xref: /openbmc/linux/drivers/gpu/drm/nouveau/nvkm/subdev/fault/gv100.c (revision abade675e02e1b73da0c20ffaf08fbe309038298)
1 /*
2  * Copyright 2018 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 #include "priv.h"
23 
24 #include <core/memory.h>
25 #include <subdev/mmu.h>
26 #include <engine/fifo.h>
27 
28 #include <nvif/class.h>
29 
30 static void
31 gv100_fault_buffer_process(struct nvkm_fault_buffer *buffer)
32 {
33 	struct nvkm_device *device = buffer->fault->subdev.device;
34 	struct nvkm_memory *mem = buffer->mem;
35 	u32 get = nvkm_rd32(device, buffer->get);
36 	u32 put = nvkm_rd32(device, buffer->put);
37 	if (put == get)
38 		return;
39 
40 	nvkm_kmap(mem);
41 	while (get != put) {
42 		const u32   base = get * buffer->fault->func->buffer.entry_size;
43 		const u32 instlo = nvkm_ro32(mem, base + 0x00);
44 		const u32 insthi = nvkm_ro32(mem, base + 0x04);
45 		const u32 addrlo = nvkm_ro32(mem, base + 0x08);
46 		const u32 addrhi = nvkm_ro32(mem, base + 0x0c);
47 		const u32 timelo = nvkm_ro32(mem, base + 0x10);
48 		const u32 timehi = nvkm_ro32(mem, base + 0x14);
49 		const u32  info0 = nvkm_ro32(mem, base + 0x18);
50 		const u32  info1 = nvkm_ro32(mem, base + 0x1c);
51 		struct nvkm_fault_data info;
52 
53 		if (++get == buffer->entries)
54 			get = 0;
55 		nvkm_wr32(device, buffer->get, get);
56 
57 		info.addr   = ((u64)addrhi << 32) | addrlo;
58 		info.inst   = ((u64)insthi << 32) | instlo;
59 		info.time   = ((u64)timehi << 32) | timelo;
60 		info.engine = (info0 & 0x000000ff);
61 		info.valid  = (info1 & 0x80000000) >> 31;
62 		info.gpc    = (info1 & 0x1f000000) >> 24;
63 		info.hub    = (info1 & 0x00100000) >> 20;
64 		info.access = (info1 & 0x000f0000) >> 16;
65 		info.client = (info1 & 0x00007f00) >> 8;
66 		info.reason = (info1 & 0x0000001f);
67 
68 		nvkm_fifo_fault(device->fifo, &info);
69 	}
70 	nvkm_done(mem);
71 }
72 
73 static void
74 gv100_fault_buffer_intr(struct nvkm_fault_buffer *buffer, bool enable)
75 {
76 	struct nvkm_device *device = buffer->fault->subdev.device;
77 	const u32 intr = buffer->id ? 0x08000000 : 0x20000000;
78 	if (enable)
79 		nvkm_mask(device, 0x100a2c, intr, intr);
80 	else
81 		nvkm_mask(device, 0x100a34, intr, intr);
82 }
83 
84 static void
85 gv100_fault_buffer_fini(struct nvkm_fault_buffer *buffer)
86 {
87 	struct nvkm_device *device = buffer->fault->subdev.device;
88 	const u32 foff = buffer->id * 0x14;
89 	nvkm_mask(device, 0x100e34 + foff, 0x80000000, 0x00000000);
90 }
91 
92 static void
93 gv100_fault_buffer_init(struct nvkm_fault_buffer *buffer)
94 {
95 	struct nvkm_device *device = buffer->fault->subdev.device;
96 	const u32 foff = buffer->id * 0x14;
97 
98 	nvkm_mask(device, 0x100e34 + foff, 0xc0000000, 0x40000000);
99 	nvkm_wr32(device, 0x100e28 + foff, upper_32_bits(buffer->addr));
100 	nvkm_wr32(device, 0x100e24 + foff, lower_32_bits(buffer->addr));
101 	nvkm_mask(device, 0x100e34 + foff, 0x80000000, 0x80000000);
102 }
103 
104 static void
105 gv100_fault_buffer_info(struct nvkm_fault_buffer *buffer)
106 {
107 	struct nvkm_device *device = buffer->fault->subdev.device;
108 	const u32 foff = buffer->id * 0x14;
109 
110 	nvkm_mask(device, 0x100e34 + foff, 0x40000000, 0x40000000);
111 
112 	buffer->entries = nvkm_rd32(device, 0x100e34 + foff) & 0x000fffff;
113 	buffer->get = 0x100e2c + foff;
114 	buffer->put = 0x100e30 + foff;
115 }
116 
117 static int
118 gv100_fault_ntfy_nrpfb(struct nvkm_notify *notify)
119 {
120 	struct nvkm_fault *fault = container_of(notify, typeof(*fault), nrpfb);
121 	gv100_fault_buffer_process(fault->buffer[0]);
122 	return NVKM_NOTIFY_KEEP;
123 }
124 
125 static void
126 gv100_fault_intr_fault(struct nvkm_fault *fault)
127 {
128 	struct nvkm_subdev *subdev = &fault->subdev;
129 	struct nvkm_device *device = subdev->device;
130 	struct nvkm_fault_data info;
131 	const u32 addrlo = nvkm_rd32(device, 0x100e4c);
132 	const u32 addrhi = nvkm_rd32(device, 0x100e50);
133 	const u32  info0 = nvkm_rd32(device, 0x100e54);
134 	const u32 insthi = nvkm_rd32(device, 0x100e58);
135 	const u32  info1 = nvkm_rd32(device, 0x100e5c);
136 
137 	info.addr = ((u64)addrhi << 32) | addrlo;
138 	info.inst = ((u64)insthi << 32) | (info0 & 0xfffff000);
139 	info.time = 0;
140 	info.engine = (info0 & 0x000000ff);
141 	info.valid  = (info1 & 0x80000000) >> 31;
142 	info.gpc    = (info1 & 0x1f000000) >> 24;
143 	info.hub    = (info1 & 0x00100000) >> 20;
144 	info.access = (info1 & 0x000f0000) >> 16;
145 	info.client = (info1 & 0x00007f00) >> 8;
146 	info.reason = (info1 & 0x0000001f);
147 
148 	nvkm_fifo_fault(device->fifo, &info);
149 }
150 
151 static void
152 gv100_fault_intr(struct nvkm_fault *fault)
153 {
154 	struct nvkm_subdev *subdev = &fault->subdev;
155 	struct nvkm_device *device = subdev->device;
156 	u32 stat = nvkm_rd32(device, 0x100a20);
157 
158 	if (stat & 0x80000000) {
159 		gv100_fault_intr_fault(fault);
160 		nvkm_wr32(device, 0x100e60, 0x80000000);
161 		stat &= ~0x80000000;
162 	}
163 
164 	if (stat & 0x20000000) {
165 		if (fault->buffer[0]) {
166 			nvkm_event_send(&fault->event, 1, 0, NULL, 0);
167 			stat &= ~0x20000000;
168 		}
169 	}
170 
171 	if (stat & 0x08000000) {
172 		if (fault->buffer[1]) {
173 			nvkm_event_send(&fault->event, 1, 1, NULL, 0);
174 			stat &= ~0x08000000;
175 		}
176 	}
177 
178 	if (stat) {
179 		nvkm_debug(subdev, "intr %08x\n", stat);
180 	}
181 }
182 
183 static void
184 gv100_fault_fini(struct nvkm_fault *fault)
185 {
186 	nvkm_notify_put(&fault->nrpfb);
187 	if (fault->buffer[0])
188 		fault->func->buffer.fini(fault->buffer[0]);
189 	nvkm_mask(fault->subdev.device, 0x100a34, 0x80000000, 0x80000000);
190 }
191 
192 static void
193 gv100_fault_init(struct nvkm_fault *fault)
194 {
195 	nvkm_mask(fault->subdev.device, 0x100a2c, 0x80000000, 0x80000000);
196 	fault->func->buffer.init(fault->buffer[0]);
197 	nvkm_notify_get(&fault->nrpfb);
198 }
199 
200 int
201 gv100_fault_oneinit(struct nvkm_fault *fault)
202 {
203 	return nvkm_notify_init(&fault->buffer[0]->object, &fault->event,
204 				gv100_fault_ntfy_nrpfb, true, NULL, 0, 0,
205 				&fault->nrpfb);
206 }
207 
208 static const struct nvkm_fault_func
209 gv100_fault = {
210 	.oneinit = gv100_fault_oneinit,
211 	.init = gv100_fault_init,
212 	.fini = gv100_fault_fini,
213 	.intr = gv100_fault_intr,
214 	.buffer.nr = 2,
215 	.buffer.entry_size = 32,
216 	.buffer.info = gv100_fault_buffer_info,
217 	.buffer.init = gv100_fault_buffer_init,
218 	.buffer.fini = gv100_fault_buffer_fini,
219 	.buffer.intr = gv100_fault_buffer_intr,
220 	/*TODO: Figure out how to expose non-replayable fault buffer, which,
221 	 *      for some reason, is where recoverable CE faults appear...
222 	 *
223 	 * 	It's a bit tricky, as both NVKM and SVM will need access to
224 	 * 	the non-replayable fault buffer.
225 	 */
226 	.user = { { 0, 0, VOLTA_FAULT_BUFFER_A }, 1 },
227 };
228 
229 int
230 gv100_fault_new(struct nvkm_device *device, int index,
231 		struct nvkm_fault **pfault)
232 {
233 	return nvkm_fault_new_(&gv100_fault, device, index, pfault);
234 }
235