1 /*
2  * Copyright 2012 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Ben Skeggs
23  */
24 #include "nv50.h"
25 #include "pll.h"
26 #include "seq.h"
27 
28 #include <subdev/bios.h>
29 #include <subdev/bios/pll.h>
30 
31 static u32
32 read_div(struct nv50_clk_priv *priv)
33 {
34 	switch (nv_device(priv)->chipset) {
35 	case 0x50: /* it exists, but only has bit 31, not the dividers.. */
36 	case 0x84:
37 	case 0x86:
38 	case 0x98:
39 	case 0xa0:
40 		return nv_rd32(priv, 0x004700);
41 	case 0x92:
42 	case 0x94:
43 	case 0x96:
44 		return nv_rd32(priv, 0x004800);
45 	default:
46 		return 0x00000000;
47 	}
48 }
49 
50 static u32
51 read_pll_src(struct nv50_clk_priv *priv, u32 base)
52 {
53 	struct nvkm_clk *clk = &priv->base;
54 	u32 coef, ref = clk->read(clk, nv_clk_src_crystal);
55 	u32 rsel = nv_rd32(priv, 0x00e18c);
56 	int P, N, M, id;
57 
58 	switch (nv_device(priv)->chipset) {
59 	case 0x50:
60 	case 0xa0:
61 		switch (base) {
62 		case 0x4020:
63 		case 0x4028: id = !!(rsel & 0x00000004); break;
64 		case 0x4008: id = !!(rsel & 0x00000008); break;
65 		case 0x4030: id = 0; break;
66 		default:
67 			nv_error(priv, "ref: bad pll 0x%06x\n", base);
68 			return 0;
69 		}
70 
71 		coef = nv_rd32(priv, 0x00e81c + (id * 0x0c));
72 		ref *=  (coef & 0x01000000) ? 2 : 4;
73 		P    =  (coef & 0x00070000) >> 16;
74 		N    = ((coef & 0x0000ff00) >> 8) + 1;
75 		M    = ((coef & 0x000000ff) >> 0) + 1;
76 		break;
77 	case 0x84:
78 	case 0x86:
79 	case 0x92:
80 		coef = nv_rd32(priv, 0x00e81c);
81 		P    = (coef & 0x00070000) >> 16;
82 		N    = (coef & 0x0000ff00) >> 8;
83 		M    = (coef & 0x000000ff) >> 0;
84 		break;
85 	case 0x94:
86 	case 0x96:
87 	case 0x98:
88 		rsel = nv_rd32(priv, 0x00c050);
89 		switch (base) {
90 		case 0x4020: rsel = (rsel & 0x00000003) >> 0; break;
91 		case 0x4008: rsel = (rsel & 0x0000000c) >> 2; break;
92 		case 0x4028: rsel = (rsel & 0x00001800) >> 11; break;
93 		case 0x4030: rsel = 3; break;
94 		default:
95 			nv_error(priv, "ref: bad pll 0x%06x\n", base);
96 			return 0;
97 		}
98 
99 		switch (rsel) {
100 		case 0: id = 1; break;
101 		case 1: return clk->read(clk, nv_clk_src_crystal);
102 		case 2: return clk->read(clk, nv_clk_src_href);
103 		case 3: id = 0; break;
104 		}
105 
106 		coef =  nv_rd32(priv, 0x00e81c + (id * 0x28));
107 		P    = (nv_rd32(priv, 0x00e824 + (id * 0x28)) >> 16) & 7;
108 		P   += (coef & 0x00070000) >> 16;
109 		N    = (coef & 0x0000ff00) >> 8;
110 		M    = (coef & 0x000000ff) >> 0;
111 		break;
112 	default:
113 		BUG_ON(1);
114 	}
115 
116 	if (M)
117 		return (ref * N / M) >> P;
118 
119 	return 0;
120 }
121 
122 static u32
123 read_pll_ref(struct nv50_clk_priv *priv, u32 base)
124 {
125 	struct nvkm_clk *clk = &priv->base;
126 	u32 src, mast = nv_rd32(priv, 0x00c040);
127 
128 	switch (base) {
129 	case 0x004028:
130 		src = !!(mast & 0x00200000);
131 		break;
132 	case 0x004020:
133 		src = !!(mast & 0x00400000);
134 		break;
135 	case 0x004008:
136 		src = !!(mast & 0x00010000);
137 		break;
138 	case 0x004030:
139 		src = !!(mast & 0x02000000);
140 		break;
141 	case 0x00e810:
142 		return clk->read(clk, nv_clk_src_crystal);
143 	default:
144 		nv_error(priv, "bad pll 0x%06x\n", base);
145 		return 0;
146 	}
147 
148 	if (src)
149 		return clk->read(clk, nv_clk_src_href);
150 
151 	return read_pll_src(priv, base);
152 }
153 
154 static u32
155 read_pll(struct nv50_clk_priv *priv, u32 base)
156 {
157 	struct nvkm_clk *clk = &priv->base;
158 	u32 mast = nv_rd32(priv, 0x00c040);
159 	u32 ctrl = nv_rd32(priv, base + 0);
160 	u32 coef = nv_rd32(priv, base + 4);
161 	u32 ref = read_pll_ref(priv, base);
162 	u32 freq = 0;
163 	int N1, N2, M1, M2;
164 
165 	if (base == 0x004028 && (mast & 0x00100000)) {
166 		/* wtf, appears to only disable post-divider on gt200 */
167 		if (nv_device(priv)->chipset != 0xa0)
168 			return clk->read(clk, nv_clk_src_dom6);
169 	}
170 
171 	N2 = (coef & 0xff000000) >> 24;
172 	M2 = (coef & 0x00ff0000) >> 16;
173 	N1 = (coef & 0x0000ff00) >> 8;
174 	M1 = (coef & 0x000000ff);
175 	if ((ctrl & 0x80000000) && M1) {
176 		freq = ref * N1 / M1;
177 		if ((ctrl & 0x40000100) == 0x40000000) {
178 			if (M2)
179 				freq = freq * N2 / M2;
180 			else
181 				freq = 0;
182 		}
183 	}
184 
185 	return freq;
186 }
187 
188 static int
189 nv50_clk_read(struct nvkm_clk *clk, enum nv_clk_src src)
190 {
191 	struct nv50_clk_priv *priv = (void *)clk;
192 	u32 mast = nv_rd32(priv, 0x00c040);
193 	u32 P = 0;
194 
195 	switch (src) {
196 	case nv_clk_src_crystal:
197 		return nv_device(priv)->crystal;
198 	case nv_clk_src_href:
199 		return 100000; /* PCIE reference clock */
200 	case nv_clk_src_hclk:
201 		return div_u64((u64)clk->read(clk, nv_clk_src_href) * 27778, 10000);
202 	case nv_clk_src_hclkm3:
203 		return clk->read(clk, nv_clk_src_hclk) * 3;
204 	case nv_clk_src_hclkm3d2:
205 		return clk->read(clk, nv_clk_src_hclk) * 3 / 2;
206 	case nv_clk_src_host:
207 		switch (mast & 0x30000000) {
208 		case 0x00000000: return clk->read(clk, nv_clk_src_href);
209 		case 0x10000000: break;
210 		case 0x20000000: /* !0x50 */
211 		case 0x30000000: return clk->read(clk, nv_clk_src_hclk);
212 		}
213 		break;
214 	case nv_clk_src_core:
215 		if (!(mast & 0x00100000))
216 			P = (nv_rd32(priv, 0x004028) & 0x00070000) >> 16;
217 		switch (mast & 0x00000003) {
218 		case 0x00000000: return clk->read(clk, nv_clk_src_crystal) >> P;
219 		case 0x00000001: return clk->read(clk, nv_clk_src_dom6);
220 		case 0x00000002: return read_pll(priv, 0x004020) >> P;
221 		case 0x00000003: return read_pll(priv, 0x004028) >> P;
222 		}
223 		break;
224 	case nv_clk_src_shader:
225 		P = (nv_rd32(priv, 0x004020) & 0x00070000) >> 16;
226 		switch (mast & 0x00000030) {
227 		case 0x00000000:
228 			if (mast & 0x00000080)
229 				return clk->read(clk, nv_clk_src_host) >> P;
230 			return clk->read(clk, nv_clk_src_crystal) >> P;
231 		case 0x00000010: break;
232 		case 0x00000020: return read_pll(priv, 0x004028) >> P;
233 		case 0x00000030: return read_pll(priv, 0x004020) >> P;
234 		}
235 		break;
236 	case nv_clk_src_mem:
237 		P = (nv_rd32(priv, 0x004008) & 0x00070000) >> 16;
238 		if (nv_rd32(priv, 0x004008) & 0x00000200) {
239 			switch (mast & 0x0000c000) {
240 			case 0x00000000:
241 				return clk->read(clk, nv_clk_src_crystal) >> P;
242 			case 0x00008000:
243 			case 0x0000c000:
244 				return clk->read(clk, nv_clk_src_href) >> P;
245 			}
246 		} else {
247 			return read_pll(priv, 0x004008) >> P;
248 		}
249 		break;
250 	case nv_clk_src_vdec:
251 		P = (read_div(priv) & 0x00000700) >> 8;
252 		switch (nv_device(priv)->chipset) {
253 		case 0x84:
254 		case 0x86:
255 		case 0x92:
256 		case 0x94:
257 		case 0x96:
258 		case 0xa0:
259 			switch (mast & 0x00000c00) {
260 			case 0x00000000:
261 				if (nv_device(priv)->chipset == 0xa0) /* wtf?? */
262 					return clk->read(clk, nv_clk_src_core) >> P;
263 				return clk->read(clk, nv_clk_src_crystal) >> P;
264 			case 0x00000400:
265 				return 0;
266 			case 0x00000800:
267 				if (mast & 0x01000000)
268 					return read_pll(priv, 0x004028) >> P;
269 				return read_pll(priv, 0x004030) >> P;
270 			case 0x00000c00:
271 				return clk->read(clk, nv_clk_src_core) >> P;
272 			}
273 			break;
274 		case 0x98:
275 			switch (mast & 0x00000c00) {
276 			case 0x00000000:
277 				return clk->read(clk, nv_clk_src_core) >> P;
278 			case 0x00000400:
279 				return 0;
280 			case 0x00000800:
281 				return clk->read(clk, nv_clk_src_hclkm3d2) >> P;
282 			case 0x00000c00:
283 				return clk->read(clk, nv_clk_src_mem) >> P;
284 			}
285 			break;
286 		}
287 		break;
288 	case nv_clk_src_dom6:
289 		switch (nv_device(priv)->chipset) {
290 		case 0x50:
291 		case 0xa0:
292 			return read_pll(priv, 0x00e810) >> 2;
293 		case 0x84:
294 		case 0x86:
295 		case 0x92:
296 		case 0x94:
297 		case 0x96:
298 		case 0x98:
299 			P = (read_div(priv) & 0x00000007) >> 0;
300 			switch (mast & 0x0c000000) {
301 			case 0x00000000: return clk->read(clk, nv_clk_src_href);
302 			case 0x04000000: break;
303 			case 0x08000000: return clk->read(clk, nv_clk_src_hclk);
304 			case 0x0c000000:
305 				return clk->read(clk, nv_clk_src_hclkm3) >> P;
306 			}
307 			break;
308 		default:
309 			break;
310 		}
311 	default:
312 		break;
313 	}
314 
315 	nv_debug(priv, "unknown clock source %d 0x%08x\n", src, mast);
316 	return -EINVAL;
317 }
318 
319 static u32
320 calc_pll(struct nv50_clk_priv *priv, u32 reg, u32 clk, int *N, int *M, int *P)
321 {
322 	struct nvkm_bios *bios = nvkm_bios(priv);
323 	struct nvbios_pll pll;
324 	int ret;
325 
326 	ret = nvbios_pll_parse(bios, reg, &pll);
327 	if (ret)
328 		return 0;
329 
330 	pll.vco2.max_freq = 0;
331 	pll.refclk = read_pll_ref(priv, reg);
332 	if (!pll.refclk)
333 		return 0;
334 
335 	return nv04_pll_calc(nv_subdev(priv), &pll, clk, N, M, NULL, NULL, P);
336 }
337 
338 static inline u32
339 calc_div(u32 src, u32 target, int *div)
340 {
341 	u32 clk0 = src, clk1 = src;
342 	for (*div = 0; *div <= 7; (*div)++) {
343 		if (clk0 <= target) {
344 			clk1 = clk0 << (*div ? 1 : 0);
345 			break;
346 		}
347 		clk0 >>= 1;
348 	}
349 
350 	if (target - clk0 <= clk1 - target)
351 		return clk0;
352 	(*div)--;
353 	return clk1;
354 }
355 
356 static inline u32
357 clk_same(u32 a, u32 b)
358 {
359 	return ((a / 1000) == (b / 1000));
360 }
361 
362 static int
363 nv50_clk_calc(struct nvkm_clk *clk, struct nvkm_cstate *cstate)
364 {
365 	struct nv50_clk_priv *priv = (void *)clk;
366 	struct nv50_clk_hwsq *hwsq = &priv->hwsq;
367 	const int shader = cstate->domain[nv_clk_src_shader];
368 	const int core = cstate->domain[nv_clk_src_core];
369 	const int vdec = cstate->domain[nv_clk_src_vdec];
370 	const int dom6 = cstate->domain[nv_clk_src_dom6];
371 	u32 mastm = 0, mastv = 0;
372 	u32 divsm = 0, divsv = 0;
373 	int N, M, P1, P2;
374 	int freq, out;
375 
376 	/* prepare a hwsq script from which we'll perform the reclock */
377 	out = clk_init(hwsq, nv_subdev(clk));
378 	if (out)
379 		return out;
380 
381 	clk_wr32(hwsq, fifo, 0x00000001); /* block fifo */
382 	clk_nsec(hwsq, 8000);
383 	clk_setf(hwsq, 0x10, 0x00); /* disable fb */
384 	clk_wait(hwsq, 0x00, 0x01); /* wait for fb disabled */
385 
386 	/* vdec: avoid modifying xpll until we know exactly how the other
387 	 * clock domains work, i suspect at least some of them can also be
388 	 * tied to xpll...
389 	 */
390 	if (vdec) {
391 		/* see how close we can get using nvclk as a source */
392 		freq = calc_div(core, vdec, &P1);
393 
394 		/* see how close we can get using xpll/hclk as a source */
395 		if (nv_device(priv)->chipset != 0x98)
396 			out = read_pll(priv, 0x004030);
397 		else
398 			out = clk->read(clk, nv_clk_src_hclkm3d2);
399 		out = calc_div(out, vdec, &P2);
400 
401 		/* select whichever gets us closest */
402 		if (abs(vdec - freq) <= abs(vdec - out)) {
403 			if (nv_device(priv)->chipset != 0x98)
404 				mastv |= 0x00000c00;
405 			divsv |= P1 << 8;
406 		} else {
407 			mastv |= 0x00000800;
408 			divsv |= P2 << 8;
409 		}
410 
411 		mastm |= 0x00000c00;
412 		divsm |= 0x00000700;
413 	}
414 
415 	/* dom6: nfi what this is, but we're limited to various combinations
416 	 * of the host clock frequency
417 	 */
418 	if (dom6) {
419 		if (clk_same(dom6, clk->read(clk, nv_clk_src_href))) {
420 			mastv |= 0x00000000;
421 		} else
422 		if (clk_same(dom6, clk->read(clk, nv_clk_src_hclk))) {
423 			mastv |= 0x08000000;
424 		} else {
425 			freq = clk->read(clk, nv_clk_src_hclk) * 3;
426 			freq = calc_div(freq, dom6, &P1);
427 
428 			mastv |= 0x0c000000;
429 			divsv |= P1;
430 		}
431 
432 		mastm |= 0x0c000000;
433 		divsm |= 0x00000007;
434 	}
435 
436 	/* vdec/dom6: switch to "safe" clocks temporarily, update dividers
437 	 * and then switch to target clocks
438 	 */
439 	clk_mask(hwsq, mast, mastm, 0x00000000);
440 	clk_mask(hwsq, divs, divsm, divsv);
441 	clk_mask(hwsq, mast, mastm, mastv);
442 
443 	/* core/shader: disconnect nvclk/sclk from their PLLs (nvclk to dom6,
444 	 * sclk to hclk) before reprogramming
445 	 */
446 	if (nv_device(priv)->chipset < 0x92)
447 		clk_mask(hwsq, mast, 0x001000b0, 0x00100080);
448 	else
449 		clk_mask(hwsq, mast, 0x000000b3, 0x00000081);
450 
451 	/* core: for the moment at least, always use nvpll */
452 	freq = calc_pll(priv, 0x4028, core, &N, &M, &P1);
453 	if (freq == 0)
454 		return -ERANGE;
455 
456 	clk_mask(hwsq, nvpll[0], 0xc03f0100,
457 				 0x80000000 | (P1 << 19) | (P1 << 16));
458 	clk_mask(hwsq, nvpll[1], 0x0000ffff, (N << 8) | M);
459 
460 	/* shader: tie to nvclk if possible, otherwise use spll.  have to be
461 	 * very careful that the shader clock is at least twice the core, or
462 	 * some chipsets will be very unhappy.  i expect most or all of these
463 	 * cases will be handled by tying to nvclk, but it's possible there's
464 	 * corners
465 	 */
466 	if (P1-- && shader == (core << 1)) {
467 		clk_mask(hwsq, spll[0], 0xc03f0100, (P1 << 19) | (P1 << 16));
468 		clk_mask(hwsq, mast, 0x00100033, 0x00000023);
469 	} else {
470 		freq = calc_pll(priv, 0x4020, shader, &N, &M, &P1);
471 		if (freq == 0)
472 			return -ERANGE;
473 
474 		clk_mask(hwsq, spll[0], 0xc03f0100,
475 					0x80000000 | (P1 << 19) | (P1 << 16));
476 		clk_mask(hwsq, spll[1], 0x0000ffff, (N << 8) | M);
477 		clk_mask(hwsq, mast, 0x00100033, 0x00000033);
478 	}
479 
480 	/* restore normal operation */
481 	clk_setf(hwsq, 0x10, 0x01); /* enable fb */
482 	clk_wait(hwsq, 0x00, 0x00); /* wait for fb enabled */
483 	clk_wr32(hwsq, fifo, 0x00000000); /* un-block fifo */
484 	return 0;
485 }
486 
487 static int
488 nv50_clk_prog(struct nvkm_clk *clk)
489 {
490 	struct nv50_clk_priv *priv = (void *)clk;
491 	return clk_exec(&priv->hwsq, true);
492 }
493 
494 static void
495 nv50_clk_tidy(struct nvkm_clk *clk)
496 {
497 	struct nv50_clk_priv *priv = (void *)clk;
498 	clk_exec(&priv->hwsq, false);
499 }
500 
501 int
502 nv50_clk_ctor(struct nvkm_object *parent, struct nvkm_object *engine,
503 	      struct nvkm_oclass *oclass, void *data, u32 size,
504 	      struct nvkm_object **pobject)
505 {
506 	struct nv50_clk_oclass *pclass = (void *)oclass;
507 	struct nv50_clk_priv *priv;
508 	int ret;
509 
510 	ret = nvkm_clk_create(parent, engine, oclass, pclass->domains,
511 			      NULL, 0, nv_device(parent)->chipset == 0xa0,
512 			      &priv);
513 	*pobject = nv_object(priv);
514 	if (ret)
515 		return ret;
516 
517 	priv->hwsq.r_fifo = hwsq_reg(0x002504);
518 	priv->hwsq.r_spll[0] = hwsq_reg(0x004020);
519 	priv->hwsq.r_spll[1] = hwsq_reg(0x004024);
520 	priv->hwsq.r_nvpll[0] = hwsq_reg(0x004028);
521 	priv->hwsq.r_nvpll[1] = hwsq_reg(0x00402c);
522 	switch (nv_device(priv)->chipset) {
523 	case 0x92:
524 	case 0x94:
525 	case 0x96:
526 		priv->hwsq.r_divs = hwsq_reg(0x004800);
527 		break;
528 	default:
529 		priv->hwsq.r_divs = hwsq_reg(0x004700);
530 		break;
531 	}
532 	priv->hwsq.r_mast = hwsq_reg(0x00c040);
533 
534 	priv->base.read = nv50_clk_read;
535 	priv->base.calc = nv50_clk_calc;
536 	priv->base.prog = nv50_clk_prog;
537 	priv->base.tidy = nv50_clk_tidy;
538 	return 0;
539 }
540 
541 static struct nvkm_domain
542 nv50_domains[] = {
543 	{ nv_clk_src_crystal, 0xff },
544 	{ nv_clk_src_href   , 0xff },
545 	{ nv_clk_src_core   , 0xff, 0, "core", 1000 },
546 	{ nv_clk_src_shader , 0xff, 0, "shader", 1000 },
547 	{ nv_clk_src_mem    , 0xff, 0, "memory", 1000 },
548 	{ nv_clk_src_max }
549 };
550 
551 struct nvkm_oclass *
552 nv50_clk_oclass = &(struct nv50_clk_oclass) {
553 	.base.handle = NV_SUBDEV(CLK, 0x50),
554 	.base.ofuncs = &(struct nvkm_ofuncs) {
555 		.ctor = nv50_clk_ctor,
556 		.dtor = _nvkm_clk_dtor,
557 		.init = _nvkm_clk_init,
558 		.fini = _nvkm_clk_fini,
559 	},
560 	.domains = nv50_domains,
561 }.base;
562