1 /*
2  * Copyright 2013 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Ben Skeggs
23  */
24 #define gf100_ram(p) container_of((p), struct gf100_ram, base)
25 #include "ram.h"
26 #include "ramfuc.h"
27 
28 #include <core/option.h>
29 #include <subdev/bios.h>
30 #include <subdev/bios/pll.h>
31 #include <subdev/bios/rammap.h>
32 #include <subdev/bios/timing.h>
33 #include <subdev/clk.h>
34 #include <subdev/clk/pll.h>
35 #include <subdev/ltc.h>
36 
37 struct gf100_ramfuc {
38 	struct ramfuc base;
39 
40 	struct ramfuc_reg r_0x10fe20;
41 	struct ramfuc_reg r_0x10fe24;
42 	struct ramfuc_reg r_0x137320;
43 	struct ramfuc_reg r_0x137330;
44 
45 	struct ramfuc_reg r_0x132000;
46 	struct ramfuc_reg r_0x132004;
47 	struct ramfuc_reg r_0x132100;
48 
49 	struct ramfuc_reg r_0x137390;
50 
51 	struct ramfuc_reg r_0x10f290;
52 	struct ramfuc_reg r_0x10f294;
53 	struct ramfuc_reg r_0x10f298;
54 	struct ramfuc_reg r_0x10f29c;
55 	struct ramfuc_reg r_0x10f2a0;
56 
57 	struct ramfuc_reg r_0x10f300;
58 	struct ramfuc_reg r_0x10f338;
59 	struct ramfuc_reg r_0x10f340;
60 	struct ramfuc_reg r_0x10f344;
61 	struct ramfuc_reg r_0x10f348;
62 
63 	struct ramfuc_reg r_0x10f910;
64 	struct ramfuc_reg r_0x10f914;
65 
66 	struct ramfuc_reg r_0x100b0c;
67 	struct ramfuc_reg r_0x10f050;
68 	struct ramfuc_reg r_0x10f090;
69 	struct ramfuc_reg r_0x10f200;
70 	struct ramfuc_reg r_0x10f210;
71 	struct ramfuc_reg r_0x10f310;
72 	struct ramfuc_reg r_0x10f314;
73 	struct ramfuc_reg r_0x10f610;
74 	struct ramfuc_reg r_0x10f614;
75 	struct ramfuc_reg r_0x10f800;
76 	struct ramfuc_reg r_0x10f808;
77 	struct ramfuc_reg r_0x10f824;
78 	struct ramfuc_reg r_0x10f830;
79 	struct ramfuc_reg r_0x10f988;
80 	struct ramfuc_reg r_0x10f98c;
81 	struct ramfuc_reg r_0x10f990;
82 	struct ramfuc_reg r_0x10f998;
83 	struct ramfuc_reg r_0x10f9b0;
84 	struct ramfuc_reg r_0x10f9b4;
85 	struct ramfuc_reg r_0x10fb04;
86 	struct ramfuc_reg r_0x10fb08;
87 	struct ramfuc_reg r_0x137300;
88 	struct ramfuc_reg r_0x137310;
89 	struct ramfuc_reg r_0x137360;
90 	struct ramfuc_reg r_0x1373ec;
91 	struct ramfuc_reg r_0x1373f0;
92 	struct ramfuc_reg r_0x1373f8;
93 
94 	struct ramfuc_reg r_0x61c140;
95 	struct ramfuc_reg r_0x611200;
96 
97 	struct ramfuc_reg r_0x13d8f4;
98 };
99 
100 struct gf100_ram {
101 	struct nvkm_ram base;
102 	struct gf100_ramfuc fuc;
103 	struct nvbios_pll refpll;
104 	struct nvbios_pll mempll;
105 };
106 
107 static void
108 gf100_ram_train(struct gf100_ramfuc *fuc, u32 magic)
109 {
110 	struct gf100_ram *ram = container_of(fuc, typeof(*ram), fuc);
111 	struct nvkm_fb *fb = ram->base.fb;
112 	struct nvkm_device *device = fb->subdev.device;
113 	u32 part = nvkm_rd32(device, 0x022438), i;
114 	u32 mask = nvkm_rd32(device, 0x022554);
115 	u32 addr = 0x110974;
116 
117 	ram_wr32(fuc, 0x10f910, magic);
118 	ram_wr32(fuc, 0x10f914, magic);
119 
120 	for (i = 0; (magic & 0x80000000) && i < part; addr += 0x1000, i++) {
121 		if (mask & (1 << i))
122 			continue;
123 		ram_wait(fuc, addr, 0x0000000f, 0x00000000, 500000);
124 	}
125 }
126 
127 static int
128 gf100_ram_calc(struct nvkm_ram *base, u32 freq)
129 {
130 	struct gf100_ram *ram = gf100_ram(base);
131 	struct gf100_ramfuc *fuc = &ram->fuc;
132 	struct nvkm_subdev *subdev = &ram->base.fb->subdev;
133 	struct nvkm_device *device = subdev->device;
134 	struct nvkm_clk *clk = device->clk;
135 	struct nvkm_bios *bios = device->bios;
136 	struct nvbios_ramcfg cfg;
137 	u8  ver, cnt, len, strap;
138 	struct {
139 		u32 data;
140 		u8  size;
141 	} rammap, ramcfg, timing;
142 	int ref, div, out;
143 	int from, mode;
144 	int N1, M1, P;
145 	int ret;
146 
147 	/* lookup memory config data relevant to the target frequency */
148 	rammap.data = nvbios_rammapEm(bios, freq / 1000, &ver, &rammap.size,
149 				      &cnt, &ramcfg.size, &cfg);
150 	if (!rammap.data || ver != 0x10 || rammap.size < 0x0e) {
151 		nvkm_error(subdev, "invalid/missing rammap entry\n");
152 		return -EINVAL;
153 	}
154 
155 	/* locate specific data set for the attached memory */
156 	strap = nvbios_ramcfg_index(subdev);
157 	if (strap >= cnt) {
158 		nvkm_error(subdev, "invalid ramcfg strap\n");
159 		return -EINVAL;
160 	}
161 
162 	ramcfg.data = rammap.data + rammap.size + (strap * ramcfg.size);
163 	if (!ramcfg.data || ver != 0x10 || ramcfg.size < 0x0e) {
164 		nvkm_error(subdev, "invalid/missing ramcfg entry\n");
165 		return -EINVAL;
166 	}
167 
168 	/* lookup memory timings, if bios says they're present */
169 	strap = nvbios_rd08(bios, ramcfg.data + 0x01);
170 	if (strap != 0xff) {
171 		timing.data = nvbios_timingEe(bios, strap, &ver, &timing.size,
172 					      &cnt, &len);
173 		if (!timing.data || ver != 0x10 || timing.size < 0x19) {
174 			nvkm_error(subdev, "invalid/missing timing entry\n");
175 			return -EINVAL;
176 		}
177 	} else {
178 		timing.data = 0;
179 	}
180 
181 	ret = ram_init(fuc, ram->base.fb);
182 	if (ret)
183 		return ret;
184 
185 	/* determine current mclk configuration */
186 	from = !!(ram_rd32(fuc, 0x1373f0) & 0x00000002); /*XXX: ok? */
187 
188 	/* determine target mclk configuration */
189 	if (!(ram_rd32(fuc, 0x137300) & 0x00000100))
190 		ref = nvkm_clk_read(clk, nv_clk_src_sppll0);
191 	else
192 		ref = nvkm_clk_read(clk, nv_clk_src_sppll1);
193 	div = max(min((ref * 2) / freq, (u32)65), (u32)2) - 2;
194 	out = (ref * 2) / (div + 2);
195 	mode = freq != out;
196 
197 	ram_mask(fuc, 0x137360, 0x00000002, 0x00000000);
198 
199 	if ((ram_rd32(fuc, 0x132000) & 0x00000002) || 0 /*XXX*/) {
200 		ram_nuke(fuc, 0x132000);
201 		ram_mask(fuc, 0x132000, 0x00000002, 0x00000002);
202 		ram_mask(fuc, 0x132000, 0x00000002, 0x00000000);
203 	}
204 
205 	if (mode == 1) {
206 		ram_nuke(fuc, 0x10fe20);
207 		ram_mask(fuc, 0x10fe20, 0x00000002, 0x00000002);
208 		ram_mask(fuc, 0x10fe20, 0x00000002, 0x00000000);
209 	}
210 
211 // 0x00020034 // 0x0000000a
212 	ram_wr32(fuc, 0x132100, 0x00000001);
213 
214 	if (mode == 1 && from == 0) {
215 		/* calculate refpll */
216 		ret = gt215_pll_calc(subdev, &ram->refpll, ram->mempll.refclk,
217 				     &N1, NULL, &M1, &P);
218 		if (ret <= 0) {
219 			nvkm_error(subdev, "unable to calc refpll\n");
220 			return ret ? ret : -ERANGE;
221 		}
222 
223 		ram_wr32(fuc, 0x10fe20, 0x20010000);
224 		ram_wr32(fuc, 0x137320, 0x00000003);
225 		ram_wr32(fuc, 0x137330, 0x81200006);
226 		ram_wr32(fuc, 0x10fe24, (P << 16) | (N1 << 8) | M1);
227 		ram_wr32(fuc, 0x10fe20, 0x20010001);
228 		ram_wait(fuc, 0x137390, 0x00020000, 0x00020000, 64000);
229 
230 		/* calculate mempll */
231 		ret = gt215_pll_calc(subdev, &ram->mempll, freq,
232 				     &N1, NULL, &M1, &P);
233 		if (ret <= 0) {
234 			nvkm_error(subdev, "unable to calc refpll\n");
235 			return ret ? ret : -ERANGE;
236 		}
237 
238 		ram_wr32(fuc, 0x10fe20, 0x20010005);
239 		ram_wr32(fuc, 0x132004, (P << 16) | (N1 << 8) | M1);
240 		ram_wr32(fuc, 0x132000, 0x18010101);
241 		ram_wait(fuc, 0x137390, 0x00000002, 0x00000002, 64000);
242 	} else
243 	if (mode == 0) {
244 		ram_wr32(fuc, 0x137300, 0x00000003);
245 	}
246 
247 	if (from == 0) {
248 		ram_nuke(fuc, 0x10fb04);
249 		ram_mask(fuc, 0x10fb04, 0x0000ffff, 0x00000000);
250 		ram_nuke(fuc, 0x10fb08);
251 		ram_mask(fuc, 0x10fb08, 0x0000ffff, 0x00000000);
252 		ram_wr32(fuc, 0x10f988, 0x2004ff00);
253 		ram_wr32(fuc, 0x10f98c, 0x003fc040);
254 		ram_wr32(fuc, 0x10f990, 0x20012001);
255 		ram_wr32(fuc, 0x10f998, 0x00011a00);
256 		ram_wr32(fuc, 0x13d8f4, 0x00000000);
257 	} else {
258 		ram_wr32(fuc, 0x10f988, 0x20010000);
259 		ram_wr32(fuc, 0x10f98c, 0x00000000);
260 		ram_wr32(fuc, 0x10f990, 0x20012001);
261 		ram_wr32(fuc, 0x10f998, 0x00010a00);
262 	}
263 
264 	if (from == 0) {
265 // 0x00020039 // 0x000000ba
266 	}
267 
268 // 0x0002003a // 0x00000002
269 	ram_wr32(fuc, 0x100b0c, 0x00080012);
270 // 0x00030014 // 0x00000000 // 0x02b5f070
271 // 0x00030014 // 0x00010000 // 0x02b5f070
272 	ram_wr32(fuc, 0x611200, 0x00003300);
273 // 0x00020034 // 0x0000000a
274 // 0x00030020 // 0x00000001 // 0x00000000
275 
276 	ram_mask(fuc, 0x10f200, 0x00000800, 0x00000000);
277 	ram_wr32(fuc, 0x10f210, 0x00000000);
278 	ram_nsec(fuc, 1000);
279 	if (mode == 0)
280 		gf100_ram_train(fuc, 0x000c1001);
281 	ram_wr32(fuc, 0x10f310, 0x00000001);
282 	ram_nsec(fuc, 1000);
283 	ram_wr32(fuc, 0x10f090, 0x00000061);
284 	ram_wr32(fuc, 0x10f090, 0xc000007f);
285 	ram_nsec(fuc, 1000);
286 
287 	if (from == 0) {
288 		ram_wr32(fuc, 0x10f824, 0x00007fd4);
289 	} else {
290 		ram_wr32(fuc, 0x1373ec, 0x00020404);
291 	}
292 
293 	if (mode == 0) {
294 		ram_mask(fuc, 0x10f808, 0x00080000, 0x00000000);
295 		ram_mask(fuc, 0x10f200, 0x00008000, 0x00008000);
296 		ram_wr32(fuc, 0x10f830, 0x41500010);
297 		ram_mask(fuc, 0x10f830, 0x01000000, 0x00000000);
298 		ram_mask(fuc, 0x132100, 0x00000100, 0x00000100);
299 		ram_wr32(fuc, 0x10f050, 0xff000090);
300 		ram_wr32(fuc, 0x1373ec, 0x00020f0f);
301 		ram_wr32(fuc, 0x1373f0, 0x00000003);
302 		ram_wr32(fuc, 0x137310, 0x81201616);
303 		ram_wr32(fuc, 0x132100, 0x00000001);
304 // 0x00020039 // 0x000000ba
305 		ram_wr32(fuc, 0x10f830, 0x00300017);
306 		ram_wr32(fuc, 0x1373f0, 0x00000001);
307 		ram_wr32(fuc, 0x10f824, 0x00007e77);
308 		ram_wr32(fuc, 0x132000, 0x18030001);
309 		ram_wr32(fuc, 0x10f090, 0x4000007e);
310 		ram_nsec(fuc, 2000);
311 		ram_wr32(fuc, 0x10f314, 0x00000001);
312 		ram_wr32(fuc, 0x10f210, 0x80000000);
313 		ram_wr32(fuc, 0x10f338, 0x00300220);
314 		ram_wr32(fuc, 0x10f300, 0x0000011d);
315 		ram_nsec(fuc, 1000);
316 		ram_wr32(fuc, 0x10f290, 0x02060505);
317 		ram_wr32(fuc, 0x10f294, 0x34208288);
318 		ram_wr32(fuc, 0x10f298, 0x44050411);
319 		ram_wr32(fuc, 0x10f29c, 0x0000114c);
320 		ram_wr32(fuc, 0x10f2a0, 0x42e10069);
321 		ram_wr32(fuc, 0x10f614, 0x40044f77);
322 		ram_wr32(fuc, 0x10f610, 0x40044f77);
323 		ram_wr32(fuc, 0x10f344, 0x00600009);
324 		ram_nsec(fuc, 1000);
325 		ram_wr32(fuc, 0x10f348, 0x00700008);
326 		ram_wr32(fuc, 0x61c140, 0x19240000);
327 		ram_wr32(fuc, 0x10f830, 0x00300017);
328 		gf100_ram_train(fuc, 0x80021001);
329 		gf100_ram_train(fuc, 0x80081001);
330 		ram_wr32(fuc, 0x10f340, 0x00500004);
331 		ram_nsec(fuc, 1000);
332 		ram_wr32(fuc, 0x10f830, 0x01300017);
333 		ram_wr32(fuc, 0x10f830, 0x00300017);
334 // 0x00030020 // 0x00000000 // 0x00000000
335 // 0x00020034 // 0x0000000b
336 		ram_wr32(fuc, 0x100b0c, 0x00080028);
337 		ram_wr32(fuc, 0x611200, 0x00003330);
338 	} else {
339 		ram_wr32(fuc, 0x10f800, 0x00001800);
340 		ram_wr32(fuc, 0x13d8f4, 0x00000000);
341 		ram_wr32(fuc, 0x1373ec, 0x00020404);
342 		ram_wr32(fuc, 0x1373f0, 0x00000003);
343 		ram_wr32(fuc, 0x10f830, 0x40700010);
344 		ram_wr32(fuc, 0x10f830, 0x40500010);
345 		ram_wr32(fuc, 0x13d8f4, 0x00000000);
346 		ram_wr32(fuc, 0x1373f8, 0x00000000);
347 		ram_wr32(fuc, 0x132100, 0x00000101);
348 		ram_wr32(fuc, 0x137310, 0x89201616);
349 		ram_wr32(fuc, 0x10f050, 0xff000090);
350 		ram_wr32(fuc, 0x1373ec, 0x00030404);
351 		ram_wr32(fuc, 0x1373f0, 0x00000002);
352 	// 0x00020039 // 0x00000011
353 		ram_wr32(fuc, 0x132100, 0x00000001);
354 		ram_wr32(fuc, 0x1373f8, 0x00002000);
355 		ram_nsec(fuc, 2000);
356 		ram_wr32(fuc, 0x10f808, 0x7aaa0050);
357 		ram_wr32(fuc, 0x10f830, 0x00500010);
358 		ram_wr32(fuc, 0x10f200, 0x00ce1000);
359 		ram_wr32(fuc, 0x10f090, 0x4000007e);
360 		ram_nsec(fuc, 2000);
361 		ram_wr32(fuc, 0x10f314, 0x00000001);
362 		ram_wr32(fuc, 0x10f210, 0x80000000);
363 		ram_wr32(fuc, 0x10f338, 0x00300200);
364 		ram_wr32(fuc, 0x10f300, 0x0000084d);
365 		ram_nsec(fuc, 1000);
366 		ram_wr32(fuc, 0x10f290, 0x0b343825);
367 		ram_wr32(fuc, 0x10f294, 0x3483028e);
368 		ram_wr32(fuc, 0x10f298, 0x440c0600);
369 		ram_wr32(fuc, 0x10f29c, 0x0000214c);
370 		ram_wr32(fuc, 0x10f2a0, 0x42e20069);
371 		ram_wr32(fuc, 0x10f200, 0x00ce0000);
372 		ram_wr32(fuc, 0x10f614, 0x60044e77);
373 		ram_wr32(fuc, 0x10f610, 0x60044e77);
374 		ram_wr32(fuc, 0x10f340, 0x00500000);
375 		ram_nsec(fuc, 1000);
376 		ram_wr32(fuc, 0x10f344, 0x00600228);
377 		ram_nsec(fuc, 1000);
378 		ram_wr32(fuc, 0x10f348, 0x00700000);
379 		ram_wr32(fuc, 0x13d8f4, 0x00000000);
380 		ram_wr32(fuc, 0x61c140, 0x09a40000);
381 
382 		gf100_ram_train(fuc, 0x800e1008);
383 
384 		ram_nsec(fuc, 1000);
385 		ram_wr32(fuc, 0x10f800, 0x00001804);
386 	// 0x00030020 // 0x00000000 // 0x00000000
387 	// 0x00020034 // 0x0000000b
388 		ram_wr32(fuc, 0x13d8f4, 0x00000000);
389 		ram_wr32(fuc, 0x100b0c, 0x00080028);
390 		ram_wr32(fuc, 0x611200, 0x00003330);
391 		ram_nsec(fuc, 100000);
392 		ram_wr32(fuc, 0x10f9b0, 0x05313f41);
393 		ram_wr32(fuc, 0x10f9b4, 0x00002f50);
394 
395 		gf100_ram_train(fuc, 0x010c1001);
396 	}
397 
398 	ram_mask(fuc, 0x10f200, 0x00000800, 0x00000800);
399 // 0x00020016 // 0x00000000
400 
401 	if (mode == 0)
402 		ram_mask(fuc, 0x132000, 0x00000001, 0x00000000);
403 
404 	return 0;
405 }
406 
407 static int
408 gf100_ram_prog(struct nvkm_ram *base)
409 {
410 	struct gf100_ram *ram = gf100_ram(base);
411 	struct nvkm_device *device = ram->base.fb->subdev.device;
412 	ram_exec(&ram->fuc, nvkm_boolopt(device->cfgopt, "NvMemExec", true));
413 	return 0;
414 }
415 
416 static void
417 gf100_ram_tidy(struct nvkm_ram *base)
418 {
419 	struct gf100_ram *ram = gf100_ram(base);
420 	ram_exec(&ram->fuc, false);
421 }
422 
423 void
424 gf100_ram_put(struct nvkm_ram *ram, struct nvkm_mem **pmem)
425 {
426 	struct nvkm_ltc *ltc = ram->fb->subdev.device->ltc;
427 	struct nvkm_mem *mem = *pmem;
428 
429 	*pmem = NULL;
430 	if (unlikely(mem == NULL))
431 		return;
432 
433 	mutex_lock(&ram->fb->subdev.mutex);
434 	if (mem->tag)
435 		nvkm_ltc_tags_free(ltc, &mem->tag);
436 	__nv50_ram_put(ram, mem);
437 	mutex_unlock(&ram->fb->subdev.mutex);
438 
439 	kfree(mem);
440 }
441 
442 int
443 gf100_ram_get(struct nvkm_ram *ram, u64 size, u32 align, u32 ncmin,
444 	      u32 memtype, struct nvkm_mem **pmem)
445 {
446 	struct nvkm_ltc *ltc = ram->fb->subdev.device->ltc;
447 	struct nvkm_mm *mm = &ram->vram;
448 	struct nvkm_mm_node **node, *r;
449 	struct nvkm_mem *mem;
450 	int type = (memtype & 0x0ff);
451 	int back = (memtype & 0x800);
452 	const bool comp = gf100_pte_storage_type_map[type] != type;
453 	int ret;
454 
455 	size  >>= NVKM_RAM_MM_SHIFT;
456 	align >>= NVKM_RAM_MM_SHIFT;
457 	ncmin >>= NVKM_RAM_MM_SHIFT;
458 	if (!ncmin)
459 		ncmin = size;
460 
461 	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
462 	if (!mem)
463 		return -ENOMEM;
464 
465 	mem->size = size;
466 
467 	mutex_lock(&ram->fb->subdev.mutex);
468 	if (comp) {
469 		/* compression only works with lpages */
470 		if (align == (1 << (17 - NVKM_RAM_MM_SHIFT))) {
471 			int n = size >> 5;
472 			nvkm_ltc_tags_alloc(ltc, n, &mem->tag);
473 		}
474 
475 		if (unlikely(!mem->tag))
476 			type = gf100_pte_storage_type_map[type];
477 	}
478 	mem->memtype = type;
479 
480 	node = &mem->mem;
481 	do {
482 		if (back)
483 			ret = nvkm_mm_tail(mm, 0, 1, size, ncmin, align, &r);
484 		else
485 			ret = nvkm_mm_head(mm, 0, 1, size, ncmin, align, &r);
486 		if (ret) {
487 			mutex_unlock(&ram->fb->subdev.mutex);
488 			ram->func->put(ram, &mem);
489 			return ret;
490 		}
491 
492 		*node = r;
493 		node = &r->next;
494 		size -= r->length;
495 	} while (size);
496 	mutex_unlock(&ram->fb->subdev.mutex);
497 
498 	mem->offset = (u64)mem->mem->offset << NVKM_RAM_MM_SHIFT;
499 	*pmem = mem;
500 	return 0;
501 }
502 
503 static int
504 gf100_ram_init(struct nvkm_ram *base)
505 {
506 	static const u8  train0[] = {
507 		0x00, 0xff, 0x55, 0xaa, 0x33, 0xcc,
508 		0x00, 0xff, 0xff, 0x00, 0xff, 0x00,
509 	};
510 	static const u32 train1[] = {
511 		0x00000000, 0xffffffff,
512 		0x55555555, 0xaaaaaaaa,
513 		0x33333333, 0xcccccccc,
514 		0xf0f0f0f0, 0x0f0f0f0f,
515 		0x00ff00ff, 0xff00ff00,
516 		0x0000ffff, 0xffff0000,
517 	};
518 	struct gf100_ram *ram = gf100_ram(base);
519 	struct nvkm_device *device = ram->base.fb->subdev.device;
520 	int i;
521 
522 	switch (ram->base.type) {
523 	case NVKM_RAM_TYPE_GDDR5:
524 		break;
525 	default:
526 		return 0;
527 	}
528 
529 	/* prepare for ddr link training, and load training patterns */
530 	for (i = 0; i < 0x30; i++) {
531 		nvkm_wr32(device, 0x10f968, 0x00000000 | (i << 8));
532 		nvkm_wr32(device, 0x10f96c, 0x00000000 | (i << 8));
533 		nvkm_wr32(device, 0x10f920, 0x00000100 | train0[i % 12]);
534 		nvkm_wr32(device, 0x10f924, 0x00000100 | train0[i % 12]);
535 		nvkm_wr32(device, 0x10f918,              train1[i % 12]);
536 		nvkm_wr32(device, 0x10f91c,              train1[i % 12]);
537 		nvkm_wr32(device, 0x10f920, 0x00000000 | train0[i % 12]);
538 		nvkm_wr32(device, 0x10f924, 0x00000000 | train0[i % 12]);
539 		nvkm_wr32(device, 0x10f918,              train1[i % 12]);
540 		nvkm_wr32(device, 0x10f91c,              train1[i % 12]);
541 	}
542 
543 	return 0;
544 }
545 
546 static const struct nvkm_ram_func
547 gf100_ram_func = {
548 	.init = gf100_ram_init,
549 	.get = gf100_ram_get,
550 	.put = gf100_ram_put,
551 	.calc = gf100_ram_calc,
552 	.prog = gf100_ram_prog,
553 	.tidy = gf100_ram_tidy,
554 };
555 
556 int
557 gf100_ram_ctor(const struct nvkm_ram_func *func, struct nvkm_fb *fb,
558 	       u32 maskaddr, struct nvkm_ram *ram)
559 {
560 	struct nvkm_subdev *subdev = &fb->subdev;
561 	struct nvkm_device *device = subdev->device;
562 	struct nvkm_bios *bios = device->bios;
563 	const u32 rsvd_head = ( 256 * 1024); /* vga memory */
564 	const u32 rsvd_tail = (1024 * 1024); /* vbios etc */
565 	u32 parts = nvkm_rd32(device, 0x022438);
566 	u32 pmask = nvkm_rd32(device, maskaddr);
567 	u64 bsize = (u64)nvkm_rd32(device, 0x10f20c) << 20;
568 	u64 psize, size = 0;
569 	enum nvkm_ram_type type = nvkm_fb_bios_memtype(bios);
570 	bool uniform = true;
571 	int ret, i;
572 
573 	nvkm_debug(subdev, "100800: %08x\n", nvkm_rd32(device, 0x100800));
574 	nvkm_debug(subdev, "parts %08x mask %08x\n", parts, pmask);
575 
576 	/* read amount of vram attached to each memory controller */
577 	for (i = 0; i < parts; i++) {
578 		if (pmask & (1 << i))
579 			continue;
580 
581 		psize = (u64)nvkm_rd32(device, 0x11020c + (i * 0x1000)) << 20;
582 		if (psize != bsize) {
583 			if (psize < bsize)
584 				bsize = psize;
585 			uniform = false;
586 		}
587 
588 		nvkm_debug(subdev, "%d: %d MiB\n", i, (u32)(psize >> 20));
589 		size += psize;
590 	}
591 
592 	ret = nvkm_ram_ctor(func, fb, type, size, 0, ram);
593 	if (ret)
594 		return ret;
595 
596 	nvkm_mm_fini(&ram->vram);
597 
598 	/* if all controllers have the same amount attached, there's no holes */
599 	if (uniform) {
600 		ret = nvkm_mm_init(&ram->vram, rsvd_head >> NVKM_RAM_MM_SHIFT,
601 				   (size - rsvd_head - rsvd_tail) >>
602 				   NVKM_RAM_MM_SHIFT, 1);
603 		if (ret)
604 			return ret;
605 	} else {
606 		/* otherwise, address lowest common amount from 0GiB */
607 		ret = nvkm_mm_init(&ram->vram, rsvd_head >> NVKM_RAM_MM_SHIFT,
608 				   ((bsize * parts) - rsvd_head) >>
609 				   NVKM_RAM_MM_SHIFT, 1);
610 		if (ret)
611 			return ret;
612 
613 		/* and the rest starting from (8GiB + common_size) */
614 		ret = nvkm_mm_init(&ram->vram, (0x0200000000ULL + bsize) >>
615 				   NVKM_RAM_MM_SHIFT,
616 				   (size - (bsize * parts) - rsvd_tail) >>
617 				   NVKM_RAM_MM_SHIFT, 1);
618 		if (ret)
619 			return ret;
620 	}
621 
622 	ram->ranks = (nvkm_rd32(device, 0x10f200) & 0x00000004) ? 2 : 1;
623 	return 0;
624 }
625 
626 int
627 gf100_ram_new(struct nvkm_fb *fb, struct nvkm_ram **pram)
628 {
629 	struct nvkm_subdev *subdev = &fb->subdev;
630 	struct nvkm_bios *bios = subdev->device->bios;
631 	struct gf100_ram *ram;
632 	int ret;
633 
634 	if (!(ram = kzalloc(sizeof(*ram), GFP_KERNEL)))
635 		return -ENOMEM;
636 	*pram = &ram->base;
637 
638 	ret = gf100_ram_ctor(&gf100_ram_func, fb, 0x022554, &ram->base);
639 	if (ret)
640 		return ret;
641 
642 	ret = nvbios_pll_parse(bios, 0x0c, &ram->refpll);
643 	if (ret) {
644 		nvkm_error(subdev, "mclk refpll data not found\n");
645 		return ret;
646 	}
647 
648 	ret = nvbios_pll_parse(bios, 0x04, &ram->mempll);
649 	if (ret) {
650 		nvkm_error(subdev, "mclk pll data not found\n");
651 		return ret;
652 	}
653 
654 	ram->fuc.r_0x10fe20 = ramfuc_reg(0x10fe20);
655 	ram->fuc.r_0x10fe24 = ramfuc_reg(0x10fe24);
656 	ram->fuc.r_0x137320 = ramfuc_reg(0x137320);
657 	ram->fuc.r_0x137330 = ramfuc_reg(0x137330);
658 
659 	ram->fuc.r_0x132000 = ramfuc_reg(0x132000);
660 	ram->fuc.r_0x132004 = ramfuc_reg(0x132004);
661 	ram->fuc.r_0x132100 = ramfuc_reg(0x132100);
662 
663 	ram->fuc.r_0x137390 = ramfuc_reg(0x137390);
664 
665 	ram->fuc.r_0x10f290 = ramfuc_reg(0x10f290);
666 	ram->fuc.r_0x10f294 = ramfuc_reg(0x10f294);
667 	ram->fuc.r_0x10f298 = ramfuc_reg(0x10f298);
668 	ram->fuc.r_0x10f29c = ramfuc_reg(0x10f29c);
669 	ram->fuc.r_0x10f2a0 = ramfuc_reg(0x10f2a0);
670 
671 	ram->fuc.r_0x10f300 = ramfuc_reg(0x10f300);
672 	ram->fuc.r_0x10f338 = ramfuc_reg(0x10f338);
673 	ram->fuc.r_0x10f340 = ramfuc_reg(0x10f340);
674 	ram->fuc.r_0x10f344 = ramfuc_reg(0x10f344);
675 	ram->fuc.r_0x10f348 = ramfuc_reg(0x10f348);
676 
677 	ram->fuc.r_0x10f910 = ramfuc_reg(0x10f910);
678 	ram->fuc.r_0x10f914 = ramfuc_reg(0x10f914);
679 
680 	ram->fuc.r_0x100b0c = ramfuc_reg(0x100b0c);
681 	ram->fuc.r_0x10f050 = ramfuc_reg(0x10f050);
682 	ram->fuc.r_0x10f090 = ramfuc_reg(0x10f090);
683 	ram->fuc.r_0x10f200 = ramfuc_reg(0x10f200);
684 	ram->fuc.r_0x10f210 = ramfuc_reg(0x10f210);
685 	ram->fuc.r_0x10f310 = ramfuc_reg(0x10f310);
686 	ram->fuc.r_0x10f314 = ramfuc_reg(0x10f314);
687 	ram->fuc.r_0x10f610 = ramfuc_reg(0x10f610);
688 	ram->fuc.r_0x10f614 = ramfuc_reg(0x10f614);
689 	ram->fuc.r_0x10f800 = ramfuc_reg(0x10f800);
690 	ram->fuc.r_0x10f808 = ramfuc_reg(0x10f808);
691 	ram->fuc.r_0x10f824 = ramfuc_reg(0x10f824);
692 	ram->fuc.r_0x10f830 = ramfuc_reg(0x10f830);
693 	ram->fuc.r_0x10f988 = ramfuc_reg(0x10f988);
694 	ram->fuc.r_0x10f98c = ramfuc_reg(0x10f98c);
695 	ram->fuc.r_0x10f990 = ramfuc_reg(0x10f990);
696 	ram->fuc.r_0x10f998 = ramfuc_reg(0x10f998);
697 	ram->fuc.r_0x10f9b0 = ramfuc_reg(0x10f9b0);
698 	ram->fuc.r_0x10f9b4 = ramfuc_reg(0x10f9b4);
699 	ram->fuc.r_0x10fb04 = ramfuc_reg(0x10fb04);
700 	ram->fuc.r_0x10fb08 = ramfuc_reg(0x10fb08);
701 	ram->fuc.r_0x137310 = ramfuc_reg(0x137300);
702 	ram->fuc.r_0x137310 = ramfuc_reg(0x137310);
703 	ram->fuc.r_0x137360 = ramfuc_reg(0x137360);
704 	ram->fuc.r_0x1373ec = ramfuc_reg(0x1373ec);
705 	ram->fuc.r_0x1373f0 = ramfuc_reg(0x1373f0);
706 	ram->fuc.r_0x1373f8 = ramfuc_reg(0x1373f8);
707 
708 	ram->fuc.r_0x61c140 = ramfuc_reg(0x61c140);
709 	ram->fuc.r_0x611200 = ramfuc_reg(0x611200);
710 
711 	ram->fuc.r_0x13d8f4 = ramfuc_reg(0x13d8f4);
712 	return 0;
713 }
714