1 /*
2  * Copyright 2013 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Ben Skeggs
23  */
24 #include "nv50.h"
25 #include "ramseq.h"
26 
27 #include <core/option.h>
28 #include <subdev/bios.h>
29 #include <subdev/bios/perf.h>
30 #include <subdev/bios/pll.h>
31 #include <subdev/bios/rammap.h>
32 #include <subdev/bios/timing.h>
33 #include <subdev/clk/pll.h>
34 
35 struct nv50_ramseq {
36 	struct hwsq base;
37 	struct hwsq_reg r_0x002504;
38 	struct hwsq_reg r_0x004008;
39 	struct hwsq_reg r_0x00400c;
40 	struct hwsq_reg r_0x00c040;
41 	struct hwsq_reg r_0x100200;
42 	struct hwsq_reg r_0x100210;
43 	struct hwsq_reg r_0x10021c;
44 	struct hwsq_reg r_0x1002d0;
45 	struct hwsq_reg r_0x1002d4;
46 	struct hwsq_reg r_0x1002dc;
47 	struct hwsq_reg r_0x10053c;
48 	struct hwsq_reg r_0x1005a0;
49 	struct hwsq_reg r_0x1005a4;
50 	struct hwsq_reg r_0x100710;
51 	struct hwsq_reg r_0x100714;
52 	struct hwsq_reg r_0x100718;
53 	struct hwsq_reg r_0x10071c;
54 	struct hwsq_reg r_0x100da0;
55 	struct hwsq_reg r_0x100e20;
56 	struct hwsq_reg r_0x100e24;
57 	struct hwsq_reg r_0x611200;
58 	struct hwsq_reg r_timing[9];
59 	struct hwsq_reg r_mr[4];
60 };
61 
62 struct nv50_ram {
63 	struct nvkm_ram base;
64 	struct nv50_ramseq hwsq;
65 };
66 
67 #define T(t) cfg->timing_10_##t
68 static int
69 nv50_ram_timing_calc(struct nvkm_fb *fb, u32 *timing)
70 {
71 	struct nv50_ram *ram = (void *)fb->ram;
72 	struct nvbios_ramcfg *cfg = &ram->base.target.bios;
73 	struct nvkm_subdev *subdev = &fb->subdev;
74 	struct nvkm_device *device = subdev->device;
75 	u32 cur2, cur4, cur7, cur8;
76 	u8 unkt3b;
77 
78 	cur2 = nvkm_rd32(device, 0x100228);
79 	cur4 = nvkm_rd32(device, 0x100230);
80 	cur7 = nvkm_rd32(device, 0x10023c);
81 	cur8 = nvkm_rd32(device, 0x100240);
82 
83 	switch ((!T(CWL)) * ram->base.type) {
84 	case NV_MEM_TYPE_DDR2:
85 		T(CWL) = T(CL) - 1;
86 		break;
87 	case NV_MEM_TYPE_GDDR3:
88 		T(CWL) = ((cur2 & 0xff000000) >> 24) + 1;
89 		break;
90 	}
91 
92 	/* XXX: N=1 is not proper statistics */
93 	if (nv_device(fb)->chipset == 0xa0) {
94 		unkt3b = 0x19 + ram->base.next->bios.rammap_00_16_40;
95 		timing[6] = (0x2d + T(CL) - T(CWL) +
96 				ram->base.next->bios.rammap_00_16_40) << 16 |
97 			    T(CWL) << 8 |
98 			    (0x2f + T(CL) - T(CWL));
99 	} else {
100 		unkt3b = 0x16;
101 		timing[6] = (0x2b + T(CL) - T(CWL)) << 16 |
102 			    max_t(s8, T(CWL) - 2, 1) << 8 |
103 			    (0x2e + T(CL) - T(CWL));
104 	}
105 
106 	timing[0] = (T(RP) << 24 | T(RAS) << 16 | T(RFC) << 8 | T(RC));
107 	timing[1] = (T(WR) + 1 + T(CWL)) << 24 |
108 		    max_t(u8, T(18), 1) << 16 |
109 		    (T(WTR) + 1 + T(CWL)) << 8 |
110 		    (3 + T(CL) - T(CWL));
111 	timing[2] = (T(CWL) - 1) << 24 |
112 		    (T(RRD) << 16) |
113 		    (T(RCDWR) << 8) |
114 		    T(RCDRD);
115 	timing[3] = (unkt3b - 2 + T(CL)) << 24 |
116 		    unkt3b << 16 |
117 		    (T(CL) - 1) << 8 |
118 		    (T(CL) - 1);
119 	timing[4] = (cur4 & 0xffff0000) |
120 		    T(13) << 8 |
121 		    T(13);
122 	timing[5] = T(RFC) << 24 |
123 		    max_t(u8, T(RCDRD), T(RCDWR)) << 16 |
124 		    T(RP);
125 	/* Timing 6 is already done above */
126 	timing[7] = (cur7 & 0xff00ffff) | (T(CL) - 1) << 16;
127 	timing[8] = (cur8 & 0xffffff00);
128 
129 	/* XXX: P.version == 1 only has DDR2 and GDDR3? */
130 	if (fb->ram->type == NV_MEM_TYPE_DDR2) {
131 		timing[5] |= (T(CL) + 3) << 8;
132 		timing[8] |= (T(CL) - 4);
133 	} else if (fb->ram->type == NV_MEM_TYPE_GDDR3) {
134 		timing[5] |= (T(CL) + 2) << 8;
135 		timing[8] |= (T(CL) - 2);
136 	}
137 
138 	nvkm_debug(subdev, " 220: %08x %08x %08x %08x\n",
139 		   timing[0], timing[1], timing[2], timing[3]);
140 	nvkm_debug(subdev, " 230: %08x %08x %08x %08x\n",
141 		   timing[4], timing[5], timing[6], timing[7]);
142 	nvkm_debug(subdev, " 240: %08x\n", timing[8]);
143 	return 0;
144 }
145 #undef T
146 
147 static void
148 nvkm_sddr2_dll_reset(struct nv50_ramseq *hwsq)
149 {
150 	ram_mask(hwsq, mr[0], 0x100, 0x100);
151 	ram_mask(hwsq, mr[0], 0x100, 0x000);
152 	ram_nsec(hwsq, 24000);
153 }
154 
155 static int
156 nv50_ram_calc(struct nvkm_fb *fb, u32 freq)
157 {
158 	struct nv50_ram *ram = (void *)fb->ram;
159 	struct nv50_ramseq *hwsq = &ram->hwsq;
160 	struct nvkm_subdev *subdev = &fb->subdev;
161 	struct nvkm_bios *bios = subdev->device->bios;
162 	struct nvbios_perfE perfE;
163 	struct nvbios_pll mpll;
164 	struct nvkm_ram_data *next;
165 	u8  ver, hdr, cnt, len, strap, size;
166 	u32 data;
167 	u32 r100da0, r004008, unk710, unk714, unk718, unk71c;
168 	int N1, M1, N2, M2, P;
169 	int ret, i;
170 	u32 timing[9];
171 
172 	next = &ram->base.target;
173 	next->freq = freq;
174 	ram->base.next = next;
175 
176 	/* lookup closest matching performance table entry for frequency */
177 	i = 0;
178 	do {
179 		data = nvbios_perfEp(bios, i++, &ver, &hdr, &cnt,
180 					    &size, &perfE);
181 		if (!data || (ver < 0x25 || ver >= 0x40) ||
182 		    (size < 2)) {
183 			nvkm_error(subdev, "invalid/missing perftab entry\n");
184 			return -EINVAL;
185 		}
186 	} while (perfE.memory < freq);
187 
188 	nvbios_rammapEp_from_perf(bios, data, hdr, &next->bios);
189 
190 	/* locate specific data set for the attached memory */
191 	strap = nvbios_ramcfg_index(nv_subdev(fb));
192 	if (strap >= cnt) {
193 		nvkm_error(subdev, "invalid ramcfg strap\n");
194 		return -EINVAL;
195 	}
196 
197 	data = nvbios_rammapSp_from_perf(bios, data + hdr, size, strap,
198 			&next->bios);
199 	if (!data) {
200 		nvkm_error(subdev, "invalid/missing rammap entry ");
201 		return -EINVAL;
202 	}
203 
204 	/* lookup memory timings, if bios says they're present */
205 	if (next->bios.ramcfg_timing != 0xff) {
206 		data = nvbios_timingEp(bios, next->bios.ramcfg_timing,
207 					&ver, &hdr, &cnt, &len, &next->bios);
208 		if (!data || ver != 0x10 || hdr < 0x12) {
209 			nvkm_error(subdev, "invalid/missing timing entry "
210 				 "%02x %04x %02x %02x\n",
211 				 strap, data, ver, hdr);
212 			return -EINVAL;
213 		}
214 	}
215 
216 	nv50_ram_timing_calc(fb, timing);
217 
218 	ret = ram_init(hwsq, nv_subdev(fb));
219 	if (ret)
220 		return ret;
221 
222 	/* Determine ram-specific MR values */
223 	ram->base.mr[0] = ram_rd32(hwsq, mr[0]);
224 	ram->base.mr[1] = ram_rd32(hwsq, mr[1]);
225 	ram->base.mr[2] = ram_rd32(hwsq, mr[2]);
226 
227 	switch (ram->base.type) {
228 	case NV_MEM_TYPE_GDDR3:
229 		ret = nvkm_gddr3_calc(&ram->base);
230 		break;
231 	default:
232 		ret = -ENOSYS;
233 		break;
234 	}
235 
236 	if (ret)
237 		return ret;
238 
239 	/* Always disable this bit during reclock */
240 	ram_mask(hwsq, 0x100200, 0x00000800, 0x00000000);
241 
242 	ram_wait(hwsq, 0x01, 0x00); /* wait for !vblank */
243 	ram_wait(hwsq, 0x01, 0x01); /* wait for vblank */
244 	ram_wr32(hwsq, 0x611200, 0x00003300);
245 	ram_wr32(hwsq, 0x002504, 0x00000001); /* block fifo */
246 	ram_nsec(hwsq, 8000);
247 	ram_setf(hwsq, 0x10, 0x00); /* disable fb */
248 	ram_wait(hwsq, 0x00, 0x01); /* wait for fb disabled */
249 	ram_nsec(hwsq, 2000);
250 
251 	ram_wr32(hwsq, 0x1002d4, 0x00000001); /* precharge */
252 	ram_wr32(hwsq, 0x1002d0, 0x00000001); /* refresh */
253 	ram_wr32(hwsq, 0x1002d0, 0x00000001); /* refresh */
254 	ram_wr32(hwsq, 0x100210, 0x00000000); /* disable auto-refresh */
255 	ram_wr32(hwsq, 0x1002dc, 0x00000001); /* enable self-refresh */
256 
257 	ret = nvbios_pll_parse(bios, 0x004008, &mpll);
258 	mpll.vco2.max_freq = 0;
259 	if (ret >= 0) {
260 		ret = nv04_pll_calc(nv_subdev(fb), &mpll, freq,
261 				    &N1, &M1, &N2, &M2, &P);
262 		if (ret <= 0)
263 			ret = -EINVAL;
264 	}
265 
266 	if (ret < 0)
267 		return ret;
268 
269 	/* XXX: 750MHz seems rather arbitrary */
270 	if (freq <= 750000) {
271 		r100da0 = 0x00000010;
272 		r004008 = 0x90000000;
273 	} else {
274 		r100da0 = 0x00000000;
275 		r004008 = 0x80000000;
276 	}
277 
278 	r004008 |= (mpll.bias_p << 19) | (P << 22) | (P << 16);
279 
280 	ram_mask(hwsq, 0x00c040, 0xc000c000, 0x0000c000);
281 	/* XXX: Is rammap_00_16_40 the DLL bit we've seen in GT215? Why does
282 	 * it have a different rammap bit from DLLoff? */
283 	ram_mask(hwsq, 0x004008, 0x00004200, 0x00000200 |
284 			next->bios.rammap_00_16_40 << 14);
285 	ram_mask(hwsq, 0x00400c, 0x0000ffff, (N1 << 8) | M1);
286 	ram_mask(hwsq, 0x004008, 0x91ff0000, r004008);
287 	if (nv_device(fb)->chipset >= 0x96)
288 		ram_wr32(hwsq, 0x100da0, r100da0);
289 	ram_nsec(hwsq, 64000); /*XXX*/
290 	ram_nsec(hwsq, 32000); /*XXX*/
291 
292 	ram_mask(hwsq, 0x004008, 0x00002200, 0x00002000);
293 
294 	ram_wr32(hwsq, 0x1002dc, 0x00000000); /* disable self-refresh */
295 	ram_wr32(hwsq, 0x1002d4, 0x00000001); /* disable self-refresh */
296 	ram_wr32(hwsq, 0x100210, 0x80000000); /* enable auto-refresh */
297 
298 	ram_nsec(hwsq, 12000);
299 
300 	switch (ram->base.type) {
301 	case NV_MEM_TYPE_DDR2:
302 		ram_nuke(hwsq, mr[0]); /* force update */
303 		ram_mask(hwsq, mr[0], 0x000, 0x000);
304 		break;
305 	case NV_MEM_TYPE_GDDR3:
306 		ram_nuke(hwsq, mr[1]); /* force update */
307 		ram_wr32(hwsq, mr[1], ram->base.mr[1]);
308 		ram_nuke(hwsq, mr[0]); /* force update */
309 		ram_wr32(hwsq, mr[0], ram->base.mr[0]);
310 		break;
311 	default:
312 		break;
313 	}
314 
315 	ram_mask(hwsq, timing[3], 0xffffffff, timing[3]);
316 	ram_mask(hwsq, timing[1], 0xffffffff, timing[1]);
317 	ram_mask(hwsq, timing[6], 0xffffffff, timing[6]);
318 	ram_mask(hwsq, timing[7], 0xffffffff, timing[7]);
319 	ram_mask(hwsq, timing[8], 0xffffffff, timing[8]);
320 	ram_mask(hwsq, timing[0], 0xffffffff, timing[0]);
321 	ram_mask(hwsq, timing[2], 0xffffffff, timing[2]);
322 	ram_mask(hwsq, timing[4], 0xffffffff, timing[4]);
323 	ram_mask(hwsq, timing[5], 0xffffffff, timing[5]);
324 
325 	if (!next->bios.ramcfg_00_03_02)
326 		ram_mask(hwsq, 0x10021c, 0x00010000, 0x00000000);
327 	ram_mask(hwsq, 0x100200, 0x00001000, !next->bios.ramcfg_00_04_02 << 12);
328 
329 	/* XXX: A lot of this could be "chipset"/"ram type" specific stuff */
330 	unk710  = ram_rd32(hwsq, 0x100710) & ~0x00000101;
331 	unk714  = ram_rd32(hwsq, 0x100714) & ~0xf0000020;
332 	unk718  = ram_rd32(hwsq, 0x100718) & ~0x00000100;
333 	unk71c  = ram_rd32(hwsq, 0x10071c) & ~0x00000100;
334 
335 	if ( next->bios.ramcfg_00_03_01)
336 		unk71c |= 0x00000100;
337 	if ( next->bios.ramcfg_00_03_02)
338 		unk710 |= 0x00000100;
339 	if (!next->bios.ramcfg_00_03_08) {
340 		unk710 |= 0x1;
341 		unk714 |= 0x20;
342 	}
343 	if ( next->bios.ramcfg_00_04_04)
344 		unk714 |= 0x70000000;
345 	if ( next->bios.ramcfg_00_04_20)
346 		unk718 |= 0x00000100;
347 
348 	ram_mask(hwsq, 0x100714, 0xffffffff, unk714);
349 	ram_mask(hwsq, 0x10071c, 0xffffffff, unk71c);
350 	ram_mask(hwsq, 0x100718, 0xffffffff, unk718);
351 	ram_mask(hwsq, 0x100710, 0xffffffff, unk710);
352 
353 	if (next->bios.rammap_00_16_20) {
354 		ram_wr32(hwsq, 0x1005a0, next->bios.ramcfg_00_07 << 16 |
355 					 next->bios.ramcfg_00_06 << 8 |
356 					 next->bios.ramcfg_00_05);
357 		ram_wr32(hwsq, 0x1005a4, next->bios.ramcfg_00_09 << 8 |
358 					 next->bios.ramcfg_00_08);
359 		ram_mask(hwsq, 0x10053c, 0x00001000, 0x00000000);
360 	} else {
361 		ram_mask(hwsq, 0x10053c, 0x00001000, 0x00001000);
362 	}
363 	ram_mask(hwsq, mr[1], 0xffffffff, ram->base.mr[1]);
364 
365 	/* Reset DLL */
366 	if (!next->bios.ramcfg_DLLoff)
367 		nvkm_sddr2_dll_reset(hwsq);
368 
369 	ram_setf(hwsq, 0x10, 0x01); /* enable fb */
370 	ram_wait(hwsq, 0x00, 0x00); /* wait for fb enabled */
371 	ram_wr32(hwsq, 0x611200, 0x00003330);
372 	ram_wr32(hwsq, 0x002504, 0x00000000); /* un-block fifo */
373 
374 	if (next->bios.rammap_00_17_02)
375 		ram_mask(hwsq, 0x100200, 0x00000800, 0x00000800);
376 	if (!next->bios.rammap_00_16_40)
377 		ram_mask(hwsq, 0x004008, 0x00004000, 0x00000000);
378 	if (next->bios.ramcfg_00_03_02)
379 		ram_mask(hwsq, 0x10021c, 0x00010000, 0x00010000);
380 
381 	return 0;
382 }
383 
384 static int
385 nv50_ram_prog(struct nvkm_fb *fb)
386 {
387 	struct nvkm_device *device = nv_device(fb);
388 	struct nv50_ram *ram = (void *)fb->ram;
389 	struct nv50_ramseq *hwsq = &ram->hwsq;
390 
391 	ram_exec(hwsq, nvkm_boolopt(device->cfgopt, "NvMemExec", true));
392 	return 0;
393 }
394 
395 static void
396 nv50_ram_tidy(struct nvkm_fb *fb)
397 {
398 	struct nv50_ram *ram = (void *)fb->ram;
399 	struct nv50_ramseq *hwsq = &ram->hwsq;
400 	ram_exec(hwsq, false);
401 }
402 
403 void
404 __nv50_ram_put(struct nvkm_fb *fb, struct nvkm_mem *mem)
405 {
406 	struct nvkm_mm_node *this;
407 
408 	while (!list_empty(&mem->regions)) {
409 		this = list_first_entry(&mem->regions, typeof(*this), rl_entry);
410 
411 		list_del(&this->rl_entry);
412 		nvkm_mm_free(&fb->vram, &this);
413 	}
414 
415 	nvkm_mm_free(&fb->tags, &mem->tag);
416 }
417 
418 void
419 nv50_ram_put(struct nvkm_fb *fb, struct nvkm_mem **pmem)
420 {
421 	struct nvkm_mem *mem = *pmem;
422 
423 	*pmem = NULL;
424 	if (unlikely(mem == NULL))
425 		return;
426 
427 	mutex_lock(&fb->subdev.mutex);
428 	__nv50_ram_put(fb, mem);
429 	mutex_unlock(&fb->subdev.mutex);
430 
431 	kfree(mem);
432 }
433 
434 int
435 nv50_ram_get(struct nvkm_fb *fb, u64 size, u32 align, u32 ncmin,
436 	     u32 memtype, struct nvkm_mem **pmem)
437 {
438 	struct nvkm_mm *heap = &fb->vram;
439 	struct nvkm_mm *tags = &fb->tags;
440 	struct nvkm_mm_node *r;
441 	struct nvkm_mem *mem;
442 	int comp = (memtype & 0x300) >> 8;
443 	int type = (memtype & 0x07f);
444 	int back = (memtype & 0x800);
445 	int min, max, ret;
446 
447 	max = (size >> 12);
448 	min = ncmin ? (ncmin >> 12) : max;
449 	align >>= 12;
450 
451 	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
452 	if (!mem)
453 		return -ENOMEM;
454 
455 	mutex_lock(&fb->subdev.mutex);
456 	if (comp) {
457 		if (align == 16) {
458 			int n = (max >> 4) * comp;
459 
460 			ret = nvkm_mm_head(tags, 0, 1, n, n, 1, &mem->tag);
461 			if (ret)
462 				mem->tag = NULL;
463 		}
464 
465 		if (unlikely(!mem->tag))
466 			comp = 0;
467 	}
468 
469 	INIT_LIST_HEAD(&mem->regions);
470 	mem->memtype = (comp << 7) | type;
471 	mem->size = max;
472 
473 	type = nv50_fb_memtype[type];
474 	do {
475 		if (back)
476 			ret = nvkm_mm_tail(heap, 0, type, max, min, align, &r);
477 		else
478 			ret = nvkm_mm_head(heap, 0, type, max, min, align, &r);
479 		if (ret) {
480 			mutex_unlock(&fb->subdev.mutex);
481 			fb->ram->put(fb, &mem);
482 			return ret;
483 		}
484 
485 		list_add_tail(&r->rl_entry, &mem->regions);
486 		max -= r->length;
487 	} while (max);
488 	mutex_unlock(&fb->subdev.mutex);
489 
490 	r = list_first_entry(&mem->regions, struct nvkm_mm_node, rl_entry);
491 	mem->offset = (u64)r->offset << 12;
492 	*pmem = mem;
493 	return 0;
494 }
495 
496 static u32
497 nv50_fb_vram_rblock(struct nvkm_fb *fb, struct nvkm_ram *ram)
498 {
499 	struct nvkm_subdev *subdev = &fb->subdev;
500 	struct nvkm_device *device = subdev->device;
501 	int colbits, rowbitsa, rowbitsb, banks;
502 	u64 rowsize, predicted;
503 	u32 r0, r4, rt, rblock_size;
504 
505 	r0 = nvkm_rd32(device, 0x100200);
506 	r4 = nvkm_rd32(device, 0x100204);
507 	rt = nvkm_rd32(device, 0x100250);
508 	nvkm_debug(subdev, "memcfg %08x %08x %08x %08x\n",
509 		   r0, r4, rt, nvkm_rd32(device, 0x001540));
510 
511 	colbits  =  (r4 & 0x0000f000) >> 12;
512 	rowbitsa = ((r4 & 0x000f0000) >> 16) + 8;
513 	rowbitsb = ((r4 & 0x00f00000) >> 20) + 8;
514 	banks    = 1 << (((r4 & 0x03000000) >> 24) + 2);
515 
516 	rowsize = ram->parts * banks * (1 << colbits) * 8;
517 	predicted = rowsize << rowbitsa;
518 	if (r0 & 0x00000004)
519 		predicted += rowsize << rowbitsb;
520 
521 	if (predicted != ram->size) {
522 		nvkm_warn(subdev, "memory controller reports %d MiB VRAM\n",
523 			  (u32)(ram->size >> 20));
524 	}
525 
526 	rblock_size = rowsize;
527 	if (rt & 1)
528 		rblock_size *= 3;
529 
530 	nvkm_debug(subdev, "rblock %d bytes\n", rblock_size);
531 	return rblock_size;
532 }
533 
534 int
535 nv50_ram_create_(struct nvkm_object *parent, struct nvkm_object *engine,
536 		 struct nvkm_oclass *oclass, int length, void **pobject)
537 {
538 	const u32 rsvd_head = ( 256 * 1024) >> 12; /* vga memory */
539 	const u32 rsvd_tail = (1024 * 1024) >> 12; /* vbios etc */
540 	struct nvkm_fb *fb = nvkm_fb(parent);
541 	struct nvkm_device *device = fb->subdev.device;
542 	struct nvkm_bios *bios = device->bios;
543 	struct nvkm_ram *ram;
544 	int ret;
545 
546 	ret = nvkm_ram_create_(parent, engine, oclass, length, pobject);
547 	ram = *pobject;
548 	if (ret)
549 		return ret;
550 
551 	ram->size = nvkm_rd32(device, 0x10020c);
552 	ram->size = (ram->size & 0xffffff00) | ((ram->size & 0x000000ff) << 32);
553 
554 	ram->part_mask = (nvkm_rd32(device, 0x001540) & 0x00ff0000) >> 16;
555 	ram->parts = hweight8(ram->part_mask);
556 
557 	switch (nvkm_rd32(device, 0x100714) & 0x00000007) {
558 	case 0: ram->type = NV_MEM_TYPE_DDR1; break;
559 	case 1:
560 		if (nvkm_fb_bios_memtype(bios) == NV_MEM_TYPE_DDR3)
561 			ram->type = NV_MEM_TYPE_DDR3;
562 		else
563 			ram->type = NV_MEM_TYPE_DDR2;
564 		break;
565 	case 2: ram->type = NV_MEM_TYPE_GDDR3; break;
566 	case 3: ram->type = NV_MEM_TYPE_GDDR4; break;
567 	case 4: ram->type = NV_MEM_TYPE_GDDR5; break;
568 	default:
569 		break;
570 	}
571 
572 	ret = nvkm_mm_init(&fb->vram, rsvd_head, (ram->size >> 12) -
573 			   (rsvd_head + rsvd_tail),
574 			   nv50_fb_vram_rblock(fb, ram) >> 12);
575 	if (ret)
576 		return ret;
577 
578 	ram->ranks = (nvkm_rd32(device, 0x100200) & 0x4) ? 2 : 1;
579 	ram->tags  =  nvkm_rd32(device, 0x100320);
580 	ram->get = nv50_ram_get;
581 	ram->put = nv50_ram_put;
582 	return 0;
583 }
584 
585 static int
586 nv50_ram_ctor(struct nvkm_object *parent, struct nvkm_object *engine,
587 	      struct nvkm_oclass *oclass, void *data, u32 datasize,
588 	      struct nvkm_object **pobject)
589 {
590 	struct nvkm_fb *fb = nvkm_fb(parent);
591 	struct nvkm_subdev *subdev = &fb->subdev;
592 	struct nv50_ram *ram;
593 	int ret, i;
594 
595 	ret = nv50_ram_create(parent, engine, oclass, &ram);
596 	*pobject = nv_object(ram);
597 	if (ret)
598 		return ret;
599 
600 	switch (ram->base.type) {
601 	case NV_MEM_TYPE_GDDR3:
602 		ram->base.calc = nv50_ram_calc;
603 		ram->base.prog = nv50_ram_prog;
604 		ram->base.tidy = nv50_ram_tidy;
605 		break;
606 	case NV_MEM_TYPE_DDR2:
607 	default:
608 		nvkm_warn(subdev, "reclocking of this ram type unsupported\n");
609 		return 0;
610 	}
611 
612 	ram->hwsq.r_0x002504 = hwsq_reg(0x002504);
613 	ram->hwsq.r_0x00c040 = hwsq_reg(0x00c040);
614 	ram->hwsq.r_0x004008 = hwsq_reg(0x004008);
615 	ram->hwsq.r_0x00400c = hwsq_reg(0x00400c);
616 	ram->hwsq.r_0x100200 = hwsq_reg(0x100200);
617 	ram->hwsq.r_0x100210 = hwsq_reg(0x100210);
618 	ram->hwsq.r_0x10021c = hwsq_reg(0x10021c);
619 	ram->hwsq.r_0x1002d0 = hwsq_reg(0x1002d0);
620 	ram->hwsq.r_0x1002d4 = hwsq_reg(0x1002d4);
621 	ram->hwsq.r_0x1002dc = hwsq_reg(0x1002dc);
622 	ram->hwsq.r_0x10053c = hwsq_reg(0x10053c);
623 	ram->hwsq.r_0x1005a0 = hwsq_reg(0x1005a0);
624 	ram->hwsq.r_0x1005a4 = hwsq_reg(0x1005a4);
625 	ram->hwsq.r_0x100710 = hwsq_reg(0x100710);
626 	ram->hwsq.r_0x100714 = hwsq_reg(0x100714);
627 	ram->hwsq.r_0x100718 = hwsq_reg(0x100718);
628 	ram->hwsq.r_0x10071c = hwsq_reg(0x10071c);
629 	ram->hwsq.r_0x100da0 = hwsq_stride(0x100da0, 4, ram->base.part_mask);
630 	ram->hwsq.r_0x100e20 = hwsq_reg(0x100e20);
631 	ram->hwsq.r_0x100e24 = hwsq_reg(0x100e24);
632 	ram->hwsq.r_0x611200 = hwsq_reg(0x611200);
633 
634 	for (i = 0; i < 9; i++)
635 		ram->hwsq.r_timing[i] = hwsq_reg(0x100220 + (i * 0x04));
636 
637 	if (ram->base.ranks > 1) {
638 		ram->hwsq.r_mr[0] = hwsq_reg2(0x1002c0, 0x1002c8);
639 		ram->hwsq.r_mr[1] = hwsq_reg2(0x1002c4, 0x1002cc);
640 		ram->hwsq.r_mr[2] = hwsq_reg2(0x1002e0, 0x1002e8);
641 		ram->hwsq.r_mr[3] = hwsq_reg2(0x1002e4, 0x1002ec);
642 	} else {
643 		ram->hwsq.r_mr[0] = hwsq_reg(0x1002c0);
644 		ram->hwsq.r_mr[1] = hwsq_reg(0x1002c4);
645 		ram->hwsq.r_mr[2] = hwsq_reg(0x1002e0);
646 		ram->hwsq.r_mr[3] = hwsq_reg(0x1002e4);
647 	}
648 
649 	return 0;
650 }
651 
652 struct nvkm_oclass
653 nv50_ram_oclass = {
654 	.ofuncs = &(struct nvkm_ofuncs) {
655 		.ctor = nv50_ram_ctor,
656 		.dtor = _nvkm_ram_dtor,
657 		.init = _nvkm_ram_init,
658 		.fini = _nvkm_ram_fini,
659 	}
660 };
661