1 /*
2  * Copyright (c) 2014, NVIDIA CORPORATION. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20  * DEALINGS IN THE SOFTWARE.
21  *
22  * Shamelessly ripped off from ChromeOS's gk20a/clk_pllg.c
23  *
24  */
25 #include <subdev/clk.h>
26 #include <subdev/timer.h>
27 
28 #ifdef __KERNEL__
29 #include <nouveau_platform.h>
30 #endif
31 
32 #define MHZ (1000 * 1000)
33 
34 #define MASK(w)	((1 << w) - 1)
35 
36 #define SYS_GPCPLL_CFG_BASE			0x00137000
37 #define GPC_BCASE_GPCPLL_CFG_BASE		0x00132800
38 
39 #define GPCPLL_CFG		(SYS_GPCPLL_CFG_BASE + 0)
40 #define GPCPLL_CFG_ENABLE	BIT(0)
41 #define GPCPLL_CFG_IDDQ		BIT(1)
42 #define GPCPLL_CFG_LOCK_DET_OFF	BIT(4)
43 #define GPCPLL_CFG_LOCK		BIT(17)
44 
45 #define GPCPLL_COEFF		(SYS_GPCPLL_CFG_BASE + 4)
46 #define GPCPLL_COEFF_M_SHIFT	0
47 #define GPCPLL_COEFF_M_WIDTH	8
48 #define GPCPLL_COEFF_N_SHIFT	8
49 #define GPCPLL_COEFF_N_WIDTH	8
50 #define GPCPLL_COEFF_P_SHIFT	16
51 #define GPCPLL_COEFF_P_WIDTH	6
52 
53 #define GPCPLL_CFG2			(SYS_GPCPLL_CFG_BASE + 0xc)
54 #define GPCPLL_CFG2_SETUP2_SHIFT	16
55 #define GPCPLL_CFG2_PLL_STEPA_SHIFT	24
56 
57 #define GPCPLL_CFG3			(SYS_GPCPLL_CFG_BASE + 0x18)
58 #define GPCPLL_CFG3_PLL_STEPB_SHIFT	16
59 
60 #define GPCPLL_NDIV_SLOWDOWN			(SYS_GPCPLL_CFG_BASE + 0x1c)
61 #define GPCPLL_NDIV_SLOWDOWN_NDIV_LO_SHIFT	0
62 #define GPCPLL_NDIV_SLOWDOWN_NDIV_MID_SHIFT	8
63 #define GPCPLL_NDIV_SLOWDOWN_STEP_SIZE_LO2MID_SHIFT	16
64 #define GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT	22
65 #define GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT	31
66 
67 #define SEL_VCO				(SYS_GPCPLL_CFG_BASE + 0x100)
68 #define SEL_VCO_GPC2CLK_OUT_SHIFT	0
69 
70 #define GPC2CLK_OUT			(SYS_GPCPLL_CFG_BASE + 0x250)
71 #define GPC2CLK_OUT_SDIV14_INDIV4_WIDTH	1
72 #define GPC2CLK_OUT_SDIV14_INDIV4_SHIFT	31
73 #define GPC2CLK_OUT_SDIV14_INDIV4_MODE	1
74 #define GPC2CLK_OUT_VCODIV_WIDTH	6
75 #define GPC2CLK_OUT_VCODIV_SHIFT	8
76 #define GPC2CLK_OUT_VCODIV1		0
77 #define GPC2CLK_OUT_VCODIV_MASK		(MASK(GPC2CLK_OUT_VCODIV_WIDTH) << \
78 					GPC2CLK_OUT_VCODIV_SHIFT)
79 #define	GPC2CLK_OUT_BYPDIV_WIDTH	6
80 #define GPC2CLK_OUT_BYPDIV_SHIFT	0
81 #define GPC2CLK_OUT_BYPDIV31		0x3c
82 #define GPC2CLK_OUT_INIT_MASK	((MASK(GPC2CLK_OUT_SDIV14_INDIV4_WIDTH) << \
83 		GPC2CLK_OUT_SDIV14_INDIV4_SHIFT)\
84 		| (MASK(GPC2CLK_OUT_VCODIV_WIDTH) << GPC2CLK_OUT_VCODIV_SHIFT)\
85 		| (MASK(GPC2CLK_OUT_BYPDIV_WIDTH) << GPC2CLK_OUT_BYPDIV_SHIFT))
86 #define GPC2CLK_OUT_INIT_VAL	((GPC2CLK_OUT_SDIV14_INDIV4_MODE << \
87 		GPC2CLK_OUT_SDIV14_INDIV4_SHIFT) \
88 		| (GPC2CLK_OUT_VCODIV1 << GPC2CLK_OUT_VCODIV_SHIFT) \
89 		| (GPC2CLK_OUT_BYPDIV31 << GPC2CLK_OUT_BYPDIV_SHIFT))
90 
91 #define GPC_BCAST_NDIV_SLOWDOWN_DEBUG	(GPC_BCASE_GPCPLL_CFG_BASE + 0xa0)
92 #define GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_SHIFT	24
93 #define GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_MASK \
94 	    (0x1 << GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_SHIFT)
95 
96 static const u8 pl_to_div[] = {
97 /* PL:   0, 1, 2, 3, 4, 5, 6,  7,  8,  9, 10, 11, 12, 13, 14 */
98 /* p: */ 1, 2, 3, 4, 5, 6, 8, 10, 12, 16, 12, 16, 20, 24, 32,
99 };
100 
101 /* All frequencies in Mhz */
102 struct gk20a_clk_pllg_params {
103 	u32 min_vco, max_vco;
104 	u32 min_u, max_u;
105 	u32 min_m, max_m;
106 	u32 min_n, max_n;
107 	u32 min_pl, max_pl;
108 };
109 
110 static const struct gk20a_clk_pllg_params gk20a_pllg_params = {
111 	.min_vco = 1000, .max_vco = 2064,
112 	.min_u = 12, .max_u = 38,
113 	.min_m = 1, .max_m = 255,
114 	.min_n = 8, .max_n = 255,
115 	.min_pl = 1, .max_pl = 32,
116 };
117 
118 struct gk20a_clk {
119 	struct nvkm_clk base;
120 	const struct gk20a_clk_pllg_params *params;
121 	u32 m, n, pl;
122 	u32 parent_rate;
123 };
124 #define to_gk20a_clk(base) container_of(base, struct gk20a_clk, base)
125 
126 static void
127 gk20a_pllg_read_mnp(struct gk20a_clk *clk)
128 {
129 	struct nvkm_device *device = clk->base.subdev.device;
130 	u32 val;
131 
132 	val = nvkm_rd32(device, GPCPLL_COEFF);
133 	clk->m = (val >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH);
134 	clk->n = (val >> GPCPLL_COEFF_N_SHIFT) & MASK(GPCPLL_COEFF_N_WIDTH);
135 	clk->pl = (val >> GPCPLL_COEFF_P_SHIFT) & MASK(GPCPLL_COEFF_P_WIDTH);
136 }
137 
138 static u32
139 gk20a_pllg_calc_rate(struct gk20a_clk *clk)
140 {
141 	u32 rate;
142 	u32 divider;
143 
144 	rate = clk->parent_rate * clk->n;
145 	divider = clk->m * pl_to_div[clk->pl];
146 	do_div(rate, divider);
147 
148 	return rate / 2;
149 }
150 
151 static int
152 gk20a_pllg_calc_mnp(struct gk20a_clk *clk, unsigned long rate)
153 {
154 	u32 target_clk_f, ref_clk_f, target_freq;
155 	u32 min_vco_f, max_vco_f;
156 	u32 low_pl, high_pl, best_pl;
157 	u32 target_vco_f, vco_f;
158 	u32 best_m, best_n;
159 	u32 u_f;
160 	u32 m, n, n2;
161 	u32 delta, lwv, best_delta = ~0;
162 	u32 pl;
163 
164 	target_clk_f = rate * 2 / MHZ;
165 	ref_clk_f = clk->parent_rate / MHZ;
166 
167 	max_vco_f = clk->params->max_vco;
168 	min_vco_f = clk->params->min_vco;
169 	best_m = clk->params->max_m;
170 	best_n = clk->params->min_n;
171 	best_pl = clk->params->min_pl;
172 
173 	target_vco_f = target_clk_f + target_clk_f / 50;
174 	if (max_vco_f < target_vco_f)
175 		max_vco_f = target_vco_f;
176 
177 	/* min_pl <= high_pl <= max_pl */
178 	high_pl = (max_vco_f + target_vco_f - 1) / target_vco_f;
179 	high_pl = min(high_pl, clk->params->max_pl);
180 	high_pl = max(high_pl, clk->params->min_pl);
181 
182 	/* min_pl <= low_pl <= max_pl */
183 	low_pl = min_vco_f / target_vco_f;
184 	low_pl = min(low_pl, clk->params->max_pl);
185 	low_pl = max(low_pl, clk->params->min_pl);
186 
187 	/* Find Indices of high_pl and low_pl */
188 	for (pl = 0; pl < ARRAY_SIZE(pl_to_div) - 1; pl++) {
189 		if (pl_to_div[pl] >= low_pl) {
190 			low_pl = pl;
191 			break;
192 		}
193 	}
194 	for (pl = 0; pl < ARRAY_SIZE(pl_to_div) - 1; pl++) {
195 		if (pl_to_div[pl] >= high_pl) {
196 			high_pl = pl;
197 			break;
198 		}
199 	}
200 
201 	nv_debug(clk, "low_PL %d(div%d), high_PL %d(div%d)", low_pl,
202 		 pl_to_div[low_pl], high_pl, pl_to_div[high_pl]);
203 
204 	/* Select lowest possible VCO */
205 	for (pl = low_pl; pl <= high_pl; pl++) {
206 		target_vco_f = target_clk_f * pl_to_div[pl];
207 		for (m = clk->params->min_m; m <= clk->params->max_m; m++) {
208 			u_f = ref_clk_f / m;
209 
210 			if (u_f < clk->params->min_u)
211 				break;
212 			if (u_f > clk->params->max_u)
213 				continue;
214 
215 			n = (target_vco_f * m) / ref_clk_f;
216 			n2 = ((target_vco_f * m) + (ref_clk_f - 1)) / ref_clk_f;
217 
218 			if (n > clk->params->max_n)
219 				break;
220 
221 			for (; n <= n2; n++) {
222 				if (n < clk->params->min_n)
223 					continue;
224 				if (n > clk->params->max_n)
225 					break;
226 
227 				vco_f = ref_clk_f * n / m;
228 
229 				if (vco_f >= min_vco_f && vco_f <= max_vco_f) {
230 					lwv = (vco_f + (pl_to_div[pl] / 2))
231 						/ pl_to_div[pl];
232 					delta = abs(lwv - target_clk_f);
233 
234 					if (delta < best_delta) {
235 						best_delta = delta;
236 						best_m = m;
237 						best_n = n;
238 						best_pl = pl;
239 
240 						if (best_delta == 0)
241 							goto found_match;
242 					}
243 				}
244 			}
245 		}
246 	}
247 
248 found_match:
249 	WARN_ON(best_delta == ~0);
250 
251 	if (best_delta != 0)
252 		nv_debug(clk, "no best match for target @ %dMHz on gpc_pll",
253 			 target_clk_f);
254 
255 	clk->m = best_m;
256 	clk->n = best_n;
257 	clk->pl = best_pl;
258 
259 	target_freq = gk20a_pllg_calc_rate(clk) / MHZ;
260 
261 	nv_debug(clk, "actual target freq %d MHz, M %d, N %d, PL %d(div%d)\n",
262 		 target_freq, clk->m, clk->n, clk->pl, pl_to_div[clk->pl]);
263 	return 0;
264 }
265 
266 static int
267 gk20a_pllg_slide(struct gk20a_clk *clk, u32 n)
268 {
269 	struct nvkm_device *device = clk->base.subdev.device;
270 	u32 val;
271 	int ramp_timeout;
272 
273 	/* get old coefficients */
274 	val = nvkm_rd32(device, GPCPLL_COEFF);
275 	/* do nothing if NDIV is the same */
276 	if (n == ((val >> GPCPLL_COEFF_N_SHIFT) & MASK(GPCPLL_COEFF_N_WIDTH)))
277 		return 0;
278 
279 	/* setup */
280 	nvkm_mask(device, GPCPLL_CFG2, 0xff << GPCPLL_CFG2_PLL_STEPA_SHIFT,
281 		0x2b << GPCPLL_CFG2_PLL_STEPA_SHIFT);
282 	nvkm_mask(device, GPCPLL_CFG3, 0xff << GPCPLL_CFG3_PLL_STEPB_SHIFT,
283 		0xb << GPCPLL_CFG3_PLL_STEPB_SHIFT);
284 
285 	/* pll slowdown mode */
286 	nvkm_mask(device, GPCPLL_NDIV_SLOWDOWN,
287 		BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT),
288 		BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT));
289 
290 	/* new ndiv ready for ramp */
291 	val = nvkm_rd32(device, GPCPLL_COEFF);
292 	val &= ~(MASK(GPCPLL_COEFF_N_WIDTH) << GPCPLL_COEFF_N_SHIFT);
293 	val |= (n & MASK(GPCPLL_COEFF_N_WIDTH)) << GPCPLL_COEFF_N_SHIFT;
294 	udelay(1);
295 	nvkm_wr32(device, GPCPLL_COEFF, val);
296 
297 	/* dynamic ramp to new ndiv */
298 	val = nvkm_rd32(device, GPCPLL_NDIV_SLOWDOWN);
299 	val |= 0x1 << GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT;
300 	udelay(1);
301 	nvkm_wr32(device, GPCPLL_NDIV_SLOWDOWN, val);
302 
303 	for (ramp_timeout = 500; ramp_timeout > 0; ramp_timeout--) {
304 		udelay(1);
305 		val = nvkm_rd32(device, GPC_BCAST_NDIV_SLOWDOWN_DEBUG);
306 		if (val & GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_MASK)
307 			break;
308 	}
309 
310 	/* exit slowdown mode */
311 	nvkm_mask(device, GPCPLL_NDIV_SLOWDOWN,
312 		BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT) |
313 		BIT(GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT), 0);
314 	nvkm_rd32(device, GPCPLL_NDIV_SLOWDOWN);
315 
316 	if (ramp_timeout <= 0) {
317 		nv_error(clk, "gpcpll dynamic ramp timeout\n");
318 		return -ETIMEDOUT;
319 	}
320 
321 	return 0;
322 }
323 
324 static void
325 _gk20a_pllg_enable(struct gk20a_clk *clk)
326 {
327 	struct nvkm_device *device = clk->base.subdev.device;
328 	nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_ENABLE, GPCPLL_CFG_ENABLE);
329 	nvkm_rd32(device, GPCPLL_CFG);
330 }
331 
332 static void
333 _gk20a_pllg_disable(struct gk20a_clk *clk)
334 {
335 	struct nvkm_device *device = clk->base.subdev.device;
336 	nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_ENABLE, 0);
337 	nvkm_rd32(device, GPCPLL_CFG);
338 }
339 
340 static int
341 _gk20a_pllg_program_mnp(struct gk20a_clk *clk, bool allow_slide)
342 {
343 	struct nvkm_device *device = clk->base.subdev.device;
344 	u32 val, cfg;
345 	u32 m_old, pl_old, n_lo;
346 
347 	/* get old coefficients */
348 	val = nvkm_rd32(device, GPCPLL_COEFF);
349 	m_old = (val >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH);
350 	pl_old = (val >> GPCPLL_COEFF_P_SHIFT) & MASK(GPCPLL_COEFF_P_WIDTH);
351 
352 	/* do NDIV slide if there is no change in M and PL */
353 	cfg = nvkm_rd32(device, GPCPLL_CFG);
354 	if (allow_slide && clk->m == m_old && clk->pl == pl_old &&
355 	    (cfg & GPCPLL_CFG_ENABLE)) {
356 		return gk20a_pllg_slide(clk, clk->n);
357 	}
358 
359 	/* slide down to NDIV_LO */
360 	n_lo = DIV_ROUND_UP(m_old * clk->params->min_vco,
361 			    clk->parent_rate / MHZ);
362 	if (allow_slide && (cfg & GPCPLL_CFG_ENABLE)) {
363 		int ret = gk20a_pllg_slide(clk, n_lo);
364 
365 		if (ret)
366 			return ret;
367 	}
368 
369 	/* split FO-to-bypass jump in halfs by setting out divider 1:2 */
370 	nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK,
371 		0x2 << GPC2CLK_OUT_VCODIV_SHIFT);
372 
373 	/* put PLL in bypass before programming it */
374 	val = nvkm_rd32(device, SEL_VCO);
375 	val &= ~(BIT(SEL_VCO_GPC2CLK_OUT_SHIFT));
376 	udelay(2);
377 	nvkm_wr32(device, SEL_VCO, val);
378 
379 	/* get out from IDDQ */
380 	val = nvkm_rd32(device, GPCPLL_CFG);
381 	if (val & GPCPLL_CFG_IDDQ) {
382 		val &= ~GPCPLL_CFG_IDDQ;
383 		nvkm_wr32(device, GPCPLL_CFG, val);
384 		nvkm_rd32(device, GPCPLL_CFG);
385 		udelay(2);
386 	}
387 
388 	_gk20a_pllg_disable(clk);
389 
390 	nv_debug(clk, "%s: m=%d n=%d pl=%d\n", __func__, clk->m, clk->n,
391 		 clk->pl);
392 
393 	n_lo = DIV_ROUND_UP(clk->m * clk->params->min_vco,
394 			    clk->parent_rate / MHZ);
395 	val = clk->m << GPCPLL_COEFF_M_SHIFT;
396 	val |= (allow_slide ? n_lo : clk->n) << GPCPLL_COEFF_N_SHIFT;
397 	val |= clk->pl << GPCPLL_COEFF_P_SHIFT;
398 	nvkm_wr32(device, GPCPLL_COEFF, val);
399 
400 	_gk20a_pllg_enable(clk);
401 
402 	val = nvkm_rd32(device, GPCPLL_CFG);
403 	if (val & GPCPLL_CFG_LOCK_DET_OFF) {
404 		val &= ~GPCPLL_CFG_LOCK_DET_OFF;
405 		nvkm_wr32(device, GPCPLL_CFG, val);
406 	}
407 
408 	if (!nvkm_timer_wait_eq(clk, 300000, GPCPLL_CFG, GPCPLL_CFG_LOCK,
409 				GPCPLL_CFG_LOCK)) {
410 		nv_error(clk, "%s: timeout waiting for pllg lock\n", __func__);
411 		return -ETIMEDOUT;
412 	}
413 
414 	/* switch to VCO mode */
415 	nvkm_mask(device, SEL_VCO, 0, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT));
416 
417 	/* restore out divider 1:1 */
418 	val = nvkm_rd32(device, GPC2CLK_OUT);
419 	val &= ~GPC2CLK_OUT_VCODIV_MASK;
420 	udelay(2);
421 	nvkm_wr32(device, GPC2CLK_OUT, val);
422 
423 	/* slide up to new NDIV */
424 	return allow_slide ? gk20a_pllg_slide(clk, clk->n) : 0;
425 }
426 
427 static int
428 gk20a_pllg_program_mnp(struct gk20a_clk *clk)
429 {
430 	int err;
431 
432 	err = _gk20a_pllg_program_mnp(clk, true);
433 	if (err)
434 		err = _gk20a_pllg_program_mnp(clk, false);
435 
436 	return err;
437 }
438 
439 static void
440 gk20a_pllg_disable(struct gk20a_clk *clk)
441 {
442 	struct nvkm_device *device = clk->base.subdev.device;
443 	u32 val;
444 
445 	/* slide to VCO min */
446 	val = nvkm_rd32(device, GPCPLL_CFG);
447 	if (val & GPCPLL_CFG_ENABLE) {
448 		u32 coeff, m, n_lo;
449 
450 		coeff = nvkm_rd32(device, GPCPLL_COEFF);
451 		m = (coeff >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH);
452 		n_lo = DIV_ROUND_UP(m * clk->params->min_vco,
453 				    clk->parent_rate / MHZ);
454 		gk20a_pllg_slide(clk, n_lo);
455 	}
456 
457 	/* put PLL in bypass before disabling it */
458 	nvkm_mask(device, SEL_VCO, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT), 0);
459 
460 	_gk20a_pllg_disable(clk);
461 }
462 
463 #define GK20A_CLK_GPC_MDIV 1000
464 
465 static struct nvkm_domain
466 gk20a_domains[] = {
467 	{ nv_clk_src_crystal, 0xff },
468 	{ nv_clk_src_gpc, 0xff, 0, "core", GK20A_CLK_GPC_MDIV },
469 	{ nv_clk_src_max }
470 };
471 
472 static struct nvkm_pstate
473 gk20a_pstates[] = {
474 	{
475 		.base = {
476 			.domain[nv_clk_src_gpc] = 72000,
477 			.voltage = 0,
478 		},
479 	},
480 	{
481 		.base = {
482 			.domain[nv_clk_src_gpc] = 108000,
483 			.voltage = 1,
484 		},
485 	},
486 	{
487 		.base = {
488 			.domain[nv_clk_src_gpc] = 180000,
489 			.voltage = 2,
490 		},
491 	},
492 	{
493 		.base = {
494 			.domain[nv_clk_src_gpc] = 252000,
495 			.voltage = 3,
496 		},
497 	},
498 	{
499 		.base = {
500 			.domain[nv_clk_src_gpc] = 324000,
501 			.voltage = 4,
502 		},
503 	},
504 	{
505 		.base = {
506 			.domain[nv_clk_src_gpc] = 396000,
507 			.voltage = 5,
508 		},
509 	},
510 	{
511 		.base = {
512 			.domain[nv_clk_src_gpc] = 468000,
513 			.voltage = 6,
514 		},
515 	},
516 	{
517 		.base = {
518 			.domain[nv_clk_src_gpc] = 540000,
519 			.voltage = 7,
520 		},
521 	},
522 	{
523 		.base = {
524 			.domain[nv_clk_src_gpc] = 612000,
525 			.voltage = 8,
526 		},
527 	},
528 	{
529 		.base = {
530 			.domain[nv_clk_src_gpc] = 648000,
531 			.voltage = 9,
532 		},
533 	},
534 	{
535 		.base = {
536 			.domain[nv_clk_src_gpc] = 684000,
537 			.voltage = 10,
538 		},
539 	},
540 	{
541 		.base = {
542 			.domain[nv_clk_src_gpc] = 708000,
543 			.voltage = 11,
544 		},
545 	},
546 	{
547 		.base = {
548 			.domain[nv_clk_src_gpc] = 756000,
549 			.voltage = 12,
550 		},
551 	},
552 	{
553 		.base = {
554 			.domain[nv_clk_src_gpc] = 804000,
555 			.voltage = 13,
556 		},
557 	},
558 	{
559 		.base = {
560 			.domain[nv_clk_src_gpc] = 852000,
561 			.voltage = 14,
562 		},
563 	},
564 };
565 
566 static int
567 gk20a_clk_read(struct nvkm_clk *obj, enum nv_clk_src src)
568 {
569 	struct gk20a_clk *clk = container_of(obj, typeof(*clk), base);
570 	struct nvkm_device *device = clk->base.subdev.device;
571 
572 	switch (src) {
573 	case nv_clk_src_crystal:
574 		return device->crystal;
575 	case nv_clk_src_gpc:
576 		gk20a_pllg_read_mnp(clk);
577 		return gk20a_pllg_calc_rate(clk) / GK20A_CLK_GPC_MDIV;
578 	default:
579 		nv_error(clk, "invalid clock source %d\n", src);
580 		return -EINVAL;
581 	}
582 }
583 
584 static int
585 gk20a_clk_calc(struct nvkm_clk *obj, struct nvkm_cstate *cstate)
586 {
587 	struct gk20a_clk *clk = container_of(obj, typeof(*clk), base);
588 
589 	return gk20a_pllg_calc_mnp(clk, cstate->domain[nv_clk_src_gpc] *
590 					 GK20A_CLK_GPC_MDIV);
591 }
592 
593 static int
594 gk20a_clk_prog(struct nvkm_clk *obj)
595 {
596 	struct gk20a_clk *clk = container_of(obj, typeof(*clk), base);
597 
598 	return gk20a_pllg_program_mnp(clk);
599 }
600 
601 static void
602 gk20a_clk_tidy(struct nvkm_clk *obj)
603 {
604 }
605 
606 static int
607 gk20a_clk_fini(struct nvkm_object *object, bool suspend)
608 {
609 	struct gk20a_clk *clk = (void *)object;
610 	int ret;
611 
612 	ret = nvkm_clk_fini(&clk->base, false);
613 
614 	gk20a_pllg_disable(clk);
615 
616 	return ret;
617 }
618 
619 static int
620 gk20a_clk_init(struct nvkm_object *object)
621 {
622 	struct gk20a_clk *clk = (void *)object;
623 	struct nvkm_device *device = clk->base.subdev.device;
624 	int ret;
625 
626 	nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_INIT_MASK, GPC2CLK_OUT_INIT_VAL);
627 
628 	ret = nvkm_clk_init(&clk->base);
629 	if (ret)
630 		return ret;
631 
632 	ret = gk20a_clk_prog(&clk->base);
633 	if (ret) {
634 		nv_error(clk, "cannot initialize clock\n");
635 		return ret;
636 	}
637 
638 	return 0;
639 }
640 
641 static int
642 gk20a_clk_ctor(struct nvkm_object *parent, struct nvkm_object *engine,
643 	       struct nvkm_oclass *oclass, void *data, u32 size,
644 	       struct nvkm_object **pobject)
645 {
646 	struct gk20a_clk *clk;
647 	struct nouveau_platform_device *plat;
648 	int ret;
649 	int i;
650 
651 	/* Finish initializing the pstates */
652 	for (i = 0; i < ARRAY_SIZE(gk20a_pstates); i++) {
653 		INIT_LIST_HEAD(&gk20a_pstates[i].list);
654 		gk20a_pstates[i].pstate = i + 1;
655 	}
656 
657 	ret = nvkm_clk_create(parent, engine, oclass, gk20a_domains,
658 			      gk20a_pstates, ARRAY_SIZE(gk20a_pstates),
659 			      true, &clk);
660 	*pobject = nv_object(clk);
661 	if (ret)
662 		return ret;
663 
664 	clk->params = &gk20a_pllg_params;
665 
666 	plat = nv_device_to_platform(nv_device(parent));
667 	clk->parent_rate = clk_get_rate(plat->gpu->clk);
668 	nv_info(clk, "parent clock rate: %d Mhz\n", clk->parent_rate / MHZ);
669 
670 	clk->base.read = gk20a_clk_read;
671 	clk->base.calc = gk20a_clk_calc;
672 	clk->base.prog = gk20a_clk_prog;
673 	clk->base.tidy = gk20a_clk_tidy;
674 	return 0;
675 }
676 
677 struct nvkm_oclass
678 gk20a_clk_oclass = {
679 	.handle = NV_SUBDEV(CLK, 0xea),
680 	.ofuncs = &(struct nvkm_ofuncs) {
681 		.ctor = gk20a_clk_ctor,
682 		.dtor = _nvkm_subdev_dtor,
683 		.init = gk20a_clk_init,
684 		.fini = gk20a_clk_fini,
685 	},
686 };
687