1 /* 2 * Copyright 2013 Red Hat Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 * Authors: Ben Skeggs 23 */ 24 #include "gf100.h" 25 #include "ramfuc.h" 26 27 #include <core/option.h> 28 #include <subdev/bios.h> 29 #include <subdev/bios/pll.h> 30 #include <subdev/bios/rammap.h> 31 #include <subdev/bios/timing.h> 32 #include <subdev/clk.h> 33 #include <subdev/clk/pll.h> 34 #include <subdev/ltc.h> 35 36 struct gf100_ramfuc { 37 struct ramfuc base; 38 39 struct ramfuc_reg r_0x10fe20; 40 struct ramfuc_reg r_0x10fe24; 41 struct ramfuc_reg r_0x137320; 42 struct ramfuc_reg r_0x137330; 43 44 struct ramfuc_reg r_0x132000; 45 struct ramfuc_reg r_0x132004; 46 struct ramfuc_reg r_0x132100; 47 48 struct ramfuc_reg r_0x137390; 49 50 struct ramfuc_reg r_0x10f290; 51 struct ramfuc_reg r_0x10f294; 52 struct ramfuc_reg r_0x10f298; 53 struct ramfuc_reg r_0x10f29c; 54 struct ramfuc_reg r_0x10f2a0; 55 56 struct ramfuc_reg r_0x10f300; 57 struct ramfuc_reg r_0x10f338; 58 struct ramfuc_reg r_0x10f340; 59 struct ramfuc_reg r_0x10f344; 60 struct ramfuc_reg r_0x10f348; 61 62 struct ramfuc_reg r_0x10f910; 63 struct ramfuc_reg r_0x10f914; 64 65 struct ramfuc_reg r_0x100b0c; 66 struct ramfuc_reg r_0x10f050; 67 struct ramfuc_reg r_0x10f090; 68 struct ramfuc_reg r_0x10f200; 69 struct ramfuc_reg r_0x10f210; 70 struct ramfuc_reg r_0x10f310; 71 struct ramfuc_reg r_0x10f314; 72 struct ramfuc_reg r_0x10f610; 73 struct ramfuc_reg r_0x10f614; 74 struct ramfuc_reg r_0x10f800; 75 struct ramfuc_reg r_0x10f808; 76 struct ramfuc_reg r_0x10f824; 77 struct ramfuc_reg r_0x10f830; 78 struct ramfuc_reg r_0x10f988; 79 struct ramfuc_reg r_0x10f98c; 80 struct ramfuc_reg r_0x10f990; 81 struct ramfuc_reg r_0x10f998; 82 struct ramfuc_reg r_0x10f9b0; 83 struct ramfuc_reg r_0x10f9b4; 84 struct ramfuc_reg r_0x10fb04; 85 struct ramfuc_reg r_0x10fb08; 86 struct ramfuc_reg r_0x137300; 87 struct ramfuc_reg r_0x137310; 88 struct ramfuc_reg r_0x137360; 89 struct ramfuc_reg r_0x1373ec; 90 struct ramfuc_reg r_0x1373f0; 91 struct ramfuc_reg r_0x1373f8; 92 93 struct ramfuc_reg r_0x61c140; 94 struct ramfuc_reg r_0x611200; 95 96 struct ramfuc_reg r_0x13d8f4; 97 }; 98 99 struct gf100_ram { 100 struct nvkm_ram base; 101 struct gf100_ramfuc fuc; 102 struct nvbios_pll refpll; 103 struct nvbios_pll mempll; 104 }; 105 106 static void 107 gf100_ram_train(struct gf100_ramfuc *fuc, u32 magic) 108 { 109 struct gf100_ram *ram = container_of(fuc, typeof(*ram), fuc); 110 struct nvkm_fb *fb = nvkm_fb(ram); 111 struct nvkm_device *device = fb->subdev.device; 112 u32 part = nvkm_rd32(device, 0x022438), i; 113 u32 mask = nvkm_rd32(device, 0x022554); 114 u32 addr = 0x110974; 115 116 ram_wr32(fuc, 0x10f910, magic); 117 ram_wr32(fuc, 0x10f914, magic); 118 119 for (i = 0; (magic & 0x80000000) && i < part; addr += 0x1000, i++) { 120 if (mask & (1 << i)) 121 continue; 122 ram_wait(fuc, addr, 0x0000000f, 0x00000000, 500000); 123 } 124 } 125 126 static int 127 gf100_ram_calc(struct nvkm_fb *fb, u32 freq) 128 { 129 struct nvkm_clk *clk = nvkm_clk(fb); 130 struct nvkm_bios *bios = nvkm_bios(fb); 131 struct gf100_ram *ram = (void *)fb->ram; 132 struct gf100_ramfuc *fuc = &ram->fuc; 133 struct nvbios_ramcfg cfg; 134 u8 ver, cnt, len, strap; 135 struct { 136 u32 data; 137 u8 size; 138 } rammap, ramcfg, timing; 139 int ref, div, out; 140 int from, mode; 141 int N1, M1, P; 142 int ret; 143 144 /* lookup memory config data relevant to the target frequency */ 145 rammap.data = nvbios_rammapEm(bios, freq / 1000, &ver, &rammap.size, 146 &cnt, &ramcfg.size, &cfg); 147 if (!rammap.data || ver != 0x10 || rammap.size < 0x0e) { 148 nv_error(fb, "invalid/missing rammap entry\n"); 149 return -EINVAL; 150 } 151 152 /* locate specific data set for the attached memory */ 153 strap = nvbios_ramcfg_index(nv_subdev(fb)); 154 if (strap >= cnt) { 155 nv_error(fb, "invalid ramcfg strap\n"); 156 return -EINVAL; 157 } 158 159 ramcfg.data = rammap.data + rammap.size + (strap * ramcfg.size); 160 if (!ramcfg.data || ver != 0x10 || ramcfg.size < 0x0e) { 161 nv_error(fb, "invalid/missing ramcfg entry\n"); 162 return -EINVAL; 163 } 164 165 /* lookup memory timings, if bios says they're present */ 166 strap = nv_ro08(bios, ramcfg.data + 0x01); 167 if (strap != 0xff) { 168 timing.data = nvbios_timingEe(bios, strap, &ver, &timing.size, 169 &cnt, &len); 170 if (!timing.data || ver != 0x10 || timing.size < 0x19) { 171 nv_error(fb, "invalid/missing timing entry\n"); 172 return -EINVAL; 173 } 174 } else { 175 timing.data = 0; 176 } 177 178 ret = ram_init(fuc, fb); 179 if (ret) 180 return ret; 181 182 /* determine current mclk configuration */ 183 from = !!(ram_rd32(fuc, 0x1373f0) & 0x00000002); /*XXX: ok? */ 184 185 /* determine target mclk configuration */ 186 if (!(ram_rd32(fuc, 0x137300) & 0x00000100)) 187 ref = clk->read(clk, nv_clk_src_sppll0); 188 else 189 ref = clk->read(clk, nv_clk_src_sppll1); 190 div = max(min((ref * 2) / freq, (u32)65), (u32)2) - 2; 191 out = (ref * 2) / (div + 2); 192 mode = freq != out; 193 194 ram_mask(fuc, 0x137360, 0x00000002, 0x00000000); 195 196 if ((ram_rd32(fuc, 0x132000) & 0x00000002) || 0 /*XXX*/) { 197 ram_nuke(fuc, 0x132000); 198 ram_mask(fuc, 0x132000, 0x00000002, 0x00000002); 199 ram_mask(fuc, 0x132000, 0x00000002, 0x00000000); 200 } 201 202 if (mode == 1) { 203 ram_nuke(fuc, 0x10fe20); 204 ram_mask(fuc, 0x10fe20, 0x00000002, 0x00000002); 205 ram_mask(fuc, 0x10fe20, 0x00000002, 0x00000000); 206 } 207 208 // 0x00020034 // 0x0000000a 209 ram_wr32(fuc, 0x132100, 0x00000001); 210 211 if (mode == 1 && from == 0) { 212 /* calculate refpll */ 213 ret = gt215_pll_calc(nv_subdev(fb), &ram->refpll, 214 ram->mempll.refclk, &N1, NULL, &M1, &P); 215 if (ret <= 0) { 216 nv_error(fb, "unable to calc refpll\n"); 217 return ret ? ret : -ERANGE; 218 } 219 220 ram_wr32(fuc, 0x10fe20, 0x20010000); 221 ram_wr32(fuc, 0x137320, 0x00000003); 222 ram_wr32(fuc, 0x137330, 0x81200006); 223 ram_wr32(fuc, 0x10fe24, (P << 16) | (N1 << 8) | M1); 224 ram_wr32(fuc, 0x10fe20, 0x20010001); 225 ram_wait(fuc, 0x137390, 0x00020000, 0x00020000, 64000); 226 227 /* calculate mempll */ 228 ret = gt215_pll_calc(nv_subdev(fb), &ram->mempll, freq, 229 &N1, NULL, &M1, &P); 230 if (ret <= 0) { 231 nv_error(fb, "unable to calc refpll\n"); 232 return ret ? ret : -ERANGE; 233 } 234 235 ram_wr32(fuc, 0x10fe20, 0x20010005); 236 ram_wr32(fuc, 0x132004, (P << 16) | (N1 << 8) | M1); 237 ram_wr32(fuc, 0x132000, 0x18010101); 238 ram_wait(fuc, 0x137390, 0x00000002, 0x00000002, 64000); 239 } else 240 if (mode == 0) { 241 ram_wr32(fuc, 0x137300, 0x00000003); 242 } 243 244 if (from == 0) { 245 ram_nuke(fuc, 0x10fb04); 246 ram_mask(fuc, 0x10fb04, 0x0000ffff, 0x00000000); 247 ram_nuke(fuc, 0x10fb08); 248 ram_mask(fuc, 0x10fb08, 0x0000ffff, 0x00000000); 249 ram_wr32(fuc, 0x10f988, 0x2004ff00); 250 ram_wr32(fuc, 0x10f98c, 0x003fc040); 251 ram_wr32(fuc, 0x10f990, 0x20012001); 252 ram_wr32(fuc, 0x10f998, 0x00011a00); 253 ram_wr32(fuc, 0x13d8f4, 0x00000000); 254 } else { 255 ram_wr32(fuc, 0x10f988, 0x20010000); 256 ram_wr32(fuc, 0x10f98c, 0x00000000); 257 ram_wr32(fuc, 0x10f990, 0x20012001); 258 ram_wr32(fuc, 0x10f998, 0x00010a00); 259 } 260 261 if (from == 0) { 262 // 0x00020039 // 0x000000ba 263 } 264 265 // 0x0002003a // 0x00000002 266 ram_wr32(fuc, 0x100b0c, 0x00080012); 267 // 0x00030014 // 0x00000000 // 0x02b5f070 268 // 0x00030014 // 0x00010000 // 0x02b5f070 269 ram_wr32(fuc, 0x611200, 0x00003300); 270 // 0x00020034 // 0x0000000a 271 // 0x00030020 // 0x00000001 // 0x00000000 272 273 ram_mask(fuc, 0x10f200, 0x00000800, 0x00000000); 274 ram_wr32(fuc, 0x10f210, 0x00000000); 275 ram_nsec(fuc, 1000); 276 if (mode == 0) 277 gf100_ram_train(fuc, 0x000c1001); 278 ram_wr32(fuc, 0x10f310, 0x00000001); 279 ram_nsec(fuc, 1000); 280 ram_wr32(fuc, 0x10f090, 0x00000061); 281 ram_wr32(fuc, 0x10f090, 0xc000007f); 282 ram_nsec(fuc, 1000); 283 284 if (from == 0) { 285 ram_wr32(fuc, 0x10f824, 0x00007fd4); 286 } else { 287 ram_wr32(fuc, 0x1373ec, 0x00020404); 288 } 289 290 if (mode == 0) { 291 ram_mask(fuc, 0x10f808, 0x00080000, 0x00000000); 292 ram_mask(fuc, 0x10f200, 0x00008000, 0x00008000); 293 ram_wr32(fuc, 0x10f830, 0x41500010); 294 ram_mask(fuc, 0x10f830, 0x01000000, 0x00000000); 295 ram_mask(fuc, 0x132100, 0x00000100, 0x00000100); 296 ram_wr32(fuc, 0x10f050, 0xff000090); 297 ram_wr32(fuc, 0x1373ec, 0x00020f0f); 298 ram_wr32(fuc, 0x1373f0, 0x00000003); 299 ram_wr32(fuc, 0x137310, 0x81201616); 300 ram_wr32(fuc, 0x132100, 0x00000001); 301 // 0x00020039 // 0x000000ba 302 ram_wr32(fuc, 0x10f830, 0x00300017); 303 ram_wr32(fuc, 0x1373f0, 0x00000001); 304 ram_wr32(fuc, 0x10f824, 0x00007e77); 305 ram_wr32(fuc, 0x132000, 0x18030001); 306 ram_wr32(fuc, 0x10f090, 0x4000007e); 307 ram_nsec(fuc, 2000); 308 ram_wr32(fuc, 0x10f314, 0x00000001); 309 ram_wr32(fuc, 0x10f210, 0x80000000); 310 ram_wr32(fuc, 0x10f338, 0x00300220); 311 ram_wr32(fuc, 0x10f300, 0x0000011d); 312 ram_nsec(fuc, 1000); 313 ram_wr32(fuc, 0x10f290, 0x02060505); 314 ram_wr32(fuc, 0x10f294, 0x34208288); 315 ram_wr32(fuc, 0x10f298, 0x44050411); 316 ram_wr32(fuc, 0x10f29c, 0x0000114c); 317 ram_wr32(fuc, 0x10f2a0, 0x42e10069); 318 ram_wr32(fuc, 0x10f614, 0x40044f77); 319 ram_wr32(fuc, 0x10f610, 0x40044f77); 320 ram_wr32(fuc, 0x10f344, 0x00600009); 321 ram_nsec(fuc, 1000); 322 ram_wr32(fuc, 0x10f348, 0x00700008); 323 ram_wr32(fuc, 0x61c140, 0x19240000); 324 ram_wr32(fuc, 0x10f830, 0x00300017); 325 gf100_ram_train(fuc, 0x80021001); 326 gf100_ram_train(fuc, 0x80081001); 327 ram_wr32(fuc, 0x10f340, 0x00500004); 328 ram_nsec(fuc, 1000); 329 ram_wr32(fuc, 0x10f830, 0x01300017); 330 ram_wr32(fuc, 0x10f830, 0x00300017); 331 // 0x00030020 // 0x00000000 // 0x00000000 332 // 0x00020034 // 0x0000000b 333 ram_wr32(fuc, 0x100b0c, 0x00080028); 334 ram_wr32(fuc, 0x611200, 0x00003330); 335 } else { 336 ram_wr32(fuc, 0x10f800, 0x00001800); 337 ram_wr32(fuc, 0x13d8f4, 0x00000000); 338 ram_wr32(fuc, 0x1373ec, 0x00020404); 339 ram_wr32(fuc, 0x1373f0, 0x00000003); 340 ram_wr32(fuc, 0x10f830, 0x40700010); 341 ram_wr32(fuc, 0x10f830, 0x40500010); 342 ram_wr32(fuc, 0x13d8f4, 0x00000000); 343 ram_wr32(fuc, 0x1373f8, 0x00000000); 344 ram_wr32(fuc, 0x132100, 0x00000101); 345 ram_wr32(fuc, 0x137310, 0x89201616); 346 ram_wr32(fuc, 0x10f050, 0xff000090); 347 ram_wr32(fuc, 0x1373ec, 0x00030404); 348 ram_wr32(fuc, 0x1373f0, 0x00000002); 349 // 0x00020039 // 0x00000011 350 ram_wr32(fuc, 0x132100, 0x00000001); 351 ram_wr32(fuc, 0x1373f8, 0x00002000); 352 ram_nsec(fuc, 2000); 353 ram_wr32(fuc, 0x10f808, 0x7aaa0050); 354 ram_wr32(fuc, 0x10f830, 0x00500010); 355 ram_wr32(fuc, 0x10f200, 0x00ce1000); 356 ram_wr32(fuc, 0x10f090, 0x4000007e); 357 ram_nsec(fuc, 2000); 358 ram_wr32(fuc, 0x10f314, 0x00000001); 359 ram_wr32(fuc, 0x10f210, 0x80000000); 360 ram_wr32(fuc, 0x10f338, 0x00300200); 361 ram_wr32(fuc, 0x10f300, 0x0000084d); 362 ram_nsec(fuc, 1000); 363 ram_wr32(fuc, 0x10f290, 0x0b343825); 364 ram_wr32(fuc, 0x10f294, 0x3483028e); 365 ram_wr32(fuc, 0x10f298, 0x440c0600); 366 ram_wr32(fuc, 0x10f29c, 0x0000214c); 367 ram_wr32(fuc, 0x10f2a0, 0x42e20069); 368 ram_wr32(fuc, 0x10f200, 0x00ce0000); 369 ram_wr32(fuc, 0x10f614, 0x60044e77); 370 ram_wr32(fuc, 0x10f610, 0x60044e77); 371 ram_wr32(fuc, 0x10f340, 0x00500000); 372 ram_nsec(fuc, 1000); 373 ram_wr32(fuc, 0x10f344, 0x00600228); 374 ram_nsec(fuc, 1000); 375 ram_wr32(fuc, 0x10f348, 0x00700000); 376 ram_wr32(fuc, 0x13d8f4, 0x00000000); 377 ram_wr32(fuc, 0x61c140, 0x09a40000); 378 379 gf100_ram_train(fuc, 0x800e1008); 380 381 ram_nsec(fuc, 1000); 382 ram_wr32(fuc, 0x10f800, 0x00001804); 383 // 0x00030020 // 0x00000000 // 0x00000000 384 // 0x00020034 // 0x0000000b 385 ram_wr32(fuc, 0x13d8f4, 0x00000000); 386 ram_wr32(fuc, 0x100b0c, 0x00080028); 387 ram_wr32(fuc, 0x611200, 0x00003330); 388 ram_nsec(fuc, 100000); 389 ram_wr32(fuc, 0x10f9b0, 0x05313f41); 390 ram_wr32(fuc, 0x10f9b4, 0x00002f50); 391 392 gf100_ram_train(fuc, 0x010c1001); 393 } 394 395 ram_mask(fuc, 0x10f200, 0x00000800, 0x00000800); 396 // 0x00020016 // 0x00000000 397 398 if (mode == 0) 399 ram_mask(fuc, 0x132000, 0x00000001, 0x00000000); 400 401 return 0; 402 } 403 404 static int 405 gf100_ram_prog(struct nvkm_fb *fb) 406 { 407 struct nvkm_device *device = nv_device(fb); 408 struct gf100_ram *ram = (void *)fb->ram; 409 struct gf100_ramfuc *fuc = &ram->fuc; 410 ram_exec(fuc, nvkm_boolopt(device->cfgopt, "NvMemExec", true)); 411 return 0; 412 } 413 414 static void 415 gf100_ram_tidy(struct nvkm_fb *fb) 416 { 417 struct gf100_ram *ram = (void *)fb->ram; 418 struct gf100_ramfuc *fuc = &ram->fuc; 419 ram_exec(fuc, false); 420 } 421 422 extern const u8 gf100_pte_storage_type_map[256]; 423 424 void 425 gf100_ram_put(struct nvkm_fb *fb, struct nvkm_mem **pmem) 426 { 427 struct nvkm_ltc *ltc = nvkm_ltc(fb); 428 struct nvkm_mem *mem = *pmem; 429 430 *pmem = NULL; 431 if (unlikely(mem == NULL)) 432 return; 433 434 mutex_lock(&fb->subdev.mutex); 435 if (mem->tag) 436 ltc->tags_free(ltc, &mem->tag); 437 __nv50_ram_put(fb, mem); 438 mutex_unlock(&fb->subdev.mutex); 439 440 kfree(mem); 441 } 442 443 int 444 gf100_ram_get(struct nvkm_fb *fb, u64 size, u32 align, u32 ncmin, 445 u32 memtype, struct nvkm_mem **pmem) 446 { 447 struct nvkm_mm *mm = &fb->vram; 448 struct nvkm_mm_node *r; 449 struct nvkm_mem *mem; 450 int type = (memtype & 0x0ff); 451 int back = (memtype & 0x800); 452 const bool comp = gf100_pte_storage_type_map[type] != type; 453 int ret; 454 455 size >>= 12; 456 align >>= 12; 457 ncmin >>= 12; 458 if (!ncmin) 459 ncmin = size; 460 461 mem = kzalloc(sizeof(*mem), GFP_KERNEL); 462 if (!mem) 463 return -ENOMEM; 464 465 INIT_LIST_HEAD(&mem->regions); 466 mem->size = size; 467 468 mutex_lock(&fb->subdev.mutex); 469 if (comp) { 470 struct nvkm_ltc *ltc = nvkm_ltc(fb); 471 472 /* compression only works with lpages */ 473 if (align == (1 << (17 - 12))) { 474 int n = size >> 5; 475 ltc->tags_alloc(ltc, n, &mem->tag); 476 } 477 478 if (unlikely(!mem->tag)) 479 type = gf100_pte_storage_type_map[type]; 480 } 481 mem->memtype = type; 482 483 do { 484 if (back) 485 ret = nvkm_mm_tail(mm, 0, 1, size, ncmin, align, &r); 486 else 487 ret = nvkm_mm_head(mm, 0, 1, size, ncmin, align, &r); 488 if (ret) { 489 mutex_unlock(&fb->subdev.mutex); 490 fb->ram->put(fb, &mem); 491 return ret; 492 } 493 494 list_add_tail(&r->rl_entry, &mem->regions); 495 size -= r->length; 496 } while (size); 497 mutex_unlock(&fb->subdev.mutex); 498 499 r = list_first_entry(&mem->regions, struct nvkm_mm_node, rl_entry); 500 mem->offset = (u64)r->offset << 12; 501 *pmem = mem; 502 return 0; 503 } 504 505 int 506 gf100_ram_create_(struct nvkm_object *parent, struct nvkm_object *engine, 507 struct nvkm_oclass *oclass, u32 maskaddr, int size, 508 void **pobject) 509 { 510 struct nvkm_fb *fb = nvkm_fb(parent); 511 struct nvkm_device *device = fb->subdev.device; 512 struct nvkm_bios *bios = device->bios; 513 struct nvkm_ram *ram; 514 const u32 rsvd_head = ( 256 * 1024) >> 12; /* vga memory */ 515 const u32 rsvd_tail = (1024 * 1024) >> 12; /* vbios etc */ 516 u32 parts = nvkm_rd32(device, 0x022438); 517 u32 pmask = nvkm_rd32(device, maskaddr); 518 u32 bsize = nvkm_rd32(device, 0x10f20c); 519 u32 offset, length; 520 bool uniform = true; 521 int ret, part; 522 523 ret = nvkm_ram_create_(parent, engine, oclass, size, pobject); 524 ram = *pobject; 525 if (ret) 526 return ret; 527 528 nv_debug(fb, "0x100800: 0x%08x\n", nvkm_rd32(device, 0x100800)); 529 nv_debug(fb, "parts 0x%08x mask 0x%08x\n", parts, pmask); 530 531 ram->type = nvkm_fb_bios_memtype(bios); 532 ram->ranks = (nvkm_rd32(device, 0x10f200) & 0x00000004) ? 2 : 1; 533 534 /* read amount of vram attached to each memory controller */ 535 for (part = 0; part < parts; part++) { 536 if (!(pmask & (1 << part))) { 537 u32 size = nvkm_rd32(device, 0x11020c + (part * 0x1000)); 538 if (size != bsize) { 539 if (size < bsize) 540 bsize = size; 541 uniform = false; 542 } 543 544 nv_debug(fb, "%d: mem_amount 0x%08x\n", part, size); 545 ram->size += (u64)size << 20; 546 } 547 } 548 549 /* if all controllers have the same amount attached, there's no holes */ 550 if (uniform) { 551 offset = rsvd_head; 552 length = (ram->size >> 12) - rsvd_head - rsvd_tail; 553 ret = nvkm_mm_init(&fb->vram, offset, length, 1); 554 } else { 555 /* otherwise, address lowest common amount from 0GiB */ 556 ret = nvkm_mm_init(&fb->vram, rsvd_head, 557 (bsize << 8) * parts - rsvd_head, 1); 558 if (ret) 559 return ret; 560 561 /* and the rest starting from (8GiB + common_size) */ 562 offset = (0x0200000000ULL >> 12) + (bsize << 8); 563 length = (ram->size >> 12) - ((bsize * parts) << 8) - rsvd_tail; 564 565 ret = nvkm_mm_init(&fb->vram, offset, length, 1); 566 if (ret) 567 nvkm_mm_fini(&fb->vram); 568 } 569 570 if (ret) 571 return ret; 572 573 ram->get = gf100_ram_get; 574 ram->put = gf100_ram_put; 575 return 0; 576 } 577 578 static int 579 gf100_ram_init(struct nvkm_object *object) 580 { 581 struct nvkm_fb *fb = (void *)object->parent; 582 struct nvkm_device *device = fb->subdev.device; 583 struct gf100_ram *ram = (void *)object; 584 int ret, i; 585 586 ret = nvkm_ram_init(&ram->base); 587 if (ret) 588 return ret; 589 590 /* prepare for ddr link training, and load training patterns */ 591 switch (ram->base.type) { 592 case NV_MEM_TYPE_GDDR5: { 593 static const u8 train0[] = { 594 0x00, 0xff, 0x55, 0xaa, 0x33, 0xcc, 595 0x00, 0xff, 0xff, 0x00, 0xff, 0x00, 596 }; 597 static const u32 train1[] = { 598 0x00000000, 0xffffffff, 599 0x55555555, 0xaaaaaaaa, 600 0x33333333, 0xcccccccc, 601 0xf0f0f0f0, 0x0f0f0f0f, 602 0x00ff00ff, 0xff00ff00, 603 0x0000ffff, 0xffff0000, 604 }; 605 606 for (i = 0; i < 0x30; i++) { 607 nvkm_wr32(device, 0x10f968, 0x00000000 | (i << 8)); 608 nvkm_wr32(device, 0x10f96c, 0x00000000 | (i << 8)); 609 nvkm_wr32(device, 0x10f920, 0x00000100 | train0[i % 12]); 610 nvkm_wr32(device, 0x10f924, 0x00000100 | train0[i % 12]); 611 nvkm_wr32(device, 0x10f918, train1[i % 12]); 612 nvkm_wr32(device, 0x10f91c, train1[i % 12]); 613 nvkm_wr32(device, 0x10f920, 0x00000000 | train0[i % 12]); 614 nvkm_wr32(device, 0x10f924, 0x00000000 | train0[i % 12]); 615 nvkm_wr32(device, 0x10f918, train1[i % 12]); 616 nvkm_wr32(device, 0x10f91c, train1[i % 12]); 617 } 618 } break; 619 default: 620 break; 621 } 622 623 return 0; 624 } 625 626 static int 627 gf100_ram_ctor(struct nvkm_object *parent, struct nvkm_object *engine, 628 struct nvkm_oclass *oclass, void *data, u32 size, 629 struct nvkm_object **pobject) 630 { 631 struct nvkm_bios *bios = nvkm_bios(parent); 632 struct gf100_ram *ram; 633 int ret; 634 635 ret = gf100_ram_create(parent, engine, oclass, 0x022554, &ram); 636 *pobject = nv_object(ram); 637 if (ret) 638 return ret; 639 640 ret = nvbios_pll_parse(bios, 0x0c, &ram->refpll); 641 if (ret) { 642 nv_error(ram, "mclk refpll data not found\n"); 643 return ret; 644 } 645 646 ret = nvbios_pll_parse(bios, 0x04, &ram->mempll); 647 if (ret) { 648 nv_error(ram, "mclk pll data not found\n"); 649 return ret; 650 } 651 652 switch (ram->base.type) { 653 case NV_MEM_TYPE_GDDR5: 654 ram->base.calc = gf100_ram_calc; 655 ram->base.prog = gf100_ram_prog; 656 ram->base.tidy = gf100_ram_tidy; 657 break; 658 default: 659 nv_warn(ram, "reclocking of this ram type unsupported\n"); 660 return 0; 661 } 662 663 ram->fuc.r_0x10fe20 = ramfuc_reg(0x10fe20); 664 ram->fuc.r_0x10fe24 = ramfuc_reg(0x10fe24); 665 ram->fuc.r_0x137320 = ramfuc_reg(0x137320); 666 ram->fuc.r_0x137330 = ramfuc_reg(0x137330); 667 668 ram->fuc.r_0x132000 = ramfuc_reg(0x132000); 669 ram->fuc.r_0x132004 = ramfuc_reg(0x132004); 670 ram->fuc.r_0x132100 = ramfuc_reg(0x132100); 671 672 ram->fuc.r_0x137390 = ramfuc_reg(0x137390); 673 674 ram->fuc.r_0x10f290 = ramfuc_reg(0x10f290); 675 ram->fuc.r_0x10f294 = ramfuc_reg(0x10f294); 676 ram->fuc.r_0x10f298 = ramfuc_reg(0x10f298); 677 ram->fuc.r_0x10f29c = ramfuc_reg(0x10f29c); 678 ram->fuc.r_0x10f2a0 = ramfuc_reg(0x10f2a0); 679 680 ram->fuc.r_0x10f300 = ramfuc_reg(0x10f300); 681 ram->fuc.r_0x10f338 = ramfuc_reg(0x10f338); 682 ram->fuc.r_0x10f340 = ramfuc_reg(0x10f340); 683 ram->fuc.r_0x10f344 = ramfuc_reg(0x10f344); 684 ram->fuc.r_0x10f348 = ramfuc_reg(0x10f348); 685 686 ram->fuc.r_0x10f910 = ramfuc_reg(0x10f910); 687 ram->fuc.r_0x10f914 = ramfuc_reg(0x10f914); 688 689 ram->fuc.r_0x100b0c = ramfuc_reg(0x100b0c); 690 ram->fuc.r_0x10f050 = ramfuc_reg(0x10f050); 691 ram->fuc.r_0x10f090 = ramfuc_reg(0x10f090); 692 ram->fuc.r_0x10f200 = ramfuc_reg(0x10f200); 693 ram->fuc.r_0x10f210 = ramfuc_reg(0x10f210); 694 ram->fuc.r_0x10f310 = ramfuc_reg(0x10f310); 695 ram->fuc.r_0x10f314 = ramfuc_reg(0x10f314); 696 ram->fuc.r_0x10f610 = ramfuc_reg(0x10f610); 697 ram->fuc.r_0x10f614 = ramfuc_reg(0x10f614); 698 ram->fuc.r_0x10f800 = ramfuc_reg(0x10f800); 699 ram->fuc.r_0x10f808 = ramfuc_reg(0x10f808); 700 ram->fuc.r_0x10f824 = ramfuc_reg(0x10f824); 701 ram->fuc.r_0x10f830 = ramfuc_reg(0x10f830); 702 ram->fuc.r_0x10f988 = ramfuc_reg(0x10f988); 703 ram->fuc.r_0x10f98c = ramfuc_reg(0x10f98c); 704 ram->fuc.r_0x10f990 = ramfuc_reg(0x10f990); 705 ram->fuc.r_0x10f998 = ramfuc_reg(0x10f998); 706 ram->fuc.r_0x10f9b0 = ramfuc_reg(0x10f9b0); 707 ram->fuc.r_0x10f9b4 = ramfuc_reg(0x10f9b4); 708 ram->fuc.r_0x10fb04 = ramfuc_reg(0x10fb04); 709 ram->fuc.r_0x10fb08 = ramfuc_reg(0x10fb08); 710 ram->fuc.r_0x137310 = ramfuc_reg(0x137300); 711 ram->fuc.r_0x137310 = ramfuc_reg(0x137310); 712 ram->fuc.r_0x137360 = ramfuc_reg(0x137360); 713 ram->fuc.r_0x1373ec = ramfuc_reg(0x1373ec); 714 ram->fuc.r_0x1373f0 = ramfuc_reg(0x1373f0); 715 ram->fuc.r_0x1373f8 = ramfuc_reg(0x1373f8); 716 717 ram->fuc.r_0x61c140 = ramfuc_reg(0x61c140); 718 ram->fuc.r_0x611200 = ramfuc_reg(0x611200); 719 720 ram->fuc.r_0x13d8f4 = ramfuc_reg(0x13d8f4); 721 return 0; 722 } 723 724 struct nvkm_oclass 725 gf100_ram_oclass = { 726 .handle = 0, 727 .ofuncs = &(struct nvkm_ofuncs) { 728 .ctor = gf100_ram_ctor, 729 .dtor = _nvkm_ram_dtor, 730 .init = gf100_ram_init, 731 .fini = _nvkm_ram_fini, 732 } 733 }; 734