1 /*
2  * Copyright 2013 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Ben Skeggs
23  */
24 #include "nv50.h"
25 #include "ramseq.h"
26 
27 #include <core/option.h>
28 #include <subdev/bios.h>
29 #include <subdev/bios/perf.h>
30 #include <subdev/bios/pll.h>
31 #include <subdev/bios/rammap.h>
32 #include <subdev/bios/timing.h>
33 #include <subdev/clk/pll.h>
34 
35 struct nv50_ramseq {
36 	struct hwsq base;
37 	struct hwsq_reg r_0x002504;
38 	struct hwsq_reg r_0x004008;
39 	struct hwsq_reg r_0x00400c;
40 	struct hwsq_reg r_0x00c040;
41 	struct hwsq_reg r_0x100200;
42 	struct hwsq_reg r_0x100210;
43 	struct hwsq_reg r_0x10021c;
44 	struct hwsq_reg r_0x1002d0;
45 	struct hwsq_reg r_0x1002d4;
46 	struct hwsq_reg r_0x1002dc;
47 	struct hwsq_reg r_0x10053c;
48 	struct hwsq_reg r_0x1005a0;
49 	struct hwsq_reg r_0x1005a4;
50 	struct hwsq_reg r_0x100710;
51 	struct hwsq_reg r_0x100714;
52 	struct hwsq_reg r_0x100718;
53 	struct hwsq_reg r_0x10071c;
54 	struct hwsq_reg r_0x100da0;
55 	struct hwsq_reg r_0x100e20;
56 	struct hwsq_reg r_0x100e24;
57 	struct hwsq_reg r_0x611200;
58 	struct hwsq_reg r_timing[9];
59 	struct hwsq_reg r_mr[4];
60 };
61 
62 struct nv50_ram {
63 	struct nvkm_ram base;
64 	struct nv50_ramseq hwsq;
65 };
66 
67 #define T(t) cfg->timing_10_##t
68 static int
69 nv50_ram_timing_calc(struct nvkm_fb *fb, u32 *timing)
70 {
71 	struct nvkm_device *device = fb->subdev.device;
72 	struct nv50_ram *ram = (void *)fb->ram;
73 	struct nvbios_ramcfg *cfg = &ram->base.target.bios;
74 	u32 cur2, cur4, cur7, cur8;
75 	u8 unkt3b;
76 
77 	cur2 = nvkm_rd32(device, 0x100228);
78 	cur4 = nvkm_rd32(device, 0x100230);
79 	cur7 = nvkm_rd32(device, 0x10023c);
80 	cur8 = nvkm_rd32(device, 0x100240);
81 
82 	switch ((!T(CWL)) * ram->base.type) {
83 	case NV_MEM_TYPE_DDR2:
84 		T(CWL) = T(CL) - 1;
85 		break;
86 	case NV_MEM_TYPE_GDDR3:
87 		T(CWL) = ((cur2 & 0xff000000) >> 24) + 1;
88 		break;
89 	}
90 
91 	/* XXX: N=1 is not proper statistics */
92 	if (nv_device(fb)->chipset == 0xa0) {
93 		unkt3b = 0x19 + ram->base.next->bios.rammap_00_16_40;
94 		timing[6] = (0x2d + T(CL) - T(CWL) +
95 				ram->base.next->bios.rammap_00_16_40) << 16 |
96 			    T(CWL) << 8 |
97 			    (0x2f + T(CL) - T(CWL));
98 	} else {
99 		unkt3b = 0x16;
100 		timing[6] = (0x2b + T(CL) - T(CWL)) << 16 |
101 			    max_t(s8, T(CWL) - 2, 1) << 8 |
102 			    (0x2e + T(CL) - T(CWL));
103 	}
104 
105 	timing[0] = (T(RP) << 24 | T(RAS) << 16 | T(RFC) << 8 | T(RC));
106 	timing[1] = (T(WR) + 1 + T(CWL)) << 24 |
107 		    max_t(u8, T(18), 1) << 16 |
108 		    (T(WTR) + 1 + T(CWL)) << 8 |
109 		    (3 + T(CL) - T(CWL));
110 	timing[2] = (T(CWL) - 1) << 24 |
111 		    (T(RRD) << 16) |
112 		    (T(RCDWR) << 8) |
113 		    T(RCDRD);
114 	timing[3] = (unkt3b - 2 + T(CL)) << 24 |
115 		    unkt3b << 16 |
116 		    (T(CL) - 1) << 8 |
117 		    (T(CL) - 1);
118 	timing[4] = (cur4 & 0xffff0000) |
119 		    T(13) << 8 |
120 		    T(13);
121 	timing[5] = T(RFC) << 24 |
122 		    max_t(u8, T(RCDRD), T(RCDWR)) << 16 |
123 		    T(RP);
124 	/* Timing 6 is already done above */
125 	timing[7] = (cur7 & 0xff00ffff) | (T(CL) - 1) << 16;
126 	timing[8] = (cur8 & 0xffffff00);
127 
128 	/* XXX: P.version == 1 only has DDR2 and GDDR3? */
129 	if (fb->ram->type == NV_MEM_TYPE_DDR2) {
130 		timing[5] |= (T(CL) + 3) << 8;
131 		timing[8] |= (T(CL) - 4);
132 	} else if (fb->ram->type == NV_MEM_TYPE_GDDR3) {
133 		timing[5] |= (T(CL) + 2) << 8;
134 		timing[8] |= (T(CL) - 2);
135 	}
136 
137 	nv_debug(fb, " 220: %08x %08x %08x %08x\n",
138 			timing[0], timing[1], timing[2], timing[3]);
139 	nv_debug(fb, " 230: %08x %08x %08x %08x\n",
140 			timing[4], timing[5], timing[6], timing[7]);
141 	nv_debug(fb, " 240: %08x\n", timing[8]);
142 	return 0;
143 }
144 #undef T
145 
146 static void
147 nvkm_sddr2_dll_reset(struct nv50_ramseq *hwsq)
148 {
149 	ram_mask(hwsq, mr[0], 0x100, 0x100);
150 	ram_mask(hwsq, mr[0], 0x100, 0x000);
151 	ram_nsec(hwsq, 24000);
152 }
153 
154 static int
155 nv50_ram_calc(struct nvkm_fb *fb, u32 freq)
156 {
157 	struct nvkm_bios *bios = nvkm_bios(fb);
158 	struct nv50_ram *ram = (void *)fb->ram;
159 	struct nv50_ramseq *hwsq = &ram->hwsq;
160 	struct nvbios_perfE perfE;
161 	struct nvbios_pll mpll;
162 	struct nvkm_ram_data *next;
163 	u8  ver, hdr, cnt, len, strap, size;
164 	u32 data;
165 	u32 r100da0, r004008, unk710, unk714, unk718, unk71c;
166 	int N1, M1, N2, M2, P;
167 	int ret, i;
168 	u32 timing[9];
169 
170 	next = &ram->base.target;
171 	next->freq = freq;
172 	ram->base.next = next;
173 
174 	/* lookup closest matching performance table entry for frequency */
175 	i = 0;
176 	do {
177 		data = nvbios_perfEp(bios, i++, &ver, &hdr, &cnt,
178 					    &size, &perfE);
179 		if (!data || (ver < 0x25 || ver >= 0x40) ||
180 		    (size < 2)) {
181 			nv_error(fb, "invalid/missing perftab entry\n");
182 			return -EINVAL;
183 		}
184 	} while (perfE.memory < freq);
185 
186 	nvbios_rammapEp_from_perf(bios, data, hdr, &next->bios);
187 
188 	/* locate specific data set for the attached memory */
189 	strap = nvbios_ramcfg_index(nv_subdev(fb));
190 	if (strap >= cnt) {
191 		nv_error(fb, "invalid ramcfg strap\n");
192 		return -EINVAL;
193 	}
194 
195 	data = nvbios_rammapSp_from_perf(bios, data + hdr, size, strap,
196 			&next->bios);
197 	if (!data) {
198 		nv_error(fb, "invalid/missing rammap entry ");
199 		return -EINVAL;
200 	}
201 
202 	/* lookup memory timings, if bios says they're present */
203 	if (next->bios.ramcfg_timing != 0xff) {
204 		data = nvbios_timingEp(bios, next->bios.ramcfg_timing,
205 					&ver, &hdr, &cnt, &len, &next->bios);
206 		if (!data || ver != 0x10 || hdr < 0x12) {
207 			nv_error(fb, "invalid/missing timing entry "
208 				 "%02x %04x %02x %02x\n",
209 				 strap, data, ver, hdr);
210 			return -EINVAL;
211 		}
212 	}
213 
214 	nv50_ram_timing_calc(fb, timing);
215 
216 	ret = ram_init(hwsq, nv_subdev(fb));
217 	if (ret)
218 		return ret;
219 
220 	/* Determine ram-specific MR values */
221 	ram->base.mr[0] = ram_rd32(hwsq, mr[0]);
222 	ram->base.mr[1] = ram_rd32(hwsq, mr[1]);
223 	ram->base.mr[2] = ram_rd32(hwsq, mr[2]);
224 
225 	switch (ram->base.type) {
226 	case NV_MEM_TYPE_GDDR3:
227 		ret = nvkm_gddr3_calc(&ram->base);
228 		break;
229 	default:
230 		ret = -ENOSYS;
231 		break;
232 	}
233 
234 	if (ret)
235 		return ret;
236 
237 	/* Always disable this bit during reclock */
238 	ram_mask(hwsq, 0x100200, 0x00000800, 0x00000000);
239 
240 	ram_wait(hwsq, 0x01, 0x00); /* wait for !vblank */
241 	ram_wait(hwsq, 0x01, 0x01); /* wait for vblank */
242 	ram_wr32(hwsq, 0x611200, 0x00003300);
243 	ram_wr32(hwsq, 0x002504, 0x00000001); /* block fifo */
244 	ram_nsec(hwsq, 8000);
245 	ram_setf(hwsq, 0x10, 0x00); /* disable fb */
246 	ram_wait(hwsq, 0x00, 0x01); /* wait for fb disabled */
247 	ram_nsec(hwsq, 2000);
248 
249 	ram_wr32(hwsq, 0x1002d4, 0x00000001); /* precharge */
250 	ram_wr32(hwsq, 0x1002d0, 0x00000001); /* refresh */
251 	ram_wr32(hwsq, 0x1002d0, 0x00000001); /* refresh */
252 	ram_wr32(hwsq, 0x100210, 0x00000000); /* disable auto-refresh */
253 	ram_wr32(hwsq, 0x1002dc, 0x00000001); /* enable self-refresh */
254 
255 	ret = nvbios_pll_parse(bios, 0x004008, &mpll);
256 	mpll.vco2.max_freq = 0;
257 	if (ret >= 0) {
258 		ret = nv04_pll_calc(nv_subdev(fb), &mpll, freq,
259 				    &N1, &M1, &N2, &M2, &P);
260 		if (ret <= 0)
261 			ret = -EINVAL;
262 	}
263 
264 	if (ret < 0)
265 		return ret;
266 
267 	/* XXX: 750MHz seems rather arbitrary */
268 	if (freq <= 750000) {
269 		r100da0 = 0x00000010;
270 		r004008 = 0x90000000;
271 	} else {
272 		r100da0 = 0x00000000;
273 		r004008 = 0x80000000;
274 	}
275 
276 	r004008 |= (mpll.bias_p << 19) | (P << 22) | (P << 16);
277 
278 	ram_mask(hwsq, 0x00c040, 0xc000c000, 0x0000c000);
279 	/* XXX: Is rammap_00_16_40 the DLL bit we've seen in GT215? Why does
280 	 * it have a different rammap bit from DLLoff? */
281 	ram_mask(hwsq, 0x004008, 0x00004200, 0x00000200 |
282 			next->bios.rammap_00_16_40 << 14);
283 	ram_mask(hwsq, 0x00400c, 0x0000ffff, (N1 << 8) | M1);
284 	ram_mask(hwsq, 0x004008, 0x91ff0000, r004008);
285 	if (nv_device(fb)->chipset >= 0x96)
286 		ram_wr32(hwsq, 0x100da0, r100da0);
287 	ram_nsec(hwsq, 64000); /*XXX*/
288 	ram_nsec(hwsq, 32000); /*XXX*/
289 
290 	ram_mask(hwsq, 0x004008, 0x00002200, 0x00002000);
291 
292 	ram_wr32(hwsq, 0x1002dc, 0x00000000); /* disable self-refresh */
293 	ram_wr32(hwsq, 0x1002d4, 0x00000001); /* disable self-refresh */
294 	ram_wr32(hwsq, 0x100210, 0x80000000); /* enable auto-refresh */
295 
296 	ram_nsec(hwsq, 12000);
297 
298 	switch (ram->base.type) {
299 	case NV_MEM_TYPE_DDR2:
300 		ram_nuke(hwsq, mr[0]); /* force update */
301 		ram_mask(hwsq, mr[0], 0x000, 0x000);
302 		break;
303 	case NV_MEM_TYPE_GDDR3:
304 		ram_nuke(hwsq, mr[1]); /* force update */
305 		ram_wr32(hwsq, mr[1], ram->base.mr[1]);
306 		ram_nuke(hwsq, mr[0]); /* force update */
307 		ram_wr32(hwsq, mr[0], ram->base.mr[0]);
308 		break;
309 	default:
310 		break;
311 	}
312 
313 	ram_mask(hwsq, timing[3], 0xffffffff, timing[3]);
314 	ram_mask(hwsq, timing[1], 0xffffffff, timing[1]);
315 	ram_mask(hwsq, timing[6], 0xffffffff, timing[6]);
316 	ram_mask(hwsq, timing[7], 0xffffffff, timing[7]);
317 	ram_mask(hwsq, timing[8], 0xffffffff, timing[8]);
318 	ram_mask(hwsq, timing[0], 0xffffffff, timing[0]);
319 	ram_mask(hwsq, timing[2], 0xffffffff, timing[2]);
320 	ram_mask(hwsq, timing[4], 0xffffffff, timing[4]);
321 	ram_mask(hwsq, timing[5], 0xffffffff, timing[5]);
322 
323 	if (!next->bios.ramcfg_00_03_02)
324 		ram_mask(hwsq, 0x10021c, 0x00010000, 0x00000000);
325 	ram_mask(hwsq, 0x100200, 0x00001000, !next->bios.ramcfg_00_04_02 << 12);
326 
327 	/* XXX: A lot of this could be "chipset"/"ram type" specific stuff */
328 	unk710  = ram_rd32(hwsq, 0x100710) & ~0x00000101;
329 	unk714  = ram_rd32(hwsq, 0x100714) & ~0xf0000020;
330 	unk718  = ram_rd32(hwsq, 0x100718) & ~0x00000100;
331 	unk71c  = ram_rd32(hwsq, 0x10071c) & ~0x00000100;
332 
333 	if ( next->bios.ramcfg_00_03_01)
334 		unk71c |= 0x00000100;
335 	if ( next->bios.ramcfg_00_03_02)
336 		unk710 |= 0x00000100;
337 	if (!next->bios.ramcfg_00_03_08) {
338 		unk710 |= 0x1;
339 		unk714 |= 0x20;
340 	}
341 	if ( next->bios.ramcfg_00_04_04)
342 		unk714 |= 0x70000000;
343 	if ( next->bios.ramcfg_00_04_20)
344 		unk718 |= 0x00000100;
345 
346 	ram_mask(hwsq, 0x100714, 0xffffffff, unk714);
347 	ram_mask(hwsq, 0x10071c, 0xffffffff, unk71c);
348 	ram_mask(hwsq, 0x100718, 0xffffffff, unk718);
349 	ram_mask(hwsq, 0x100710, 0xffffffff, unk710);
350 
351 	if (next->bios.rammap_00_16_20) {
352 		ram_wr32(hwsq, 0x1005a0, next->bios.ramcfg_00_07 << 16 |
353 					 next->bios.ramcfg_00_06 << 8 |
354 					 next->bios.ramcfg_00_05);
355 		ram_wr32(hwsq, 0x1005a4, next->bios.ramcfg_00_09 << 8 |
356 					 next->bios.ramcfg_00_08);
357 		ram_mask(hwsq, 0x10053c, 0x00001000, 0x00000000);
358 	} else {
359 		ram_mask(hwsq, 0x10053c, 0x00001000, 0x00001000);
360 	}
361 	ram_mask(hwsq, mr[1], 0xffffffff, ram->base.mr[1]);
362 
363 	/* Reset DLL */
364 	if (!next->bios.ramcfg_DLLoff)
365 		nvkm_sddr2_dll_reset(hwsq);
366 
367 	ram_setf(hwsq, 0x10, 0x01); /* enable fb */
368 	ram_wait(hwsq, 0x00, 0x00); /* wait for fb enabled */
369 	ram_wr32(hwsq, 0x611200, 0x00003330);
370 	ram_wr32(hwsq, 0x002504, 0x00000000); /* un-block fifo */
371 
372 	if (next->bios.rammap_00_17_02)
373 		ram_mask(hwsq, 0x100200, 0x00000800, 0x00000800);
374 	if (!next->bios.rammap_00_16_40)
375 		ram_mask(hwsq, 0x004008, 0x00004000, 0x00000000);
376 	if (next->bios.ramcfg_00_03_02)
377 		ram_mask(hwsq, 0x10021c, 0x00010000, 0x00010000);
378 
379 	return 0;
380 }
381 
382 static int
383 nv50_ram_prog(struct nvkm_fb *fb)
384 {
385 	struct nvkm_device *device = nv_device(fb);
386 	struct nv50_ram *ram = (void *)fb->ram;
387 	struct nv50_ramseq *hwsq = &ram->hwsq;
388 
389 	ram_exec(hwsq, nvkm_boolopt(device->cfgopt, "NvMemExec", true));
390 	return 0;
391 }
392 
393 static void
394 nv50_ram_tidy(struct nvkm_fb *fb)
395 {
396 	struct nv50_ram *ram = (void *)fb->ram;
397 	struct nv50_ramseq *hwsq = &ram->hwsq;
398 	ram_exec(hwsq, false);
399 }
400 
401 void
402 __nv50_ram_put(struct nvkm_fb *fb, struct nvkm_mem *mem)
403 {
404 	struct nvkm_mm_node *this;
405 
406 	while (!list_empty(&mem->regions)) {
407 		this = list_first_entry(&mem->regions, typeof(*this), rl_entry);
408 
409 		list_del(&this->rl_entry);
410 		nvkm_mm_free(&fb->vram, &this);
411 	}
412 
413 	nvkm_mm_free(&fb->tags, &mem->tag);
414 }
415 
416 void
417 nv50_ram_put(struct nvkm_fb *fb, struct nvkm_mem **pmem)
418 {
419 	struct nvkm_mem *mem = *pmem;
420 
421 	*pmem = NULL;
422 	if (unlikely(mem == NULL))
423 		return;
424 
425 	mutex_lock(&fb->subdev.mutex);
426 	__nv50_ram_put(fb, mem);
427 	mutex_unlock(&fb->subdev.mutex);
428 
429 	kfree(mem);
430 }
431 
432 int
433 nv50_ram_get(struct nvkm_fb *fb, u64 size, u32 align, u32 ncmin,
434 	     u32 memtype, struct nvkm_mem **pmem)
435 {
436 	struct nvkm_mm *heap = &fb->vram;
437 	struct nvkm_mm *tags = &fb->tags;
438 	struct nvkm_mm_node *r;
439 	struct nvkm_mem *mem;
440 	int comp = (memtype & 0x300) >> 8;
441 	int type = (memtype & 0x07f);
442 	int back = (memtype & 0x800);
443 	int min, max, ret;
444 
445 	max = (size >> 12);
446 	min = ncmin ? (ncmin >> 12) : max;
447 	align >>= 12;
448 
449 	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
450 	if (!mem)
451 		return -ENOMEM;
452 
453 	mutex_lock(&fb->subdev.mutex);
454 	if (comp) {
455 		if (align == 16) {
456 			int n = (max >> 4) * comp;
457 
458 			ret = nvkm_mm_head(tags, 0, 1, n, n, 1, &mem->tag);
459 			if (ret)
460 				mem->tag = NULL;
461 		}
462 
463 		if (unlikely(!mem->tag))
464 			comp = 0;
465 	}
466 
467 	INIT_LIST_HEAD(&mem->regions);
468 	mem->memtype = (comp << 7) | type;
469 	mem->size = max;
470 
471 	type = nv50_fb_memtype[type];
472 	do {
473 		if (back)
474 			ret = nvkm_mm_tail(heap, 0, type, max, min, align, &r);
475 		else
476 			ret = nvkm_mm_head(heap, 0, type, max, min, align, &r);
477 		if (ret) {
478 			mutex_unlock(&fb->subdev.mutex);
479 			fb->ram->put(fb, &mem);
480 			return ret;
481 		}
482 
483 		list_add_tail(&r->rl_entry, &mem->regions);
484 		max -= r->length;
485 	} while (max);
486 	mutex_unlock(&fb->subdev.mutex);
487 
488 	r = list_first_entry(&mem->regions, struct nvkm_mm_node, rl_entry);
489 	mem->offset = (u64)r->offset << 12;
490 	*pmem = mem;
491 	return 0;
492 }
493 
494 static u32
495 nv50_fb_vram_rblock(struct nvkm_fb *fb, struct nvkm_ram *ram)
496 {
497 	struct nvkm_device *device = fb->subdev.device;
498 	int colbits, rowbitsa, rowbitsb, banks;
499 	u64 rowsize, predicted;
500 	u32 r0, r4, rt, rblock_size;
501 
502 	r0 = nvkm_rd32(device, 0x100200);
503 	r4 = nvkm_rd32(device, 0x100204);
504 	rt = nvkm_rd32(device, 0x100250);
505 	nv_debug(fb, "memcfg 0x%08x 0x%08x 0x%08x 0x%08x\n",
506 		 r0, r4, rt, nvkm_rd32(device, 0x001540));
507 
508 	colbits  =  (r4 & 0x0000f000) >> 12;
509 	rowbitsa = ((r4 & 0x000f0000) >> 16) + 8;
510 	rowbitsb = ((r4 & 0x00f00000) >> 20) + 8;
511 	banks    = 1 << (((r4 & 0x03000000) >> 24) + 2);
512 
513 	rowsize = ram->parts * banks * (1 << colbits) * 8;
514 	predicted = rowsize << rowbitsa;
515 	if (r0 & 0x00000004)
516 		predicted += rowsize << rowbitsb;
517 
518 	if (predicted != ram->size) {
519 		nv_warn(fb, "memory controller reports %d MiB VRAM\n",
520 			(u32)(ram->size >> 20));
521 	}
522 
523 	rblock_size = rowsize;
524 	if (rt & 1)
525 		rblock_size *= 3;
526 
527 	nv_debug(fb, "rblock %d bytes\n", rblock_size);
528 	return rblock_size;
529 }
530 
531 int
532 nv50_ram_create_(struct nvkm_object *parent, struct nvkm_object *engine,
533 		 struct nvkm_oclass *oclass, int length, void **pobject)
534 {
535 	const u32 rsvd_head = ( 256 * 1024) >> 12; /* vga memory */
536 	const u32 rsvd_tail = (1024 * 1024) >> 12; /* vbios etc */
537 	struct nvkm_fb *fb = nvkm_fb(parent);
538 	struct nvkm_device *device = fb->subdev.device;
539 	struct nvkm_bios *bios = device->bios;
540 	struct nvkm_ram *ram;
541 	int ret;
542 
543 	ret = nvkm_ram_create_(parent, engine, oclass, length, pobject);
544 	ram = *pobject;
545 	if (ret)
546 		return ret;
547 
548 	ram->size = nvkm_rd32(device, 0x10020c);
549 	ram->size = (ram->size & 0xffffff00) | ((ram->size & 0x000000ff) << 32);
550 
551 	ram->part_mask = (nvkm_rd32(device, 0x001540) & 0x00ff0000) >> 16;
552 	ram->parts = hweight8(ram->part_mask);
553 
554 	switch (nvkm_rd32(device, 0x100714) & 0x00000007) {
555 	case 0: ram->type = NV_MEM_TYPE_DDR1; break;
556 	case 1:
557 		if (nvkm_fb_bios_memtype(bios) == NV_MEM_TYPE_DDR3)
558 			ram->type = NV_MEM_TYPE_DDR3;
559 		else
560 			ram->type = NV_MEM_TYPE_DDR2;
561 		break;
562 	case 2: ram->type = NV_MEM_TYPE_GDDR3; break;
563 	case 3: ram->type = NV_MEM_TYPE_GDDR4; break;
564 	case 4: ram->type = NV_MEM_TYPE_GDDR5; break;
565 	default:
566 		break;
567 	}
568 
569 	ret = nvkm_mm_init(&fb->vram, rsvd_head, (ram->size >> 12) -
570 			   (rsvd_head + rsvd_tail),
571 			   nv50_fb_vram_rblock(fb, ram) >> 12);
572 	if (ret)
573 		return ret;
574 
575 	ram->ranks = (nvkm_rd32(device, 0x100200) & 0x4) ? 2 : 1;
576 	ram->tags  =  nvkm_rd32(device, 0x100320);
577 	ram->get = nv50_ram_get;
578 	ram->put = nv50_ram_put;
579 	return 0;
580 }
581 
582 static int
583 nv50_ram_ctor(struct nvkm_object *parent, struct nvkm_object *engine,
584 	      struct nvkm_oclass *oclass, void *data, u32 datasize,
585 	      struct nvkm_object **pobject)
586 {
587 	struct nv50_ram *ram;
588 	int ret, i;
589 
590 	ret = nv50_ram_create(parent, engine, oclass, &ram);
591 	*pobject = nv_object(ram);
592 	if (ret)
593 		return ret;
594 
595 	switch (ram->base.type) {
596 	case NV_MEM_TYPE_GDDR3:
597 		ram->base.calc = nv50_ram_calc;
598 		ram->base.prog = nv50_ram_prog;
599 		ram->base.tidy = nv50_ram_tidy;
600 		break;
601 	case NV_MEM_TYPE_DDR2:
602 	default:
603 		nv_warn(ram, "reclocking of this ram type unsupported\n");
604 		return 0;
605 	}
606 
607 	ram->hwsq.r_0x002504 = hwsq_reg(0x002504);
608 	ram->hwsq.r_0x00c040 = hwsq_reg(0x00c040);
609 	ram->hwsq.r_0x004008 = hwsq_reg(0x004008);
610 	ram->hwsq.r_0x00400c = hwsq_reg(0x00400c);
611 	ram->hwsq.r_0x100200 = hwsq_reg(0x100200);
612 	ram->hwsq.r_0x100210 = hwsq_reg(0x100210);
613 	ram->hwsq.r_0x10021c = hwsq_reg(0x10021c);
614 	ram->hwsq.r_0x1002d0 = hwsq_reg(0x1002d0);
615 	ram->hwsq.r_0x1002d4 = hwsq_reg(0x1002d4);
616 	ram->hwsq.r_0x1002dc = hwsq_reg(0x1002dc);
617 	ram->hwsq.r_0x10053c = hwsq_reg(0x10053c);
618 	ram->hwsq.r_0x1005a0 = hwsq_reg(0x1005a0);
619 	ram->hwsq.r_0x1005a4 = hwsq_reg(0x1005a4);
620 	ram->hwsq.r_0x100710 = hwsq_reg(0x100710);
621 	ram->hwsq.r_0x100714 = hwsq_reg(0x100714);
622 	ram->hwsq.r_0x100718 = hwsq_reg(0x100718);
623 	ram->hwsq.r_0x10071c = hwsq_reg(0x10071c);
624 	ram->hwsq.r_0x100da0 = hwsq_stride(0x100da0, 4, ram->base.part_mask);
625 	ram->hwsq.r_0x100e20 = hwsq_reg(0x100e20);
626 	ram->hwsq.r_0x100e24 = hwsq_reg(0x100e24);
627 	ram->hwsq.r_0x611200 = hwsq_reg(0x611200);
628 
629 	for (i = 0; i < 9; i++)
630 		ram->hwsq.r_timing[i] = hwsq_reg(0x100220 + (i * 0x04));
631 
632 	if (ram->base.ranks > 1) {
633 		ram->hwsq.r_mr[0] = hwsq_reg2(0x1002c0, 0x1002c8);
634 		ram->hwsq.r_mr[1] = hwsq_reg2(0x1002c4, 0x1002cc);
635 		ram->hwsq.r_mr[2] = hwsq_reg2(0x1002e0, 0x1002e8);
636 		ram->hwsq.r_mr[3] = hwsq_reg2(0x1002e4, 0x1002ec);
637 	} else {
638 		ram->hwsq.r_mr[0] = hwsq_reg(0x1002c0);
639 		ram->hwsq.r_mr[1] = hwsq_reg(0x1002c4);
640 		ram->hwsq.r_mr[2] = hwsq_reg(0x1002e0);
641 		ram->hwsq.r_mr[3] = hwsq_reg(0x1002e4);
642 	}
643 
644 	return 0;
645 }
646 
647 struct nvkm_oclass
648 nv50_ram_oclass = {
649 	.ofuncs = &(struct nvkm_ofuncs) {
650 		.ctor = nv50_ram_ctor,
651 		.dtor = _nvkm_ram_dtor,
652 		.init = _nvkm_ram_init,
653 		.fini = _nvkm_ram_fini,
654 	}
655 };
656