1 /*
2  * Copyright (c) 2014, NVIDIA CORPORATION. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20  * DEALINGS IN THE SOFTWARE.
21  *
22  * Shamelessly ripped off from ChromeOS's gk20a/clk_pllg.c
23  *
24  */
25 #define gk20a_clk(p) container_of((p), struct gk20a_clk, base)
26 #include "priv.h"
27 
28 #include <core/tegra.h>
29 #include <subdev/timer.h>
30 
31 #define MHZ (1000 * 1000)
32 
33 #define MASK(w)	((1 << w) - 1)
34 
35 #define SYS_GPCPLL_CFG_BASE			0x00137000
36 #define GPC_BCASE_GPCPLL_CFG_BASE		0x00132800
37 
38 #define GPCPLL_CFG		(SYS_GPCPLL_CFG_BASE + 0)
39 #define GPCPLL_CFG_ENABLE	BIT(0)
40 #define GPCPLL_CFG_IDDQ		BIT(1)
41 #define GPCPLL_CFG_LOCK_DET_OFF	BIT(4)
42 #define GPCPLL_CFG_LOCK		BIT(17)
43 
44 #define GPCPLL_COEFF		(SYS_GPCPLL_CFG_BASE + 4)
45 #define GPCPLL_COEFF_M_SHIFT	0
46 #define GPCPLL_COEFF_M_WIDTH	8
47 #define GPCPLL_COEFF_N_SHIFT	8
48 #define GPCPLL_COEFF_N_WIDTH	8
49 #define GPCPLL_COEFF_P_SHIFT	16
50 #define GPCPLL_COEFF_P_WIDTH	6
51 
52 #define GPCPLL_CFG2			(SYS_GPCPLL_CFG_BASE + 0xc)
53 #define GPCPLL_CFG2_SETUP2_SHIFT	16
54 #define GPCPLL_CFG2_PLL_STEPA_SHIFT	24
55 
56 #define GPCPLL_CFG3			(SYS_GPCPLL_CFG_BASE + 0x18)
57 #define GPCPLL_CFG3_PLL_STEPB_SHIFT	16
58 
59 #define GPCPLL_NDIV_SLOWDOWN			(SYS_GPCPLL_CFG_BASE + 0x1c)
60 #define GPCPLL_NDIV_SLOWDOWN_NDIV_LO_SHIFT	0
61 #define GPCPLL_NDIV_SLOWDOWN_NDIV_MID_SHIFT	8
62 #define GPCPLL_NDIV_SLOWDOWN_STEP_SIZE_LO2MID_SHIFT	16
63 #define GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT	22
64 #define GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT	31
65 
66 #define SEL_VCO				(SYS_GPCPLL_CFG_BASE + 0x100)
67 #define SEL_VCO_GPC2CLK_OUT_SHIFT	0
68 
69 #define GPC2CLK_OUT			(SYS_GPCPLL_CFG_BASE + 0x250)
70 #define GPC2CLK_OUT_SDIV14_INDIV4_WIDTH	1
71 #define GPC2CLK_OUT_SDIV14_INDIV4_SHIFT	31
72 #define GPC2CLK_OUT_SDIV14_INDIV4_MODE	1
73 #define GPC2CLK_OUT_VCODIV_WIDTH	6
74 #define GPC2CLK_OUT_VCODIV_SHIFT	8
75 #define GPC2CLK_OUT_VCODIV1		0
76 #define GPC2CLK_OUT_VCODIV_MASK		(MASK(GPC2CLK_OUT_VCODIV_WIDTH) << \
77 					GPC2CLK_OUT_VCODIV_SHIFT)
78 #define	GPC2CLK_OUT_BYPDIV_WIDTH	6
79 #define GPC2CLK_OUT_BYPDIV_SHIFT	0
80 #define GPC2CLK_OUT_BYPDIV31		0x3c
81 #define GPC2CLK_OUT_INIT_MASK	((MASK(GPC2CLK_OUT_SDIV14_INDIV4_WIDTH) << \
82 		GPC2CLK_OUT_SDIV14_INDIV4_SHIFT)\
83 		| (MASK(GPC2CLK_OUT_VCODIV_WIDTH) << GPC2CLK_OUT_VCODIV_SHIFT)\
84 		| (MASK(GPC2CLK_OUT_BYPDIV_WIDTH) << GPC2CLK_OUT_BYPDIV_SHIFT))
85 #define GPC2CLK_OUT_INIT_VAL	((GPC2CLK_OUT_SDIV14_INDIV4_MODE << \
86 		GPC2CLK_OUT_SDIV14_INDIV4_SHIFT) \
87 		| (GPC2CLK_OUT_VCODIV1 << GPC2CLK_OUT_VCODIV_SHIFT) \
88 		| (GPC2CLK_OUT_BYPDIV31 << GPC2CLK_OUT_BYPDIV_SHIFT))
89 
90 #define GPC_BCAST_NDIV_SLOWDOWN_DEBUG	(GPC_BCASE_GPCPLL_CFG_BASE + 0xa0)
91 #define GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_SHIFT	24
92 #define GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_MASK \
93 	    (0x1 << GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_SHIFT)
94 
95 static const u8 pl_to_div[] = {
96 /* PL:   0, 1, 2, 3, 4, 5, 6,  7,  8,  9, 10, 11, 12, 13, 14 */
97 /* p: */ 1, 2, 3, 4, 5, 6, 8, 10, 12, 16, 12, 16, 20, 24, 32,
98 };
99 
100 /* All frequencies in Mhz */
101 struct gk20a_clk_pllg_params {
102 	u32 min_vco, max_vco;
103 	u32 min_u, max_u;
104 	u32 min_m, max_m;
105 	u32 min_n, max_n;
106 	u32 min_pl, max_pl;
107 };
108 
109 static const struct gk20a_clk_pllg_params gk20a_pllg_params = {
110 	.min_vco = 1000, .max_vco = 2064,
111 	.min_u = 12, .max_u = 38,
112 	.min_m = 1, .max_m = 255,
113 	.min_n = 8, .max_n = 255,
114 	.min_pl = 1, .max_pl = 32,
115 };
116 
117 struct gk20a_clk {
118 	struct nvkm_clk base;
119 	const struct gk20a_clk_pllg_params *params;
120 	u32 m, n, pl;
121 	u32 parent_rate;
122 };
123 
124 static void
125 gk20a_pllg_read_mnp(struct gk20a_clk *clk)
126 {
127 	struct nvkm_device *device = clk->base.subdev.device;
128 	u32 val;
129 
130 	val = nvkm_rd32(device, GPCPLL_COEFF);
131 	clk->m = (val >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH);
132 	clk->n = (val >> GPCPLL_COEFF_N_SHIFT) & MASK(GPCPLL_COEFF_N_WIDTH);
133 	clk->pl = (val >> GPCPLL_COEFF_P_SHIFT) & MASK(GPCPLL_COEFF_P_WIDTH);
134 }
135 
136 static u32
137 gk20a_pllg_calc_rate(struct gk20a_clk *clk)
138 {
139 	u32 rate;
140 	u32 divider;
141 
142 	rate = clk->parent_rate * clk->n;
143 	divider = clk->m * pl_to_div[clk->pl];
144 
145 	return rate / divider / 2;
146 }
147 
148 static int
149 gk20a_pllg_calc_mnp(struct gk20a_clk *clk, unsigned long rate)
150 {
151 	struct nvkm_subdev *subdev = &clk->base.subdev;
152 	u32 target_clk_f, ref_clk_f, target_freq;
153 	u32 min_vco_f, max_vco_f;
154 	u32 low_pl, high_pl, best_pl;
155 	u32 target_vco_f, vco_f;
156 	u32 best_m, best_n;
157 	u32 u_f;
158 	u32 m, n, n2;
159 	u32 delta, lwv, best_delta = ~0;
160 	u32 pl;
161 
162 	target_clk_f = rate * 2 / MHZ;
163 	ref_clk_f = clk->parent_rate / MHZ;
164 
165 	max_vco_f = clk->params->max_vco;
166 	min_vco_f = clk->params->min_vco;
167 	best_m = clk->params->max_m;
168 	best_n = clk->params->min_n;
169 	best_pl = clk->params->min_pl;
170 
171 	target_vco_f = target_clk_f + target_clk_f / 50;
172 	if (max_vco_f < target_vco_f)
173 		max_vco_f = target_vco_f;
174 
175 	/* min_pl <= high_pl <= max_pl */
176 	high_pl = (max_vco_f + target_vco_f - 1) / target_vco_f;
177 	high_pl = min(high_pl, clk->params->max_pl);
178 	high_pl = max(high_pl, clk->params->min_pl);
179 
180 	/* min_pl <= low_pl <= max_pl */
181 	low_pl = min_vco_f / target_vco_f;
182 	low_pl = min(low_pl, clk->params->max_pl);
183 	low_pl = max(low_pl, clk->params->min_pl);
184 
185 	/* Find Indices of high_pl and low_pl */
186 	for (pl = 0; pl < ARRAY_SIZE(pl_to_div) - 1; pl++) {
187 		if (pl_to_div[pl] >= low_pl) {
188 			low_pl = pl;
189 			break;
190 		}
191 	}
192 	for (pl = 0; pl < ARRAY_SIZE(pl_to_div) - 1; pl++) {
193 		if (pl_to_div[pl] >= high_pl) {
194 			high_pl = pl;
195 			break;
196 		}
197 	}
198 
199 	nvkm_debug(subdev, "low_PL %d(div%d), high_PL %d(div%d)", low_pl,
200 		   pl_to_div[low_pl], high_pl, pl_to_div[high_pl]);
201 
202 	/* Select lowest possible VCO */
203 	for (pl = low_pl; pl <= high_pl; pl++) {
204 		target_vco_f = target_clk_f * pl_to_div[pl];
205 		for (m = clk->params->min_m; m <= clk->params->max_m; m++) {
206 			u_f = ref_clk_f / m;
207 
208 			if (u_f < clk->params->min_u)
209 				break;
210 			if (u_f > clk->params->max_u)
211 				continue;
212 
213 			n = (target_vco_f * m) / ref_clk_f;
214 			n2 = ((target_vco_f * m) + (ref_clk_f - 1)) / ref_clk_f;
215 
216 			if (n > clk->params->max_n)
217 				break;
218 
219 			for (; n <= n2; n++) {
220 				if (n < clk->params->min_n)
221 					continue;
222 				if (n > clk->params->max_n)
223 					break;
224 
225 				vco_f = ref_clk_f * n / m;
226 
227 				if (vco_f >= min_vco_f && vco_f <= max_vco_f) {
228 					lwv = (vco_f + (pl_to_div[pl] / 2))
229 						/ pl_to_div[pl];
230 					delta = abs(lwv - target_clk_f);
231 
232 					if (delta < best_delta) {
233 						best_delta = delta;
234 						best_m = m;
235 						best_n = n;
236 						best_pl = pl;
237 
238 						if (best_delta == 0)
239 							goto found_match;
240 					}
241 				}
242 			}
243 		}
244 	}
245 
246 found_match:
247 	WARN_ON(best_delta == ~0);
248 
249 	if (best_delta != 0)
250 		nvkm_debug(subdev,
251 			   "no best match for target @ %dMHz on gpc_pll",
252 			   target_clk_f);
253 
254 	clk->m = best_m;
255 	clk->n = best_n;
256 	clk->pl = best_pl;
257 
258 	target_freq = gk20a_pllg_calc_rate(clk) / MHZ;
259 
260 	nvkm_debug(subdev,
261 		   "actual target freq %d MHz, M %d, N %d, PL %d(div%d)\n",
262 		   target_freq, clk->m, clk->n, clk->pl, pl_to_div[clk->pl]);
263 	return 0;
264 }
265 
266 static int
267 gk20a_pllg_slide(struct gk20a_clk *clk, u32 n)
268 {
269 	struct nvkm_subdev *subdev = &clk->base.subdev;
270 	struct nvkm_device *device = subdev->device;
271 	u32 val;
272 	int ramp_timeout;
273 
274 	/* get old coefficients */
275 	val = nvkm_rd32(device, GPCPLL_COEFF);
276 	/* do nothing if NDIV is the same */
277 	if (n == ((val >> GPCPLL_COEFF_N_SHIFT) & MASK(GPCPLL_COEFF_N_WIDTH)))
278 		return 0;
279 
280 	/* setup */
281 	nvkm_mask(device, GPCPLL_CFG2, 0xff << GPCPLL_CFG2_PLL_STEPA_SHIFT,
282 		0x2b << GPCPLL_CFG2_PLL_STEPA_SHIFT);
283 	nvkm_mask(device, GPCPLL_CFG3, 0xff << GPCPLL_CFG3_PLL_STEPB_SHIFT,
284 		0xb << GPCPLL_CFG3_PLL_STEPB_SHIFT);
285 
286 	/* pll slowdown mode */
287 	nvkm_mask(device, GPCPLL_NDIV_SLOWDOWN,
288 		BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT),
289 		BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT));
290 
291 	/* new ndiv ready for ramp */
292 	val = nvkm_rd32(device, GPCPLL_COEFF);
293 	val &= ~(MASK(GPCPLL_COEFF_N_WIDTH) << GPCPLL_COEFF_N_SHIFT);
294 	val |= (n & MASK(GPCPLL_COEFF_N_WIDTH)) << GPCPLL_COEFF_N_SHIFT;
295 	udelay(1);
296 	nvkm_wr32(device, GPCPLL_COEFF, val);
297 
298 	/* dynamic ramp to new ndiv */
299 	val = nvkm_rd32(device, GPCPLL_NDIV_SLOWDOWN);
300 	val |= 0x1 << GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT;
301 	udelay(1);
302 	nvkm_wr32(device, GPCPLL_NDIV_SLOWDOWN, val);
303 
304 	for (ramp_timeout = 500; ramp_timeout > 0; ramp_timeout--) {
305 		udelay(1);
306 		val = nvkm_rd32(device, GPC_BCAST_NDIV_SLOWDOWN_DEBUG);
307 		if (val & GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_MASK)
308 			break;
309 	}
310 
311 	/* exit slowdown mode */
312 	nvkm_mask(device, GPCPLL_NDIV_SLOWDOWN,
313 		BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT) |
314 		BIT(GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT), 0);
315 	nvkm_rd32(device, GPCPLL_NDIV_SLOWDOWN);
316 
317 	if (ramp_timeout <= 0) {
318 		nvkm_error(subdev, "gpcpll dynamic ramp timeout\n");
319 		return -ETIMEDOUT;
320 	}
321 
322 	return 0;
323 }
324 
325 static void
326 _gk20a_pllg_enable(struct gk20a_clk *clk)
327 {
328 	struct nvkm_device *device = clk->base.subdev.device;
329 	nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_ENABLE, GPCPLL_CFG_ENABLE);
330 	nvkm_rd32(device, GPCPLL_CFG);
331 }
332 
333 static void
334 _gk20a_pllg_disable(struct gk20a_clk *clk)
335 {
336 	struct nvkm_device *device = clk->base.subdev.device;
337 	nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_ENABLE, 0);
338 	nvkm_rd32(device, GPCPLL_CFG);
339 }
340 
341 static int
342 _gk20a_pllg_program_mnp(struct gk20a_clk *clk, bool allow_slide)
343 {
344 	struct nvkm_subdev *subdev = &clk->base.subdev;
345 	struct nvkm_device *device = subdev->device;
346 	u32 val, cfg;
347 	u32 m_old, pl_old, n_lo;
348 
349 	/* get old coefficients */
350 	val = nvkm_rd32(device, GPCPLL_COEFF);
351 	m_old = (val >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH);
352 	pl_old = (val >> GPCPLL_COEFF_P_SHIFT) & MASK(GPCPLL_COEFF_P_WIDTH);
353 
354 	/* do NDIV slide if there is no change in M and PL */
355 	cfg = nvkm_rd32(device, GPCPLL_CFG);
356 	if (allow_slide && clk->m == m_old && clk->pl == pl_old &&
357 	    (cfg & GPCPLL_CFG_ENABLE)) {
358 		return gk20a_pllg_slide(clk, clk->n);
359 	}
360 
361 	/* slide down to NDIV_LO */
362 	n_lo = DIV_ROUND_UP(m_old * clk->params->min_vco,
363 			    clk->parent_rate / MHZ);
364 	if (allow_slide && (cfg & GPCPLL_CFG_ENABLE)) {
365 		int ret = gk20a_pllg_slide(clk, n_lo);
366 
367 		if (ret)
368 			return ret;
369 	}
370 
371 	/* split FO-to-bypass jump in halfs by setting out divider 1:2 */
372 	nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK,
373 		0x2 << GPC2CLK_OUT_VCODIV_SHIFT);
374 
375 	/* put PLL in bypass before programming it */
376 	val = nvkm_rd32(device, SEL_VCO);
377 	val &= ~(BIT(SEL_VCO_GPC2CLK_OUT_SHIFT));
378 	udelay(2);
379 	nvkm_wr32(device, SEL_VCO, val);
380 
381 	/* get out from IDDQ */
382 	val = nvkm_rd32(device, GPCPLL_CFG);
383 	if (val & GPCPLL_CFG_IDDQ) {
384 		val &= ~GPCPLL_CFG_IDDQ;
385 		nvkm_wr32(device, GPCPLL_CFG, val);
386 		nvkm_rd32(device, GPCPLL_CFG);
387 		udelay(2);
388 	}
389 
390 	_gk20a_pllg_disable(clk);
391 
392 	nvkm_debug(subdev, "%s: m=%d n=%d pl=%d\n", __func__,
393 		   clk->m, clk->n, clk->pl);
394 
395 	n_lo = DIV_ROUND_UP(clk->m * clk->params->min_vco,
396 			    clk->parent_rate / MHZ);
397 	val = clk->m << GPCPLL_COEFF_M_SHIFT;
398 	val |= (allow_slide ? n_lo : clk->n) << GPCPLL_COEFF_N_SHIFT;
399 	val |= clk->pl << GPCPLL_COEFF_P_SHIFT;
400 	nvkm_wr32(device, GPCPLL_COEFF, val);
401 
402 	_gk20a_pllg_enable(clk);
403 
404 	val = nvkm_rd32(device, GPCPLL_CFG);
405 	if (val & GPCPLL_CFG_LOCK_DET_OFF) {
406 		val &= ~GPCPLL_CFG_LOCK_DET_OFF;
407 		nvkm_wr32(device, GPCPLL_CFG, val);
408 	}
409 
410 	if (nvkm_usec(device, 300,
411 		if (nvkm_rd32(device, GPCPLL_CFG) & GPCPLL_CFG_LOCK)
412 			break;
413 	) < 0)
414 		return -ETIMEDOUT;
415 
416 	/* switch to VCO mode */
417 	nvkm_mask(device, SEL_VCO, 0, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT));
418 
419 	/* restore out divider 1:1 */
420 	val = nvkm_rd32(device, GPC2CLK_OUT);
421 	val &= ~GPC2CLK_OUT_VCODIV_MASK;
422 	udelay(2);
423 	nvkm_wr32(device, GPC2CLK_OUT, val);
424 
425 	/* slide up to new NDIV */
426 	return allow_slide ? gk20a_pllg_slide(clk, clk->n) : 0;
427 }
428 
429 static int
430 gk20a_pllg_program_mnp(struct gk20a_clk *clk)
431 {
432 	int err;
433 
434 	err = _gk20a_pllg_program_mnp(clk, true);
435 	if (err)
436 		err = _gk20a_pllg_program_mnp(clk, false);
437 
438 	return err;
439 }
440 
441 static void
442 gk20a_pllg_disable(struct gk20a_clk *clk)
443 {
444 	struct nvkm_device *device = clk->base.subdev.device;
445 	u32 val;
446 
447 	/* slide to VCO min */
448 	val = nvkm_rd32(device, GPCPLL_CFG);
449 	if (val & GPCPLL_CFG_ENABLE) {
450 		u32 coeff, m, n_lo;
451 
452 		coeff = nvkm_rd32(device, GPCPLL_COEFF);
453 		m = (coeff >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH);
454 		n_lo = DIV_ROUND_UP(m * clk->params->min_vco,
455 				    clk->parent_rate / MHZ);
456 		gk20a_pllg_slide(clk, n_lo);
457 	}
458 
459 	/* put PLL in bypass before disabling it */
460 	nvkm_mask(device, SEL_VCO, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT), 0);
461 
462 	_gk20a_pllg_disable(clk);
463 }
464 
465 #define GK20A_CLK_GPC_MDIV 1000
466 
467 static struct nvkm_pstate
468 gk20a_pstates[] = {
469 	{
470 		.base = {
471 			.domain[nv_clk_src_gpc] = 72000,
472 			.voltage = 0,
473 		},
474 	},
475 	{
476 		.base = {
477 			.domain[nv_clk_src_gpc] = 108000,
478 			.voltage = 1,
479 		},
480 	},
481 	{
482 		.base = {
483 			.domain[nv_clk_src_gpc] = 180000,
484 			.voltage = 2,
485 		},
486 	},
487 	{
488 		.base = {
489 			.domain[nv_clk_src_gpc] = 252000,
490 			.voltage = 3,
491 		},
492 	},
493 	{
494 		.base = {
495 			.domain[nv_clk_src_gpc] = 324000,
496 			.voltage = 4,
497 		},
498 	},
499 	{
500 		.base = {
501 			.domain[nv_clk_src_gpc] = 396000,
502 			.voltage = 5,
503 		},
504 	},
505 	{
506 		.base = {
507 			.domain[nv_clk_src_gpc] = 468000,
508 			.voltage = 6,
509 		},
510 	},
511 	{
512 		.base = {
513 			.domain[nv_clk_src_gpc] = 540000,
514 			.voltage = 7,
515 		},
516 	},
517 	{
518 		.base = {
519 			.domain[nv_clk_src_gpc] = 612000,
520 			.voltage = 8,
521 		},
522 	},
523 	{
524 		.base = {
525 			.domain[nv_clk_src_gpc] = 648000,
526 			.voltage = 9,
527 		},
528 	},
529 	{
530 		.base = {
531 			.domain[nv_clk_src_gpc] = 684000,
532 			.voltage = 10,
533 		},
534 	},
535 	{
536 		.base = {
537 			.domain[nv_clk_src_gpc] = 708000,
538 			.voltage = 11,
539 		},
540 	},
541 	{
542 		.base = {
543 			.domain[nv_clk_src_gpc] = 756000,
544 			.voltage = 12,
545 		},
546 	},
547 	{
548 		.base = {
549 			.domain[nv_clk_src_gpc] = 804000,
550 			.voltage = 13,
551 		},
552 	},
553 	{
554 		.base = {
555 			.domain[nv_clk_src_gpc] = 852000,
556 			.voltage = 14,
557 		},
558 	},
559 };
560 
561 static int
562 gk20a_clk_read(struct nvkm_clk *base, enum nv_clk_src src)
563 {
564 	struct gk20a_clk *clk = gk20a_clk(base);
565 	struct nvkm_subdev *subdev = &clk->base.subdev;
566 	struct nvkm_device *device = subdev->device;
567 
568 	switch (src) {
569 	case nv_clk_src_crystal:
570 		return device->crystal;
571 	case nv_clk_src_gpc:
572 		gk20a_pllg_read_mnp(clk);
573 		return gk20a_pllg_calc_rate(clk) / GK20A_CLK_GPC_MDIV;
574 	default:
575 		nvkm_error(subdev, "invalid clock source %d\n", src);
576 		return -EINVAL;
577 	}
578 }
579 
580 static int
581 gk20a_clk_calc(struct nvkm_clk *base, struct nvkm_cstate *cstate)
582 {
583 	struct gk20a_clk *clk = gk20a_clk(base);
584 
585 	return gk20a_pllg_calc_mnp(clk, cstate->domain[nv_clk_src_gpc] *
586 					 GK20A_CLK_GPC_MDIV);
587 }
588 
589 static int
590 gk20a_clk_prog(struct nvkm_clk *base)
591 {
592 	struct gk20a_clk *clk = gk20a_clk(base);
593 
594 	return gk20a_pllg_program_mnp(clk);
595 }
596 
597 static void
598 gk20a_clk_tidy(struct nvkm_clk *base)
599 {
600 }
601 
602 static void
603 gk20a_clk_fini(struct nvkm_clk *base)
604 {
605 	struct gk20a_clk *clk = gk20a_clk(base);
606 	gk20a_pllg_disable(clk);
607 }
608 
609 static int
610 gk20a_clk_init(struct nvkm_clk *base)
611 {
612 	struct gk20a_clk *clk = gk20a_clk(base);
613 	struct nvkm_subdev *subdev = &clk->base.subdev;
614 	struct nvkm_device *device = subdev->device;
615 	int ret;
616 
617 	nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_INIT_MASK, GPC2CLK_OUT_INIT_VAL);
618 
619 	ret = gk20a_clk_prog(&clk->base);
620 	if (ret) {
621 		nvkm_error(subdev, "cannot initialize clock\n");
622 		return ret;
623 	}
624 
625 	return 0;
626 }
627 
628 static const struct nvkm_clk_func
629 gk20a_clk = {
630 	.init = gk20a_clk_init,
631 	.fini = gk20a_clk_fini,
632 	.read = gk20a_clk_read,
633 	.calc = gk20a_clk_calc,
634 	.prog = gk20a_clk_prog,
635 	.tidy = gk20a_clk_tidy,
636 	.pstates = gk20a_pstates,
637 	.nr_pstates = ARRAY_SIZE(gk20a_pstates),
638 	.domains = {
639 		{ nv_clk_src_crystal, 0xff },
640 		{ nv_clk_src_gpc, 0xff, 0, "core", GK20A_CLK_GPC_MDIV },
641 		{ nv_clk_src_max }
642 	}
643 };
644 
645 int
646 gk20a_clk_new(struct nvkm_device *device, int index, struct nvkm_clk **pclk)
647 {
648 	struct nvkm_device_tegra *tdev = device->func->tegra(device);
649 	struct gk20a_clk *clk;
650 	int ret, i;
651 
652 	if (!(clk = kzalloc(sizeof(*clk), GFP_KERNEL)))
653 		return -ENOMEM;
654 	*pclk = &clk->base;
655 
656 	/* Finish initializing the pstates */
657 	for (i = 0; i < ARRAY_SIZE(gk20a_pstates); i++) {
658 		INIT_LIST_HEAD(&gk20a_pstates[i].list);
659 		gk20a_pstates[i].pstate = i + 1;
660 	}
661 
662 	clk->params = &gk20a_pllg_params;
663 	clk->parent_rate = clk_get_rate(tdev->clk);
664 
665 	ret = nvkm_clk_ctor(&gk20a_clk, device, index, true, &clk->base);
666 	nvkm_info(&clk->base.subdev, "parent clock rate: %d Mhz\n",
667 		  clk->parent_rate / MHZ);
668 	return ret;
669 }
670