1 /*
2  * Copyright (c) 2014, NVIDIA CORPORATION. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20  * DEALINGS IN THE SOFTWARE.
21  *
22  * Shamelessly ripped off from ChromeOS's gk20a/clk_pllg.c
23  *
24  */
25 #include <subdev/clk.h>
26 #include <subdev/timer.h>
27 
28 #ifdef __KERNEL__
29 #include <nouveau_platform.h>
30 #endif
31 
32 #define MHZ (1000 * 1000)
33 
34 #define MASK(w)	((1 << w) - 1)
35 
36 #define SYS_GPCPLL_CFG_BASE			0x00137000
37 #define GPC_BCASE_GPCPLL_CFG_BASE		0x00132800
38 
39 #define GPCPLL_CFG		(SYS_GPCPLL_CFG_BASE + 0)
40 #define GPCPLL_CFG_ENABLE	BIT(0)
41 #define GPCPLL_CFG_IDDQ		BIT(1)
42 #define GPCPLL_CFG_LOCK_DET_OFF	BIT(4)
43 #define GPCPLL_CFG_LOCK		BIT(17)
44 
45 #define GPCPLL_COEFF		(SYS_GPCPLL_CFG_BASE + 4)
46 #define GPCPLL_COEFF_M_SHIFT	0
47 #define GPCPLL_COEFF_M_WIDTH	8
48 #define GPCPLL_COEFF_N_SHIFT	8
49 #define GPCPLL_COEFF_N_WIDTH	8
50 #define GPCPLL_COEFF_P_SHIFT	16
51 #define GPCPLL_COEFF_P_WIDTH	6
52 
53 #define GPCPLL_CFG2			(SYS_GPCPLL_CFG_BASE + 0xc)
54 #define GPCPLL_CFG2_SETUP2_SHIFT	16
55 #define GPCPLL_CFG2_PLL_STEPA_SHIFT	24
56 
57 #define GPCPLL_CFG3			(SYS_GPCPLL_CFG_BASE + 0x18)
58 #define GPCPLL_CFG3_PLL_STEPB_SHIFT	16
59 
60 #define GPCPLL_NDIV_SLOWDOWN			(SYS_GPCPLL_CFG_BASE + 0x1c)
61 #define GPCPLL_NDIV_SLOWDOWN_NDIV_LO_SHIFT	0
62 #define GPCPLL_NDIV_SLOWDOWN_NDIV_MID_SHIFT	8
63 #define GPCPLL_NDIV_SLOWDOWN_STEP_SIZE_LO2MID_SHIFT	16
64 #define GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT	22
65 #define GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT	31
66 
67 #define SEL_VCO				(SYS_GPCPLL_CFG_BASE + 0x100)
68 #define SEL_VCO_GPC2CLK_OUT_SHIFT	0
69 
70 #define GPC2CLK_OUT			(SYS_GPCPLL_CFG_BASE + 0x250)
71 #define GPC2CLK_OUT_SDIV14_INDIV4_WIDTH	1
72 #define GPC2CLK_OUT_SDIV14_INDIV4_SHIFT	31
73 #define GPC2CLK_OUT_SDIV14_INDIV4_MODE	1
74 #define GPC2CLK_OUT_VCODIV_WIDTH	6
75 #define GPC2CLK_OUT_VCODIV_SHIFT	8
76 #define GPC2CLK_OUT_VCODIV1		0
77 #define GPC2CLK_OUT_VCODIV_MASK		(MASK(GPC2CLK_OUT_VCODIV_WIDTH) << \
78 					GPC2CLK_OUT_VCODIV_SHIFT)
79 #define	GPC2CLK_OUT_BYPDIV_WIDTH	6
80 #define GPC2CLK_OUT_BYPDIV_SHIFT	0
81 #define GPC2CLK_OUT_BYPDIV31		0x3c
82 #define GPC2CLK_OUT_INIT_MASK	((MASK(GPC2CLK_OUT_SDIV14_INDIV4_WIDTH) << \
83 		GPC2CLK_OUT_SDIV14_INDIV4_SHIFT)\
84 		| (MASK(GPC2CLK_OUT_VCODIV_WIDTH) << GPC2CLK_OUT_VCODIV_SHIFT)\
85 		| (MASK(GPC2CLK_OUT_BYPDIV_WIDTH) << GPC2CLK_OUT_BYPDIV_SHIFT))
86 #define GPC2CLK_OUT_INIT_VAL	((GPC2CLK_OUT_SDIV14_INDIV4_MODE << \
87 		GPC2CLK_OUT_SDIV14_INDIV4_SHIFT) \
88 		| (GPC2CLK_OUT_VCODIV1 << GPC2CLK_OUT_VCODIV_SHIFT) \
89 		| (GPC2CLK_OUT_BYPDIV31 << GPC2CLK_OUT_BYPDIV_SHIFT))
90 
91 #define GPC_BCAST_NDIV_SLOWDOWN_DEBUG	(GPC_BCASE_GPCPLL_CFG_BASE + 0xa0)
92 #define GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_SHIFT	24
93 #define GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_MASK \
94 	    (0x1 << GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_SHIFT)
95 
96 static const u8 pl_to_div[] = {
97 /* PL:   0, 1, 2, 3, 4, 5, 6,  7,  8,  9, 10, 11, 12, 13, 14 */
98 /* p: */ 1, 2, 3, 4, 5, 6, 8, 10, 12, 16, 12, 16, 20, 24, 32,
99 };
100 
101 /* All frequencies in Mhz */
102 struct gk20a_clk_pllg_params {
103 	u32 min_vco, max_vco;
104 	u32 min_u, max_u;
105 	u32 min_m, max_m;
106 	u32 min_n, max_n;
107 	u32 min_pl, max_pl;
108 };
109 
110 static const struct gk20a_clk_pllg_params gk20a_pllg_params = {
111 	.min_vco = 1000, .max_vco = 2064,
112 	.min_u = 12, .max_u = 38,
113 	.min_m = 1, .max_m = 255,
114 	.min_n = 8, .max_n = 255,
115 	.min_pl = 1, .max_pl = 32,
116 };
117 
118 struct gk20a_clk {
119 	struct nvkm_clk base;
120 	const struct gk20a_clk_pllg_params *params;
121 	u32 m, n, pl;
122 	u32 parent_rate;
123 };
124 #define to_gk20a_clk(base) container_of(base, struct gk20a_clk, base)
125 
126 static void
127 gk20a_pllg_read_mnp(struct gk20a_clk *clk)
128 {
129 	struct nvkm_device *device = clk->base.subdev.device;
130 	u32 val;
131 
132 	val = nvkm_rd32(device, GPCPLL_COEFF);
133 	clk->m = (val >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH);
134 	clk->n = (val >> GPCPLL_COEFF_N_SHIFT) & MASK(GPCPLL_COEFF_N_WIDTH);
135 	clk->pl = (val >> GPCPLL_COEFF_P_SHIFT) & MASK(GPCPLL_COEFF_P_WIDTH);
136 }
137 
138 static u32
139 gk20a_pllg_calc_rate(struct gk20a_clk *clk)
140 {
141 	u32 rate;
142 	u32 divider;
143 
144 	rate = clk->parent_rate * clk->n;
145 	divider = clk->m * pl_to_div[clk->pl];
146 	do_div(rate, divider);
147 
148 	return rate / 2;
149 }
150 
151 static int
152 gk20a_pllg_calc_mnp(struct gk20a_clk *clk, unsigned long rate)
153 {
154 	struct nvkm_subdev *subdev = &clk->base.subdev;
155 	u32 target_clk_f, ref_clk_f, target_freq;
156 	u32 min_vco_f, max_vco_f;
157 	u32 low_pl, high_pl, best_pl;
158 	u32 target_vco_f, vco_f;
159 	u32 best_m, best_n;
160 	u32 u_f;
161 	u32 m, n, n2;
162 	u32 delta, lwv, best_delta = ~0;
163 	u32 pl;
164 
165 	target_clk_f = rate * 2 / MHZ;
166 	ref_clk_f = clk->parent_rate / MHZ;
167 
168 	max_vco_f = clk->params->max_vco;
169 	min_vco_f = clk->params->min_vco;
170 	best_m = clk->params->max_m;
171 	best_n = clk->params->min_n;
172 	best_pl = clk->params->min_pl;
173 
174 	target_vco_f = target_clk_f + target_clk_f / 50;
175 	if (max_vco_f < target_vco_f)
176 		max_vco_f = target_vco_f;
177 
178 	/* min_pl <= high_pl <= max_pl */
179 	high_pl = (max_vco_f + target_vco_f - 1) / target_vco_f;
180 	high_pl = min(high_pl, clk->params->max_pl);
181 	high_pl = max(high_pl, clk->params->min_pl);
182 
183 	/* min_pl <= low_pl <= max_pl */
184 	low_pl = min_vco_f / target_vco_f;
185 	low_pl = min(low_pl, clk->params->max_pl);
186 	low_pl = max(low_pl, clk->params->min_pl);
187 
188 	/* Find Indices of high_pl and low_pl */
189 	for (pl = 0; pl < ARRAY_SIZE(pl_to_div) - 1; pl++) {
190 		if (pl_to_div[pl] >= low_pl) {
191 			low_pl = pl;
192 			break;
193 		}
194 	}
195 	for (pl = 0; pl < ARRAY_SIZE(pl_to_div) - 1; pl++) {
196 		if (pl_to_div[pl] >= high_pl) {
197 			high_pl = pl;
198 			break;
199 		}
200 	}
201 
202 	nvkm_debug(subdev, "low_PL %d(div%d), high_PL %d(div%d)", low_pl,
203 		   pl_to_div[low_pl], high_pl, pl_to_div[high_pl]);
204 
205 	/* Select lowest possible VCO */
206 	for (pl = low_pl; pl <= high_pl; pl++) {
207 		target_vco_f = target_clk_f * pl_to_div[pl];
208 		for (m = clk->params->min_m; m <= clk->params->max_m; m++) {
209 			u_f = ref_clk_f / m;
210 
211 			if (u_f < clk->params->min_u)
212 				break;
213 			if (u_f > clk->params->max_u)
214 				continue;
215 
216 			n = (target_vco_f * m) / ref_clk_f;
217 			n2 = ((target_vco_f * m) + (ref_clk_f - 1)) / ref_clk_f;
218 
219 			if (n > clk->params->max_n)
220 				break;
221 
222 			for (; n <= n2; n++) {
223 				if (n < clk->params->min_n)
224 					continue;
225 				if (n > clk->params->max_n)
226 					break;
227 
228 				vco_f = ref_clk_f * n / m;
229 
230 				if (vco_f >= min_vco_f && vco_f <= max_vco_f) {
231 					lwv = (vco_f + (pl_to_div[pl] / 2))
232 						/ pl_to_div[pl];
233 					delta = abs(lwv - target_clk_f);
234 
235 					if (delta < best_delta) {
236 						best_delta = delta;
237 						best_m = m;
238 						best_n = n;
239 						best_pl = pl;
240 
241 						if (best_delta == 0)
242 							goto found_match;
243 					}
244 				}
245 			}
246 		}
247 	}
248 
249 found_match:
250 	WARN_ON(best_delta == ~0);
251 
252 	if (best_delta != 0)
253 		nvkm_debug(subdev,
254 			   "no best match for target @ %dMHz on gpc_pll",
255 			   target_clk_f);
256 
257 	clk->m = best_m;
258 	clk->n = best_n;
259 	clk->pl = best_pl;
260 
261 	target_freq = gk20a_pllg_calc_rate(clk) / MHZ;
262 
263 	nvkm_debug(subdev,
264 		   "actual target freq %d MHz, M %d, N %d, PL %d(div%d)\n",
265 		   target_freq, clk->m, clk->n, clk->pl, pl_to_div[clk->pl]);
266 	return 0;
267 }
268 
269 static int
270 gk20a_pllg_slide(struct gk20a_clk *clk, u32 n)
271 {
272 	struct nvkm_subdev *subdev = &clk->base.subdev;
273 	struct nvkm_device *device = subdev->device;
274 	u32 val;
275 	int ramp_timeout;
276 
277 	/* get old coefficients */
278 	val = nvkm_rd32(device, GPCPLL_COEFF);
279 	/* do nothing if NDIV is the same */
280 	if (n == ((val >> GPCPLL_COEFF_N_SHIFT) & MASK(GPCPLL_COEFF_N_WIDTH)))
281 		return 0;
282 
283 	/* setup */
284 	nvkm_mask(device, GPCPLL_CFG2, 0xff << GPCPLL_CFG2_PLL_STEPA_SHIFT,
285 		0x2b << GPCPLL_CFG2_PLL_STEPA_SHIFT);
286 	nvkm_mask(device, GPCPLL_CFG3, 0xff << GPCPLL_CFG3_PLL_STEPB_SHIFT,
287 		0xb << GPCPLL_CFG3_PLL_STEPB_SHIFT);
288 
289 	/* pll slowdown mode */
290 	nvkm_mask(device, GPCPLL_NDIV_SLOWDOWN,
291 		BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT),
292 		BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT));
293 
294 	/* new ndiv ready for ramp */
295 	val = nvkm_rd32(device, GPCPLL_COEFF);
296 	val &= ~(MASK(GPCPLL_COEFF_N_WIDTH) << GPCPLL_COEFF_N_SHIFT);
297 	val |= (n & MASK(GPCPLL_COEFF_N_WIDTH)) << GPCPLL_COEFF_N_SHIFT;
298 	udelay(1);
299 	nvkm_wr32(device, GPCPLL_COEFF, val);
300 
301 	/* dynamic ramp to new ndiv */
302 	val = nvkm_rd32(device, GPCPLL_NDIV_SLOWDOWN);
303 	val |= 0x1 << GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT;
304 	udelay(1);
305 	nvkm_wr32(device, GPCPLL_NDIV_SLOWDOWN, val);
306 
307 	for (ramp_timeout = 500; ramp_timeout > 0; ramp_timeout--) {
308 		udelay(1);
309 		val = nvkm_rd32(device, GPC_BCAST_NDIV_SLOWDOWN_DEBUG);
310 		if (val & GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_MASK)
311 			break;
312 	}
313 
314 	/* exit slowdown mode */
315 	nvkm_mask(device, GPCPLL_NDIV_SLOWDOWN,
316 		BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT) |
317 		BIT(GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT), 0);
318 	nvkm_rd32(device, GPCPLL_NDIV_SLOWDOWN);
319 
320 	if (ramp_timeout <= 0) {
321 		nvkm_error(subdev, "gpcpll dynamic ramp timeout\n");
322 		return -ETIMEDOUT;
323 	}
324 
325 	return 0;
326 }
327 
328 static void
329 _gk20a_pllg_enable(struct gk20a_clk *clk)
330 {
331 	struct nvkm_device *device = clk->base.subdev.device;
332 	nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_ENABLE, GPCPLL_CFG_ENABLE);
333 	nvkm_rd32(device, GPCPLL_CFG);
334 }
335 
336 static void
337 _gk20a_pllg_disable(struct gk20a_clk *clk)
338 {
339 	struct nvkm_device *device = clk->base.subdev.device;
340 	nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_ENABLE, 0);
341 	nvkm_rd32(device, GPCPLL_CFG);
342 }
343 
344 static int
345 _gk20a_pllg_program_mnp(struct gk20a_clk *clk, bool allow_slide)
346 {
347 	struct nvkm_subdev *subdev = &clk->base.subdev;
348 	struct nvkm_device *device = subdev->device;
349 	u32 val, cfg;
350 	u32 m_old, pl_old, n_lo;
351 
352 	/* get old coefficients */
353 	val = nvkm_rd32(device, GPCPLL_COEFF);
354 	m_old = (val >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH);
355 	pl_old = (val >> GPCPLL_COEFF_P_SHIFT) & MASK(GPCPLL_COEFF_P_WIDTH);
356 
357 	/* do NDIV slide if there is no change in M and PL */
358 	cfg = nvkm_rd32(device, GPCPLL_CFG);
359 	if (allow_slide && clk->m == m_old && clk->pl == pl_old &&
360 	    (cfg & GPCPLL_CFG_ENABLE)) {
361 		return gk20a_pllg_slide(clk, clk->n);
362 	}
363 
364 	/* slide down to NDIV_LO */
365 	n_lo = DIV_ROUND_UP(m_old * clk->params->min_vco,
366 			    clk->parent_rate / MHZ);
367 	if (allow_slide && (cfg & GPCPLL_CFG_ENABLE)) {
368 		int ret = gk20a_pllg_slide(clk, n_lo);
369 
370 		if (ret)
371 			return ret;
372 	}
373 
374 	/* split FO-to-bypass jump in halfs by setting out divider 1:2 */
375 	nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK,
376 		0x2 << GPC2CLK_OUT_VCODIV_SHIFT);
377 
378 	/* put PLL in bypass before programming it */
379 	val = nvkm_rd32(device, SEL_VCO);
380 	val &= ~(BIT(SEL_VCO_GPC2CLK_OUT_SHIFT));
381 	udelay(2);
382 	nvkm_wr32(device, SEL_VCO, val);
383 
384 	/* get out from IDDQ */
385 	val = nvkm_rd32(device, GPCPLL_CFG);
386 	if (val & GPCPLL_CFG_IDDQ) {
387 		val &= ~GPCPLL_CFG_IDDQ;
388 		nvkm_wr32(device, GPCPLL_CFG, val);
389 		nvkm_rd32(device, GPCPLL_CFG);
390 		udelay(2);
391 	}
392 
393 	_gk20a_pllg_disable(clk);
394 
395 	nvkm_debug(subdev, "%s: m=%d n=%d pl=%d\n", __func__,
396 		   clk->m, clk->n, clk->pl);
397 
398 	n_lo = DIV_ROUND_UP(clk->m * clk->params->min_vco,
399 			    clk->parent_rate / MHZ);
400 	val = clk->m << GPCPLL_COEFF_M_SHIFT;
401 	val |= (allow_slide ? n_lo : clk->n) << GPCPLL_COEFF_N_SHIFT;
402 	val |= clk->pl << GPCPLL_COEFF_P_SHIFT;
403 	nvkm_wr32(device, GPCPLL_COEFF, val);
404 
405 	_gk20a_pllg_enable(clk);
406 
407 	val = nvkm_rd32(device, GPCPLL_CFG);
408 	if (val & GPCPLL_CFG_LOCK_DET_OFF) {
409 		val &= ~GPCPLL_CFG_LOCK_DET_OFF;
410 		nvkm_wr32(device, GPCPLL_CFG, val);
411 	}
412 
413 	if (nvkm_usec(device, 300,
414 		if (nvkm_rd32(device, GPCPLL_CFG) & GPCPLL_CFG_LOCK)
415 			break;
416 	) < 0)
417 		return -ETIMEDOUT;
418 
419 	/* switch to VCO mode */
420 	nvkm_mask(device, SEL_VCO, 0, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT));
421 
422 	/* restore out divider 1:1 */
423 	val = nvkm_rd32(device, GPC2CLK_OUT);
424 	val &= ~GPC2CLK_OUT_VCODIV_MASK;
425 	udelay(2);
426 	nvkm_wr32(device, GPC2CLK_OUT, val);
427 
428 	/* slide up to new NDIV */
429 	return allow_slide ? gk20a_pllg_slide(clk, clk->n) : 0;
430 }
431 
432 static int
433 gk20a_pllg_program_mnp(struct gk20a_clk *clk)
434 {
435 	int err;
436 
437 	err = _gk20a_pllg_program_mnp(clk, true);
438 	if (err)
439 		err = _gk20a_pllg_program_mnp(clk, false);
440 
441 	return err;
442 }
443 
444 static void
445 gk20a_pllg_disable(struct gk20a_clk *clk)
446 {
447 	struct nvkm_device *device = clk->base.subdev.device;
448 	u32 val;
449 
450 	/* slide to VCO min */
451 	val = nvkm_rd32(device, GPCPLL_CFG);
452 	if (val & GPCPLL_CFG_ENABLE) {
453 		u32 coeff, m, n_lo;
454 
455 		coeff = nvkm_rd32(device, GPCPLL_COEFF);
456 		m = (coeff >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH);
457 		n_lo = DIV_ROUND_UP(m * clk->params->min_vco,
458 				    clk->parent_rate / MHZ);
459 		gk20a_pllg_slide(clk, n_lo);
460 	}
461 
462 	/* put PLL in bypass before disabling it */
463 	nvkm_mask(device, SEL_VCO, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT), 0);
464 
465 	_gk20a_pllg_disable(clk);
466 }
467 
468 #define GK20A_CLK_GPC_MDIV 1000
469 
470 static struct nvkm_domain
471 gk20a_domains[] = {
472 	{ nv_clk_src_crystal, 0xff },
473 	{ nv_clk_src_gpc, 0xff, 0, "core", GK20A_CLK_GPC_MDIV },
474 	{ nv_clk_src_max }
475 };
476 
477 static struct nvkm_pstate
478 gk20a_pstates[] = {
479 	{
480 		.base = {
481 			.domain[nv_clk_src_gpc] = 72000,
482 			.voltage = 0,
483 		},
484 	},
485 	{
486 		.base = {
487 			.domain[nv_clk_src_gpc] = 108000,
488 			.voltage = 1,
489 		},
490 	},
491 	{
492 		.base = {
493 			.domain[nv_clk_src_gpc] = 180000,
494 			.voltage = 2,
495 		},
496 	},
497 	{
498 		.base = {
499 			.domain[nv_clk_src_gpc] = 252000,
500 			.voltage = 3,
501 		},
502 	},
503 	{
504 		.base = {
505 			.domain[nv_clk_src_gpc] = 324000,
506 			.voltage = 4,
507 		},
508 	},
509 	{
510 		.base = {
511 			.domain[nv_clk_src_gpc] = 396000,
512 			.voltage = 5,
513 		},
514 	},
515 	{
516 		.base = {
517 			.domain[nv_clk_src_gpc] = 468000,
518 			.voltage = 6,
519 		},
520 	},
521 	{
522 		.base = {
523 			.domain[nv_clk_src_gpc] = 540000,
524 			.voltage = 7,
525 		},
526 	},
527 	{
528 		.base = {
529 			.domain[nv_clk_src_gpc] = 612000,
530 			.voltage = 8,
531 		},
532 	},
533 	{
534 		.base = {
535 			.domain[nv_clk_src_gpc] = 648000,
536 			.voltage = 9,
537 		},
538 	},
539 	{
540 		.base = {
541 			.domain[nv_clk_src_gpc] = 684000,
542 			.voltage = 10,
543 		},
544 	},
545 	{
546 		.base = {
547 			.domain[nv_clk_src_gpc] = 708000,
548 			.voltage = 11,
549 		},
550 	},
551 	{
552 		.base = {
553 			.domain[nv_clk_src_gpc] = 756000,
554 			.voltage = 12,
555 		},
556 	},
557 	{
558 		.base = {
559 			.domain[nv_clk_src_gpc] = 804000,
560 			.voltage = 13,
561 		},
562 	},
563 	{
564 		.base = {
565 			.domain[nv_clk_src_gpc] = 852000,
566 			.voltage = 14,
567 		},
568 	},
569 };
570 
571 static int
572 gk20a_clk_read(struct nvkm_clk *obj, enum nv_clk_src src)
573 {
574 	struct gk20a_clk *clk = container_of(obj, typeof(*clk), base);
575 	struct nvkm_subdev *subdev = &clk->base.subdev;
576 	struct nvkm_device *device = subdev->device;
577 
578 	switch (src) {
579 	case nv_clk_src_crystal:
580 		return device->crystal;
581 	case nv_clk_src_gpc:
582 		gk20a_pllg_read_mnp(clk);
583 		return gk20a_pllg_calc_rate(clk) / GK20A_CLK_GPC_MDIV;
584 	default:
585 		nvkm_error(subdev, "invalid clock source %d\n", src);
586 		return -EINVAL;
587 	}
588 }
589 
590 static int
591 gk20a_clk_calc(struct nvkm_clk *obj, struct nvkm_cstate *cstate)
592 {
593 	struct gk20a_clk *clk = container_of(obj, typeof(*clk), base);
594 
595 	return gk20a_pllg_calc_mnp(clk, cstate->domain[nv_clk_src_gpc] *
596 					 GK20A_CLK_GPC_MDIV);
597 }
598 
599 static int
600 gk20a_clk_prog(struct nvkm_clk *obj)
601 {
602 	struct gk20a_clk *clk = container_of(obj, typeof(*clk), base);
603 
604 	return gk20a_pllg_program_mnp(clk);
605 }
606 
607 static void
608 gk20a_clk_tidy(struct nvkm_clk *obj)
609 {
610 }
611 
612 static int
613 gk20a_clk_fini(struct nvkm_object *object, bool suspend)
614 {
615 	struct gk20a_clk *clk = (void *)object;
616 	int ret;
617 
618 	ret = nvkm_clk_fini(&clk->base, false);
619 
620 	gk20a_pllg_disable(clk);
621 
622 	return ret;
623 }
624 
625 static int
626 gk20a_clk_init(struct nvkm_object *object)
627 {
628 	struct gk20a_clk *clk = (void *)object;
629 	struct nvkm_subdev *subdev = &clk->base.subdev;
630 	struct nvkm_device *device = subdev->device;
631 	int ret;
632 
633 	nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_INIT_MASK, GPC2CLK_OUT_INIT_VAL);
634 
635 	ret = nvkm_clk_init(&clk->base);
636 	if (ret)
637 		return ret;
638 
639 	ret = gk20a_clk_prog(&clk->base);
640 	if (ret) {
641 		nvkm_error(subdev, "cannot initialize clock\n");
642 		return ret;
643 	}
644 
645 	return 0;
646 }
647 
648 static int
649 gk20a_clk_ctor(struct nvkm_object *parent, struct nvkm_object *engine,
650 	       struct nvkm_oclass *oclass, void *data, u32 size,
651 	       struct nvkm_object **pobject)
652 {
653 	struct gk20a_clk *clk;
654 	struct nouveau_platform_device *plat;
655 	int ret;
656 	int i;
657 
658 	/* Finish initializing the pstates */
659 	for (i = 0; i < ARRAY_SIZE(gk20a_pstates); i++) {
660 		INIT_LIST_HEAD(&gk20a_pstates[i].list);
661 		gk20a_pstates[i].pstate = i + 1;
662 	}
663 
664 	ret = nvkm_clk_create(parent, engine, oclass, gk20a_domains,
665 			      gk20a_pstates, ARRAY_SIZE(gk20a_pstates),
666 			      true, &clk);
667 	*pobject = nv_object(clk);
668 	if (ret)
669 		return ret;
670 
671 	clk->params = &gk20a_pllg_params;
672 
673 	plat = nv_device_to_platform(nv_device(parent));
674 	clk->parent_rate = clk_get_rate(plat->gpu->clk);
675 	nvkm_info(&clk->base.subdev, "parent clock rate: %d Mhz\n",
676 		  clk->parent_rate / MHZ);
677 
678 	clk->base.read = gk20a_clk_read;
679 	clk->base.calc = gk20a_clk_calc;
680 	clk->base.prog = gk20a_clk_prog;
681 	clk->base.tidy = gk20a_clk_tidy;
682 	return 0;
683 }
684 
685 struct nvkm_oclass
686 gk20a_clk_oclass = {
687 	.handle = NV_SUBDEV(CLK, 0xea),
688 	.ofuncs = &(struct nvkm_ofuncs) {
689 		.ctor = gk20a_clk_ctor,
690 		.dtor = _nvkm_subdev_dtor,
691 		.init = gk20a_clk_init,
692 		.fini = gk20a_clk_fini,
693 	},
694 };
695