xref: /openbmc/linux/drivers/gpu/drm/nouveau/nvkm/subdev/fb/ramnv50.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  * Copyright 2013 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Ben Skeggs
23  */
24 #define nv50_ram(p) container_of((p), struct nv50_ram, base)
25 #include "ram.h"
26 #include "ramseq.h"
27 #include "nv50.h"
28 
29 #include <core/option.h>
30 #include <subdev/bios.h>
31 #include <subdev/bios/perf.h>
32 #include <subdev/bios/pll.h>
33 #include <subdev/bios/rammap.h>
34 #include <subdev/bios/timing.h>
35 #include <subdev/clk/pll.h>
36 
37 struct nv50_ramseq {
38 	struct hwsq base;
39 	struct hwsq_reg r_0x002504;
40 	struct hwsq_reg r_0x004008;
41 	struct hwsq_reg r_0x00400c;
42 	struct hwsq_reg r_0x00c040;
43 	struct hwsq_reg r_0x100200;
44 	struct hwsq_reg r_0x100210;
45 	struct hwsq_reg r_0x10021c;
46 	struct hwsq_reg r_0x1002d0;
47 	struct hwsq_reg r_0x1002d4;
48 	struct hwsq_reg r_0x1002dc;
49 	struct hwsq_reg r_0x10053c;
50 	struct hwsq_reg r_0x1005a0;
51 	struct hwsq_reg r_0x1005a4;
52 	struct hwsq_reg r_0x100710;
53 	struct hwsq_reg r_0x100714;
54 	struct hwsq_reg r_0x100718;
55 	struct hwsq_reg r_0x10071c;
56 	struct hwsq_reg r_0x100da0;
57 	struct hwsq_reg r_0x100e20;
58 	struct hwsq_reg r_0x100e24;
59 	struct hwsq_reg r_0x611200;
60 	struct hwsq_reg r_timing[9];
61 	struct hwsq_reg r_mr[4];
62 };
63 
64 struct nv50_ram {
65 	struct nvkm_ram base;
66 	struct nv50_ramseq hwsq;
67 };
68 
69 #define T(t) cfg->timing_10_##t
70 static int
71 nv50_ram_timing_calc(struct nv50_ram *ram, u32 *timing)
72 {
73 	struct nvbios_ramcfg *cfg = &ram->base.target.bios;
74 	struct nvkm_subdev *subdev = &ram->base.fb->subdev;
75 	struct nvkm_device *device = subdev->device;
76 	u32 cur2, cur4, cur7, cur8;
77 	u8 unkt3b;
78 
79 	cur2 = nvkm_rd32(device, 0x100228);
80 	cur4 = nvkm_rd32(device, 0x100230);
81 	cur7 = nvkm_rd32(device, 0x10023c);
82 	cur8 = nvkm_rd32(device, 0x100240);
83 
84 	switch ((!T(CWL)) * ram->base.type) {
85 	case NVKM_RAM_TYPE_DDR2:
86 		T(CWL) = T(CL) - 1;
87 		break;
88 	case NVKM_RAM_TYPE_GDDR3:
89 		T(CWL) = ((cur2 & 0xff000000) >> 24) + 1;
90 		break;
91 	}
92 
93 	/* XXX: N=1 is not proper statistics */
94 	if (device->chipset == 0xa0) {
95 		unkt3b = 0x19 + ram->base.next->bios.rammap_00_16_40;
96 		timing[6] = (0x2d + T(CL) - T(CWL) +
97 				ram->base.next->bios.rammap_00_16_40) << 16 |
98 			    T(CWL) << 8 |
99 			    (0x2f + T(CL) - T(CWL));
100 	} else {
101 		unkt3b = 0x16;
102 		timing[6] = (0x2b + T(CL) - T(CWL)) << 16 |
103 			    max_t(s8, T(CWL) - 2, 1) << 8 |
104 			    (0x2e + T(CL) - T(CWL));
105 	}
106 
107 	timing[0] = (T(RP) << 24 | T(RAS) << 16 | T(RFC) << 8 | T(RC));
108 	timing[1] = (T(WR) + 1 + T(CWL)) << 24 |
109 		    max_t(u8, T(18), 1) << 16 |
110 		    (T(WTR) + 1 + T(CWL)) << 8 |
111 		    (3 + T(CL) - T(CWL));
112 	timing[2] = (T(CWL) - 1) << 24 |
113 		    (T(RRD) << 16) |
114 		    (T(RCDWR) << 8) |
115 		    T(RCDRD);
116 	timing[3] = (unkt3b - 2 + T(CL)) << 24 |
117 		    unkt3b << 16 |
118 		    (T(CL) - 1) << 8 |
119 		    (T(CL) - 1);
120 	timing[4] = (cur4 & 0xffff0000) |
121 		    T(13) << 8 |
122 		    T(13);
123 	timing[5] = T(RFC) << 24 |
124 		    max_t(u8, T(RCDRD), T(RCDWR)) << 16 |
125 		    T(RP);
126 	/* Timing 6 is already done above */
127 	timing[7] = (cur7 & 0xff00ffff) | (T(CL) - 1) << 16;
128 	timing[8] = (cur8 & 0xffffff00);
129 
130 	/* XXX: P.version == 1 only has DDR2 and GDDR3? */
131 	if (ram->base.type == NVKM_RAM_TYPE_DDR2) {
132 		timing[5] |= (T(CL) + 3) << 8;
133 		timing[8] |= (T(CL) - 4);
134 	} else
135 	if (ram->base.type == NVKM_RAM_TYPE_GDDR3) {
136 		timing[5] |= (T(CL) + 2) << 8;
137 		timing[8] |= (T(CL) - 2);
138 	}
139 
140 	nvkm_debug(subdev, " 220: %08x %08x %08x %08x\n",
141 		   timing[0], timing[1], timing[2], timing[3]);
142 	nvkm_debug(subdev, " 230: %08x %08x %08x %08x\n",
143 		   timing[4], timing[5], timing[6], timing[7]);
144 	nvkm_debug(subdev, " 240: %08x\n", timing[8]);
145 	return 0;
146 }
147 #undef T
148 
149 static void
150 nvkm_sddr2_dll_reset(struct nv50_ramseq *hwsq)
151 {
152 	ram_mask(hwsq, mr[0], 0x100, 0x100);
153 	ram_mask(hwsq, mr[0], 0x100, 0x000);
154 	ram_nsec(hwsq, 24000);
155 }
156 
157 static int
158 nv50_ram_calc(struct nvkm_ram *base, u32 freq)
159 {
160 	struct nv50_ram *ram = nv50_ram(base);
161 	struct nv50_ramseq *hwsq = &ram->hwsq;
162 	struct nvkm_subdev *subdev = &ram->base.fb->subdev;
163 	struct nvkm_bios *bios = subdev->device->bios;
164 	struct nvbios_perfE perfE;
165 	struct nvbios_pll mpll;
166 	struct nvkm_ram_data *next;
167 	u8  ver, hdr, cnt, len, strap, size;
168 	u32 data;
169 	u32 r100da0, r004008, unk710, unk714, unk718, unk71c;
170 	int N1, M1, N2, M2, P;
171 	int ret, i;
172 	u32 timing[9];
173 
174 	next = &ram->base.target;
175 	next->freq = freq;
176 	ram->base.next = next;
177 
178 	/* lookup closest matching performance table entry for frequency */
179 	i = 0;
180 	do {
181 		data = nvbios_perfEp(bios, i++, &ver, &hdr, &cnt,
182 				     &size, &perfE);
183 		if (!data || (ver < 0x25 || ver >= 0x40) ||
184 		    (size < 2)) {
185 			nvkm_error(subdev, "invalid/missing perftab entry\n");
186 			return -EINVAL;
187 		}
188 	} while (perfE.memory < freq);
189 
190 	nvbios_rammapEp_from_perf(bios, data, hdr, &next->bios);
191 
192 	/* locate specific data set for the attached memory */
193 	strap = nvbios_ramcfg_index(subdev);
194 	if (strap >= cnt) {
195 		nvkm_error(subdev, "invalid ramcfg strap\n");
196 		return -EINVAL;
197 	}
198 
199 	data = nvbios_rammapSp_from_perf(bios, data + hdr, size, strap,
200 			&next->bios);
201 	if (!data) {
202 		nvkm_error(subdev, "invalid/missing rammap entry ");
203 		return -EINVAL;
204 	}
205 
206 	/* lookup memory timings, if bios says they're present */
207 	if (next->bios.ramcfg_timing != 0xff) {
208 		data = nvbios_timingEp(bios, next->bios.ramcfg_timing,
209 					&ver, &hdr, &cnt, &len, &next->bios);
210 		if (!data || ver != 0x10 || hdr < 0x12) {
211 			nvkm_error(subdev, "invalid/missing timing entry "
212 				 "%02x %04x %02x %02x\n",
213 				 strap, data, ver, hdr);
214 			return -EINVAL;
215 		}
216 	}
217 
218 	nv50_ram_timing_calc(ram, timing);
219 
220 	ret = ram_init(hwsq, subdev);
221 	if (ret)
222 		return ret;
223 
224 	/* Determine ram-specific MR values */
225 	ram->base.mr[0] = ram_rd32(hwsq, mr[0]);
226 	ram->base.mr[1] = ram_rd32(hwsq, mr[1]);
227 	ram->base.mr[2] = ram_rd32(hwsq, mr[2]);
228 
229 	switch (ram->base.type) {
230 	case NVKM_RAM_TYPE_GDDR3:
231 		ret = nvkm_gddr3_calc(&ram->base);
232 		break;
233 	default:
234 		ret = -ENOSYS;
235 		break;
236 	}
237 
238 	if (ret)
239 		return ret;
240 
241 	/* Always disable this bit during reclock */
242 	ram_mask(hwsq, 0x100200, 0x00000800, 0x00000000);
243 
244 	ram_wait(hwsq, 0x01, 0x00); /* wait for !vblank */
245 	ram_wait(hwsq, 0x01, 0x01); /* wait for vblank */
246 	ram_wr32(hwsq, 0x611200, 0x00003300);
247 	ram_wr32(hwsq, 0x002504, 0x00000001); /* block fifo */
248 	ram_nsec(hwsq, 8000);
249 	ram_setf(hwsq, 0x10, 0x00); /* disable fb */
250 	ram_wait(hwsq, 0x00, 0x01); /* wait for fb disabled */
251 	ram_nsec(hwsq, 2000);
252 
253 	ram_wr32(hwsq, 0x1002d4, 0x00000001); /* precharge */
254 	ram_wr32(hwsq, 0x1002d0, 0x00000001); /* refresh */
255 	ram_wr32(hwsq, 0x1002d0, 0x00000001); /* refresh */
256 	ram_wr32(hwsq, 0x100210, 0x00000000); /* disable auto-refresh */
257 	ram_wr32(hwsq, 0x1002dc, 0x00000001); /* enable self-refresh */
258 
259 	ret = nvbios_pll_parse(bios, 0x004008, &mpll);
260 	mpll.vco2.max_freq = 0;
261 	if (ret >= 0) {
262 		ret = nv04_pll_calc(subdev, &mpll, freq,
263 				    &N1, &M1, &N2, &M2, &P);
264 		if (ret <= 0)
265 			ret = -EINVAL;
266 	}
267 
268 	if (ret < 0)
269 		return ret;
270 
271 	/* XXX: 750MHz seems rather arbitrary */
272 	if (freq <= 750000) {
273 		r100da0 = 0x00000010;
274 		r004008 = 0x90000000;
275 	} else {
276 		r100da0 = 0x00000000;
277 		r004008 = 0x80000000;
278 	}
279 
280 	r004008 |= (mpll.bias_p << 19) | (P << 22) | (P << 16);
281 
282 	ram_mask(hwsq, 0x00c040, 0xc000c000, 0x0000c000);
283 	/* XXX: Is rammap_00_16_40 the DLL bit we've seen in GT215? Why does
284 	 * it have a different rammap bit from DLLoff? */
285 	ram_mask(hwsq, 0x004008, 0x00004200, 0x00000200 |
286 			next->bios.rammap_00_16_40 << 14);
287 	ram_mask(hwsq, 0x00400c, 0x0000ffff, (N1 << 8) | M1);
288 	ram_mask(hwsq, 0x004008, 0x91ff0000, r004008);
289 	if (subdev->device->chipset >= 0x96)
290 		ram_wr32(hwsq, 0x100da0, r100da0);
291 	ram_nsec(hwsq, 64000); /*XXX*/
292 	ram_nsec(hwsq, 32000); /*XXX*/
293 
294 	ram_mask(hwsq, 0x004008, 0x00002200, 0x00002000);
295 
296 	ram_wr32(hwsq, 0x1002dc, 0x00000000); /* disable self-refresh */
297 	ram_wr32(hwsq, 0x1002d4, 0x00000001); /* disable self-refresh */
298 	ram_wr32(hwsq, 0x100210, 0x80000000); /* enable auto-refresh */
299 
300 	ram_nsec(hwsq, 12000);
301 
302 	switch (ram->base.type) {
303 	case NVKM_RAM_TYPE_DDR2:
304 		ram_nuke(hwsq, mr[0]); /* force update */
305 		ram_mask(hwsq, mr[0], 0x000, 0x000);
306 		break;
307 	case NVKM_RAM_TYPE_GDDR3:
308 		ram_nuke(hwsq, mr[1]); /* force update */
309 		ram_wr32(hwsq, mr[1], ram->base.mr[1]);
310 		ram_nuke(hwsq, mr[0]); /* force update */
311 		ram_wr32(hwsq, mr[0], ram->base.mr[0]);
312 		break;
313 	default:
314 		break;
315 	}
316 
317 	ram_mask(hwsq, timing[3], 0xffffffff, timing[3]);
318 	ram_mask(hwsq, timing[1], 0xffffffff, timing[1]);
319 	ram_mask(hwsq, timing[6], 0xffffffff, timing[6]);
320 	ram_mask(hwsq, timing[7], 0xffffffff, timing[7]);
321 	ram_mask(hwsq, timing[8], 0xffffffff, timing[8]);
322 	ram_mask(hwsq, timing[0], 0xffffffff, timing[0]);
323 	ram_mask(hwsq, timing[2], 0xffffffff, timing[2]);
324 	ram_mask(hwsq, timing[4], 0xffffffff, timing[4]);
325 	ram_mask(hwsq, timing[5], 0xffffffff, timing[5]);
326 
327 	if (!next->bios.ramcfg_00_03_02)
328 		ram_mask(hwsq, 0x10021c, 0x00010000, 0x00000000);
329 	ram_mask(hwsq, 0x100200, 0x00001000, !next->bios.ramcfg_00_04_02 << 12);
330 
331 	/* XXX: A lot of this could be "chipset"/"ram type" specific stuff */
332 	unk710  = ram_rd32(hwsq, 0x100710) & ~0x00000101;
333 	unk714  = ram_rd32(hwsq, 0x100714) & ~0xf0000020;
334 	unk718  = ram_rd32(hwsq, 0x100718) & ~0x00000100;
335 	unk71c  = ram_rd32(hwsq, 0x10071c) & ~0x00000100;
336 
337 	if ( next->bios.ramcfg_00_03_01)
338 		unk71c |= 0x00000100;
339 	if ( next->bios.ramcfg_00_03_02)
340 		unk710 |= 0x00000100;
341 	if (!next->bios.ramcfg_00_03_08) {
342 		unk710 |= 0x1;
343 		unk714 |= 0x20;
344 	}
345 	if ( next->bios.ramcfg_00_04_04)
346 		unk714 |= 0x70000000;
347 	if ( next->bios.ramcfg_00_04_20)
348 		unk718 |= 0x00000100;
349 
350 	ram_mask(hwsq, 0x100714, 0xffffffff, unk714);
351 	ram_mask(hwsq, 0x10071c, 0xffffffff, unk71c);
352 	ram_mask(hwsq, 0x100718, 0xffffffff, unk718);
353 	ram_mask(hwsq, 0x100710, 0xffffffff, unk710);
354 
355 	if (next->bios.rammap_00_16_20) {
356 		ram_wr32(hwsq, 0x1005a0, next->bios.ramcfg_00_07 << 16 |
357 					 next->bios.ramcfg_00_06 << 8 |
358 					 next->bios.ramcfg_00_05);
359 		ram_wr32(hwsq, 0x1005a4, next->bios.ramcfg_00_09 << 8 |
360 					 next->bios.ramcfg_00_08);
361 		ram_mask(hwsq, 0x10053c, 0x00001000, 0x00000000);
362 	} else {
363 		ram_mask(hwsq, 0x10053c, 0x00001000, 0x00001000);
364 	}
365 	ram_mask(hwsq, mr[1], 0xffffffff, ram->base.mr[1]);
366 
367 	/* Reset DLL */
368 	if (!next->bios.ramcfg_DLLoff)
369 		nvkm_sddr2_dll_reset(hwsq);
370 
371 	ram_setf(hwsq, 0x10, 0x01); /* enable fb */
372 	ram_wait(hwsq, 0x00, 0x00); /* wait for fb enabled */
373 	ram_wr32(hwsq, 0x611200, 0x00003330);
374 	ram_wr32(hwsq, 0x002504, 0x00000000); /* un-block fifo */
375 
376 	if (next->bios.rammap_00_17_02)
377 		ram_mask(hwsq, 0x100200, 0x00000800, 0x00000800);
378 	if (!next->bios.rammap_00_16_40)
379 		ram_mask(hwsq, 0x004008, 0x00004000, 0x00000000);
380 	if (next->bios.ramcfg_00_03_02)
381 		ram_mask(hwsq, 0x10021c, 0x00010000, 0x00010000);
382 
383 	return 0;
384 }
385 
386 static int
387 nv50_ram_prog(struct nvkm_ram *base)
388 {
389 	struct nv50_ram *ram = nv50_ram(base);
390 	struct nvkm_device *device = ram->base.fb->subdev.device;
391 	ram_exec(&ram->hwsq, nvkm_boolopt(device->cfgopt, "NvMemExec", true));
392 	return 0;
393 }
394 
395 static void
396 nv50_ram_tidy(struct nvkm_ram *base)
397 {
398 	struct nv50_ram *ram = nv50_ram(base);
399 	ram_exec(&ram->hwsq, false);
400 }
401 
402 void
403 __nv50_ram_put(struct nvkm_ram *ram, struct nvkm_mem *mem)
404 {
405 	struct nvkm_mm_node *this;
406 
407 	while (!list_empty(&mem->regions)) {
408 		this = list_first_entry(&mem->regions, typeof(*this), rl_entry);
409 
410 		list_del(&this->rl_entry);
411 		nvkm_mm_free(&ram->vram, &this);
412 	}
413 
414 	nvkm_mm_free(&ram->tags, &mem->tag);
415 }
416 
417 void
418 nv50_ram_put(struct nvkm_ram *ram, struct nvkm_mem **pmem)
419 {
420 	struct nvkm_mem *mem = *pmem;
421 
422 	*pmem = NULL;
423 	if (unlikely(mem == NULL))
424 		return;
425 
426 	mutex_lock(&ram->fb->subdev.mutex);
427 	__nv50_ram_put(ram, mem);
428 	mutex_unlock(&ram->fb->subdev.mutex);
429 
430 	kfree(mem);
431 }
432 
433 int
434 nv50_ram_get(struct nvkm_ram *ram, u64 size, u32 align, u32 ncmin,
435 	     u32 memtype, struct nvkm_mem **pmem)
436 {
437 	struct nvkm_mm *heap = &ram->vram;
438 	struct nvkm_mm *tags = &ram->tags;
439 	struct nvkm_mm_node *r;
440 	struct nvkm_mem *mem;
441 	int comp = (memtype & 0x300) >> 8;
442 	int type = (memtype & 0x07f);
443 	int back = (memtype & 0x800);
444 	int min, max, ret;
445 
446 	max = (size >> NVKM_RAM_MM_SHIFT);
447 	min = ncmin ? (ncmin >> NVKM_RAM_MM_SHIFT) : max;
448 	align >>= NVKM_RAM_MM_SHIFT;
449 
450 	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
451 	if (!mem)
452 		return -ENOMEM;
453 
454 	mutex_lock(&ram->fb->subdev.mutex);
455 	if (comp) {
456 		if (align == (1 << (16 - NVKM_RAM_MM_SHIFT))) {
457 			int n = (max >> 4) * comp;
458 
459 			ret = nvkm_mm_head(tags, 0, 1, n, n, 1, &mem->tag);
460 			if (ret)
461 				mem->tag = NULL;
462 		}
463 
464 		if (unlikely(!mem->tag))
465 			comp = 0;
466 	}
467 
468 	INIT_LIST_HEAD(&mem->regions);
469 	mem->memtype = (comp << 7) | type;
470 	mem->size = max;
471 
472 	type = nv50_fb_memtype[type];
473 	do {
474 		if (back)
475 			ret = nvkm_mm_tail(heap, 0, type, max, min, align, &r);
476 		else
477 			ret = nvkm_mm_head(heap, 0, type, max, min, align, &r);
478 		if (ret) {
479 			mutex_unlock(&ram->fb->subdev.mutex);
480 			ram->func->put(ram, &mem);
481 			return ret;
482 		}
483 
484 		list_add_tail(&r->rl_entry, &mem->regions);
485 		max -= r->length;
486 	} while (max);
487 	mutex_unlock(&ram->fb->subdev.mutex);
488 
489 	r = list_first_entry(&mem->regions, struct nvkm_mm_node, rl_entry);
490 	mem->offset = (u64)r->offset << NVKM_RAM_MM_SHIFT;
491 	*pmem = mem;
492 	return 0;
493 }
494 
495 static const struct nvkm_ram_func
496 nv50_ram_func = {
497 	.get = nv50_ram_get,
498 	.put = nv50_ram_put,
499 	.calc = nv50_ram_calc,
500 	.prog = nv50_ram_prog,
501 	.tidy = nv50_ram_tidy,
502 };
503 
504 static u32
505 nv50_fb_vram_rblock(struct nvkm_ram *ram)
506 {
507 	struct nvkm_subdev *subdev = &ram->fb->subdev;
508 	struct nvkm_device *device = subdev->device;
509 	int colbits, rowbitsa, rowbitsb, banks;
510 	u64 rowsize, predicted;
511 	u32 r0, r4, rt, rblock_size;
512 
513 	r0 = nvkm_rd32(device, 0x100200);
514 	r4 = nvkm_rd32(device, 0x100204);
515 	rt = nvkm_rd32(device, 0x100250);
516 	nvkm_debug(subdev, "memcfg %08x %08x %08x %08x\n",
517 		   r0, r4, rt, nvkm_rd32(device, 0x001540));
518 
519 	colbits  =  (r4 & 0x0000f000) >> 12;
520 	rowbitsa = ((r4 & 0x000f0000) >> 16) + 8;
521 	rowbitsb = ((r4 & 0x00f00000) >> 20) + 8;
522 	banks    = 1 << (((r4 & 0x03000000) >> 24) + 2);
523 
524 	rowsize = ram->parts * banks * (1 << colbits) * 8;
525 	predicted = rowsize << rowbitsa;
526 	if (r0 & 0x00000004)
527 		predicted += rowsize << rowbitsb;
528 
529 	if (predicted != ram->size) {
530 		nvkm_warn(subdev, "memory controller reports %d MiB VRAM\n",
531 			  (u32)(ram->size >> 20));
532 	}
533 
534 	rblock_size = rowsize;
535 	if (rt & 1)
536 		rblock_size *= 3;
537 
538 	nvkm_debug(subdev, "rblock %d bytes\n", rblock_size);
539 	return rblock_size;
540 }
541 
542 int
543 nv50_ram_ctor(const struct nvkm_ram_func *func,
544 	      struct nvkm_fb *fb, struct nvkm_ram *ram)
545 {
546 	struct nvkm_device *device = fb->subdev.device;
547 	struct nvkm_bios *bios = device->bios;
548 	const u32 rsvd_head = ( 256 * 1024); /* vga memory */
549 	const u32 rsvd_tail = (1024 * 1024); /* vbios etc */
550 	u64 size = nvkm_rd32(device, 0x10020c);
551 	u32 tags = nvkm_rd32(device, 0x100320);
552 	enum nvkm_ram_type type = NVKM_RAM_TYPE_UNKNOWN;
553 	int ret;
554 
555 	switch (nvkm_rd32(device, 0x100714) & 0x00000007) {
556 	case 0: type = NVKM_RAM_TYPE_DDR1; break;
557 	case 1:
558 		if (nvkm_fb_bios_memtype(bios) == NVKM_RAM_TYPE_DDR3)
559 			type = NVKM_RAM_TYPE_DDR3;
560 		else
561 			type = NVKM_RAM_TYPE_DDR2;
562 		break;
563 	case 2: type = NVKM_RAM_TYPE_GDDR3; break;
564 	case 3: type = NVKM_RAM_TYPE_GDDR4; break;
565 	case 4: type = NVKM_RAM_TYPE_GDDR5; break;
566 	default:
567 		break;
568 	}
569 
570 	size = (size & 0x000000ff) << 32 | (size & 0xffffff00);
571 
572 	ret = nvkm_ram_ctor(func, fb, type, size, tags, ram);
573 	if (ret)
574 		return ret;
575 
576 	ram->part_mask = (nvkm_rd32(device, 0x001540) & 0x00ff0000) >> 16;
577 	ram->parts = hweight8(ram->part_mask);
578 	ram->ranks = (nvkm_rd32(device, 0x100200) & 0x4) ? 2 : 1;
579 	nvkm_mm_fini(&ram->vram);
580 
581 	return nvkm_mm_init(&ram->vram, rsvd_head >> NVKM_RAM_MM_SHIFT,
582 			    (size - rsvd_head - rsvd_tail) >> NVKM_RAM_MM_SHIFT,
583 			    nv50_fb_vram_rblock(ram) >> NVKM_RAM_MM_SHIFT);
584 }
585 
586 int
587 nv50_ram_new(struct nvkm_fb *fb, struct nvkm_ram **pram)
588 {
589 	struct nv50_ram *ram;
590 	int ret, i;
591 
592 	if (!(ram = kzalloc(sizeof(*ram), GFP_KERNEL)))
593 		return -ENOMEM;
594 	*pram = &ram->base;
595 
596 	ret = nv50_ram_ctor(&nv50_ram_func, fb, &ram->base);
597 	if (ret)
598 		return ret;
599 
600 	ram->hwsq.r_0x002504 = hwsq_reg(0x002504);
601 	ram->hwsq.r_0x00c040 = hwsq_reg(0x00c040);
602 	ram->hwsq.r_0x004008 = hwsq_reg(0x004008);
603 	ram->hwsq.r_0x00400c = hwsq_reg(0x00400c);
604 	ram->hwsq.r_0x100200 = hwsq_reg(0x100200);
605 	ram->hwsq.r_0x100210 = hwsq_reg(0x100210);
606 	ram->hwsq.r_0x10021c = hwsq_reg(0x10021c);
607 	ram->hwsq.r_0x1002d0 = hwsq_reg(0x1002d0);
608 	ram->hwsq.r_0x1002d4 = hwsq_reg(0x1002d4);
609 	ram->hwsq.r_0x1002dc = hwsq_reg(0x1002dc);
610 	ram->hwsq.r_0x10053c = hwsq_reg(0x10053c);
611 	ram->hwsq.r_0x1005a0 = hwsq_reg(0x1005a0);
612 	ram->hwsq.r_0x1005a4 = hwsq_reg(0x1005a4);
613 	ram->hwsq.r_0x100710 = hwsq_reg(0x100710);
614 	ram->hwsq.r_0x100714 = hwsq_reg(0x100714);
615 	ram->hwsq.r_0x100718 = hwsq_reg(0x100718);
616 	ram->hwsq.r_0x10071c = hwsq_reg(0x10071c);
617 	ram->hwsq.r_0x100da0 = hwsq_stride(0x100da0, 4, ram->base.part_mask);
618 	ram->hwsq.r_0x100e20 = hwsq_reg(0x100e20);
619 	ram->hwsq.r_0x100e24 = hwsq_reg(0x100e24);
620 	ram->hwsq.r_0x611200 = hwsq_reg(0x611200);
621 
622 	for (i = 0; i < 9; i++)
623 		ram->hwsq.r_timing[i] = hwsq_reg(0x100220 + (i * 0x04));
624 
625 	if (ram->base.ranks > 1) {
626 		ram->hwsq.r_mr[0] = hwsq_reg2(0x1002c0, 0x1002c8);
627 		ram->hwsq.r_mr[1] = hwsq_reg2(0x1002c4, 0x1002cc);
628 		ram->hwsq.r_mr[2] = hwsq_reg2(0x1002e0, 0x1002e8);
629 		ram->hwsq.r_mr[3] = hwsq_reg2(0x1002e4, 0x1002ec);
630 	} else {
631 		ram->hwsq.r_mr[0] = hwsq_reg(0x1002c0);
632 		ram->hwsq.r_mr[1] = hwsq_reg(0x1002c4);
633 		ram->hwsq.r_mr[2] = hwsq_reg(0x1002e0);
634 		ram->hwsq.r_mr[3] = hwsq_reg(0x1002e4);
635 	}
636 
637 	return 0;
638 }
639