1 /*
2  * Copyright 2012 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Ben Skeggs
23  *          Roy Spliet
24  */
25 #include "gt215.h"
26 #include "pll.h"
27 
28 #include <engine/fifo.h>
29 #include <subdev/bios.h>
30 #include <subdev/bios/pll.h>
31 #include <subdev/timer.h>
32 
33 struct gt215_clk_priv {
34 	struct nvkm_clk base;
35 	struct gt215_clk_info eng[nv_clk_src_max];
36 };
37 
38 static u32 read_clk(struct gt215_clk_priv *, int, bool);
39 static u32 read_pll(struct gt215_clk_priv *, int, u32);
40 
41 static u32
42 read_vco(struct gt215_clk_priv *priv, int clk)
43 {
44 	u32 sctl = nv_rd32(priv, 0x4120 + (clk * 4));
45 
46 	switch (sctl & 0x00000030) {
47 	case 0x00000000:
48 		return nv_device(priv)->crystal;
49 	case 0x00000020:
50 		return read_pll(priv, 0x41, 0x00e820);
51 	case 0x00000030:
52 		return read_pll(priv, 0x42, 0x00e8a0);
53 	default:
54 		return 0;
55 	}
56 }
57 
58 static u32
59 read_clk(struct gt215_clk_priv *priv, int clk, bool ignore_en)
60 {
61 	u32 sctl, sdiv, sclk;
62 
63 	/* refclk for the 0xe8xx plls is a fixed frequency */
64 	if (clk >= 0x40) {
65 		if (nv_device(priv)->chipset == 0xaf) {
66 			/* no joke.. seriously.. sigh.. */
67 			return nv_rd32(priv, 0x00471c) * 1000;
68 		}
69 
70 		return nv_device(priv)->crystal;
71 	}
72 
73 	sctl = nv_rd32(priv, 0x4120 + (clk * 4));
74 	if (!ignore_en && !(sctl & 0x00000100))
75 		return 0;
76 
77 	/* out_alt */
78 	if (sctl & 0x00000400)
79 		return 108000;
80 
81 	/* vco_out */
82 	switch (sctl & 0x00003000) {
83 	case 0x00000000:
84 		if (!(sctl & 0x00000200))
85 			return nv_device(priv)->crystal;
86 		return 0;
87 	case 0x00002000:
88 		if (sctl & 0x00000040)
89 			return 108000;
90 		return 100000;
91 	case 0x00003000:
92 		/* vco_enable */
93 		if (!(sctl & 0x00000001))
94 			return 0;
95 
96 		sclk = read_vco(priv, clk);
97 		sdiv = ((sctl & 0x003f0000) >> 16) + 2;
98 		return (sclk * 2) / sdiv;
99 	default:
100 		return 0;
101 	}
102 }
103 
104 static u32
105 read_pll(struct gt215_clk_priv *priv, int clk, u32 pll)
106 {
107 	u32 ctrl = nv_rd32(priv, pll + 0);
108 	u32 sclk = 0, P = 1, N = 1, M = 1;
109 
110 	if (!(ctrl & 0x00000008)) {
111 		if (ctrl & 0x00000001) {
112 			u32 coef = nv_rd32(priv, pll + 4);
113 			M = (coef & 0x000000ff) >> 0;
114 			N = (coef & 0x0000ff00) >> 8;
115 			P = (coef & 0x003f0000) >> 16;
116 
117 			/* no post-divider on these..
118 			 * XXX: it looks more like two post-"dividers" that
119 			 * cross each other out in the default RPLL config */
120 			if ((pll & 0x00ff00) == 0x00e800)
121 				P = 1;
122 
123 			sclk = read_clk(priv, 0x00 + clk, false);
124 		}
125 	} else {
126 		sclk = read_clk(priv, 0x10 + clk, false);
127 	}
128 
129 	if (M * P)
130 		return sclk * N / (M * P);
131 
132 	return 0;
133 }
134 
135 static int
136 gt215_clk_read(struct nvkm_clk *clk, enum nv_clk_src src)
137 {
138 	struct gt215_clk_priv *priv = (void *)clk;
139 	u32 hsrc;
140 
141 	switch (src) {
142 	case nv_clk_src_crystal:
143 		return nv_device(priv)->crystal;
144 	case nv_clk_src_core:
145 	case nv_clk_src_core_intm:
146 		return read_pll(priv, 0x00, 0x4200);
147 	case nv_clk_src_shader:
148 		return read_pll(priv, 0x01, 0x4220);
149 	case nv_clk_src_mem:
150 		return read_pll(priv, 0x02, 0x4000);
151 	case nv_clk_src_disp:
152 		return read_clk(priv, 0x20, false);
153 	case nv_clk_src_vdec:
154 		return read_clk(priv, 0x21, false);
155 	case nv_clk_src_daemon:
156 		return read_clk(priv, 0x25, false);
157 	case nv_clk_src_host:
158 		hsrc = (nv_rd32(priv, 0xc040) & 0x30000000) >> 28;
159 		switch (hsrc) {
160 		case 0:
161 			return read_clk(priv, 0x1d, false);
162 		case 2:
163 		case 3:
164 			return 277000;
165 		default:
166 			nv_error(clk, "unknown HOST clock source %d\n", hsrc);
167 			return -EINVAL;
168 		}
169 	default:
170 		nv_error(clk, "invalid clock source %d\n", src);
171 		return -EINVAL;
172 	}
173 
174 	return 0;
175 }
176 
177 int
178 gt215_clk_info(struct nvkm_clk *clock, int clk, u32 khz,
179 	       struct gt215_clk_info *info)
180 {
181 	struct gt215_clk_priv *priv = (void *)clock;
182 	u32 oclk, sclk, sdiv, diff;
183 
184 	info->clk = 0;
185 
186 	switch (khz) {
187 	case 27000:
188 		info->clk = 0x00000100;
189 		return khz;
190 	case 100000:
191 		info->clk = 0x00002100;
192 		return khz;
193 	case 108000:
194 		info->clk = 0x00002140;
195 		return khz;
196 	default:
197 		sclk = read_vco(priv, clk);
198 		sdiv = min((sclk * 2) / khz, (u32)65);
199 		oclk = (sclk * 2) / sdiv;
200 		diff = ((khz + 3000) - oclk);
201 
202 		/* When imprecise, play it safe and aim for a clock lower than
203 		 * desired rather than higher */
204 		if (diff < 0) {
205 			sdiv++;
206 			oclk = (sclk * 2) / sdiv;
207 		}
208 
209 		/* divider can go as low as 2, limited here because NVIDIA
210 		 * and the VBIOS on my NVA8 seem to prefer using the PLL
211 		 * for 810MHz - is there a good reason?
212 		 * XXX: PLLs with refclk 810MHz?  */
213 		if (sdiv > 4) {
214 			info->clk = (((sdiv - 2) << 16) | 0x00003100);
215 			return oclk;
216 		}
217 
218 		break;
219 	}
220 
221 	return -ERANGE;
222 }
223 
224 int
225 gt215_pll_info(struct nvkm_clk *clock, int clk, u32 pll, u32 khz,
226 	       struct gt215_clk_info *info)
227 {
228 	struct nvkm_bios *bios = nvkm_bios(clock);
229 	struct gt215_clk_priv *priv = (void *)clock;
230 	struct nvbios_pll limits;
231 	int P, N, M, diff;
232 	int ret;
233 
234 	info->pll = 0;
235 
236 	/* If we can get a within [-2, 3) MHz of a divider, we'll disable the
237 	 * PLL and use the divider instead. */
238 	ret = gt215_clk_info(clock, clk, khz, info);
239 	diff = khz - ret;
240 	if (!pll || (diff >= -2000 && diff < 3000)) {
241 		goto out;
242 	}
243 
244 	/* Try with PLL */
245 	ret = nvbios_pll_parse(bios, pll, &limits);
246 	if (ret)
247 		return ret;
248 
249 	ret = gt215_clk_info(clock, clk - 0x10, limits.refclk, info);
250 	if (ret != limits.refclk)
251 		return -EINVAL;
252 
253 	ret = gt215_pll_calc(nv_subdev(priv), &limits, khz, &N, NULL, &M, &P);
254 	if (ret >= 0) {
255 		info->pll = (P << 16) | (N << 8) | M;
256 	}
257 
258 out:
259 	info->fb_delay = max(((khz + 7566) / 15133), (u32) 18);
260 	return ret ? ret : -ERANGE;
261 }
262 
263 static int
264 calc_clk(struct gt215_clk_priv *priv, struct nvkm_cstate *cstate,
265 	 int clk, u32 pll, int idx)
266 {
267 	int ret = gt215_pll_info(&priv->base, clk, pll, cstate->domain[idx],
268 				 &priv->eng[idx]);
269 	if (ret >= 0)
270 		return 0;
271 	return ret;
272 }
273 
274 static int
275 calc_host(struct gt215_clk_priv *priv, struct nvkm_cstate *cstate)
276 {
277 	int ret = 0;
278 	u32 kHz = cstate->domain[nv_clk_src_host];
279 	struct gt215_clk_info *info = &priv->eng[nv_clk_src_host];
280 
281 	if (kHz == 277000) {
282 		info->clk = 0;
283 		info->host_out = NVA3_HOST_277;
284 		return 0;
285 	}
286 
287 	info->host_out = NVA3_HOST_CLK;
288 
289 	ret = gt215_clk_info(&priv->base, 0x1d, kHz, info);
290 	if (ret >= 0)
291 		return 0;
292 
293 	return ret;
294 }
295 
296 int
297 gt215_clk_pre(struct nvkm_clk *clk, unsigned long *flags)
298 {
299 	struct nvkm_fifo *pfifo = nvkm_fifo(clk);
300 
301 	/* halt and idle execution engines */
302 	nv_mask(clk, 0x020060, 0x00070000, 0x00000000);
303 	nv_mask(clk, 0x002504, 0x00000001, 0x00000001);
304 	/* Wait until the interrupt handler is finished */
305 	if (!nv_wait(clk, 0x000100, 0xffffffff, 0x00000000))
306 		return -EBUSY;
307 
308 	if (pfifo)
309 		pfifo->pause(pfifo, flags);
310 
311 	if (!nv_wait(clk, 0x002504, 0x00000010, 0x00000010))
312 		return -EIO;
313 	if (!nv_wait(clk, 0x00251c, 0x0000003f, 0x0000003f))
314 		return -EIO;
315 
316 	return 0;
317 }
318 
319 void
320 gt215_clk_post(struct nvkm_clk *clk, unsigned long *flags)
321 {
322 	struct nvkm_fifo *pfifo = nvkm_fifo(clk);
323 
324 	if (pfifo && flags)
325 		pfifo->start(pfifo, flags);
326 
327 	nv_mask(clk, 0x002504, 0x00000001, 0x00000000);
328 	nv_mask(clk, 0x020060, 0x00070000, 0x00040000);
329 }
330 
331 static void
332 disable_clk_src(struct gt215_clk_priv *priv, u32 src)
333 {
334 	nv_mask(priv, src, 0x00000100, 0x00000000);
335 	nv_mask(priv, src, 0x00000001, 0x00000000);
336 }
337 
338 static void
339 prog_pll(struct gt215_clk_priv *priv, int clk, u32 pll, int idx)
340 {
341 	struct gt215_clk_info *info = &priv->eng[idx];
342 	const u32 src0 = 0x004120 + (clk * 4);
343 	const u32 src1 = 0x004160 + (clk * 4);
344 	const u32 ctrl = pll + 0;
345 	const u32 coef = pll + 4;
346 	u32 bypass;
347 
348 	if (info->pll) {
349 		/* Always start from a non-PLL clock */
350 		bypass = nv_rd32(priv, ctrl)  & 0x00000008;
351 		if (!bypass) {
352 			nv_mask(priv, src1, 0x00000101, 0x00000101);
353 			nv_mask(priv, ctrl, 0x00000008, 0x00000008);
354 			udelay(20);
355 		}
356 
357 		nv_mask(priv, src0, 0x003f3141, 0x00000101 | info->clk);
358 		nv_wr32(priv, coef, info->pll);
359 		nv_mask(priv, ctrl, 0x00000015, 0x00000015);
360 		nv_mask(priv, ctrl, 0x00000010, 0x00000000);
361 		if (!nv_wait(priv, ctrl, 0x00020000, 0x00020000)) {
362 			nv_mask(priv, ctrl, 0x00000010, 0x00000010);
363 			nv_mask(priv, src0, 0x00000101, 0x00000000);
364 			return;
365 		}
366 		nv_mask(priv, ctrl, 0x00000010, 0x00000010);
367 		nv_mask(priv, ctrl, 0x00000008, 0x00000000);
368 		disable_clk_src(priv, src1);
369 	} else {
370 		nv_mask(priv, src1, 0x003f3141, 0x00000101 | info->clk);
371 		nv_mask(priv, ctrl, 0x00000018, 0x00000018);
372 		udelay(20);
373 		nv_mask(priv, ctrl, 0x00000001, 0x00000000);
374 		disable_clk_src(priv, src0);
375 	}
376 }
377 
378 static void
379 prog_clk(struct gt215_clk_priv *priv, int clk, int idx)
380 {
381 	struct gt215_clk_info *info = &priv->eng[idx];
382 	nv_mask(priv, 0x004120 + (clk * 4), 0x003f3141, 0x00000101 | info->clk);
383 }
384 
385 static void
386 prog_host(struct gt215_clk_priv *priv)
387 {
388 	struct gt215_clk_info *info = &priv->eng[nv_clk_src_host];
389 	u32 hsrc = (nv_rd32(priv, 0xc040));
390 
391 	switch (info->host_out) {
392 	case NVA3_HOST_277:
393 		if ((hsrc & 0x30000000) == 0) {
394 			nv_wr32(priv, 0xc040, hsrc | 0x20000000);
395 			disable_clk_src(priv, 0x4194);
396 		}
397 		break;
398 	case NVA3_HOST_CLK:
399 		prog_clk(priv, 0x1d, nv_clk_src_host);
400 		if ((hsrc & 0x30000000) >= 0x20000000) {
401 			nv_wr32(priv, 0xc040, hsrc & ~0x30000000);
402 		}
403 		break;
404 	default:
405 		break;
406 	}
407 
408 	/* This seems to be a clock gating factor on idle, always set to 64 */
409 	nv_wr32(priv, 0xc044, 0x3e);
410 }
411 
412 static void
413 prog_core(struct gt215_clk_priv *priv, int idx)
414 {
415 	struct gt215_clk_info *info = &priv->eng[idx];
416 	u32 fb_delay = nv_rd32(priv, 0x10002c);
417 
418 	if (fb_delay < info->fb_delay)
419 		nv_wr32(priv, 0x10002c, info->fb_delay);
420 
421 	prog_pll(priv, 0x00, 0x004200, idx);
422 
423 	if (fb_delay > info->fb_delay)
424 		nv_wr32(priv, 0x10002c, info->fb_delay);
425 }
426 
427 static int
428 gt215_clk_calc(struct nvkm_clk *clk, struct nvkm_cstate *cstate)
429 {
430 	struct gt215_clk_priv *priv = (void *)clk;
431 	struct gt215_clk_info *core = &priv->eng[nv_clk_src_core];
432 	int ret;
433 
434 	if ((ret = calc_clk(priv, cstate, 0x10, 0x4200, nv_clk_src_core)) ||
435 	    (ret = calc_clk(priv, cstate, 0x11, 0x4220, nv_clk_src_shader)) ||
436 	    (ret = calc_clk(priv, cstate, 0x20, 0x0000, nv_clk_src_disp)) ||
437 	    (ret = calc_clk(priv, cstate, 0x21, 0x0000, nv_clk_src_vdec)) ||
438 	    (ret = calc_host(priv, cstate)))
439 		return ret;
440 
441 	/* XXX: Should be reading the highest bit in the VBIOS clock to decide
442 	 * whether to use a PLL or not... but using a PLL defeats the purpose */
443 	if (core->pll) {
444 		ret = gt215_clk_info(clk, 0x10,
445 				     cstate->domain[nv_clk_src_core_intm],
446 				     &priv->eng[nv_clk_src_core_intm]);
447 		if (ret < 0)
448 			return ret;
449 	}
450 
451 	return 0;
452 }
453 
454 static int
455 gt215_clk_prog(struct nvkm_clk *clk)
456 {
457 	struct gt215_clk_priv *priv = (void *)clk;
458 	struct gt215_clk_info *core = &priv->eng[nv_clk_src_core];
459 	int ret = 0;
460 	unsigned long flags;
461 	unsigned long *f = &flags;
462 
463 	ret = gt215_clk_pre(clk, f);
464 	if (ret)
465 		goto out;
466 
467 	if (core->pll)
468 		prog_core(priv, nv_clk_src_core_intm);
469 
470 	prog_core(priv,  nv_clk_src_core);
471 	prog_pll(priv, 0x01, 0x004220, nv_clk_src_shader);
472 	prog_clk(priv, 0x20, nv_clk_src_disp);
473 	prog_clk(priv, 0x21, nv_clk_src_vdec);
474 	prog_host(priv);
475 
476 out:
477 	if (ret == -EBUSY)
478 		f = NULL;
479 
480 	gt215_clk_post(clk, f);
481 	return ret;
482 }
483 
484 static void
485 gt215_clk_tidy(struct nvkm_clk *clk)
486 {
487 }
488 
489 static struct nvkm_domain
490 gt215_domain[] = {
491 	{ nv_clk_src_crystal  , 0xff },
492 	{ nv_clk_src_core     , 0x00, 0, "core", 1000 },
493 	{ nv_clk_src_shader   , 0x01, 0, "shader", 1000 },
494 	{ nv_clk_src_mem      , 0x02, 0, "memory", 1000 },
495 	{ nv_clk_src_vdec     , 0x03 },
496 	{ nv_clk_src_disp     , 0x04 },
497 	{ nv_clk_src_host     , 0x05 },
498 	{ nv_clk_src_core_intm, 0x06 },
499 	{ nv_clk_src_max }
500 };
501 
502 static int
503 gt215_clk_ctor(struct nvkm_object *parent, struct nvkm_object *engine,
504 	       struct nvkm_oclass *oclass, void *data, u32 size,
505 	       struct nvkm_object **pobject)
506 {
507 	struct gt215_clk_priv *priv;
508 	int ret;
509 
510 	ret = nvkm_clk_create(parent, engine, oclass, gt215_domain,
511 			      NULL, 0, true, &priv);
512 	*pobject = nv_object(priv);
513 	if (ret)
514 		return ret;
515 
516 	priv->base.read = gt215_clk_read;
517 	priv->base.calc = gt215_clk_calc;
518 	priv->base.prog = gt215_clk_prog;
519 	priv->base.tidy = gt215_clk_tidy;
520 	return 0;
521 }
522 
523 struct nvkm_oclass
524 gt215_clk_oclass = {
525 	.handle = NV_SUBDEV(CLK, 0xa3),
526 	.ofuncs = &(struct nvkm_ofuncs) {
527 		.ctor = gt215_clk_ctor,
528 		.dtor = _nvkm_clk_dtor,
529 		.init = _nvkm_clk_init,
530 		.fini = _nvkm_clk_fini,
531 	},
532 };
533