1 /*
2  * Copyright 2012 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Ben Skeggs
23  *          Roy Spliet
24  */
25 #include "gt215.h"
26 #include "pll.h"
27 
28 #include <engine/fifo.h>
29 #include <subdev/bios.h>
30 #include <subdev/bios/pll.h>
31 #include <subdev/timer.h>
32 
33 struct gt215_clk {
34 	struct nvkm_clk base;
35 	struct gt215_clk_info eng[nv_clk_src_max];
36 };
37 
38 static u32 read_clk(struct gt215_clk *, int, bool);
39 static u32 read_pll(struct gt215_clk *, int, u32);
40 
41 static u32
42 read_vco(struct gt215_clk *clk, int idx)
43 {
44 	u32 sctl = nv_rd32(clk, 0x4120 + (idx * 4));
45 
46 	switch (sctl & 0x00000030) {
47 	case 0x00000000:
48 		return nv_device(clk)->crystal;
49 	case 0x00000020:
50 		return read_pll(clk, 0x41, 0x00e820);
51 	case 0x00000030:
52 		return read_pll(clk, 0x42, 0x00e8a0);
53 	default:
54 		return 0;
55 	}
56 }
57 
58 static u32
59 read_clk(struct gt215_clk *clk, int idx, bool ignore_en)
60 {
61 	u32 sctl, sdiv, sclk;
62 
63 	/* refclk for the 0xe8xx plls is a fixed frequency */
64 	if (idx >= 0x40) {
65 		if (nv_device(clk)->chipset == 0xaf) {
66 			/* no joke.. seriously.. sigh.. */
67 			return nv_rd32(clk, 0x00471c) * 1000;
68 		}
69 
70 		return nv_device(clk)->crystal;
71 	}
72 
73 	sctl = nv_rd32(clk, 0x4120 + (idx * 4));
74 	if (!ignore_en && !(sctl & 0x00000100))
75 		return 0;
76 
77 	/* out_alt */
78 	if (sctl & 0x00000400)
79 		return 108000;
80 
81 	/* vco_out */
82 	switch (sctl & 0x00003000) {
83 	case 0x00000000:
84 		if (!(sctl & 0x00000200))
85 			return nv_device(clk)->crystal;
86 		return 0;
87 	case 0x00002000:
88 		if (sctl & 0x00000040)
89 			return 108000;
90 		return 100000;
91 	case 0x00003000:
92 		/* vco_enable */
93 		if (!(sctl & 0x00000001))
94 			return 0;
95 
96 		sclk = read_vco(clk, idx);
97 		sdiv = ((sctl & 0x003f0000) >> 16) + 2;
98 		return (sclk * 2) / sdiv;
99 	default:
100 		return 0;
101 	}
102 }
103 
104 static u32
105 read_pll(struct gt215_clk *clk, int idx, u32 pll)
106 {
107 	u32 ctrl = nv_rd32(clk, pll + 0);
108 	u32 sclk = 0, P = 1, N = 1, M = 1;
109 
110 	if (!(ctrl & 0x00000008)) {
111 		if (ctrl & 0x00000001) {
112 			u32 coef = nv_rd32(clk, pll + 4);
113 			M = (coef & 0x000000ff) >> 0;
114 			N = (coef & 0x0000ff00) >> 8;
115 			P = (coef & 0x003f0000) >> 16;
116 
117 			/* no post-divider on these..
118 			 * XXX: it looks more like two post-"dividers" that
119 			 * cross each other out in the default RPLL config */
120 			if ((pll & 0x00ff00) == 0x00e800)
121 				P = 1;
122 
123 			sclk = read_clk(clk, 0x00 + idx, false);
124 		}
125 	} else {
126 		sclk = read_clk(clk, 0x10 + idx, false);
127 	}
128 
129 	if (M * P)
130 		return sclk * N / (M * P);
131 
132 	return 0;
133 }
134 
135 static int
136 gt215_clk_read(struct nvkm_clk *obj, enum nv_clk_src src)
137 {
138 	struct gt215_clk *clk = container_of(obj, typeof(*clk), base);
139 	u32 hsrc;
140 
141 	switch (src) {
142 	case nv_clk_src_crystal:
143 		return nv_device(clk)->crystal;
144 	case nv_clk_src_core:
145 	case nv_clk_src_core_intm:
146 		return read_pll(clk, 0x00, 0x4200);
147 	case nv_clk_src_shader:
148 		return read_pll(clk, 0x01, 0x4220);
149 	case nv_clk_src_mem:
150 		return read_pll(clk, 0x02, 0x4000);
151 	case nv_clk_src_disp:
152 		return read_clk(clk, 0x20, false);
153 	case nv_clk_src_vdec:
154 		return read_clk(clk, 0x21, false);
155 	case nv_clk_src_daemon:
156 		return read_clk(clk, 0x25, false);
157 	case nv_clk_src_host:
158 		hsrc = (nv_rd32(clk, 0xc040) & 0x30000000) >> 28;
159 		switch (hsrc) {
160 		case 0:
161 			return read_clk(clk, 0x1d, false);
162 		case 2:
163 		case 3:
164 			return 277000;
165 		default:
166 			nv_error(clk, "unknown HOST clock source %d\n", hsrc);
167 			return -EINVAL;
168 		}
169 	default:
170 		nv_error(clk, "invalid clock source %d\n", src);
171 		return -EINVAL;
172 	}
173 
174 	return 0;
175 }
176 
177 int
178 gt215_clk_info(struct nvkm_clk *obj, int idx, u32 khz,
179 	       struct gt215_clk_info *info)
180 {
181 	struct gt215_clk *clk = container_of(obj, typeof(*clk), base);
182 	u32 oclk, sclk, sdiv;
183 	s32 diff;
184 
185 	info->clk = 0;
186 
187 	switch (khz) {
188 	case 27000:
189 		info->clk = 0x00000100;
190 		return khz;
191 	case 100000:
192 		info->clk = 0x00002100;
193 		return khz;
194 	case 108000:
195 		info->clk = 0x00002140;
196 		return khz;
197 	default:
198 		sclk = read_vco(clk, idx);
199 		sdiv = min((sclk * 2) / khz, (u32)65);
200 		oclk = (sclk * 2) / sdiv;
201 		diff = ((khz + 3000) - oclk);
202 
203 		/* When imprecise, play it safe and aim for a clock lower than
204 		 * desired rather than higher */
205 		if (diff < 0) {
206 			sdiv++;
207 			oclk = (sclk * 2) / sdiv;
208 		}
209 
210 		/* divider can go as low as 2, limited here because NVIDIA
211 		 * and the VBIOS on my NVA8 seem to prefer using the PLL
212 		 * for 810MHz - is there a good reason?
213 		 * XXX: PLLs with refclk 810MHz?  */
214 		if (sdiv > 4) {
215 			info->clk = (((sdiv - 2) << 16) | 0x00003100);
216 			return oclk;
217 		}
218 
219 		break;
220 	}
221 
222 	return -ERANGE;
223 }
224 
225 int
226 gt215_pll_info(struct nvkm_clk *clock, int idx, u32 pll, u32 khz,
227 	       struct gt215_clk_info *info)
228 {
229 	struct nvkm_bios *bios = nvkm_bios(clock);
230 	struct gt215_clk *clk = (void *)clock;
231 	struct nvbios_pll limits;
232 	int P, N, M, diff;
233 	int ret;
234 
235 	info->pll = 0;
236 
237 	/* If we can get a within [-2, 3) MHz of a divider, we'll disable the
238 	 * PLL and use the divider instead. */
239 	ret = gt215_clk_info(clock, idx, khz, info);
240 	diff = khz - ret;
241 	if (!pll || (diff >= -2000 && diff < 3000)) {
242 		goto out;
243 	}
244 
245 	/* Try with PLL */
246 	ret = nvbios_pll_parse(bios, pll, &limits);
247 	if (ret)
248 		return ret;
249 
250 	ret = gt215_clk_info(clock, idx - 0x10, limits.refclk, info);
251 	if (ret != limits.refclk)
252 		return -EINVAL;
253 
254 	ret = gt215_pll_calc(nv_subdev(clk), &limits, khz, &N, NULL, &M, &P);
255 	if (ret >= 0) {
256 		info->pll = (P << 16) | (N << 8) | M;
257 	}
258 
259 out:
260 	info->fb_delay = max(((khz + 7566) / 15133), (u32) 18);
261 	return ret ? ret : -ERANGE;
262 }
263 
264 static int
265 calc_clk(struct gt215_clk *clk, struct nvkm_cstate *cstate,
266 	 int idx, u32 pll, int dom)
267 {
268 	int ret = gt215_pll_info(&clk->base, idx, pll, cstate->domain[dom],
269 				 &clk->eng[dom]);
270 	if (ret >= 0)
271 		return 0;
272 	return ret;
273 }
274 
275 static int
276 calc_host(struct gt215_clk *clk, struct nvkm_cstate *cstate)
277 {
278 	int ret = 0;
279 	u32 kHz = cstate->domain[nv_clk_src_host];
280 	struct gt215_clk_info *info = &clk->eng[nv_clk_src_host];
281 
282 	if (kHz == 277000) {
283 		info->clk = 0;
284 		info->host_out = NVA3_HOST_277;
285 		return 0;
286 	}
287 
288 	info->host_out = NVA3_HOST_CLK;
289 
290 	ret = gt215_clk_info(&clk->base, 0x1d, kHz, info);
291 	if (ret >= 0)
292 		return 0;
293 
294 	return ret;
295 }
296 
297 int
298 gt215_clk_pre(struct nvkm_clk *clk, unsigned long *flags)
299 {
300 	struct nvkm_fifo *pfifo = nvkm_fifo(clk);
301 
302 	/* halt and idle execution engines */
303 	nv_mask(clk, 0x020060, 0x00070000, 0x00000000);
304 	nv_mask(clk, 0x002504, 0x00000001, 0x00000001);
305 	/* Wait until the interrupt handler is finished */
306 	if (!nv_wait(clk, 0x000100, 0xffffffff, 0x00000000))
307 		return -EBUSY;
308 
309 	if (pfifo)
310 		pfifo->pause(pfifo, flags);
311 
312 	if (!nv_wait(clk, 0x002504, 0x00000010, 0x00000010))
313 		return -EIO;
314 	if (!nv_wait(clk, 0x00251c, 0x0000003f, 0x0000003f))
315 		return -EIO;
316 
317 	return 0;
318 }
319 
320 void
321 gt215_clk_post(struct nvkm_clk *clk, unsigned long *flags)
322 {
323 	struct nvkm_fifo *pfifo = nvkm_fifo(clk);
324 
325 	if (pfifo && flags)
326 		pfifo->start(pfifo, flags);
327 
328 	nv_mask(clk, 0x002504, 0x00000001, 0x00000000);
329 	nv_mask(clk, 0x020060, 0x00070000, 0x00040000);
330 }
331 
332 static void
333 disable_clk_src(struct gt215_clk *clk, u32 src)
334 {
335 	nv_mask(clk, src, 0x00000100, 0x00000000);
336 	nv_mask(clk, src, 0x00000001, 0x00000000);
337 }
338 
339 static void
340 prog_pll(struct gt215_clk *clk, int idx, u32 pll, int dom)
341 {
342 	struct gt215_clk_info *info = &clk->eng[dom];
343 	const u32 src0 = 0x004120 + (idx * 4);
344 	const u32 src1 = 0x004160 + (idx * 4);
345 	const u32 ctrl = pll + 0;
346 	const u32 coef = pll + 4;
347 	u32 bypass;
348 
349 	if (info->pll) {
350 		/* Always start from a non-PLL clock */
351 		bypass = nv_rd32(clk, ctrl)  & 0x00000008;
352 		if (!bypass) {
353 			nv_mask(clk, src1, 0x00000101, 0x00000101);
354 			nv_mask(clk, ctrl, 0x00000008, 0x00000008);
355 			udelay(20);
356 		}
357 
358 		nv_mask(clk, src0, 0x003f3141, 0x00000101 | info->clk);
359 		nv_wr32(clk, coef, info->pll);
360 		nv_mask(clk, ctrl, 0x00000015, 0x00000015);
361 		nv_mask(clk, ctrl, 0x00000010, 0x00000000);
362 		if (!nv_wait(clk, ctrl, 0x00020000, 0x00020000)) {
363 			nv_mask(clk, ctrl, 0x00000010, 0x00000010);
364 			nv_mask(clk, src0, 0x00000101, 0x00000000);
365 			return;
366 		}
367 		nv_mask(clk, ctrl, 0x00000010, 0x00000010);
368 		nv_mask(clk, ctrl, 0x00000008, 0x00000000);
369 		disable_clk_src(clk, src1);
370 	} else {
371 		nv_mask(clk, src1, 0x003f3141, 0x00000101 | info->clk);
372 		nv_mask(clk, ctrl, 0x00000018, 0x00000018);
373 		udelay(20);
374 		nv_mask(clk, ctrl, 0x00000001, 0x00000000);
375 		disable_clk_src(clk, src0);
376 	}
377 }
378 
379 static void
380 prog_clk(struct gt215_clk *clk, int idx, int dom)
381 {
382 	struct gt215_clk_info *info = &clk->eng[dom];
383 	nv_mask(clk, 0x004120 + (idx * 4), 0x003f3141, 0x00000101 | info->clk);
384 }
385 
386 static void
387 prog_host(struct gt215_clk *clk)
388 {
389 	struct gt215_clk_info *info = &clk->eng[nv_clk_src_host];
390 	u32 hsrc = (nv_rd32(clk, 0xc040));
391 
392 	switch (info->host_out) {
393 	case NVA3_HOST_277:
394 		if ((hsrc & 0x30000000) == 0) {
395 			nv_wr32(clk, 0xc040, hsrc | 0x20000000);
396 			disable_clk_src(clk, 0x4194);
397 		}
398 		break;
399 	case NVA3_HOST_CLK:
400 		prog_clk(clk, 0x1d, nv_clk_src_host);
401 		if ((hsrc & 0x30000000) >= 0x20000000) {
402 			nv_wr32(clk, 0xc040, hsrc & ~0x30000000);
403 		}
404 		break;
405 	default:
406 		break;
407 	}
408 
409 	/* This seems to be a clock gating factor on idle, always set to 64 */
410 	nv_wr32(clk, 0xc044, 0x3e);
411 }
412 
413 static void
414 prog_core(struct gt215_clk *clk, int dom)
415 {
416 	struct gt215_clk_info *info = &clk->eng[dom];
417 	u32 fb_delay = nv_rd32(clk, 0x10002c);
418 
419 	if (fb_delay < info->fb_delay)
420 		nv_wr32(clk, 0x10002c, info->fb_delay);
421 
422 	prog_pll(clk, 0x00, 0x004200, dom);
423 
424 	if (fb_delay > info->fb_delay)
425 		nv_wr32(clk, 0x10002c, info->fb_delay);
426 }
427 
428 static int
429 gt215_clk_calc(struct nvkm_clk *obj, struct nvkm_cstate *cstate)
430 {
431 	struct gt215_clk *clk = container_of(obj, typeof(*clk), base);
432 	struct gt215_clk_info *core = &clk->eng[nv_clk_src_core];
433 	int ret;
434 
435 	if ((ret = calc_clk(clk, cstate, 0x10, 0x4200, nv_clk_src_core)) ||
436 	    (ret = calc_clk(clk, cstate, 0x11, 0x4220, nv_clk_src_shader)) ||
437 	    (ret = calc_clk(clk, cstate, 0x20, 0x0000, nv_clk_src_disp)) ||
438 	    (ret = calc_clk(clk, cstate, 0x21, 0x0000, nv_clk_src_vdec)) ||
439 	    (ret = calc_host(clk, cstate)))
440 		return ret;
441 
442 	/* XXX: Should be reading the highest bit in the VBIOS clock to decide
443 	 * whether to use a PLL or not... but using a PLL defeats the purpose */
444 	if (core->pll) {
445 		ret = gt215_clk_info(&clk->base, 0x10,
446 				     cstate->domain[nv_clk_src_core_intm],
447 				     &clk->eng[nv_clk_src_core_intm]);
448 		if (ret < 0)
449 			return ret;
450 	}
451 
452 	return 0;
453 }
454 
455 static int
456 gt215_clk_prog(struct nvkm_clk *obj)
457 {
458 	struct gt215_clk *clk = container_of(obj, typeof(*clk), base);
459 	struct gt215_clk_info *core = &clk->eng[nv_clk_src_core];
460 	int ret = 0;
461 	unsigned long flags;
462 	unsigned long *f = &flags;
463 
464 	ret = gt215_clk_pre(&clk->base, f);
465 	if (ret)
466 		goto out;
467 
468 	if (core->pll)
469 		prog_core(clk, nv_clk_src_core_intm);
470 
471 	prog_core(clk,  nv_clk_src_core);
472 	prog_pll(clk, 0x01, 0x004220, nv_clk_src_shader);
473 	prog_clk(clk, 0x20, nv_clk_src_disp);
474 	prog_clk(clk, 0x21, nv_clk_src_vdec);
475 	prog_host(clk);
476 
477 out:
478 	if (ret == -EBUSY)
479 		f = NULL;
480 
481 	gt215_clk_post(&clk->base, f);
482 	return ret;
483 }
484 
485 static void
486 gt215_clk_tidy(struct nvkm_clk *obj)
487 {
488 }
489 
490 static struct nvkm_domain
491 gt215_domain[] = {
492 	{ nv_clk_src_crystal  , 0xff },
493 	{ nv_clk_src_core     , 0x00, 0, "core", 1000 },
494 	{ nv_clk_src_shader   , 0x01, 0, "shader", 1000 },
495 	{ nv_clk_src_mem      , 0x02, 0, "memory", 1000 },
496 	{ nv_clk_src_vdec     , 0x03 },
497 	{ nv_clk_src_disp     , 0x04 },
498 	{ nv_clk_src_host     , 0x05 },
499 	{ nv_clk_src_core_intm, 0x06 },
500 	{ nv_clk_src_max }
501 };
502 
503 static int
504 gt215_clk_ctor(struct nvkm_object *parent, struct nvkm_object *engine,
505 	       struct nvkm_oclass *oclass, void *data, u32 size,
506 	       struct nvkm_object **pobject)
507 {
508 	struct gt215_clk *clk;
509 	int ret;
510 
511 	ret = nvkm_clk_create(parent, engine, oclass, gt215_domain,
512 			      NULL, 0, true, &clk);
513 	*pobject = nv_object(clk);
514 	if (ret)
515 		return ret;
516 
517 	clk->base.read = gt215_clk_read;
518 	clk->base.calc = gt215_clk_calc;
519 	clk->base.prog = gt215_clk_prog;
520 	clk->base.tidy = gt215_clk_tidy;
521 	return 0;
522 }
523 
524 struct nvkm_oclass
525 gt215_clk_oclass = {
526 	.handle = NV_SUBDEV(CLK, 0xa3),
527 	.ofuncs = &(struct nvkm_ofuncs) {
528 		.ctor = gt215_clk_ctor,
529 		.dtor = _nvkm_clk_dtor,
530 		.init = _nvkm_clk_init,
531 		.fini = _nvkm_clk_fini,
532 	},
533 };
534