 	for (i = 0; i < 8; i++)
149 		ram_mask(hwsq, 0x100da0[i], 0x00000000, 0x00000000); /*XXX*/
150 #endif
151 	ram_nsec(hwsq, 96000); /*XXX*/
152 	ram_mask(hwsq, 0x004008, 0x00002200, 0x00002000);
153 
154 	ram_wr32(hwsq, 0x1002dc, 0x00000000); /* disable self-refresh */
155 	ram_wr32(hwsq, 0x100210, 0x80000000); /* enable auto-refresh */
156 
157 	ram_nsec(hwsq, 12000);
158 
159 	switch (ram->base.type) {
160 	case NV_MEM_TYPE_DDR2:
161 		ram_nuke(hwsq, mr[0]); /* force update */
162 		ram_mask(hwsq, mr[0], 0x000, 0x000);
163 		break;
164 	case NV_MEM_TYPE_GDDR3:
165 		ram_mask(hwsq, mr[2], 0x000, 0x000);
166 		ram_nuke(hwsq, mr[0]); /* force update */
167 		ram_mask(hwsq, mr[0], 0x000, 0x000);
168 		break;
169 	default:
170 		break;
171 	}
172 
173 	ram_mask(hwsq, timing[3], 0x00000000, 0x00000000); /*XXX*/
174 	ram_mask(hwsq, timing[1], 0x00000000, 0x00000000); /*XXX*/
175 	ram_mask(hwsq, timing[6], 0x00000000, 0x00000000); /*XXX*/
176 	ram_mask(hwsq, timing[7], 0x00000000, 0x00000000); /*XXX*/
177 	ram_mask(hwsq, timing[8], 0x00000000, 0x00000000); /*XXX*/
178 	ram_mask(hwsq, timing[0], 0x00000000, 0x00000000); /*XXX*/
179 	ram_mask(hwsq, timing[2], 0x00000000, 0x00000000); /*XXX*/
180 	ram_mask(hwsq, timing[4], 0x00000000, 0x00000000); /*XXX*/
181 	ram_mask(hwsq, timing[5], 0x00000000, 0x00000000); /*XXX*/
182 
183 	ram_mask(hwsq, timing[0], 0x00000000, 0x00000000); /*XXX*/
184 
185 #if QFX5800NVA0
186 	ram_nuke(hwsq, 0x100e24);
187 	ram_mask(hwsq, 0x100e24, 0x00000000, 0x00000000);
188 	ram_nuke(hwsq, 0x100e20);
189 	ram_mask(hwsq, 0x100e20, 0x00000000, 0x00000000);
190 #endif
191 
192 	ram_mask(hwsq, mr[0], 0x100, 0x100);
193 	ram_mask(hwsq, mr[0], 0x100, 0x000);
194 
195 	ram_setf(hwsq, 0x10, 0x01); /* enable fb */
196 	ram_wait(hwsq, 0x00, 0x00); /* wait for fb enabled */
197 	ram_wr32(hwsq, 0x611200, 0x00003330);
198 	ram_wr32(hwsq, 0x002504, 0x00000000); /* un-block fifo */
199 	return 0;
200 }
201 
202 static int
203 nv50_ram_prog(struct nvkm_fb *pfb)
204 {
205 	struct nvkm_device *device = nv_device(pfb);
206 	struct nv50_ram *ram = (void *)pfb->ram;
207 	struct nv50_ramseq *hwsq = &ram->hwsq;
208 
209 	ram_exec(hwsq, nvkm_boolopt(device->cfgopt, "NvMemExec", true));
210 	return 0;
211 }
212 
213 static void
214 nv50_ram_tidy(struct nvkm_fb *pfb)
215 {
216 	struct nv50_ram *ram = (void *)pfb->ram;
217 	struct nv50_ramseq *hwsq = &ram->hwsq;
218 	ram_exec(hwsq, false);
219 }
220 
221 void
222 __nv50_ram_put(struct nvkm_fb *pfb, struct nvkm_mem *mem)
223 {
224 	struct nvkm_mm_node *this;
225 
226 	while (!list_empty(&mem->regions)) {
227 		this = list_first_entry(&mem->regions, typeof(*this), rl_entry);
228 
229 		list_del(&this->rl_entry);
230 		nvkm_mm_free(&pfb->vram, &this);
231 	}
232 
233 	nvkm_mm_free(&pfb->tags, &mem->tag);
234 }
235 
236 void
237 nv50_ram_put(struct nvkm_fb *pfb, struct nvkm_mem **pmem)
238 {
239 	struct nvkm_mem *mem = *pmem;
240 
241 	*pmem = NULL;
242 	if (unlikely(mem == NULL))
243 		return;
244 
245 	mutex_lock(&pfb->base.mutex);
246 	__nv50_ram_put(pfb, mem);
247 	mutex_unlock(&pfb->base.mutex);
248 
249 	kfree(mem);
250 }
251 
252 int
253 nv50_ram_get(struct nvkm_fb *pfb, u64 size, u32 align, u32 ncmin,
254 	     u32 memtype, struct nvkm_mem **pmem)
255 {
256 	struct nvkm_mm *heap = &pfb->vram;
257 	struct nvkm_mm *tags = &pfb->tags;
258 	struct nvkm_mm_node *r;
259 	struct nvkm_mem *mem;
260 	int comp = (memtype & 0x300) >> 8;
261 	int type = (memtype & 0x07f);
262 	int back = (memtype & 0x800);
263 	int min, max, ret;
264 
265 	max = (size >> 12);
266 	min = ncmin ? (ncmin >> 12) : max;
267 	align >>= 12;
268 
269 	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
270 	if (!mem)
271 		return -ENOMEM;
272 
273 	mutex_lock(&pfb->base.mutex);
274 	if (comp) {
275 		if (align == 16) {
276 			int n = (max >> 4) * comp;
277 
278 			ret = nvkm_mm_head(tags, 0, 1, n, n, 1, &mem->tag);
279 			if (ret)
280 				mem->tag = NULL;
281 		}
282 
283 		if (unlikely(!mem->tag))
284 			comp = 0;
285 	}
286 
287 	INIT_LIST_HEAD(&mem->regions);
288 	mem->memtype = (comp << 7) | type;
289 	mem->size = max;
290 
291 	type = nv50_fb_memtype[type];
292 	do {
293 		if (back)
294 			ret = nvkm_mm_tail(heap, 0, type, max, min, align, &r);
295 		else
296 			ret = nvkm_mm_head(heap, 0, type, max, min, align, &r);
297 		if (ret) {
298 			mutex_unlock(&pfb->base.mutex);
299 			pfb->ram->put(pfb, &mem);
300 			return ret;
301 		}
302 
303 		list_add_tail(&r->rl_entry, &mem->regions);
304 		max -= r->length;
305 	} while (max);
306 	mutex_unlock(&pfb->base.mutex);
307 
308 	r = list_first_entry(&mem->regions, struct nvkm_mm_node, rl_entry);
309 	mem->offset = (u64)r->offset << 12;
310 	*pmem = mem;
311 	return 0;
312 }
313 
314 static u32
315 nv50_fb_vram_rblock(struct nvkm_fb *pfb, struct nvkm_ram *ram)
316 {
317 	int colbits, rowbitsa, rowbitsb, banks;
318 	u64 rowsize, predicted;
319 	u32 r0, r4, rt, rblock_size;
320 
321 	r0 = nv_rd32(pfb, 0x100200);
322 	r4 = nv_rd32(pfb, 0x100204);
323 	rt = nv_rd32(pfb, 0x100250);
324 	nv_debug(pfb, "memcfg 0x%08x 0x%08x 0x%08x 0x%08x\n",
325 		 r0, r4, rt, nv_rd32(pfb, 0x001540));
326 
327 	colbits  =  (r4 & 0x0000f000) >> 12;
328 	rowbitsa = ((r4 & 0x000f0000) >> 16) + 8;
329 	rowbitsb = ((r4 & 0x00f00000) >> 20) + 8;
330 	banks    = 1 << (((r4 & 0x03000000) >> 24) + 2);
331 
332 	rowsize = ram->parts * banks * (1 << colbits) * 8;
333 	predicted = rowsize << rowbitsa;
334 	if (r0 & 0x00000004)
335 		predicted += rowsize << rowbitsb;
336 
337 	if (predicted != ram->size) {
338 		nv_warn(pfb, "memory controller reports %d MiB VRAM\n",
339 			(u32)(ram->size >> 20));
340 	}
341 
342 	rblock_size = rowsize;
343 	if (rt & 1)
344 		rblock_size *= 3;
345 
346 	nv_debug(pfb, "rblock %d bytes\n", rblock_size);
347 	return rblock_size;
348 }
349 
350 int
351 nv50_ram_create_(struct nvkm_object *parent, struct nvkm_object *engine,
352 		 struct nvkm_oclass *oclass, int length, void **pobject)
353 {
354 	const u32 rsvd_head = ( 256 * 1024) >> 12; /* vga memory */
355 	const u32 rsvd_tail = (1024 * 1024) >> 12; /* vbios etc */
356 	struct nvkm_bios *bios = nvkm_bios(parent);
357 	struct nvkm_fb *pfb = nvkm_fb(parent);
358 	struct nvkm_ram *ram;
359 	int ret;
360 
361 	ret = nvkm_ram_create_(parent, engine, oclass, length, pobject);
362 	ram = *pobject;
363 	if (ret)
364 		return ret;
365 
366 	ram->size = nv_rd32(pfb, 0x10020c);
367 	ram->size = (ram->size & 0xffffff00) | ((ram->size & 0x000000ff) << 32);
368 
369 	ram->part_mask = (nv_rd32(pfb, 0x001540) & 0x00ff0000) >> 16;
370 	ram->parts = hweight8(ram->part_mask);
371 
372 	switch (nv_rd32(pfb, 0x100714) & 0x00000007) {
373 	case 0: ram->type = NV_MEM_TYPE_DDR1; break;
374 	case 1:
375 		if (nvkm_fb_bios_memtype(bios) == NV_MEM_TYPE_DDR3)
376 			ram->type = NV_MEM_TYPE_DDR3;
377 		else
378 			ram->type = NV_MEM_TYPE_DDR2;
379 		break;
380 	case 2: ram->type = NV_MEM_TYPE_GDDR3; break;
381 	case 3: ram->type = NV_MEM_TYPE_GDDR4; break;
382 	case 4: ram->type = NV_MEM_TYPE_GDDR5; break;
383 	default:
384 		break;
385 	}
386 
387 	ret = nvkm_mm_init(&pfb->vram, rsvd_head, (ram->size >> 12) -
388 			   (rsvd_head + rsvd_tail),
389 			   nv50_fb_vram_rblock(pfb, ram) >> 12);
390 	if (ret)
391 		return ret;
392 
393 	ram->ranks = (nv_rd32(pfb, 0x100200) & 0x4) ? 2 : 1;
394 	ram->tags  =  nv_rd32(pfb, 0x100320);
395 	ram->get = nv50_ram_get;
396 	ram->put = nv50_ram_put;
397 	return 0;
398 }
399 
400 static int
401 nv50_ram_ctor(struct nvkm_object *parent, struct nvkm_object *engine,
402 	      struct nvkm_oclass *oclass, void *data, u32 datasize,
403 	      struct nvkm_object **pobject)
404 {
405 	struct nv50_ram *ram;
406 	int ret, i;
407 
408 	ret = nv50_ram_create(parent, engine, oclass, &ram);
409 	*pobject = nv_object(ram);
410 	if (ret)
411 		return ret;
412 
413 	switch (ram->base.type) {
414 	case NV_MEM_TYPE_DDR2:
415 	case NV_MEM_TYPE_GDDR3:
416 		ram->base.calc = nv50_ram_calc;
417 		ram->base.prog = nv50_ram_prog;
418 		ram->base.tidy = nv50_ram_tidy;
419 		break;
420 	default:
421 		nv_warn(ram, "reclocking of this ram type unsupported\n");
422 		return 0;
423 	}
424 
425 	ram->hwsq.r_0x002504 = hwsq_reg(0x002504);
426 	ram->hwsq.r_0x00c040 = hwsq_reg(0x00c040);
427 	ram->hwsq.r_0x004008 = hwsq_reg(0x004008);
428 	ram->hwsq.r_0x00400c = hwsq_reg(0x00400c);
429 	ram->hwsq.r_0x100210 = hwsq_reg(0x100210);
430 	ram->hwsq.r_0x1002d0 = hwsq_reg(0x1002d0);
431 	ram->hwsq.r_0x1002d4 = hwsq_reg(0x1002d4);
432 	ram->hwsq.r_0x1002dc = hwsq_reg(0x1002dc);
433 	for (i = 0; i < 8; i++)
434 		ram->hwsq.r_0x100da0[i] = hwsq_reg(0x100da0 + (i * 0x04));
435 	ram->hwsq.r_0x100e20 = hwsq_reg(0x100e20);
436 	ram->hwsq.r_0x100e24 = hwsq_reg(0x100e24);
437 	ram->hwsq.r_0x611200 = hwsq_reg(0x611200);
438 
439 	for (i = 0; i < 9; i++)
440 		ram->hwsq.r_timing[i] = hwsq_reg(0x100220 + (i * 0x04));
441 
442 	if (ram->base.ranks > 1) {
443 		ram->hwsq.r_mr[0] = hwsq_reg2(0x1002c0, 0x1002c8);
444 		ram->hwsq.r_mr[1] = hwsq_reg2(0x1002c4, 0x1002cc);
445 		ram->hwsq.r_mr[2] = hwsq_reg2(0x1002e0, 0x1002e8);
446 		ram->hwsq.r_mr[3] = hwsq_reg2(0x1002e4, 0x1002ec);
447 	} else {
448 		ram->hwsq.r_mr[0] = hwsq_reg(0x1002c0);
449 		ram->hwsq.r_mr[1] = hwsq_reg(0x1002c4);
450 		ram->hwsq.r_mr[2] = hwsq_reg(0x1002e0);
451 		ram->hwsq.r_mr[3] = hwsq_reg(0x1002e4);
452 	}
453 
454 	return 0;
455 }
456 
457 struct nvkm_oclass
458 nv50_ram_oclass = {
459 	.ofuncs = &(struct nvkm_ofuncs) {
460 		.ctor = nv50_ram_ctor,
461 		.dtor = _nvkm_ram_dtor,
462 		.init = _nvkm_ram_init,
463 		.fini = _nvkm_ram_fini,
464 	}
465 };
466