1 /*
2  * Copyright (c) 2014, NVIDIA CORPORATION. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20  * DEALINGS IN THE SOFTWARE.
21  *
22  * Shamelessly ripped off from ChromeOS's gk20a/clk_pllg.c
23  *
24  */
25 #include <subdev/clk.h>
26 #include <subdev/timer.h>
27 
28 #ifdef __KERNEL__
29 #include <nouveau_platform.h>
30 #endif
31 
32 #define MHZ (1000 * 1000)
33 
34 #define MASK(w)	((1 << w) - 1)
35 
36 #define SYS_GPCPLL_CFG_BASE			0x00137000
37 #define GPC_BCASE_GPCPLL_CFG_BASE		0x00132800
38 
39 #define GPCPLL_CFG		(SYS_GPCPLL_CFG_BASE + 0)
40 #define GPCPLL_CFG_ENABLE	BIT(0)
41 #define GPCPLL_CFG_IDDQ		BIT(1)
42 #define GPCPLL_CFG_LOCK_DET_OFF	BIT(4)
43 #define GPCPLL_CFG_LOCK		BIT(17)
44 
45 #define GPCPLL_COEFF		(SYS_GPCPLL_CFG_BASE + 4)
46 #define GPCPLL_COEFF_M_SHIFT	0
47 #define GPCPLL_COEFF_M_WIDTH	8
48 #define GPCPLL_COEFF_N_SHIFT	8
49 #define GPCPLL_COEFF_N_WIDTH	8
50 #define GPCPLL_COEFF_P_SHIFT	16
51 #define GPCPLL_COEFF_P_WIDTH	6
52 
53 #define GPCPLL_CFG2			(SYS_GPCPLL_CFG_BASE + 0xc)
54 #define GPCPLL_CFG2_SETUP2_SHIFT	16
55 #define GPCPLL_CFG2_PLL_STEPA_SHIFT	24
56 
57 #define GPCPLL_CFG3			(SYS_GPCPLL_CFG_BASE + 0x18)
58 #define GPCPLL_CFG3_PLL_STEPB_SHIFT	16
59 
60 #define GPCPLL_NDIV_SLOWDOWN			(SYS_GPCPLL_CFG_BASE + 0x1c)
61 #define GPCPLL_NDIV_SLOWDOWN_NDIV_LO_SHIFT	0
62 #define GPCPLL_NDIV_SLOWDOWN_NDIV_MID_SHIFT	8
63 #define GPCPLL_NDIV_SLOWDOWN_STEP_SIZE_LO2MID_SHIFT	16
64 #define GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT	22
65 #define GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT	31
66 
67 #define SEL_VCO				(SYS_GPCPLL_CFG_BASE + 0x100)
68 #define SEL_VCO_GPC2CLK_OUT_SHIFT	0
69 
70 #define GPC2CLK_OUT			(SYS_GPCPLL_CFG_BASE + 0x250)
71 #define GPC2CLK_OUT_SDIV14_INDIV4_WIDTH	1
72 #define GPC2CLK_OUT_SDIV14_INDIV4_SHIFT	31
73 #define GPC2CLK_OUT_SDIV14_INDIV4_MODE	1
74 #define GPC2CLK_OUT_VCODIV_WIDTH	6
75 #define GPC2CLK_OUT_VCODIV_SHIFT	8
76 #define GPC2CLK_OUT_VCODIV1		0
77 #define GPC2CLK_OUT_VCODIV_MASK		(MASK(GPC2CLK_OUT_VCODIV_WIDTH) << \
78 					GPC2CLK_OUT_VCODIV_SHIFT)
79 #define	GPC2CLK_OUT_BYPDIV_WIDTH	6
80 #define GPC2CLK_OUT_BYPDIV_SHIFT	0
81 #define GPC2CLK_OUT_BYPDIV31		0x3c
82 #define GPC2CLK_OUT_INIT_MASK	((MASK(GPC2CLK_OUT_SDIV14_INDIV4_WIDTH) << \
83 		GPC2CLK_OUT_SDIV14_INDIV4_SHIFT)\
84 		| (MASK(GPC2CLK_OUT_VCODIV_WIDTH) << GPC2CLK_OUT_VCODIV_SHIFT)\
85 		| (MASK(GPC2CLK_OUT_BYPDIV_WIDTH) << GPC2CLK_OUT_BYPDIV_SHIFT))
86 #define GPC2CLK_OUT_INIT_VAL	((GPC2CLK_OUT_SDIV14_INDIV4_MODE << \
87 		GPC2CLK_OUT_SDIV14_INDIV4_SHIFT) \
88 		| (GPC2CLK_OUT_VCODIV1 << GPC2CLK_OUT_VCODIV_SHIFT) \
89 		| (GPC2CLK_OUT_BYPDIV31 << GPC2CLK_OUT_BYPDIV_SHIFT))
90 
91 #define GPC_BCAST_NDIV_SLOWDOWN_DEBUG	(GPC_BCASE_GPCPLL_CFG_BASE + 0xa0)
92 #define GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_SHIFT	24
93 #define GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_MASK \
94 	    (0x1 << GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_SHIFT)
95 
96 static const u8 pl_to_div[] = {
97 /* PL:   0, 1, 2, 3, 4, 5, 6,  7,  8,  9, 10, 11, 12, 13, 14 */
98 /* p: */ 1, 2, 3, 4, 5, 6, 8, 10, 12, 16, 12, 16, 20, 24, 32,
99 };
100 
101 /* All frequencies in Mhz */
102 struct gk20a_clk_pllg_params {
103 	u32 min_vco, max_vco;
104 	u32 min_u, max_u;
105 	u32 min_m, max_m;
106 	u32 min_n, max_n;
107 	u32 min_pl, max_pl;
108 };
109 
110 static const struct gk20a_clk_pllg_params gk20a_pllg_params = {
111 	.min_vco = 1000, .max_vco = 2064,
112 	.min_u = 12, .max_u = 38,
113 	.min_m = 1, .max_m = 255,
114 	.min_n = 8, .max_n = 255,
115 	.min_pl = 1, .max_pl = 32,
116 };
117 
118 struct gk20a_clk {
119 	struct nvkm_clk base;
120 	const struct gk20a_clk_pllg_params *params;
121 	u32 m, n, pl;
122 	u32 parent_rate;
123 };
124 #define to_gk20a_clk(base) container_of(base, struct gk20a_clk, base)
125 
126 static void
127 gk20a_pllg_read_mnp(struct gk20a_clk *clk)
128 {
129 	u32 val;
130 
131 	val = nv_rd32(clk, GPCPLL_COEFF);
132 	clk->m = (val >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH);
133 	clk->n = (val >> GPCPLL_COEFF_N_SHIFT) & MASK(GPCPLL_COEFF_N_WIDTH);
134 	clk->pl = (val >> GPCPLL_COEFF_P_SHIFT) & MASK(GPCPLL_COEFF_P_WIDTH);
135 }
136 
137 static u32
138 gk20a_pllg_calc_rate(struct gk20a_clk *clk)
139 {
140 	u32 rate;
141 	u32 divider;
142 
143 	rate = clk->parent_rate * clk->n;
144 	divider = clk->m * pl_to_div[clk->pl];
145 	do_div(rate, divider);
146 
147 	return rate / 2;
148 }
149 
150 static int
151 gk20a_pllg_calc_mnp(struct gk20a_clk *clk, unsigned long rate)
152 {
153 	u32 target_clk_f, ref_clk_f, target_freq;
154 	u32 min_vco_f, max_vco_f;
155 	u32 low_pl, high_pl, best_pl;
156 	u32 target_vco_f, vco_f;
157 	u32 best_m, best_n;
158 	u32 u_f;
159 	u32 m, n, n2;
160 	u32 delta, lwv, best_delta = ~0;
161 	u32 pl;
162 
163 	target_clk_f = rate * 2 / MHZ;
164 	ref_clk_f = clk->parent_rate / MHZ;
165 
166 	max_vco_f = clk->params->max_vco;
167 	min_vco_f = clk->params->min_vco;
168 	best_m = clk->params->max_m;
169 	best_n = clk->params->min_n;
170 	best_pl = clk->params->min_pl;
171 
172 	target_vco_f = target_clk_f + target_clk_f / 50;
173 	if (max_vco_f < target_vco_f)
174 		max_vco_f = target_vco_f;
175 
176 	/* min_pl <= high_pl <= max_pl */
177 	high_pl = (max_vco_f + target_vco_f - 1) / target_vco_f;
178 	high_pl = min(high_pl, clk->params->max_pl);
179 	high_pl = max(high_pl, clk->params->min_pl);
180 
181 	/* min_pl <= low_pl <= max_pl */
182 	low_pl = min_vco_f / target_vco_f;
183 	low_pl = min(low_pl, clk->params->max_pl);
184 	low_pl = max(low_pl, clk->params->min_pl);
185 
186 	/* Find Indices of high_pl and low_pl */
187 	for (pl = 0; pl < ARRAY_SIZE(pl_to_div) - 1; pl++) {
188 		if (pl_to_div[pl] >= low_pl) {
189 			low_pl = pl;
190 			break;
191 		}
192 	}
193 	for (pl = 0; pl < ARRAY_SIZE(pl_to_div) - 1; pl++) {
194 		if (pl_to_div[pl] >= high_pl) {
195 			high_pl = pl;
196 			break;
197 		}
198 	}
199 
200 	nv_debug(clk, "low_PL %d(div%d), high_PL %d(div%d)", low_pl,
201 		 pl_to_div[low_pl], high_pl, pl_to_div[high_pl]);
202 
203 	/* Select lowest possible VCO */
204 	for (pl = low_pl; pl <= high_pl; pl++) {
205 		target_vco_f = target_clk_f * pl_to_div[pl];
206 		for (m = clk->params->min_m; m <= clk->params->max_m; m++) {
207 			u_f = ref_clk_f / m;
208 
209 			if (u_f < clk->params->min_u)
210 				break;
211 			if (u_f > clk->params->max_u)
212 				continue;
213 
214 			n = (target_vco_f * m) / ref_clk_f;
215 			n2 = ((target_vco_f * m) + (ref_clk_f - 1)) / ref_clk_f;
216 
217 			if (n > clk->params->max_n)
218 				break;
219 
220 			for (; n <= n2; n++) {
221 				if (n < clk->params->min_n)
222 					continue;
223 				if (n > clk->params->max_n)
224 					break;
225 
226 				vco_f = ref_clk_f * n / m;
227 
228 				if (vco_f >= min_vco_f && vco_f <= max_vco_f) {
229 					lwv = (vco_f + (pl_to_div[pl] / 2))
230 						/ pl_to_div[pl];
231 					delta = abs(lwv - target_clk_f);
232 
233 					if (delta < best_delta) {
234 						best_delta = delta;
235 						best_m = m;
236 						best_n = n;
237 						best_pl = pl;
238 
239 						if (best_delta == 0)
240 							goto found_match;
241 					}
242 				}
243 			}
244 		}
245 	}
246 
247 found_match:
248 	WARN_ON(best_delta == ~0);
249 
250 	if (best_delta != 0)
251 		nv_debug(clk, "no best match for target @ %dMHz on gpc_pll",
252 			 target_clk_f);
253 
254 	clk->m = best_m;
255 	clk->n = best_n;
256 	clk->pl = best_pl;
257 
258 	target_freq = gk20a_pllg_calc_rate(clk) / MHZ;
259 
260 	nv_debug(clk, "actual target freq %d MHz, M %d, N %d, PL %d(div%d)\n",
261 		 target_freq, clk->m, clk->n, clk->pl, pl_to_div[clk->pl]);
262 	return 0;
263 }
264 
265 static int
266 gk20a_pllg_slide(struct gk20a_clk *clk, u32 n)
267 {
268 	u32 val;
269 	int ramp_timeout;
270 
271 	/* get old coefficients */
272 	val = nv_rd32(clk, GPCPLL_COEFF);
273 	/* do nothing if NDIV is the same */
274 	if (n == ((val >> GPCPLL_COEFF_N_SHIFT) & MASK(GPCPLL_COEFF_N_WIDTH)))
275 		return 0;
276 
277 	/* setup */
278 	nv_mask(clk, GPCPLL_CFG2, 0xff << GPCPLL_CFG2_PLL_STEPA_SHIFT,
279 		0x2b << GPCPLL_CFG2_PLL_STEPA_SHIFT);
280 	nv_mask(clk, GPCPLL_CFG3, 0xff << GPCPLL_CFG3_PLL_STEPB_SHIFT,
281 		0xb << GPCPLL_CFG3_PLL_STEPB_SHIFT);
282 
283 	/* pll slowdown mode */
284 	nv_mask(clk, GPCPLL_NDIV_SLOWDOWN,
285 		BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT),
286 		BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT));
287 
288 	/* new ndiv ready for ramp */
289 	val = nv_rd32(clk, GPCPLL_COEFF);
290 	val &= ~(MASK(GPCPLL_COEFF_N_WIDTH) << GPCPLL_COEFF_N_SHIFT);
291 	val |= (n & MASK(GPCPLL_COEFF_N_WIDTH)) << GPCPLL_COEFF_N_SHIFT;
292 	udelay(1);
293 	nv_wr32(clk, GPCPLL_COEFF, val);
294 
295 	/* dynamic ramp to new ndiv */
296 	val = nv_rd32(clk, GPCPLL_NDIV_SLOWDOWN);
297 	val |= 0x1 << GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT;
298 	udelay(1);
299 	nv_wr32(clk, GPCPLL_NDIV_SLOWDOWN, val);
300 
301 	for (ramp_timeout = 500; ramp_timeout > 0; ramp_timeout--) {
302 		udelay(1);
303 		val = nv_rd32(clk, GPC_BCAST_NDIV_SLOWDOWN_DEBUG);
304 		if (val & GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_MASK)
305 			break;
306 	}
307 
308 	/* exit slowdown mode */
309 	nv_mask(clk, GPCPLL_NDIV_SLOWDOWN,
310 		BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT) |
311 		BIT(GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT), 0);
312 	nv_rd32(clk, GPCPLL_NDIV_SLOWDOWN);
313 
314 	if (ramp_timeout <= 0) {
315 		nv_error(clk, "gpcpll dynamic ramp timeout\n");
316 		return -ETIMEDOUT;
317 	}
318 
319 	return 0;
320 }
321 
322 static void
323 _gk20a_pllg_enable(struct gk20a_clk *clk)
324 {
325 	nv_mask(clk, GPCPLL_CFG, GPCPLL_CFG_ENABLE, GPCPLL_CFG_ENABLE);
326 	nv_rd32(clk, GPCPLL_CFG);
327 }
328 
329 static void
330 _gk20a_pllg_disable(struct gk20a_clk *clk)
331 {
332 	nv_mask(clk, GPCPLL_CFG, GPCPLL_CFG_ENABLE, 0);
333 	nv_rd32(clk, GPCPLL_CFG);
334 }
335 
336 static int
337 _gk20a_pllg_program_mnp(struct gk20a_clk *clk, bool allow_slide)
338 {
339 	u32 val, cfg;
340 	u32 m_old, pl_old, n_lo;
341 
342 	/* get old coefficients */
343 	val = nv_rd32(clk, GPCPLL_COEFF);
344 	m_old = (val >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH);
345 	pl_old = (val >> GPCPLL_COEFF_P_SHIFT) & MASK(GPCPLL_COEFF_P_WIDTH);
346 
347 	/* do NDIV slide if there is no change in M and PL */
348 	cfg = nv_rd32(clk, GPCPLL_CFG);
349 	if (allow_slide && clk->m == m_old && clk->pl == pl_old &&
350 	    (cfg & GPCPLL_CFG_ENABLE)) {
351 		return gk20a_pllg_slide(clk, clk->n);
352 	}
353 
354 	/* slide down to NDIV_LO */
355 	n_lo = DIV_ROUND_UP(m_old * clk->params->min_vco,
356 			    clk->parent_rate / MHZ);
357 	if (allow_slide && (cfg & GPCPLL_CFG_ENABLE)) {
358 		int ret = gk20a_pllg_slide(clk, n_lo);
359 
360 		if (ret)
361 			return ret;
362 	}
363 
364 	/* split FO-to-bypass jump in halfs by setting out divider 1:2 */
365 	nv_mask(clk, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK,
366 		0x2 << GPC2CLK_OUT_VCODIV_SHIFT);
367 
368 	/* put PLL in bypass before programming it */
369 	val = nv_rd32(clk, SEL_VCO);
370 	val &= ~(BIT(SEL_VCO_GPC2CLK_OUT_SHIFT));
371 	udelay(2);
372 	nv_wr32(clk, SEL_VCO, val);
373 
374 	/* get out from IDDQ */
375 	val = nv_rd32(clk, GPCPLL_CFG);
376 	if (val & GPCPLL_CFG_IDDQ) {
377 		val &= ~GPCPLL_CFG_IDDQ;
378 		nv_wr32(clk, GPCPLL_CFG, val);
379 		nv_rd32(clk, GPCPLL_CFG);
380 		udelay(2);
381 	}
382 
383 	_gk20a_pllg_disable(clk);
384 
385 	nv_debug(clk, "%s: m=%d n=%d pl=%d\n", __func__, clk->m, clk->n,
386 		 clk->pl);
387 
388 	n_lo = DIV_ROUND_UP(clk->m * clk->params->min_vco,
389 			    clk->parent_rate / MHZ);
390 	val = clk->m << GPCPLL_COEFF_M_SHIFT;
391 	val |= (allow_slide ? n_lo : clk->n) << GPCPLL_COEFF_N_SHIFT;
392 	val |= clk->pl << GPCPLL_COEFF_P_SHIFT;
393 	nv_wr32(clk, GPCPLL_COEFF, val);
394 
395 	_gk20a_pllg_enable(clk);
396 
397 	val = nv_rd32(clk, GPCPLL_CFG);
398 	if (val & GPCPLL_CFG_LOCK_DET_OFF) {
399 		val &= ~GPCPLL_CFG_LOCK_DET_OFF;
400 		nv_wr32(clk, GPCPLL_CFG, val);
401 	}
402 
403 	if (!nvkm_timer_wait_eq(clk, 300000, GPCPLL_CFG, GPCPLL_CFG_LOCK,
404 				GPCPLL_CFG_LOCK)) {
405 		nv_error(clk, "%s: timeout waiting for pllg lock\n", __func__);
406 		return -ETIMEDOUT;
407 	}
408 
409 	/* switch to VCO mode */
410 	nv_mask(clk, SEL_VCO, 0, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT));
411 
412 	/* restore out divider 1:1 */
413 	val = nv_rd32(clk, GPC2CLK_OUT);
414 	val &= ~GPC2CLK_OUT_VCODIV_MASK;
415 	udelay(2);
416 	nv_wr32(clk, GPC2CLK_OUT, val);
417 
418 	/* slide up to new NDIV */
419 	return allow_slide ? gk20a_pllg_slide(clk, clk->n) : 0;
420 }
421 
422 static int
423 gk20a_pllg_program_mnp(struct gk20a_clk *clk)
424 {
425 	int err;
426 
427 	err = _gk20a_pllg_program_mnp(clk, true);
428 	if (err)
429 		err = _gk20a_pllg_program_mnp(clk, false);
430 
431 	return err;
432 }
433 
434 static void
435 gk20a_pllg_disable(struct gk20a_clk *clk)
436 {
437 	u32 val;
438 
439 	/* slide to VCO min */
440 	val = nv_rd32(clk, GPCPLL_CFG);
441 	if (val & GPCPLL_CFG_ENABLE) {
442 		u32 coeff, m, n_lo;
443 
444 		coeff = nv_rd32(clk, GPCPLL_COEFF);
445 		m = (coeff >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH);
446 		n_lo = DIV_ROUND_UP(m * clk->params->min_vco,
447 				    clk->parent_rate / MHZ);
448 		gk20a_pllg_slide(clk, n_lo);
449 	}
450 
451 	/* put PLL in bypass before disabling it */
452 	nv_mask(clk, SEL_VCO, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT), 0);
453 
454 	_gk20a_pllg_disable(clk);
455 }
456 
457 #define GK20A_CLK_GPC_MDIV 1000
458 
459 static struct nvkm_domain
460 gk20a_domains[] = {
461 	{ nv_clk_src_crystal, 0xff },
462 	{ nv_clk_src_gpc, 0xff, 0, "core", GK20A_CLK_GPC_MDIV },
463 	{ nv_clk_src_max }
464 };
465 
466 static struct nvkm_pstate
467 gk20a_pstates[] = {
468 	{
469 		.base = {
470 			.domain[nv_clk_src_gpc] = 72000,
471 			.voltage = 0,
472 		},
473 	},
474 	{
475 		.base = {
476 			.domain[nv_clk_src_gpc] = 108000,
477 			.voltage = 1,
478 		},
479 	},
480 	{
481 		.base = {
482 			.domain[nv_clk_src_gpc] = 180000,
483 			.voltage = 2,
484 		},
485 	},
486 	{
487 		.base = {
488 			.domain[nv_clk_src_gpc] = 252000,
489 			.voltage = 3,
490 		},
491 	},
492 	{
493 		.base = {
494 			.domain[nv_clk_src_gpc] = 324000,
495 			.voltage = 4,
496 		},
497 	},
498 	{
499 		.base = {
500 			.domain[nv_clk_src_gpc] = 396000,
501 			.voltage = 5,
502 		},
503 	},
504 	{
505 		.base = {
506 			.domain[nv_clk_src_gpc] = 468000,
507 			.voltage = 6,
508 		},
509 	},
510 	{
511 		.base = {
512 			.domain[nv_clk_src_gpc] = 540000,
513 			.voltage = 7,
514 		},
515 	},
516 	{
517 		.base = {
518 			.domain[nv_clk_src_gpc] = 612000,
519 			.voltage = 8,
520 		},
521 	},
522 	{
523 		.base = {
524 			.domain[nv_clk_src_gpc] = 648000,
525 			.voltage = 9,
526 		},
527 	},
528 	{
529 		.base = {
530 			.domain[nv_clk_src_gpc] = 684000,
531 			.voltage = 10,
532 		},
533 	},
534 	{
535 		.base = {
536 			.domain[nv_clk_src_gpc] = 708000,
537 			.voltage = 11,
538 		},
539 	},
540 	{
541 		.base = {
542 			.domain[nv_clk_src_gpc] = 756000,
543 			.voltage = 12,
544 		},
545 	},
546 	{
547 		.base = {
548 			.domain[nv_clk_src_gpc] = 804000,
549 			.voltage = 13,
550 		},
551 	},
552 	{
553 		.base = {
554 			.domain[nv_clk_src_gpc] = 852000,
555 			.voltage = 14,
556 		},
557 	},
558 };
559 
560 static int
561 gk20a_clk_read(struct nvkm_clk *obj, enum nv_clk_src src)
562 {
563 	struct gk20a_clk *clk = container_of(obj, typeof(*clk), base);
564 
565 	switch (src) {
566 	case nv_clk_src_crystal:
567 		return nv_device(clk)->crystal;
568 	case nv_clk_src_gpc:
569 		gk20a_pllg_read_mnp(clk);
570 		return gk20a_pllg_calc_rate(clk) / GK20A_CLK_GPC_MDIV;
571 	default:
572 		nv_error(clk, "invalid clock source %d\n", src);
573 		return -EINVAL;
574 	}
575 }
576 
577 static int
578 gk20a_clk_calc(struct nvkm_clk *obj, struct nvkm_cstate *cstate)
579 {
580 	struct gk20a_clk *clk = container_of(obj, typeof(*clk), base);
581 
582 	return gk20a_pllg_calc_mnp(clk, cstate->domain[nv_clk_src_gpc] *
583 					 GK20A_CLK_GPC_MDIV);
584 }
585 
586 static int
587 gk20a_clk_prog(struct nvkm_clk *obj)
588 {
589 	struct gk20a_clk *clk = container_of(obj, typeof(*clk), base);
590 
591 	return gk20a_pllg_program_mnp(clk);
592 }
593 
594 static void
595 gk20a_clk_tidy(struct nvkm_clk *obj)
596 {
597 }
598 
599 static int
600 gk20a_clk_fini(struct nvkm_object *object, bool suspend)
601 {
602 	struct gk20a_clk *clk = (void *)object;
603 	int ret;
604 
605 	ret = nvkm_clk_fini(&clk->base, false);
606 
607 	gk20a_pllg_disable(clk);
608 
609 	return ret;
610 }
611 
612 static int
613 gk20a_clk_init(struct nvkm_object *object)
614 {
615 	struct gk20a_clk *clk = (void *)object;
616 	int ret;
617 
618 	nv_mask(clk, GPC2CLK_OUT, GPC2CLK_OUT_INIT_MASK, GPC2CLK_OUT_INIT_VAL);
619 
620 	ret = nvkm_clk_init(&clk->base);
621 	if (ret)
622 		return ret;
623 
624 	ret = gk20a_clk_prog(&clk->base);
625 	if (ret) {
626 		nv_error(clk, "cannot initialize clock\n");
627 		return ret;
628 	}
629 
630 	return 0;
631 }
632 
633 static int
634 gk20a_clk_ctor(struct nvkm_object *parent, struct nvkm_object *engine,
635 	       struct nvkm_oclass *oclass, void *data, u32 size,
636 	       struct nvkm_object **pobject)
637 {
638 	struct gk20a_clk *clk;
639 	struct nouveau_platform_device *plat;
640 	int ret;
641 	int i;
642 
643 	/* Finish initializing the pstates */
644 	for (i = 0; i < ARRAY_SIZE(gk20a_pstates); i++) {
645 		INIT_LIST_HEAD(&gk20a_pstates[i].list);
646 		gk20a_pstates[i].pstate = i + 1;
647 	}
648 
649 	ret = nvkm_clk_create(parent, engine, oclass, gk20a_domains,
650 			      gk20a_pstates, ARRAY_SIZE(gk20a_pstates),
651 			      true, &clk);
652 	*pobject = nv_object(clk);
653 	if (ret)
654 		return ret;
655 
656 	clk->params = &gk20a_pllg_params;
657 
658 	plat = nv_device_to_platform(nv_device(parent));
659 	clk->parent_rate = clk_get_rate(plat->gpu->clk);
660 	nv_info(clk, "parent clock rate: %d Mhz\n", clk->parent_rate / MHZ);
661 
662 	clk->base.read = gk20a_clk_read;
663 	clk->base.calc = gk20a_clk_calc;
664 	clk->base.prog = gk20a_clk_prog;
665 	clk->base.tidy = gk20a_clk_tidy;
666 	return 0;
667 }
668 
669 struct nvkm_oclass
670 gk20a_clk_oclass = {
671 	.handle = NV_SUBDEV(CLK, 0xea),
672 	.ofuncs = &(struct nvkm_ofuncs) {
673 		.ctor = gk20a_clk_ctor,
674 		.dtor = _nvkm_subdev_dtor,
675 		.init = gk20a_clk_init,
676 		.fini = gk20a_clk_fini,
677 	},
678 };
679