1 /* 2 * Copyright 2013 Red Hat Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 * Authors: Ben Skeggs 23 */ 24 #define gf100_ram(p) container_of((p), struct gf100_ram, base) 25 #include "ram.h" 26 #include "ramfuc.h" 27 28 #include <core/option.h> 29 #include <subdev/bios.h> 30 #include <subdev/bios/pll.h> 31 #include <subdev/bios/rammap.h> 32 #include <subdev/bios/timing.h> 33 #include <subdev/clk.h> 34 #include <subdev/clk/pll.h> 35 36 struct gf100_ramfuc { 37 struct ramfuc base; 38 39 struct ramfuc_reg r_0x10fe20; 40 struct ramfuc_reg r_0x10fe24; 41 struct ramfuc_reg r_0x137320; 42 struct ramfuc_reg r_0x137330; 43 44 struct ramfuc_reg r_0x132000; 45 struct ramfuc_reg r_0x132004; 46 struct ramfuc_reg r_0x132100; 47 48 struct ramfuc_reg r_0x137390; 49 50 struct ramfuc_reg r_0x10f290; 51 struct ramfuc_reg r_0x10f294; 52 struct ramfuc_reg r_0x10f298; 53 struct ramfuc_reg r_0x10f29c; 54 struct ramfuc_reg r_0x10f2a0; 55 56 struct ramfuc_reg r_0x10f300; 57 struct ramfuc_reg r_0x10f338; 58 struct ramfuc_reg r_0x10f340; 59 struct ramfuc_reg r_0x10f344; 60 struct ramfuc_reg r_0x10f348; 61 62 struct ramfuc_reg r_0x10f910; 63 struct ramfuc_reg r_0x10f914; 64 65 struct ramfuc_reg r_0x100b0c; 66 struct ramfuc_reg r_0x10f050; 67 struct ramfuc_reg r_0x10f090; 68 struct ramfuc_reg r_0x10f200; 69 struct ramfuc_reg r_0x10f210; 70 struct ramfuc_reg r_0x10f310; 71 struct ramfuc_reg r_0x10f314; 72 struct ramfuc_reg r_0x10f610; 73 struct ramfuc_reg r_0x10f614; 74 struct ramfuc_reg r_0x10f800; 75 struct ramfuc_reg r_0x10f808; 76 struct ramfuc_reg r_0x10f824; 77 struct ramfuc_reg r_0x10f830; 78 struct ramfuc_reg r_0x10f988; 79 struct ramfuc_reg r_0x10f98c; 80 struct ramfuc_reg r_0x10f990; 81 struct ramfuc_reg r_0x10f998; 82 struct ramfuc_reg r_0x10f9b0; 83 struct ramfuc_reg r_0x10f9b4; 84 struct ramfuc_reg r_0x10fb04; 85 struct ramfuc_reg r_0x10fb08; 86 struct ramfuc_reg r_0x137300; 87 struct ramfuc_reg r_0x137310; 88 struct ramfuc_reg r_0x137360; 89 struct ramfuc_reg r_0x1373ec; 90 struct ramfuc_reg r_0x1373f0; 91 struct ramfuc_reg r_0x1373f8; 92 93 struct ramfuc_reg r_0x61c140; 94 struct ramfuc_reg r_0x611200; 95 96 struct ramfuc_reg r_0x13d8f4; 97 }; 98 99 struct gf100_ram { 100 struct nvkm_ram base; 101 struct gf100_ramfuc fuc; 102 struct nvbios_pll refpll; 103 struct nvbios_pll mempll; 104 }; 105 106 static void 107 gf100_ram_train(struct gf100_ramfuc *fuc, u32 magic) 108 { 109 struct gf100_ram *ram = container_of(fuc, typeof(*ram), fuc); 110 struct nvkm_fb *fb = ram->base.fb; 111 struct nvkm_device *device = fb->subdev.device; 112 u32 part = nvkm_rd32(device, 0x022438), i; 113 u32 mask = nvkm_rd32(device, 0x022554); 114 u32 addr = 0x110974; 115 116 ram_wr32(fuc, 0x10f910, magic); 117 ram_wr32(fuc, 0x10f914, magic); 118 119 for (i = 0; (magic & 0x80000000) && i < part; addr += 0x1000, i++) { 120 if (mask & (1 << i)) 121 continue; 122 ram_wait(fuc, addr, 0x0000000f, 0x00000000, 500000); 123 } 124 } 125 126 int 127 gf100_ram_calc(struct nvkm_ram *base, u32 freq) 128 { 129 struct gf100_ram *ram = gf100_ram(base); 130 struct gf100_ramfuc *fuc = &ram->fuc; 131 struct nvkm_subdev *subdev = &ram->base.fb->subdev; 132 struct nvkm_device *device = subdev->device; 133 struct nvkm_clk *clk = device->clk; 134 struct nvkm_bios *bios = device->bios; 135 struct nvbios_ramcfg cfg; 136 u8 ver, cnt, len, strap; 137 struct { 138 u32 data; 139 u8 size; 140 } rammap, ramcfg, timing; 141 int ref, div, out; 142 int from, mode; 143 int N1, M1, P; 144 int ret; 145 146 /* lookup memory config data relevant to the target frequency */ 147 rammap.data = nvbios_rammapEm(bios, freq / 1000, &ver, &rammap.size, 148 &cnt, &ramcfg.size, &cfg); 149 if (!rammap.data || ver != 0x10 || rammap.size < 0x0e) { 150 nvkm_error(subdev, "invalid/missing rammap entry\n"); 151 return -EINVAL; 152 } 153 154 /* locate specific data set for the attached memory */ 155 strap = nvbios_ramcfg_index(subdev); 156 if (strap >= cnt) { 157 nvkm_error(subdev, "invalid ramcfg strap\n"); 158 return -EINVAL; 159 } 160 161 ramcfg.data = rammap.data + rammap.size + (strap * ramcfg.size); 162 if (!ramcfg.data || ver != 0x10 || ramcfg.size < 0x0e) { 163 nvkm_error(subdev, "invalid/missing ramcfg entry\n"); 164 return -EINVAL; 165 } 166 167 /* lookup memory timings, if bios says they're present */ 168 strap = nvbios_rd08(bios, ramcfg.data + 0x01); 169 if (strap != 0xff) { 170 timing.data = nvbios_timingEe(bios, strap, &ver, &timing.size, 171 &cnt, &len); 172 if (!timing.data || ver != 0x10 || timing.size < 0x19) { 173 nvkm_error(subdev, "invalid/missing timing entry\n"); 174 return -EINVAL; 175 } 176 } else { 177 timing.data = 0; 178 } 179 180 ret = ram_init(fuc, ram->base.fb); 181 if (ret) 182 return ret; 183 184 /* determine current mclk configuration */ 185 from = !!(ram_rd32(fuc, 0x1373f0) & 0x00000002); /*XXX: ok? */ 186 187 /* determine target mclk configuration */ 188 if (!(ram_rd32(fuc, 0x137300) & 0x00000100)) 189 ref = nvkm_clk_read(clk, nv_clk_src_sppll0); 190 else 191 ref = nvkm_clk_read(clk, nv_clk_src_sppll1); 192 div = max(min((ref * 2) / freq, (u32)65), (u32)2) - 2; 193 out = (ref * 2) / (div + 2); 194 mode = freq != out; 195 196 ram_mask(fuc, 0x137360, 0x00000002, 0x00000000); 197 198 if ((ram_rd32(fuc, 0x132000) & 0x00000002) || 0 /*XXX*/) { 199 ram_nuke(fuc, 0x132000); 200 ram_mask(fuc, 0x132000, 0x00000002, 0x00000002); 201 ram_mask(fuc, 0x132000, 0x00000002, 0x00000000); 202 } 203 204 if (mode == 1) { 205 ram_nuke(fuc, 0x10fe20); 206 ram_mask(fuc, 0x10fe20, 0x00000002, 0x00000002); 207 ram_mask(fuc, 0x10fe20, 0x00000002, 0x00000000); 208 } 209 210 // 0x00020034 // 0x0000000a 211 ram_wr32(fuc, 0x132100, 0x00000001); 212 213 if (mode == 1 && from == 0) { 214 /* calculate refpll */ 215 ret = gt215_pll_calc(subdev, &ram->refpll, ram->mempll.refclk, 216 &N1, NULL, &M1, &P); 217 if (ret <= 0) { 218 nvkm_error(subdev, "unable to calc refpll\n"); 219 return ret ? ret : -ERANGE; 220 } 221 222 ram_wr32(fuc, 0x10fe20, 0x20010000); 223 ram_wr32(fuc, 0x137320, 0x00000003); 224 ram_wr32(fuc, 0x137330, 0x81200006); 225 ram_wr32(fuc, 0x10fe24, (P << 16) | (N1 << 8) | M1); 226 ram_wr32(fuc, 0x10fe20, 0x20010001); 227 ram_wait(fuc, 0x137390, 0x00020000, 0x00020000, 64000); 228 229 /* calculate mempll */ 230 ret = gt215_pll_calc(subdev, &ram->mempll, freq, 231 &N1, NULL, &M1, &P); 232 if (ret <= 0) { 233 nvkm_error(subdev, "unable to calc refpll\n"); 234 return ret ? ret : -ERANGE; 235 } 236 237 ram_wr32(fuc, 0x10fe20, 0x20010005); 238 ram_wr32(fuc, 0x132004, (P << 16) | (N1 << 8) | M1); 239 ram_wr32(fuc, 0x132000, 0x18010101); 240 ram_wait(fuc, 0x137390, 0x00000002, 0x00000002, 64000); 241 } else 242 if (mode == 0) { 243 ram_wr32(fuc, 0x137300, 0x00000003); 244 } 245 246 if (from == 0) { 247 ram_nuke(fuc, 0x10fb04); 248 ram_mask(fuc, 0x10fb04, 0x0000ffff, 0x00000000); 249 ram_nuke(fuc, 0x10fb08); 250 ram_mask(fuc, 0x10fb08, 0x0000ffff, 0x00000000); 251 ram_wr32(fuc, 0x10f988, 0x2004ff00); 252 ram_wr32(fuc, 0x10f98c, 0x003fc040); 253 ram_wr32(fuc, 0x10f990, 0x20012001); 254 ram_wr32(fuc, 0x10f998, 0x00011a00); 255 ram_wr32(fuc, 0x13d8f4, 0x00000000); 256 } else { 257 ram_wr32(fuc, 0x10f988, 0x20010000); 258 ram_wr32(fuc, 0x10f98c, 0x00000000); 259 ram_wr32(fuc, 0x10f990, 0x20012001); 260 ram_wr32(fuc, 0x10f998, 0x00010a00); 261 } 262 263 if (from == 0) { 264 // 0x00020039 // 0x000000ba 265 } 266 267 // 0x0002003a // 0x00000002 268 ram_wr32(fuc, 0x100b0c, 0x00080012); 269 // 0x00030014 // 0x00000000 // 0x02b5f070 270 // 0x00030014 // 0x00010000 // 0x02b5f070 271 ram_wr32(fuc, 0x611200, 0x00003300); 272 // 0x00020034 // 0x0000000a 273 // 0x00030020 // 0x00000001 // 0x00000000 274 275 ram_mask(fuc, 0x10f200, 0x00000800, 0x00000000); 276 ram_wr32(fuc, 0x10f210, 0x00000000); 277 ram_nsec(fuc, 1000); 278 if (mode == 0) 279 gf100_ram_train(fuc, 0x000c1001); 280 ram_wr32(fuc, 0x10f310, 0x00000001); 281 ram_nsec(fuc, 1000); 282 ram_wr32(fuc, 0x10f090, 0x00000061); 283 ram_wr32(fuc, 0x10f090, 0xc000007f); 284 ram_nsec(fuc, 1000); 285 286 if (from == 0) { 287 ram_wr32(fuc, 0x10f824, 0x00007fd4); 288 } else { 289 ram_wr32(fuc, 0x1373ec, 0x00020404); 290 } 291 292 if (mode == 0) { 293 ram_mask(fuc, 0x10f808, 0x00080000, 0x00000000); 294 ram_mask(fuc, 0x10f200, 0x00008000, 0x00008000); 295 ram_wr32(fuc, 0x10f830, 0x41500010); 296 ram_mask(fuc, 0x10f830, 0x01000000, 0x00000000); 297 ram_mask(fuc, 0x132100, 0x00000100, 0x00000100); 298 ram_wr32(fuc, 0x10f050, 0xff000090); 299 ram_wr32(fuc, 0x1373ec, 0x00020f0f); 300 ram_wr32(fuc, 0x1373f0, 0x00000003); 301 ram_wr32(fuc, 0x137310, 0x81201616); 302 ram_wr32(fuc, 0x132100, 0x00000001); 303 // 0x00020039 // 0x000000ba 304 ram_wr32(fuc, 0x10f830, 0x00300017); 305 ram_wr32(fuc, 0x1373f0, 0x00000001); 306 ram_wr32(fuc, 0x10f824, 0x00007e77); 307 ram_wr32(fuc, 0x132000, 0x18030001); 308 ram_wr32(fuc, 0x10f090, 0x4000007e); 309 ram_nsec(fuc, 2000); 310 ram_wr32(fuc, 0x10f314, 0x00000001); 311 ram_wr32(fuc, 0x10f210, 0x80000000); 312 ram_wr32(fuc, 0x10f338, 0x00300220); 313 ram_wr32(fuc, 0x10f300, 0x0000011d); 314 ram_nsec(fuc, 1000); 315 ram_wr32(fuc, 0x10f290, 0x02060505); 316 ram_wr32(fuc, 0x10f294, 0x34208288); 317 ram_wr32(fuc, 0x10f298, 0x44050411); 318 ram_wr32(fuc, 0x10f29c, 0x0000114c); 319 ram_wr32(fuc, 0x10f2a0, 0x42e10069); 320 ram_wr32(fuc, 0x10f614, 0x40044f77); 321 ram_wr32(fuc, 0x10f610, 0x40044f77); 322 ram_wr32(fuc, 0x10f344, 0x00600009); 323 ram_nsec(fuc, 1000); 324 ram_wr32(fuc, 0x10f348, 0x00700008); 325 ram_wr32(fuc, 0x61c140, 0x19240000); 326 ram_wr32(fuc, 0x10f830, 0x00300017); 327 gf100_ram_train(fuc, 0x80021001); 328 gf100_ram_train(fuc, 0x80081001); 329 ram_wr32(fuc, 0x10f340, 0x00500004); 330 ram_nsec(fuc, 1000); 331 ram_wr32(fuc, 0x10f830, 0x01300017); 332 ram_wr32(fuc, 0x10f830, 0x00300017); 333 // 0x00030020 // 0x00000000 // 0x00000000 334 // 0x00020034 // 0x0000000b 335 ram_wr32(fuc, 0x100b0c, 0x00080028); 336 ram_wr32(fuc, 0x611200, 0x00003330); 337 } else { 338 ram_wr32(fuc, 0x10f800, 0x00001800); 339 ram_wr32(fuc, 0x13d8f4, 0x00000000); 340 ram_wr32(fuc, 0x1373ec, 0x00020404); 341 ram_wr32(fuc, 0x1373f0, 0x00000003); 342 ram_wr32(fuc, 0x10f830, 0x40700010); 343 ram_wr32(fuc, 0x10f830, 0x40500010); 344 ram_wr32(fuc, 0x13d8f4, 0x00000000); 345 ram_wr32(fuc, 0x1373f8, 0x00000000); 346 ram_wr32(fuc, 0x132100, 0x00000101); 347 ram_wr32(fuc, 0x137310, 0x89201616); 348 ram_wr32(fuc, 0x10f050, 0xff000090); 349 ram_wr32(fuc, 0x1373ec, 0x00030404); 350 ram_wr32(fuc, 0x1373f0, 0x00000002); 351 // 0x00020039 // 0x00000011 352 ram_wr32(fuc, 0x132100, 0x00000001); 353 ram_wr32(fuc, 0x1373f8, 0x00002000); 354 ram_nsec(fuc, 2000); 355 ram_wr32(fuc, 0x10f808, 0x7aaa0050); 356 ram_wr32(fuc, 0x10f830, 0x00500010); 357 ram_wr32(fuc, 0x10f200, 0x00ce1000); 358 ram_wr32(fuc, 0x10f090, 0x4000007e); 359 ram_nsec(fuc, 2000); 360 ram_wr32(fuc, 0x10f314, 0x00000001); 361 ram_wr32(fuc, 0x10f210, 0x80000000); 362 ram_wr32(fuc, 0x10f338, 0x00300200); 363 ram_wr32(fuc, 0x10f300, 0x0000084d); 364 ram_nsec(fuc, 1000); 365 ram_wr32(fuc, 0x10f290, 0x0b343825); 366 ram_wr32(fuc, 0x10f294, 0x3483028e); 367 ram_wr32(fuc, 0x10f298, 0x440c0600); 368 ram_wr32(fuc, 0x10f29c, 0x0000214c); 369 ram_wr32(fuc, 0x10f2a0, 0x42e20069); 370 ram_wr32(fuc, 0x10f200, 0x00ce0000); 371 ram_wr32(fuc, 0x10f614, 0x60044e77); 372 ram_wr32(fuc, 0x10f610, 0x60044e77); 373 ram_wr32(fuc, 0x10f340, 0x00500000); 374 ram_nsec(fuc, 1000); 375 ram_wr32(fuc, 0x10f344, 0x00600228); 376 ram_nsec(fuc, 1000); 377 ram_wr32(fuc, 0x10f348, 0x00700000); 378 ram_wr32(fuc, 0x13d8f4, 0x00000000); 379 ram_wr32(fuc, 0x61c140, 0x09a40000); 380 381 gf100_ram_train(fuc, 0x800e1008); 382 383 ram_nsec(fuc, 1000); 384 ram_wr32(fuc, 0x10f800, 0x00001804); 385 // 0x00030020 // 0x00000000 // 0x00000000 386 // 0x00020034 // 0x0000000b 387 ram_wr32(fuc, 0x13d8f4, 0x00000000); 388 ram_wr32(fuc, 0x100b0c, 0x00080028); 389 ram_wr32(fuc, 0x611200, 0x00003330); 390 ram_nsec(fuc, 100000); 391 ram_wr32(fuc, 0x10f9b0, 0x05313f41); 392 ram_wr32(fuc, 0x10f9b4, 0x00002f50); 393 394 gf100_ram_train(fuc, 0x010c1001); 395 } 396 397 ram_mask(fuc, 0x10f200, 0x00000800, 0x00000800); 398 // 0x00020016 // 0x00000000 399 400 if (mode == 0) 401 ram_mask(fuc, 0x132000, 0x00000001, 0x00000000); 402 403 return 0; 404 } 405 406 int 407 gf100_ram_prog(struct nvkm_ram *base) 408 { 409 struct gf100_ram *ram = gf100_ram(base); 410 struct nvkm_device *device = ram->base.fb->subdev.device; 411 ram_exec(&ram->fuc, nvkm_boolopt(device->cfgopt, "NvMemExec", true)); 412 return 0; 413 } 414 415 void 416 gf100_ram_tidy(struct nvkm_ram *base) 417 { 418 struct gf100_ram *ram = gf100_ram(base); 419 ram_exec(&ram->fuc, false); 420 } 421 422 int 423 gf100_ram_init(struct nvkm_ram *base) 424 { 425 static const u8 train0[] = { 426 0x00, 0xff, 0x55, 0xaa, 0x33, 0xcc, 427 0x00, 0xff, 0xff, 0x00, 0xff, 0x00, 428 }; 429 static const u32 train1[] = { 430 0x00000000, 0xffffffff, 431 0x55555555, 0xaaaaaaaa, 432 0x33333333, 0xcccccccc, 433 0xf0f0f0f0, 0x0f0f0f0f, 434 0x00ff00ff, 0xff00ff00, 435 0x0000ffff, 0xffff0000, 436 }; 437 struct gf100_ram *ram = gf100_ram(base); 438 struct nvkm_device *device = ram->base.fb->subdev.device; 439 int i; 440 441 switch (ram->base.type) { 442 case NVKM_RAM_TYPE_GDDR5: 443 break; 444 default: 445 return 0; 446 } 447 448 /* prepare for ddr link training, and load training patterns */ 449 for (i = 0; i < 0x30; i++) { 450 nvkm_wr32(device, 0x10f968, 0x00000000 | (i << 8)); 451 nvkm_wr32(device, 0x10f96c, 0x00000000 | (i << 8)); 452 nvkm_wr32(device, 0x10f920, 0x00000100 | train0[i % 12]); 453 nvkm_wr32(device, 0x10f924, 0x00000100 | train0[i % 12]); 454 nvkm_wr32(device, 0x10f918, train1[i % 12]); 455 nvkm_wr32(device, 0x10f91c, train1[i % 12]); 456 nvkm_wr32(device, 0x10f920, 0x00000000 | train0[i % 12]); 457 nvkm_wr32(device, 0x10f924, 0x00000000 | train0[i % 12]); 458 nvkm_wr32(device, 0x10f918, train1[i % 12]); 459 nvkm_wr32(device, 0x10f91c, train1[i % 12]); 460 } 461 462 return 0; 463 } 464 465 u32 466 gf100_ram_probe_fbpa_amount(struct nvkm_device *device, int fbpa) 467 { 468 return nvkm_rd32(device, 0x11020c + (fbpa * 0x1000)); 469 } 470 471 u32 472 gf100_ram_probe_fbp_amount(const struct nvkm_ram_func *func, u32 fbpao, 473 struct nvkm_device *device, int fbp, int *pltcs) 474 { 475 if (!(fbpao & BIT(fbp))) { 476 *pltcs = 1; 477 return func->probe_fbpa_amount(device, fbp); 478 } 479 return 0; 480 } 481 482 u32 483 gf100_ram_probe_fbp(const struct nvkm_ram_func *func, 484 struct nvkm_device *device, int fbp, int *pltcs) 485 { 486 u32 fbpao = nvkm_rd32(device, 0x022554); 487 return func->probe_fbp_amount(func, fbpao, device, fbp, pltcs); 488 } 489 490 int 491 gf100_ram_ctor(const struct nvkm_ram_func *func, struct nvkm_fb *fb, 492 struct nvkm_ram *ram) 493 { 494 struct nvkm_subdev *subdev = &fb->subdev; 495 struct nvkm_device *device = subdev->device; 496 struct nvkm_bios *bios = device->bios; 497 const u32 rsvd_head = ( 256 * 1024); /* vga memory */ 498 const u32 rsvd_tail = (1024 * 1024); /* vbios etc */ 499 enum nvkm_ram_type type = nvkm_fb_bios_memtype(bios); 500 u32 fbps = nvkm_rd32(device, 0x022438); 501 u64 total = 0, lcomm = ~0, lower, ubase, usize; 502 int ret, fbp, ltcs, ltcn = 0; 503 504 nvkm_debug(subdev, "%d FBP(s)\n", fbps); 505 for (fbp = 0; fbp < fbps; fbp++) { 506 u32 size = func->probe_fbp(func, device, fbp, <cs); 507 if (size) { 508 nvkm_debug(subdev, "FBP %d: %4d MiB, %d LTC(s)\n", 509 fbp, size, ltcs); 510 lcomm = min(lcomm, (u64)(size / ltcs) << 20); 511 total += (u64) size << 20; 512 ltcn += ltcs; 513 } else { 514 nvkm_debug(subdev, "FBP %d: disabled\n", fbp); 515 } 516 } 517 518 lower = lcomm * ltcn; 519 ubase = lcomm + func->upper; 520 usize = total - lower; 521 522 nvkm_debug(subdev, "Lower: %4lld MiB @ %010llx\n", lower >> 20, 0ULL); 523 nvkm_debug(subdev, "Upper: %4lld MiB @ %010llx\n", usize >> 20, ubase); 524 nvkm_debug(subdev, "Total: %4lld MiB\n", total >> 20); 525 526 ret = nvkm_ram_ctor(func, fb, type, total, ram); 527 if (ret) 528 return ret; 529 530 nvkm_mm_fini(&ram->vram); 531 532 /* Some GPUs are in what's known as a "mixed memory" configuration. 533 * 534 * This is either where some FBPs have more memory than the others, 535 * or where LTCs have been disabled on a FBP. 536 */ 537 if (lower != total) { 538 /* The common memory amount is addressed normally. */ 539 ret = nvkm_mm_init(&ram->vram, NVKM_RAM_MM_NORMAL, 540 rsvd_head >> NVKM_RAM_MM_SHIFT, 541 (lower - rsvd_head) >> NVKM_RAM_MM_SHIFT, 1); 542 if (ret) 543 return ret; 544 545 /* And the rest is much higher in the physical address 546 * space, and may not be usable for certain operations. 547 */ 548 ret = nvkm_mm_init(&ram->vram, NVKM_RAM_MM_MIXED, 549 ubase >> NVKM_RAM_MM_SHIFT, 550 (usize - rsvd_tail) >> NVKM_RAM_MM_SHIFT, 1); 551 if (ret) 552 return ret; 553 } else { 554 /* GPUs without mixed-memory are a lot nicer... */ 555 ret = nvkm_mm_init(&ram->vram, NVKM_RAM_MM_NORMAL, 556 rsvd_head >> NVKM_RAM_MM_SHIFT, 557 (total - rsvd_head - rsvd_tail) >> 558 NVKM_RAM_MM_SHIFT, 1); 559 if (ret) 560 return ret; 561 } 562 563 return 0; 564 } 565 566 int 567 gf100_ram_new_(const struct nvkm_ram_func *func, 568 struct nvkm_fb *fb, struct nvkm_ram **pram) 569 { 570 struct nvkm_subdev *subdev = &fb->subdev; 571 struct nvkm_bios *bios = subdev->device->bios; 572 struct gf100_ram *ram; 573 int ret; 574 575 if (!(ram = kzalloc(sizeof(*ram), GFP_KERNEL))) 576 return -ENOMEM; 577 *pram = &ram->base; 578 579 ret = gf100_ram_ctor(func, fb, &ram->base); 580 if (ret) 581 return ret; 582 583 ret = nvbios_pll_parse(bios, 0x0c, &ram->refpll); 584 if (ret) { 585 nvkm_error(subdev, "mclk refpll data not found\n"); 586 return ret; 587 } 588 589 ret = nvbios_pll_parse(bios, 0x04, &ram->mempll); 590 if (ret) { 591 nvkm_error(subdev, "mclk pll data not found\n"); 592 return ret; 593 } 594 595 ram->fuc.r_0x10fe20 = ramfuc_reg(0x10fe20); 596 ram->fuc.r_0x10fe24 = ramfuc_reg(0x10fe24); 597 ram->fuc.r_0x137320 = ramfuc_reg(0x137320); 598 ram->fuc.r_0x137330 = ramfuc_reg(0x137330); 599 600 ram->fuc.r_0x132000 = ramfuc_reg(0x132000); 601 ram->fuc.r_0x132004 = ramfuc_reg(0x132004); 602 ram->fuc.r_0x132100 = ramfuc_reg(0x132100); 603 604 ram->fuc.r_0x137390 = ramfuc_reg(0x137390); 605 606 ram->fuc.r_0x10f290 = ramfuc_reg(0x10f290); 607 ram->fuc.r_0x10f294 = ramfuc_reg(0x10f294); 608 ram->fuc.r_0x10f298 = ramfuc_reg(0x10f298); 609 ram->fuc.r_0x10f29c = ramfuc_reg(0x10f29c); 610 ram->fuc.r_0x10f2a0 = ramfuc_reg(0x10f2a0); 611 612 ram->fuc.r_0x10f300 = ramfuc_reg(0x10f300); 613 ram->fuc.r_0x10f338 = ramfuc_reg(0x10f338); 614 ram->fuc.r_0x10f340 = ramfuc_reg(0x10f340); 615 ram->fuc.r_0x10f344 = ramfuc_reg(0x10f344); 616 ram->fuc.r_0x10f348 = ramfuc_reg(0x10f348); 617 618 ram->fuc.r_0x10f910 = ramfuc_reg(0x10f910); 619 ram->fuc.r_0x10f914 = ramfuc_reg(0x10f914); 620 621 ram->fuc.r_0x100b0c = ramfuc_reg(0x100b0c); 622 ram->fuc.r_0x10f050 = ramfuc_reg(0x10f050); 623 ram->fuc.r_0x10f090 = ramfuc_reg(0x10f090); 624 ram->fuc.r_0x10f200 = ramfuc_reg(0x10f200); 625 ram->fuc.r_0x10f210 = ramfuc_reg(0x10f210); 626 ram->fuc.r_0x10f310 = ramfuc_reg(0x10f310); 627 ram->fuc.r_0x10f314 = ramfuc_reg(0x10f314); 628 ram->fuc.r_0x10f610 = ramfuc_reg(0x10f610); 629 ram->fuc.r_0x10f614 = ramfuc_reg(0x10f614); 630 ram->fuc.r_0x10f800 = ramfuc_reg(0x10f800); 631 ram->fuc.r_0x10f808 = ramfuc_reg(0x10f808); 632 ram->fuc.r_0x10f824 = ramfuc_reg(0x10f824); 633 ram->fuc.r_0x10f830 = ramfuc_reg(0x10f830); 634 ram->fuc.r_0x10f988 = ramfuc_reg(0x10f988); 635 ram->fuc.r_0x10f98c = ramfuc_reg(0x10f98c); 636 ram->fuc.r_0x10f990 = ramfuc_reg(0x10f990); 637 ram->fuc.r_0x10f998 = ramfuc_reg(0x10f998); 638 ram->fuc.r_0x10f9b0 = ramfuc_reg(0x10f9b0); 639 ram->fuc.r_0x10f9b4 = ramfuc_reg(0x10f9b4); 640 ram->fuc.r_0x10fb04 = ramfuc_reg(0x10fb04); 641 ram->fuc.r_0x10fb08 = ramfuc_reg(0x10fb08); 642 ram->fuc.r_0x137310 = ramfuc_reg(0x137300); 643 ram->fuc.r_0x137310 = ramfuc_reg(0x137310); 644 ram->fuc.r_0x137360 = ramfuc_reg(0x137360); 645 ram->fuc.r_0x1373ec = ramfuc_reg(0x1373ec); 646 ram->fuc.r_0x1373f0 = ramfuc_reg(0x1373f0); 647 ram->fuc.r_0x1373f8 = ramfuc_reg(0x1373f8); 648 649 ram->fuc.r_0x61c140 = ramfuc_reg(0x61c140); 650 ram->fuc.r_0x611200 = ramfuc_reg(0x611200); 651 652 ram->fuc.r_0x13d8f4 = ramfuc_reg(0x13d8f4); 653 return 0; 654 } 655 656 static const struct nvkm_ram_func 657 gf100_ram = { 658 .upper = 0x0200000000ULL, 659 .probe_fbp = gf100_ram_probe_fbp, 660 .probe_fbp_amount = gf100_ram_probe_fbp_amount, 661 .probe_fbpa_amount = gf100_ram_probe_fbpa_amount, 662 .init = gf100_ram_init, 663 .calc = gf100_ram_calc, 664 .prog = gf100_ram_prog, 665 .tidy = gf100_ram_tidy, 666 }; 667 668 int 669 gf100_ram_new(struct nvkm_fb *fb, struct nvkm_ram **pram) 670 { 671 return gf100_ram_new_(&gf100_ram, fb, pram); 672 } 673