xref: /openbmc/linux/drivers/gpu/drm/nouveau/nvkm/subdev/clk/gk20a.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  * Copyright (c) 2014, NVIDIA CORPORATION. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20  * DEALINGS IN THE SOFTWARE.
21  *
22  * Shamelessly ripped off from ChromeOS's gk20a/clk_pllg.c
23  *
24  */
25 #define gk20a_clk(p) container_of((p), struct gk20a_clk, base)
26 #include "priv.h"
27 
28 #include <core/tegra.h>
29 #include <subdev/timer.h>
30 
31 #define MHZ (1000 * 1000)
32 
33 #define MASK(w)	((1 << w) - 1)
34 
35 #define SYS_GPCPLL_CFG_BASE			0x00137000
36 #define GPC_BCASE_GPCPLL_CFG_BASE		0x00132800
37 
38 #define GPCPLL_CFG		(SYS_GPCPLL_CFG_BASE + 0)
39 #define GPCPLL_CFG_ENABLE	BIT(0)
40 #define GPCPLL_CFG_IDDQ		BIT(1)
41 #define GPCPLL_CFG_LOCK_DET_OFF	BIT(4)
42 #define GPCPLL_CFG_LOCK		BIT(17)
43 
44 #define GPCPLL_COEFF		(SYS_GPCPLL_CFG_BASE + 4)
45 #define GPCPLL_COEFF_M_SHIFT	0
46 #define GPCPLL_COEFF_M_WIDTH	8
47 #define GPCPLL_COEFF_N_SHIFT	8
48 #define GPCPLL_COEFF_N_WIDTH	8
49 #define GPCPLL_COEFF_P_SHIFT	16
50 #define GPCPLL_COEFF_P_WIDTH	6
51 
52 #define GPCPLL_CFG2			(SYS_GPCPLL_CFG_BASE + 0xc)
53 #define GPCPLL_CFG2_SETUP2_SHIFT	16
54 #define GPCPLL_CFG2_PLL_STEPA_SHIFT	24
55 
56 #define GPCPLL_CFG3			(SYS_GPCPLL_CFG_BASE + 0x18)
57 #define GPCPLL_CFG3_PLL_STEPB_SHIFT	16
58 
59 #define GPCPLL_NDIV_SLOWDOWN			(SYS_GPCPLL_CFG_BASE + 0x1c)
60 #define GPCPLL_NDIV_SLOWDOWN_NDIV_LO_SHIFT	0
61 #define GPCPLL_NDIV_SLOWDOWN_NDIV_MID_SHIFT	8
62 #define GPCPLL_NDIV_SLOWDOWN_STEP_SIZE_LO2MID_SHIFT	16
63 #define GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT	22
64 #define GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT	31
65 
66 #define SEL_VCO				(SYS_GPCPLL_CFG_BASE + 0x100)
67 #define SEL_VCO_GPC2CLK_OUT_SHIFT	0
68 
69 #define GPC2CLK_OUT			(SYS_GPCPLL_CFG_BASE + 0x250)
70 #define GPC2CLK_OUT_SDIV14_INDIV4_WIDTH	1
71 #define GPC2CLK_OUT_SDIV14_INDIV4_SHIFT	31
72 #define GPC2CLK_OUT_SDIV14_INDIV4_MODE	1
73 #define GPC2CLK_OUT_VCODIV_WIDTH	6
74 #define GPC2CLK_OUT_VCODIV_SHIFT	8
75 #define GPC2CLK_OUT_VCODIV1		0
76 #define GPC2CLK_OUT_VCODIV_MASK		(MASK(GPC2CLK_OUT_VCODIV_WIDTH) << \
77 					GPC2CLK_OUT_VCODIV_SHIFT)
78 #define	GPC2CLK_OUT_BYPDIV_WIDTH	6
79 #define GPC2CLK_OUT_BYPDIV_SHIFT	0
80 #define GPC2CLK_OUT_BYPDIV31		0x3c
81 #define GPC2CLK_OUT_INIT_MASK	((MASK(GPC2CLK_OUT_SDIV14_INDIV4_WIDTH) << \
82 		GPC2CLK_OUT_SDIV14_INDIV4_SHIFT)\
83 		| (MASK(GPC2CLK_OUT_VCODIV_WIDTH) << GPC2CLK_OUT_VCODIV_SHIFT)\
84 		| (MASK(GPC2CLK_OUT_BYPDIV_WIDTH) << GPC2CLK_OUT_BYPDIV_SHIFT))
85 #define GPC2CLK_OUT_INIT_VAL	((GPC2CLK_OUT_SDIV14_INDIV4_MODE << \
86 		GPC2CLK_OUT_SDIV14_INDIV4_SHIFT) \
87 		| (GPC2CLK_OUT_VCODIV1 << GPC2CLK_OUT_VCODIV_SHIFT) \
88 		| (GPC2CLK_OUT_BYPDIV31 << GPC2CLK_OUT_BYPDIV_SHIFT))
89 
90 #define GPC_BCAST_NDIV_SLOWDOWN_DEBUG	(GPC_BCASE_GPCPLL_CFG_BASE + 0xa0)
91 #define GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_SHIFT	24
92 #define GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_MASK \
93 	    (0x1 << GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_SHIFT)
94 
95 static const u8 pl_to_div[] = {
96 /* PL:   0, 1, 2, 3, 4, 5, 6,  7,  8,  9, 10, 11, 12, 13, 14 */
97 /* p: */ 1, 2, 3, 4, 5, 6, 8, 10, 12, 16, 12, 16, 20, 24, 32,
98 };
99 
100 /* All frequencies in Mhz */
101 struct gk20a_clk_pllg_params {
102 	u32 min_vco, max_vco;
103 	u32 min_u, max_u;
104 	u32 min_m, max_m;
105 	u32 min_n, max_n;
106 	u32 min_pl, max_pl;
107 };
108 
109 static const struct gk20a_clk_pllg_params gk20a_pllg_params = {
110 	.min_vco = 1000, .max_vco = 2064,
111 	.min_u = 12, .max_u = 38,
112 	.min_m = 1, .max_m = 255,
113 	.min_n = 8, .max_n = 255,
114 	.min_pl = 1, .max_pl = 32,
115 };
116 
117 struct gk20a_clk {
118 	struct nvkm_clk base;
119 	const struct gk20a_clk_pllg_params *params;
120 	u32 m, n, pl;
121 	u32 parent_rate;
122 };
123 
124 static void
125 gk20a_pllg_read_mnp(struct gk20a_clk *clk)
126 {
127 	struct nvkm_device *device = clk->base.subdev.device;
128 	u32 val;
129 
130 	val = nvkm_rd32(device, GPCPLL_COEFF);
131 	clk->m = (val >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH);
132 	clk->n = (val >> GPCPLL_COEFF_N_SHIFT) & MASK(GPCPLL_COEFF_N_WIDTH);
133 	clk->pl = (val >> GPCPLL_COEFF_P_SHIFT) & MASK(GPCPLL_COEFF_P_WIDTH);
134 }
135 
136 static u32
137 gk20a_pllg_calc_rate(struct gk20a_clk *clk)
138 {
139 	u32 rate;
140 	u32 divider;
141 
142 	rate = clk->parent_rate * clk->n;
143 	divider = clk->m * pl_to_div[clk->pl];
144 	do_div(rate, divider);
145 
146 	return rate / 2;
147 }
148 
149 static int
150 gk20a_pllg_calc_mnp(struct gk20a_clk *clk, unsigned long rate)
151 {
152 	struct nvkm_subdev *subdev = &clk->base.subdev;
153 	u32 target_clk_f, ref_clk_f, target_freq;
154 	u32 min_vco_f, max_vco_f;
155 	u32 low_pl, high_pl, best_pl;
156 	u32 target_vco_f, vco_f;
157 	u32 best_m, best_n;
158 	u32 u_f;
159 	u32 m, n, n2;
160 	u32 delta, lwv, best_delta = ~0;
161 	u32 pl;
162 
163 	target_clk_f = rate * 2 / MHZ;
164 	ref_clk_f = clk->parent_rate / MHZ;
165 
166 	max_vco_f = clk->params->max_vco;
167 	min_vco_f = clk->params->min_vco;
168 	best_m = clk->params->max_m;
169 	best_n = clk->params->min_n;
170 	best_pl = clk->params->min_pl;
171 
172 	target_vco_f = target_clk_f + target_clk_f / 50;
173 	if (max_vco_f < target_vco_f)
174 		max_vco_f = target_vco_f;
175 
176 	/* min_pl <= high_pl <= max_pl */
177 	high_pl = (max_vco_f + target_vco_f - 1) / target_vco_f;
178 	high_pl = min(high_pl, clk->params->max_pl);
179 	high_pl = max(high_pl, clk->params->min_pl);
180 
181 	/* min_pl <= low_pl <= max_pl */
182 	low_pl = min_vco_f / target_vco_f;
183 	low_pl = min(low_pl, clk->params->max_pl);
184 	low_pl = max(low_pl, clk->params->min_pl);
185 
186 	/* Find Indices of high_pl and low_pl */
187 	for (pl = 0; pl < ARRAY_SIZE(pl_to_div) - 1; pl++) {
188 		if (pl_to_div[pl] >= low_pl) {
189 			low_pl = pl;
190 			break;
191 		}
192 	}
193 	for (pl = 0; pl < ARRAY_SIZE(pl_to_div) - 1; pl++) {
194 		if (pl_to_div[pl] >= high_pl) {
195 			high_pl = pl;
196 			break;
197 		}
198 	}
199 
200 	nvkm_debug(subdev, "low_PL %d(div%d), high_PL %d(div%d)", low_pl,
201 		   pl_to_div[low_pl], high_pl, pl_to_div[high_pl]);
202 
203 	/* Select lowest possible VCO */
204 	for (pl = low_pl; pl <= high_pl; pl++) {
205 		target_vco_f = target_clk_f * pl_to_div[pl];
206 		for (m = clk->params->min_m; m <= clk->params->max_m; m++) {
207 			u_f = ref_clk_f / m;
208 
209 			if (u_f < clk->params->min_u)
210 				break;
211 			if (u_f > clk->params->max_u)
212 				continue;
213 
214 			n = (target_vco_f * m) / ref_clk_f;
215 			n2 = ((target_vco_f * m) + (ref_clk_f - 1)) / ref_clk_f;
216 
217 			if (n > clk->params->max_n)
218 				break;
219 
220 			for (; n <= n2; n++) {
221 				if (n < clk->params->min_n)
222 					continue;
223 				if (n > clk->params->max_n)
224 					break;
225 
226 				vco_f = ref_clk_f * n / m;
227 
228 				if (vco_f >= min_vco_f && vco_f <= max_vco_f) {
229 					lwv = (vco_f + (pl_to_div[pl] / 2))
230 						/ pl_to_div[pl];
231 					delta = abs(lwv - target_clk_f);
232 
233 					if (delta < best_delta) {
234 						best_delta = delta;
235 						best_m = m;
236 						best_n = n;
237 						best_pl = pl;
238 
239 						if (best_delta == 0)
240 							goto found_match;
241 					}
242 				}
243 			}
244 		}
245 	}
246 
247 found_match:
248 	WARN_ON(best_delta == ~0);
249 
250 	if (best_delta != 0)
251 		nvkm_debug(subdev,
252 			   "no best match for target @ %dMHz on gpc_pll",
253 			   target_clk_f);
254 
255 	clk->m = best_m;
256 	clk->n = best_n;
257 	clk->pl = best_pl;
258 
259 	target_freq = gk20a_pllg_calc_rate(clk) / MHZ;
260 
261 	nvkm_debug(subdev,
262 		   "actual target freq %d MHz, M %d, N %d, PL %d(div%d)\n",
263 		   target_freq, clk->m, clk->n, clk->pl, pl_to_div[clk->pl]);
264 	return 0;
265 }
266 
267 static int
268 gk20a_pllg_slide(struct gk20a_clk *clk, u32 n)
269 {
270 	struct nvkm_subdev *subdev = &clk->base.subdev;
271 	struct nvkm_device *device = subdev->device;
272 	u32 val;
273 	int ramp_timeout;
274 
275 	/* get old coefficients */
276 	val = nvkm_rd32(device, GPCPLL_COEFF);
277 	/* do nothing if NDIV is the same */
278 	if (n == ((val >> GPCPLL_COEFF_N_SHIFT) & MASK(GPCPLL_COEFF_N_WIDTH)))
279 		return 0;
280 
281 	/* setup */
282 	nvkm_mask(device, GPCPLL_CFG2, 0xff << GPCPLL_CFG2_PLL_STEPA_SHIFT,
283 		0x2b << GPCPLL_CFG2_PLL_STEPA_SHIFT);
284 	nvkm_mask(device, GPCPLL_CFG3, 0xff << GPCPLL_CFG3_PLL_STEPB_SHIFT,
285 		0xb << GPCPLL_CFG3_PLL_STEPB_SHIFT);
286 
287 	/* pll slowdown mode */
288 	nvkm_mask(device, GPCPLL_NDIV_SLOWDOWN,
289 		BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT),
290 		BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT));
291 
292 	/* new ndiv ready for ramp */
293 	val = nvkm_rd32(device, GPCPLL_COEFF);
294 	val &= ~(MASK(GPCPLL_COEFF_N_WIDTH) << GPCPLL_COEFF_N_SHIFT);
295 	val |= (n & MASK(GPCPLL_COEFF_N_WIDTH)) << GPCPLL_COEFF_N_SHIFT;
296 	udelay(1);
297 	nvkm_wr32(device, GPCPLL_COEFF, val);
298 
299 	/* dynamic ramp to new ndiv */
300 	val = nvkm_rd32(device, GPCPLL_NDIV_SLOWDOWN);
301 	val |= 0x1 << GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT;
302 	udelay(1);
303 	nvkm_wr32(device, GPCPLL_NDIV_SLOWDOWN, val);
304 
305 	for (ramp_timeout = 500; ramp_timeout > 0; ramp_timeout--) {
306 		udelay(1);
307 		val = nvkm_rd32(device, GPC_BCAST_NDIV_SLOWDOWN_DEBUG);
308 		if (val & GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_MASK)
309 			break;
310 	}
311 
312 	/* exit slowdown mode */
313 	nvkm_mask(device, GPCPLL_NDIV_SLOWDOWN,
314 		BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT) |
315 		BIT(GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT), 0);
316 	nvkm_rd32(device, GPCPLL_NDIV_SLOWDOWN);
317 
318 	if (ramp_timeout <= 0) {
319 		nvkm_error(subdev, "gpcpll dynamic ramp timeout\n");
320 		return -ETIMEDOUT;
321 	}
322 
323 	return 0;
324 }
325 
326 static void
327 _gk20a_pllg_enable(struct gk20a_clk *clk)
328 {
329 	struct nvkm_device *device = clk->base.subdev.device;
330 	nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_ENABLE, GPCPLL_CFG_ENABLE);
331 	nvkm_rd32(device, GPCPLL_CFG);
332 }
333 
334 static void
335 _gk20a_pllg_disable(struct gk20a_clk *clk)
336 {
337 	struct nvkm_device *device = clk->base.subdev.device;
338 	nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_ENABLE, 0);
339 	nvkm_rd32(device, GPCPLL_CFG);
340 }
341 
342 static int
343 _gk20a_pllg_program_mnp(struct gk20a_clk *clk, bool allow_slide)
344 {
345 	struct nvkm_subdev *subdev = &clk->base.subdev;
346 	struct nvkm_device *device = subdev->device;
347 	u32 val, cfg;
348 	u32 m_old, pl_old, n_lo;
349 
350 	/* get old coefficients */
351 	val = nvkm_rd32(device, GPCPLL_COEFF);
352 	m_old = (val >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH);
353 	pl_old = (val >> GPCPLL_COEFF_P_SHIFT) & MASK(GPCPLL_COEFF_P_WIDTH);
354 
355 	/* do NDIV slide if there is no change in M and PL */
356 	cfg = nvkm_rd32(device, GPCPLL_CFG);
357 	if (allow_slide && clk->m == m_old && clk->pl == pl_old &&
358 	    (cfg & GPCPLL_CFG_ENABLE)) {
359 		return gk20a_pllg_slide(clk, clk->n);
360 	}
361 
362 	/* slide down to NDIV_LO */
363 	n_lo = DIV_ROUND_UP(m_old * clk->params->min_vco,
364 			    clk->parent_rate / MHZ);
365 	if (allow_slide && (cfg & GPCPLL_CFG_ENABLE)) {
366 		int ret = gk20a_pllg_slide(clk, n_lo);
367 
368 		if (ret)
369 			return ret;
370 	}
371 
372 	/* split FO-to-bypass jump in halfs by setting out divider 1:2 */
373 	nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK,
374 		0x2 << GPC2CLK_OUT_VCODIV_SHIFT);
375 
376 	/* put PLL in bypass before programming it */
377 	val = nvkm_rd32(device, SEL_VCO);
378 	val &= ~(BIT(SEL_VCO_GPC2CLK_OUT_SHIFT));
379 	udelay(2);
380 	nvkm_wr32(device, SEL_VCO, val);
381 
382 	/* get out from IDDQ */
383 	val = nvkm_rd32(device, GPCPLL_CFG);
384 	if (val & GPCPLL_CFG_IDDQ) {
385 		val &= ~GPCPLL_CFG_IDDQ;
386 		nvkm_wr32(device, GPCPLL_CFG, val);
387 		nvkm_rd32(device, GPCPLL_CFG);
388 		udelay(2);
389 	}
390 
391 	_gk20a_pllg_disable(clk);
392 
393 	nvkm_debug(subdev, "%s: m=%d n=%d pl=%d\n", __func__,
394 		   clk->m, clk->n, clk->pl);
395 
396 	n_lo = DIV_ROUND_UP(clk->m * clk->params->min_vco,
397 			    clk->parent_rate / MHZ);
398 	val = clk->m << GPCPLL_COEFF_M_SHIFT;
399 	val |= (allow_slide ? n_lo : clk->n) << GPCPLL_COEFF_N_SHIFT;
400 	val |= clk->pl << GPCPLL_COEFF_P_SHIFT;
401 	nvkm_wr32(device, GPCPLL_COEFF, val);
402 
403 	_gk20a_pllg_enable(clk);
404 
405 	val = nvkm_rd32(device, GPCPLL_CFG);
406 	if (val & GPCPLL_CFG_LOCK_DET_OFF) {
407 		val &= ~GPCPLL_CFG_LOCK_DET_OFF;
408 		nvkm_wr32(device, GPCPLL_CFG, val);
409 	}
410 
411 	if (nvkm_usec(device, 300,
412 		if (nvkm_rd32(device, GPCPLL_CFG) & GPCPLL_CFG_LOCK)
413 			break;
414 	) < 0)
415 		return -ETIMEDOUT;
416 
417 	/* switch to VCO mode */
418 	nvkm_mask(device, SEL_VCO, 0, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT));
419 
420 	/* restore out divider 1:1 */
421 	val = nvkm_rd32(device, GPC2CLK_OUT);
422 	val &= ~GPC2CLK_OUT_VCODIV_MASK;
423 	udelay(2);
424 	nvkm_wr32(device, GPC2CLK_OUT, val);
425 
426 	/* slide up to new NDIV */
427 	return allow_slide ? gk20a_pllg_slide(clk, clk->n) : 0;
428 }
429 
430 static int
431 gk20a_pllg_program_mnp(struct gk20a_clk *clk)
432 {
433 	int err;
434 
435 	err = _gk20a_pllg_program_mnp(clk, true);
436 	if (err)
437 		err = _gk20a_pllg_program_mnp(clk, false);
438 
439 	return err;
440 }
441 
442 static void
443 gk20a_pllg_disable(struct gk20a_clk *clk)
444 {
445 	struct nvkm_device *device = clk->base.subdev.device;
446 	u32 val;
447 
448 	/* slide to VCO min */
449 	val = nvkm_rd32(device, GPCPLL_CFG);
450 	if (val & GPCPLL_CFG_ENABLE) {
451 		u32 coeff, m, n_lo;
452 
453 		coeff = nvkm_rd32(device, GPCPLL_COEFF);
454 		m = (coeff >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH);
455 		n_lo = DIV_ROUND_UP(m * clk->params->min_vco,
456 				    clk->parent_rate / MHZ);
457 		gk20a_pllg_slide(clk, n_lo);
458 	}
459 
460 	/* put PLL in bypass before disabling it */
461 	nvkm_mask(device, SEL_VCO, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT), 0);
462 
463 	_gk20a_pllg_disable(clk);
464 }
465 
466 #define GK20A_CLK_GPC_MDIV 1000
467 
468 static struct nvkm_pstate
469 gk20a_pstates[] = {
470 	{
471 		.base = {
472 			.domain[nv_clk_src_gpc] = 72000,
473 			.voltage = 0,
474 		},
475 	},
476 	{
477 		.base = {
478 			.domain[nv_clk_src_gpc] = 108000,
479 			.voltage = 1,
480 		},
481 	},
482 	{
483 		.base = {
484 			.domain[nv_clk_src_gpc] = 180000,
485 			.voltage = 2,
486 		},
487 	},
488 	{
489 		.base = {
490 			.domain[nv_clk_src_gpc] = 252000,
491 			.voltage = 3,
492 		},
493 	},
494 	{
495 		.base = {
496 			.domain[nv_clk_src_gpc] = 324000,
497 			.voltage = 4,
498 		},
499 	},
500 	{
501 		.base = {
502 			.domain[nv_clk_src_gpc] = 396000,
503 			.voltage = 5,
504 		},
505 	},
506 	{
507 		.base = {
508 			.domain[nv_clk_src_gpc] = 468000,
509 			.voltage = 6,
510 		},
511 	},
512 	{
513 		.base = {
514 			.domain[nv_clk_src_gpc] = 540000,
515 			.voltage = 7,
516 		},
517 	},
518 	{
519 		.base = {
520 			.domain[nv_clk_src_gpc] = 612000,
521 			.voltage = 8,
522 		},
523 	},
524 	{
525 		.base = {
526 			.domain[nv_clk_src_gpc] = 648000,
527 			.voltage = 9,
528 		},
529 	},
530 	{
531 		.base = {
532 			.domain[nv_clk_src_gpc] = 684000,
533 			.voltage = 10,
534 		},
535 	},
536 	{
537 		.base = {
538 			.domain[nv_clk_src_gpc] = 708000,
539 			.voltage = 11,
540 		},
541 	},
542 	{
543 		.base = {
544 			.domain[nv_clk_src_gpc] = 756000,
545 			.voltage = 12,
546 		},
547 	},
548 	{
549 		.base = {
550 			.domain[nv_clk_src_gpc] = 804000,
551 			.voltage = 13,
552 		},
553 	},
554 	{
555 		.base = {
556 			.domain[nv_clk_src_gpc] = 852000,
557 			.voltage = 14,
558 		},
559 	},
560 };
561 
562 static int
563 gk20a_clk_read(struct nvkm_clk *base, enum nv_clk_src src)
564 {
565 	struct gk20a_clk *clk = gk20a_clk(base);
566 	struct nvkm_subdev *subdev = &clk->base.subdev;
567 	struct nvkm_device *device = subdev->device;
568 
569 	switch (src) {
570 	case nv_clk_src_crystal:
571 		return device->crystal;
572 	case nv_clk_src_gpc:
573 		gk20a_pllg_read_mnp(clk);
574 		return gk20a_pllg_calc_rate(clk) / GK20A_CLK_GPC_MDIV;
575 	default:
576 		nvkm_error(subdev, "invalid clock source %d\n", src);
577 		return -EINVAL;
578 	}
579 }
580 
581 static int
582 gk20a_clk_calc(struct nvkm_clk *base, struct nvkm_cstate *cstate)
583 {
584 	struct gk20a_clk *clk = gk20a_clk(base);
585 
586 	return gk20a_pllg_calc_mnp(clk, cstate->domain[nv_clk_src_gpc] *
587 					 GK20A_CLK_GPC_MDIV);
588 }
589 
590 static int
591 gk20a_clk_prog(struct nvkm_clk *base)
592 {
593 	struct gk20a_clk *clk = gk20a_clk(base);
594 
595 	return gk20a_pllg_program_mnp(clk);
596 }
597 
598 static void
599 gk20a_clk_tidy(struct nvkm_clk *base)
600 {
601 }
602 
603 static void
604 gk20a_clk_fini(struct nvkm_clk *base)
605 {
606 	struct gk20a_clk *clk = gk20a_clk(base);
607 	gk20a_pllg_disable(clk);
608 }
609 
610 static int
611 gk20a_clk_init(struct nvkm_clk *base)
612 {
613 	struct gk20a_clk *clk = gk20a_clk(base);
614 	struct nvkm_subdev *subdev = &clk->base.subdev;
615 	struct nvkm_device *device = subdev->device;
616 	int ret;
617 
618 	nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_INIT_MASK, GPC2CLK_OUT_INIT_VAL);
619 
620 	ret = gk20a_clk_prog(&clk->base);
621 	if (ret) {
622 		nvkm_error(subdev, "cannot initialize clock\n");
623 		return ret;
624 	}
625 
626 	return 0;
627 }
628 
629 static const struct nvkm_clk_func
630 gk20a_clk = {
631 	.init = gk20a_clk_init,
632 	.fini = gk20a_clk_fini,
633 	.read = gk20a_clk_read,
634 	.calc = gk20a_clk_calc,
635 	.prog = gk20a_clk_prog,
636 	.tidy = gk20a_clk_tidy,
637 	.pstates = gk20a_pstates,
638 	.nr_pstates = ARRAY_SIZE(gk20a_pstates),
639 	.domains = {
640 		{ nv_clk_src_crystal, 0xff },
641 		{ nv_clk_src_gpc, 0xff, 0, "core", GK20A_CLK_GPC_MDIV },
642 		{ nv_clk_src_max }
643 	}
644 };
645 
646 int
647 gk20a_clk_new(struct nvkm_device *device, int index, struct nvkm_clk **pclk)
648 {
649 	struct nvkm_device_tegra *tdev = device->func->tegra(device);
650 	struct gk20a_clk *clk;
651 	int ret, i;
652 
653 	if (!(clk = kzalloc(sizeof(*clk), GFP_KERNEL)))
654 		return -ENOMEM;
655 	*pclk = &clk->base;
656 
657 	/* Finish initializing the pstates */
658 	for (i = 0; i < ARRAY_SIZE(gk20a_pstates); i++) {
659 		INIT_LIST_HEAD(&gk20a_pstates[i].list);
660 		gk20a_pstates[i].pstate = i + 1;
661 	}
662 
663 	clk->params = &gk20a_pllg_params;
664 	clk->parent_rate = clk_get_rate(tdev->clk);
665 
666 	ret = nvkm_clk_ctor(&gk20a_clk, device, index, true, &clk->base);
667 	nvkm_info(&clk->base.subdev, "parent clock rate: %d Mhz\n",
668 		  clk->parent_rate / MHZ);
669 	return ret;
670 }
671