1 /*
2  * Copyright 2013 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Ben Skeggs
23  */
24 #include "gf100.h"
25 #include "ramfuc.h"
26 
27 #include <core/option.h>
28 #include <subdev/bios.h>
29 #include <subdev/bios/pll.h>
30 #include <subdev/bios/rammap.h>
31 #include <subdev/bios/timing.h>
32 #include <subdev/clk.h>
33 #include <subdev/clk/pll.h>
34 #include <subdev/ltc.h>
35 
36 struct gf100_ramfuc {
37 	struct ramfuc base;
38 
39 	struct ramfuc_reg r_0x10fe20;
40 	struct ramfuc_reg r_0x10fe24;
41 	struct ramfuc_reg r_0x137320;
42 	struct ramfuc_reg r_0x137330;
43 
44 	struct ramfuc_reg r_0x132000;
45 	struct ramfuc_reg r_0x132004;
46 	struct ramfuc_reg r_0x132100;
47 
48 	struct ramfuc_reg r_0x137390;
49 
50 	struct ramfuc_reg r_0x10f290;
51 	struct ramfuc_reg r_0x10f294;
52 	struct ramfuc_reg r_0x10f298;
53 	struct ramfuc_reg r_0x10f29c;
54 	struct ramfuc_reg r_0x10f2a0;
55 
56 	struct ramfuc_reg r_0x10f300;
57 	struct ramfuc_reg r_0x10f338;
58 	struct ramfuc_reg r_0x10f340;
59 	struct ramfuc_reg r_0x10f344;
60 	struct ramfuc_reg r_0x10f348;
61 
62 	struct ramfuc_reg r_0x10f910;
63 	struct ramfuc_reg r_0x10f914;
64 
65 	struct ramfuc_reg r_0x100b0c;
66 	struct ramfuc_reg r_0x10f050;
67 	struct ramfuc_reg r_0x10f090;
68 	struct ramfuc_reg r_0x10f200;
69 	struct ramfuc_reg r_0x10f210;
70 	struct ramfuc_reg r_0x10f310;
71 	struct ramfuc_reg r_0x10f314;
72 	struct ramfuc_reg r_0x10f610;
73 	struct ramfuc_reg r_0x10f614;
74 	struct ramfuc_reg r_0x10f800;
75 	struct ramfuc_reg r_0x10f808;
76 	struct ramfuc_reg r_0x10f824;
77 	struct ramfuc_reg r_0x10f830;
78 	struct ramfuc_reg r_0x10f988;
79 	struct ramfuc_reg r_0x10f98c;
80 	struct ramfuc_reg r_0x10f990;
81 	struct ramfuc_reg r_0x10f998;
82 	struct ramfuc_reg r_0x10f9b0;
83 	struct ramfuc_reg r_0x10f9b4;
84 	struct ramfuc_reg r_0x10fb04;
85 	struct ramfuc_reg r_0x10fb08;
86 	struct ramfuc_reg r_0x137300;
87 	struct ramfuc_reg r_0x137310;
88 	struct ramfuc_reg r_0x137360;
89 	struct ramfuc_reg r_0x1373ec;
90 	struct ramfuc_reg r_0x1373f0;
91 	struct ramfuc_reg r_0x1373f8;
92 
93 	struct ramfuc_reg r_0x61c140;
94 	struct ramfuc_reg r_0x611200;
95 
96 	struct ramfuc_reg r_0x13d8f4;
97 };
98 
99 struct gf100_ram {
100 	struct nvkm_ram base;
101 	struct gf100_ramfuc fuc;
102 	struct nvbios_pll refpll;
103 	struct nvbios_pll mempll;
104 };
105 
106 static void
107 gf100_ram_train(struct gf100_ramfuc *fuc, u32 magic)
108 {
109 	struct gf100_ram *ram = container_of(fuc, typeof(*ram), fuc);
110 	struct nvkm_fb *fb = nvkm_fb(ram);
111 	struct nvkm_device *device = fb->subdev.device;
112 	u32 part = nvkm_rd32(device, 0x022438), i;
113 	u32 mask = nvkm_rd32(device, 0x022554);
114 	u32 addr = 0x110974;
115 
116 	ram_wr32(fuc, 0x10f910, magic);
117 	ram_wr32(fuc, 0x10f914, magic);
118 
119 	for (i = 0; (magic & 0x80000000) && i < part; addr += 0x1000, i++) {
120 		if (mask & (1 << i))
121 			continue;
122 		ram_wait(fuc, addr, 0x0000000f, 0x00000000, 500000);
123 	}
124 }
125 
126 static int
127 gf100_ram_calc(struct nvkm_fb *fb, u32 freq)
128 {
129 	struct nvkm_subdev *subdev = &fb->subdev;
130 	struct nvkm_device *device = subdev->device;
131 	struct nvkm_clk *clk = device->clk;
132 	struct nvkm_bios *bios = device->bios;
133 	struct gf100_ram *ram = (void *)fb->ram;
134 	struct gf100_ramfuc *fuc = &ram->fuc;
135 	struct nvbios_ramcfg cfg;
136 	u8  ver, cnt, len, strap;
137 	struct {
138 		u32 data;
139 		u8  size;
140 	} rammap, ramcfg, timing;
141 	int ref, div, out;
142 	int from, mode;
143 	int N1, M1, P;
144 	int ret;
145 
146 	/* lookup memory config data relevant to the target frequency */
147 	rammap.data = nvbios_rammapEm(bios, freq / 1000, &ver, &rammap.size,
148 				      &cnt, &ramcfg.size, &cfg);
149 	if (!rammap.data || ver != 0x10 || rammap.size < 0x0e) {
150 		nvkm_error(subdev, "invalid/missing rammap entry\n");
151 		return -EINVAL;
152 	}
153 
154 	/* locate specific data set for the attached memory */
155 	strap = nvbios_ramcfg_index(nv_subdev(fb));
156 	if (strap >= cnt) {
157 		nvkm_error(subdev, "invalid ramcfg strap\n");
158 		return -EINVAL;
159 	}
160 
161 	ramcfg.data = rammap.data + rammap.size + (strap * ramcfg.size);
162 	if (!ramcfg.data || ver != 0x10 || ramcfg.size < 0x0e) {
163 		nvkm_error(subdev, "invalid/missing ramcfg entry\n");
164 		return -EINVAL;
165 	}
166 
167 	/* lookup memory timings, if bios says they're present */
168 	strap = nv_ro08(bios, ramcfg.data + 0x01);
169 	if (strap != 0xff) {
170 		timing.data = nvbios_timingEe(bios, strap, &ver, &timing.size,
171 					      &cnt, &len);
172 		if (!timing.data || ver != 0x10 || timing.size < 0x19) {
173 			nvkm_error(subdev, "invalid/missing timing entry\n");
174 			return -EINVAL;
175 		}
176 	} else {
177 		timing.data = 0;
178 	}
179 
180 	ret = ram_init(fuc, fb);
181 	if (ret)
182 		return ret;
183 
184 	/* determine current mclk configuration */
185 	from = !!(ram_rd32(fuc, 0x1373f0) & 0x00000002); /*XXX: ok? */
186 
187 	/* determine target mclk configuration */
188 	if (!(ram_rd32(fuc, 0x137300) & 0x00000100))
189 		ref = clk->read(clk, nv_clk_src_sppll0);
190 	else
191 		ref = clk->read(clk, nv_clk_src_sppll1);
192 	div = max(min((ref * 2) / freq, (u32)65), (u32)2) - 2;
193 	out = (ref * 2) / (div + 2);
194 	mode = freq != out;
195 
196 	ram_mask(fuc, 0x137360, 0x00000002, 0x00000000);
197 
198 	if ((ram_rd32(fuc, 0x132000) & 0x00000002) || 0 /*XXX*/) {
199 		ram_nuke(fuc, 0x132000);
200 		ram_mask(fuc, 0x132000, 0x00000002, 0x00000002);
201 		ram_mask(fuc, 0x132000, 0x00000002, 0x00000000);
202 	}
203 
204 	if (mode == 1) {
205 		ram_nuke(fuc, 0x10fe20);
206 		ram_mask(fuc, 0x10fe20, 0x00000002, 0x00000002);
207 		ram_mask(fuc, 0x10fe20, 0x00000002, 0x00000000);
208 	}
209 
210 // 0x00020034 // 0x0000000a
211 	ram_wr32(fuc, 0x132100, 0x00000001);
212 
213 	if (mode == 1 && from == 0) {
214 		/* calculate refpll */
215 		ret = gt215_pll_calc(nv_subdev(fb), &ram->refpll,
216 				     ram->mempll.refclk, &N1, NULL, &M1, &P);
217 		if (ret <= 0) {
218 			nvkm_error(subdev, "unable to calc refpll\n");
219 			return ret ? ret : -ERANGE;
220 		}
221 
222 		ram_wr32(fuc, 0x10fe20, 0x20010000);
223 		ram_wr32(fuc, 0x137320, 0x00000003);
224 		ram_wr32(fuc, 0x137330, 0x81200006);
225 		ram_wr32(fuc, 0x10fe24, (P << 16) | (N1 << 8) | M1);
226 		ram_wr32(fuc, 0x10fe20, 0x20010001);
227 		ram_wait(fuc, 0x137390, 0x00020000, 0x00020000, 64000);
228 
229 		/* calculate mempll */
230 		ret = gt215_pll_calc(nv_subdev(fb), &ram->mempll, freq,
231 				     &N1, NULL, &M1, &P);
232 		if (ret <= 0) {
233 			nvkm_error(subdev, "unable to calc refpll\n");
234 			return ret ? ret : -ERANGE;
235 		}
236 
237 		ram_wr32(fuc, 0x10fe20, 0x20010005);
238 		ram_wr32(fuc, 0x132004, (P << 16) | (N1 << 8) | M1);
239 		ram_wr32(fuc, 0x132000, 0x18010101);
240 		ram_wait(fuc, 0x137390, 0x00000002, 0x00000002, 64000);
241 	} else
242 	if (mode == 0) {
243 		ram_wr32(fuc, 0x137300, 0x00000003);
244 	}
245 
246 	if (from == 0) {
247 		ram_nuke(fuc, 0x10fb04);
248 		ram_mask(fuc, 0x10fb04, 0x0000ffff, 0x00000000);
249 		ram_nuke(fuc, 0x10fb08);
250 		ram_mask(fuc, 0x10fb08, 0x0000ffff, 0x00000000);
251 		ram_wr32(fuc, 0x10f988, 0x2004ff00);
252 		ram_wr32(fuc, 0x10f98c, 0x003fc040);
253 		ram_wr32(fuc, 0x10f990, 0x20012001);
254 		ram_wr32(fuc, 0x10f998, 0x00011a00);
255 		ram_wr32(fuc, 0x13d8f4, 0x00000000);
256 	} else {
257 		ram_wr32(fuc, 0x10f988, 0x20010000);
258 		ram_wr32(fuc, 0x10f98c, 0x00000000);
259 		ram_wr32(fuc, 0x10f990, 0x20012001);
260 		ram_wr32(fuc, 0x10f998, 0x00010a00);
261 	}
262 
263 	if (from == 0) {
264 // 0x00020039 // 0x000000ba
265 	}
266 
267 // 0x0002003a // 0x00000002
268 	ram_wr32(fuc, 0x100b0c, 0x00080012);
269 // 0x00030014 // 0x00000000 // 0x02b5f070
270 // 0x00030014 // 0x00010000 // 0x02b5f070
271 	ram_wr32(fuc, 0x611200, 0x00003300);
272 // 0x00020034 // 0x0000000a
273 // 0x00030020 // 0x00000001 // 0x00000000
274 
275 	ram_mask(fuc, 0x10f200, 0x00000800, 0x00000000);
276 	ram_wr32(fuc, 0x10f210, 0x00000000);
277 	ram_nsec(fuc, 1000);
278 	if (mode == 0)
279 		gf100_ram_train(fuc, 0x000c1001);
280 	ram_wr32(fuc, 0x10f310, 0x00000001);
281 	ram_nsec(fuc, 1000);
282 	ram_wr32(fuc, 0x10f090, 0x00000061);
283 	ram_wr32(fuc, 0x10f090, 0xc000007f);
284 	ram_nsec(fuc, 1000);
285 
286 	if (from == 0) {
287 		ram_wr32(fuc, 0x10f824, 0x00007fd4);
288 	} else {
289 		ram_wr32(fuc, 0x1373ec, 0x00020404);
290 	}
291 
292 	if (mode == 0) {
293 		ram_mask(fuc, 0x10f808, 0x00080000, 0x00000000);
294 		ram_mask(fuc, 0x10f200, 0x00008000, 0x00008000);
295 		ram_wr32(fuc, 0x10f830, 0x41500010);
296 		ram_mask(fuc, 0x10f830, 0x01000000, 0x00000000);
297 		ram_mask(fuc, 0x132100, 0x00000100, 0x00000100);
298 		ram_wr32(fuc, 0x10f050, 0xff000090);
299 		ram_wr32(fuc, 0x1373ec, 0x00020f0f);
300 		ram_wr32(fuc, 0x1373f0, 0x00000003);
301 		ram_wr32(fuc, 0x137310, 0x81201616);
302 		ram_wr32(fuc, 0x132100, 0x00000001);
303 // 0x00020039 // 0x000000ba
304 		ram_wr32(fuc, 0x10f830, 0x00300017);
305 		ram_wr32(fuc, 0x1373f0, 0x00000001);
306 		ram_wr32(fuc, 0x10f824, 0x00007e77);
307 		ram_wr32(fuc, 0x132000, 0x18030001);
308 		ram_wr32(fuc, 0x10f090, 0x4000007e);
309 		ram_nsec(fuc, 2000);
310 		ram_wr32(fuc, 0x10f314, 0x00000001);
311 		ram_wr32(fuc, 0x10f210, 0x80000000);
312 		ram_wr32(fuc, 0x10f338, 0x00300220);
313 		ram_wr32(fuc, 0x10f300, 0x0000011d);
314 		ram_nsec(fuc, 1000);
315 		ram_wr32(fuc, 0x10f290, 0x02060505);
316 		ram_wr32(fuc, 0x10f294, 0x34208288);
317 		ram_wr32(fuc, 0x10f298, 0x44050411);
318 		ram_wr32(fuc, 0x10f29c, 0x0000114c);
319 		ram_wr32(fuc, 0x10f2a0, 0x42e10069);
320 		ram_wr32(fuc, 0x10f614, 0x40044f77);
321 		ram_wr32(fuc, 0x10f610, 0x40044f77);
322 		ram_wr32(fuc, 0x10f344, 0x00600009);
323 		ram_nsec(fuc, 1000);
324 		ram_wr32(fuc, 0x10f348, 0x00700008);
325 		ram_wr32(fuc, 0x61c140, 0x19240000);
326 		ram_wr32(fuc, 0x10f830, 0x00300017);
327 		gf100_ram_train(fuc, 0x80021001);
328 		gf100_ram_train(fuc, 0x80081001);
329 		ram_wr32(fuc, 0x10f340, 0x00500004);
330 		ram_nsec(fuc, 1000);
331 		ram_wr32(fuc, 0x10f830, 0x01300017);
332 		ram_wr32(fuc, 0x10f830, 0x00300017);
333 // 0x00030020 // 0x00000000 // 0x00000000
334 // 0x00020034 // 0x0000000b
335 		ram_wr32(fuc, 0x100b0c, 0x00080028);
336 		ram_wr32(fuc, 0x611200, 0x00003330);
337 	} else {
338 		ram_wr32(fuc, 0x10f800, 0x00001800);
339 		ram_wr32(fuc, 0x13d8f4, 0x00000000);
340 		ram_wr32(fuc, 0x1373ec, 0x00020404);
341 		ram_wr32(fuc, 0x1373f0, 0x00000003);
342 		ram_wr32(fuc, 0x10f830, 0x40700010);
343 		ram_wr32(fuc, 0x10f830, 0x40500010);
344 		ram_wr32(fuc, 0x13d8f4, 0x00000000);
345 		ram_wr32(fuc, 0x1373f8, 0x00000000);
346 		ram_wr32(fuc, 0x132100, 0x00000101);
347 		ram_wr32(fuc, 0x137310, 0x89201616);
348 		ram_wr32(fuc, 0x10f050, 0xff000090);
349 		ram_wr32(fuc, 0x1373ec, 0x00030404);
350 		ram_wr32(fuc, 0x1373f0, 0x00000002);
351 	// 0x00020039 // 0x00000011
352 		ram_wr32(fuc, 0x132100, 0x00000001);
353 		ram_wr32(fuc, 0x1373f8, 0x00002000);
354 		ram_nsec(fuc, 2000);
355 		ram_wr32(fuc, 0x10f808, 0x7aaa0050);
356 		ram_wr32(fuc, 0x10f830, 0x00500010);
357 		ram_wr32(fuc, 0x10f200, 0x00ce1000);
358 		ram_wr32(fuc, 0x10f090, 0x4000007e);
359 		ram_nsec(fuc, 2000);
360 		ram_wr32(fuc, 0x10f314, 0x00000001);
361 		ram_wr32(fuc, 0x10f210, 0x80000000);
362 		ram_wr32(fuc, 0x10f338, 0x00300200);
363 		ram_wr32(fuc, 0x10f300, 0x0000084d);
364 		ram_nsec(fuc, 1000);
365 		ram_wr32(fuc, 0x10f290, 0x0b343825);
366 		ram_wr32(fuc, 0x10f294, 0x3483028e);
367 		ram_wr32(fuc, 0x10f298, 0x440c0600);
368 		ram_wr32(fuc, 0x10f29c, 0x0000214c);
369 		ram_wr32(fuc, 0x10f2a0, 0x42e20069);
370 		ram_wr32(fuc, 0x10f200, 0x00ce0000);
371 		ram_wr32(fuc, 0x10f614, 0x60044e77);
372 		ram_wr32(fuc, 0x10f610, 0x60044e77);
373 		ram_wr32(fuc, 0x10f340, 0x00500000);
374 		ram_nsec(fuc, 1000);
375 		ram_wr32(fuc, 0x10f344, 0x00600228);
376 		ram_nsec(fuc, 1000);
377 		ram_wr32(fuc, 0x10f348, 0x00700000);
378 		ram_wr32(fuc, 0x13d8f4, 0x00000000);
379 		ram_wr32(fuc, 0x61c140, 0x09a40000);
380 
381 		gf100_ram_train(fuc, 0x800e1008);
382 
383 		ram_nsec(fuc, 1000);
384 		ram_wr32(fuc, 0x10f800, 0x00001804);
385 	// 0x00030020 // 0x00000000 // 0x00000000
386 	// 0x00020034 // 0x0000000b
387 		ram_wr32(fuc, 0x13d8f4, 0x00000000);
388 		ram_wr32(fuc, 0x100b0c, 0x00080028);
389 		ram_wr32(fuc, 0x611200, 0x00003330);
390 		ram_nsec(fuc, 100000);
391 		ram_wr32(fuc, 0x10f9b0, 0x05313f41);
392 		ram_wr32(fuc, 0x10f9b4, 0x00002f50);
393 
394 		gf100_ram_train(fuc, 0x010c1001);
395 	}
396 
397 	ram_mask(fuc, 0x10f200, 0x00000800, 0x00000800);
398 // 0x00020016 // 0x00000000
399 
400 	if (mode == 0)
401 		ram_mask(fuc, 0x132000, 0x00000001, 0x00000000);
402 
403 	return 0;
404 }
405 
406 static int
407 gf100_ram_prog(struct nvkm_fb *fb)
408 {
409 	struct nvkm_device *device = nv_device(fb);
410 	struct gf100_ram *ram = (void *)fb->ram;
411 	struct gf100_ramfuc *fuc = &ram->fuc;
412 	ram_exec(fuc, nvkm_boolopt(device->cfgopt, "NvMemExec", true));
413 	return 0;
414 }
415 
416 static void
417 gf100_ram_tidy(struct nvkm_fb *fb)
418 {
419 	struct gf100_ram *ram = (void *)fb->ram;
420 	struct gf100_ramfuc *fuc = &ram->fuc;
421 	ram_exec(fuc, false);
422 }
423 
424 extern const u8 gf100_pte_storage_type_map[256];
425 
426 void
427 gf100_ram_put(struct nvkm_fb *fb, struct nvkm_mem **pmem)
428 {
429 	struct nvkm_ltc *ltc = nvkm_ltc(fb);
430 	struct nvkm_mem *mem = *pmem;
431 
432 	*pmem = NULL;
433 	if (unlikely(mem == NULL))
434 		return;
435 
436 	mutex_lock(&fb->subdev.mutex);
437 	if (mem->tag)
438 		ltc->tags_free(ltc, &mem->tag);
439 	__nv50_ram_put(fb, mem);
440 	mutex_unlock(&fb->subdev.mutex);
441 
442 	kfree(mem);
443 }
444 
445 int
446 gf100_ram_get(struct nvkm_fb *fb, u64 size, u32 align, u32 ncmin,
447 	      u32 memtype, struct nvkm_mem **pmem)
448 {
449 	struct nvkm_mm *mm = &fb->vram;
450 	struct nvkm_mm_node *r;
451 	struct nvkm_mem *mem;
452 	int type = (memtype & 0x0ff);
453 	int back = (memtype & 0x800);
454 	const bool comp = gf100_pte_storage_type_map[type] != type;
455 	int ret;
456 
457 	size  >>= 12;
458 	align >>= 12;
459 	ncmin >>= 12;
460 	if (!ncmin)
461 		ncmin = size;
462 
463 	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
464 	if (!mem)
465 		return -ENOMEM;
466 
467 	INIT_LIST_HEAD(&mem->regions);
468 	mem->size = size;
469 
470 	mutex_lock(&fb->subdev.mutex);
471 	if (comp) {
472 		struct nvkm_ltc *ltc = nvkm_ltc(fb);
473 
474 		/* compression only works with lpages */
475 		if (align == (1 << (17 - 12))) {
476 			int n = size >> 5;
477 			ltc->tags_alloc(ltc, n, &mem->tag);
478 		}
479 
480 		if (unlikely(!mem->tag))
481 			type = gf100_pte_storage_type_map[type];
482 	}
483 	mem->memtype = type;
484 
485 	do {
486 		if (back)
487 			ret = nvkm_mm_tail(mm, 0, 1, size, ncmin, align, &r);
488 		else
489 			ret = nvkm_mm_head(mm, 0, 1, size, ncmin, align, &r);
490 		if (ret) {
491 			mutex_unlock(&fb->subdev.mutex);
492 			fb->ram->put(fb, &mem);
493 			return ret;
494 		}
495 
496 		list_add_tail(&r->rl_entry, &mem->regions);
497 		size -= r->length;
498 	} while (size);
499 	mutex_unlock(&fb->subdev.mutex);
500 
501 	r = list_first_entry(&mem->regions, struct nvkm_mm_node, rl_entry);
502 	mem->offset = (u64)r->offset << 12;
503 	*pmem = mem;
504 	return 0;
505 }
506 
507 int
508 gf100_ram_create_(struct nvkm_object *parent, struct nvkm_object *engine,
509 		  struct nvkm_oclass *oclass, u32 maskaddr, int size,
510 		  void **pobject)
511 {
512 	struct nvkm_fb *fb = nvkm_fb(parent);
513 	struct nvkm_subdev *subdev = &fb->subdev;
514 	struct nvkm_device *device = subdev->device;
515 	struct nvkm_bios *bios = device->bios;
516 	struct nvkm_ram *ram;
517 	const u32 rsvd_head = ( 256 * 1024) >> 12; /* vga memory */
518 	const u32 rsvd_tail = (1024 * 1024) >> 12; /* vbios etc */
519 	u32 parts = nvkm_rd32(device, 0x022438);
520 	u32 pmask = nvkm_rd32(device, maskaddr);
521 	u32 bsize = nvkm_rd32(device, 0x10f20c);
522 	u32 offset, length;
523 	bool uniform = true;
524 	int ret, part;
525 
526 	ret = nvkm_ram_create_(parent, engine, oclass, size, pobject);
527 	ram = *pobject;
528 	if (ret)
529 		return ret;
530 
531 	nvkm_debug(subdev, "100800: %08x\n", nvkm_rd32(device, 0x100800));
532 	nvkm_debug(subdev, "parts %08x mask %08x\n", parts, pmask);
533 
534 	ram->type = nvkm_fb_bios_memtype(bios);
535 	ram->ranks = (nvkm_rd32(device, 0x10f200) & 0x00000004) ? 2 : 1;
536 
537 	/* read amount of vram attached to each memory controller */
538 	for (part = 0; part < parts; part++) {
539 		if (!(pmask & (1 << part))) {
540 			u32 size = nvkm_rd32(device, 0x11020c + (part * 0x1000));
541 			if (size != bsize) {
542 				if (size < bsize)
543 					bsize = size;
544 				uniform = false;
545 			}
546 
547 			nvkm_debug(subdev, "%d: size %08x\n", part, size);
548 			ram->size += (u64)size << 20;
549 		}
550 	}
551 
552 	/* if all controllers have the same amount attached, there's no holes */
553 	if (uniform) {
554 		offset = rsvd_head;
555 		length = (ram->size >> 12) - rsvd_head - rsvd_tail;
556 		ret = nvkm_mm_init(&fb->vram, offset, length, 1);
557 	} else {
558 		/* otherwise, address lowest common amount from 0GiB */
559 		ret = nvkm_mm_init(&fb->vram, rsvd_head,
560 				   (bsize << 8) * parts - rsvd_head, 1);
561 		if (ret)
562 			return ret;
563 
564 		/* and the rest starting from (8GiB + common_size) */
565 		offset = (0x0200000000ULL >> 12) + (bsize << 8);
566 		length = (ram->size >> 12) - ((bsize * parts) << 8) - rsvd_tail;
567 
568 		ret = nvkm_mm_init(&fb->vram, offset, length, 1);
569 		if (ret)
570 			nvkm_mm_fini(&fb->vram);
571 	}
572 
573 	if (ret)
574 		return ret;
575 
576 	ram->get = gf100_ram_get;
577 	ram->put = gf100_ram_put;
578 	return 0;
579 }
580 
581 static int
582 gf100_ram_init(struct nvkm_object *object)
583 {
584 	struct nvkm_fb *fb = (void *)object->parent;
585 	struct nvkm_device *device = fb->subdev.device;
586 	struct gf100_ram *ram = (void *)object;
587 	int ret, i;
588 
589 	ret = nvkm_ram_init(&ram->base);
590 	if (ret)
591 		return ret;
592 
593 	/* prepare for ddr link training, and load training patterns */
594 	switch (ram->base.type) {
595 	case NV_MEM_TYPE_GDDR5: {
596 		static const u8  train0[] = {
597 			0x00, 0xff, 0x55, 0xaa, 0x33, 0xcc,
598 			0x00, 0xff, 0xff, 0x00, 0xff, 0x00,
599 		};
600 		static const u32 train1[] = {
601 			0x00000000, 0xffffffff,
602 			0x55555555, 0xaaaaaaaa,
603 			0x33333333, 0xcccccccc,
604 			0xf0f0f0f0, 0x0f0f0f0f,
605 			0x00ff00ff, 0xff00ff00,
606 			0x0000ffff, 0xffff0000,
607 		};
608 
609 		for (i = 0; i < 0x30; i++) {
610 			nvkm_wr32(device, 0x10f968, 0x00000000 | (i << 8));
611 			nvkm_wr32(device, 0x10f96c, 0x00000000 | (i << 8));
612 			nvkm_wr32(device, 0x10f920, 0x00000100 | train0[i % 12]);
613 			nvkm_wr32(device, 0x10f924, 0x00000100 | train0[i % 12]);
614 			nvkm_wr32(device, 0x10f918,              train1[i % 12]);
615 			nvkm_wr32(device, 0x10f91c,              train1[i % 12]);
616 			nvkm_wr32(device, 0x10f920, 0x00000000 | train0[i % 12]);
617 			nvkm_wr32(device, 0x10f924, 0x00000000 | train0[i % 12]);
618 			nvkm_wr32(device, 0x10f918,              train1[i % 12]);
619 			nvkm_wr32(device, 0x10f91c,              train1[i % 12]);
620 		}
621 	}	break;
622 	default:
623 		break;
624 	}
625 
626 	return 0;
627 }
628 
629 static int
630 gf100_ram_ctor(struct nvkm_object *parent, struct nvkm_object *engine,
631 	       struct nvkm_oclass *oclass, void *data, u32 size,
632 	       struct nvkm_object **pobject)
633 {
634 	struct nvkm_fb *fb = nvkm_fb(parent);
635 	struct nvkm_subdev *subdev = &fb->subdev;
636 	struct nvkm_bios *bios = subdev->device->bios;
637 	struct gf100_ram *ram;
638 	int ret;
639 
640 	ret = gf100_ram_create(parent, engine, oclass, 0x022554, &ram);
641 	*pobject = nv_object(ram);
642 	if (ret)
643 		return ret;
644 
645 	ret = nvbios_pll_parse(bios, 0x0c, &ram->refpll);
646 	if (ret) {
647 		nvkm_error(subdev, "mclk refpll data not found\n");
648 		return ret;
649 	}
650 
651 	ret = nvbios_pll_parse(bios, 0x04, &ram->mempll);
652 	if (ret) {
653 		nvkm_error(subdev, "mclk pll data not found\n");
654 		return ret;
655 	}
656 
657 	switch (ram->base.type) {
658 	case NV_MEM_TYPE_GDDR5:
659 		ram->base.calc = gf100_ram_calc;
660 		ram->base.prog = gf100_ram_prog;
661 		ram->base.tidy = gf100_ram_tidy;
662 		break;
663 	default:
664 		nvkm_warn(subdev, "reclocking of this ram type unsupported\n");
665 		return 0;
666 	}
667 
668 	ram->fuc.r_0x10fe20 = ramfuc_reg(0x10fe20);
669 	ram->fuc.r_0x10fe24 = ramfuc_reg(0x10fe24);
670 	ram->fuc.r_0x137320 = ramfuc_reg(0x137320);
671 	ram->fuc.r_0x137330 = ramfuc_reg(0x137330);
672 
673 	ram->fuc.r_0x132000 = ramfuc_reg(0x132000);
674 	ram->fuc.r_0x132004 = ramfuc_reg(0x132004);
675 	ram->fuc.r_0x132100 = ramfuc_reg(0x132100);
676 
677 	ram->fuc.r_0x137390 = ramfuc_reg(0x137390);
678 
679 	ram->fuc.r_0x10f290 = ramfuc_reg(0x10f290);
680 	ram->fuc.r_0x10f294 = ramfuc_reg(0x10f294);
681 	ram->fuc.r_0x10f298 = ramfuc_reg(0x10f298);
682 	ram->fuc.r_0x10f29c = ramfuc_reg(0x10f29c);
683 	ram->fuc.r_0x10f2a0 = ramfuc_reg(0x10f2a0);
684 
685 	ram->fuc.r_0x10f300 = ramfuc_reg(0x10f300);
686 	ram->fuc.r_0x10f338 = ramfuc_reg(0x10f338);
687 	ram->fuc.r_0x10f340 = ramfuc_reg(0x10f340);
688 	ram->fuc.r_0x10f344 = ramfuc_reg(0x10f344);
689 	ram->fuc.r_0x10f348 = ramfuc_reg(0x10f348);
690 
691 	ram->fuc.r_0x10f910 = ramfuc_reg(0x10f910);
692 	ram->fuc.r_0x10f914 = ramfuc_reg(0x10f914);
693 
694 	ram->fuc.r_0x100b0c = ramfuc_reg(0x100b0c);
695 	ram->fuc.r_0x10f050 = ramfuc_reg(0x10f050);
696 	ram->fuc.r_0x10f090 = ramfuc_reg(0x10f090);
697 	ram->fuc.r_0x10f200 = ramfuc_reg(0x10f200);
698 	ram->fuc.r_0x10f210 = ramfuc_reg(0x10f210);
699 	ram->fuc.r_0x10f310 = ramfuc_reg(0x10f310);
700 	ram->fuc.r_0x10f314 = ramfuc_reg(0x10f314);
701 	ram->fuc.r_0x10f610 = ramfuc_reg(0x10f610);
702 	ram->fuc.r_0x10f614 = ramfuc_reg(0x10f614);
703 	ram->fuc.r_0x10f800 = ramfuc_reg(0x10f800);
704 	ram->fuc.r_0x10f808 = ramfuc_reg(0x10f808);
705 	ram->fuc.r_0x10f824 = ramfuc_reg(0x10f824);
706 	ram->fuc.r_0x10f830 = ramfuc_reg(0x10f830);
707 	ram->fuc.r_0x10f988 = ramfuc_reg(0x10f988);
708 	ram->fuc.r_0x10f98c = ramfuc_reg(0x10f98c);
709 	ram->fuc.r_0x10f990 = ramfuc_reg(0x10f990);
710 	ram->fuc.r_0x10f998 = ramfuc_reg(0x10f998);
711 	ram->fuc.r_0x10f9b0 = ramfuc_reg(0x10f9b0);
712 	ram->fuc.r_0x10f9b4 = ramfuc_reg(0x10f9b4);
713 	ram->fuc.r_0x10fb04 = ramfuc_reg(0x10fb04);
714 	ram->fuc.r_0x10fb08 = ramfuc_reg(0x10fb08);
715 	ram->fuc.r_0x137310 = ramfuc_reg(0x137300);
716 	ram->fuc.r_0x137310 = ramfuc_reg(0x137310);
717 	ram->fuc.r_0x137360 = ramfuc_reg(0x137360);
718 	ram->fuc.r_0x1373ec = ramfuc_reg(0x1373ec);
719 	ram->fuc.r_0x1373f0 = ramfuc_reg(0x1373f0);
720 	ram->fuc.r_0x1373f8 = ramfuc_reg(0x1373f8);
721 
722 	ram->fuc.r_0x61c140 = ramfuc_reg(0x61c140);
723 	ram->fuc.r_0x611200 = ramfuc_reg(0x611200);
724 
725 	ram->fuc.r_0x13d8f4 = ramfuc_reg(0x13d8f4);
726 	return 0;
727 }
728 
729 struct nvkm_oclass
730 gf100_ram_oclass = {
731 	.handle = 0,
732 	.ofuncs = &(struct nvkm_ofuncs) {
733 		.ctor = gf100_ram_ctor,
734 		.dtor = _nvkm_ram_dtor,
735 		.init = gf100_ram_init,
736 		.fini = _nvkm_ram_fini,
737 	}
738 };
739