1 /* 2 * Copyright 2013 Red Hat Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 * Authors: Ben Skeggs 23 */ 24 #include <subdev/clk.h> 25 #include "pll.h" 26 27 #include <subdev/timer.h> 28 #include <subdev/bios.h> 29 #include <subdev/bios/pll.h> 30 31 struct gk104_clk_info { 32 u32 freq; 33 u32 ssel; 34 u32 mdiv; 35 u32 dsrc; 36 u32 ddiv; 37 u32 coef; 38 }; 39 40 struct gk104_clk { 41 struct nvkm_clk base; 42 struct gk104_clk_info eng[16]; 43 }; 44 45 static u32 read_div(struct gk104_clk *, int, u32, u32); 46 static u32 read_pll(struct gk104_clk *, u32); 47 48 static u32 49 read_vco(struct gk104_clk *clk, u32 dsrc) 50 { 51 u32 ssrc = nv_rd32(clk, dsrc); 52 if (!(ssrc & 0x00000100)) 53 return read_pll(clk, 0x00e800); 54 return read_pll(clk, 0x00e820); 55 } 56 57 static u32 58 read_pll(struct gk104_clk *clk, u32 pll) 59 { 60 u32 ctrl = nv_rd32(clk, pll + 0x00); 61 u32 coef = nv_rd32(clk, pll + 0x04); 62 u32 P = (coef & 0x003f0000) >> 16; 63 u32 N = (coef & 0x0000ff00) >> 8; 64 u32 M = (coef & 0x000000ff) >> 0; 65 u32 sclk; 66 u16 fN = 0xf000; 67 68 if (!(ctrl & 0x00000001)) 69 return 0; 70 71 switch (pll) { 72 case 0x00e800: 73 case 0x00e820: 74 sclk = nv_device(clk)->crystal; 75 P = 1; 76 break; 77 case 0x132000: 78 sclk = read_pll(clk, 0x132020); 79 P = (coef & 0x10000000) ? 2 : 1; 80 break; 81 case 0x132020: 82 sclk = read_div(clk, 0, 0x137320, 0x137330); 83 fN = nv_rd32(clk, pll + 0x10) >> 16; 84 break; 85 case 0x137000: 86 case 0x137020: 87 case 0x137040: 88 case 0x1370e0: 89 sclk = read_div(clk, (pll & 0xff) / 0x20, 0x137120, 0x137140); 90 break; 91 default: 92 return 0; 93 } 94 95 if (P == 0) 96 P = 1; 97 98 sclk = (sclk * N) + (((u16)(fN + 4096) * sclk) >> 13); 99 return sclk / (M * P); 100 } 101 102 static u32 103 read_div(struct gk104_clk *clk, int doff, u32 dsrc, u32 dctl) 104 { 105 u32 ssrc = nv_rd32(clk, dsrc + (doff * 4)); 106 u32 sctl = nv_rd32(clk, dctl + (doff * 4)); 107 108 switch (ssrc & 0x00000003) { 109 case 0: 110 if ((ssrc & 0x00030000) != 0x00030000) 111 return nv_device(clk)->crystal; 112 return 108000; 113 case 2: 114 return 100000; 115 case 3: 116 if (sctl & 0x80000000) { 117 u32 sclk = read_vco(clk, dsrc + (doff * 4)); 118 u32 sdiv = (sctl & 0x0000003f) + 2; 119 return (sclk * 2) / sdiv; 120 } 121 122 return read_vco(clk, dsrc + (doff * 4)); 123 default: 124 return 0; 125 } 126 } 127 128 static u32 129 read_mem(struct gk104_clk *clk) 130 { 131 switch (nv_rd32(clk, 0x1373f4) & 0x0000000f) { 132 case 1: return read_pll(clk, 0x132020); 133 case 2: return read_pll(clk, 0x132000); 134 default: 135 return 0; 136 } 137 } 138 139 static u32 140 read_clk(struct gk104_clk *clk, int idx) 141 { 142 u32 sctl = nv_rd32(clk, 0x137250 + (idx * 4)); 143 u32 sclk, sdiv; 144 145 if (idx < 7) { 146 u32 ssel = nv_rd32(clk, 0x137100); 147 if (ssel & (1 << idx)) { 148 sclk = read_pll(clk, 0x137000 + (idx * 0x20)); 149 sdiv = 1; 150 } else { 151 sclk = read_div(clk, idx, 0x137160, 0x1371d0); 152 sdiv = 0; 153 } 154 } else { 155 u32 ssrc = nv_rd32(clk, 0x137160 + (idx * 0x04)); 156 if ((ssrc & 0x00000003) == 0x00000003) { 157 sclk = read_div(clk, idx, 0x137160, 0x1371d0); 158 if (ssrc & 0x00000100) { 159 if (ssrc & 0x40000000) 160 sclk = read_pll(clk, 0x1370e0); 161 sdiv = 1; 162 } else { 163 sdiv = 0; 164 } 165 } else { 166 sclk = read_div(clk, idx, 0x137160, 0x1371d0); 167 sdiv = 0; 168 } 169 } 170 171 if (sctl & 0x80000000) { 172 if (sdiv) 173 sdiv = ((sctl & 0x00003f00) >> 8) + 2; 174 else 175 sdiv = ((sctl & 0x0000003f) >> 0) + 2; 176 return (sclk * 2) / sdiv; 177 } 178 179 return sclk; 180 } 181 182 static int 183 gk104_clk_read(struct nvkm_clk *obj, enum nv_clk_src src) 184 { 185 struct gk104_clk *clk = container_of(obj, typeof(*clk), base); 186 struct nvkm_device *device = nv_device(clk); 187 188 switch (src) { 189 case nv_clk_src_crystal: 190 return device->crystal; 191 case nv_clk_src_href: 192 return 100000; 193 case nv_clk_src_mem: 194 return read_mem(clk); 195 case nv_clk_src_gpc: 196 return read_clk(clk, 0x00); 197 case nv_clk_src_rop: 198 return read_clk(clk, 0x01); 199 case nv_clk_src_hubk07: 200 return read_clk(clk, 0x02); 201 case nv_clk_src_hubk06: 202 return read_clk(clk, 0x07); 203 case nv_clk_src_hubk01: 204 return read_clk(clk, 0x08); 205 case nv_clk_src_daemon: 206 return read_clk(clk, 0x0c); 207 case nv_clk_src_vdec: 208 return read_clk(clk, 0x0e); 209 default: 210 nv_error(clk, "invalid clock source %d\n", src); 211 return -EINVAL; 212 } 213 } 214 215 static u32 216 calc_div(struct gk104_clk *clk, int idx, u32 ref, u32 freq, u32 *ddiv) 217 { 218 u32 div = min((ref * 2) / freq, (u32)65); 219 if (div < 2) 220 div = 2; 221 222 *ddiv = div - 2; 223 return (ref * 2) / div; 224 } 225 226 static u32 227 calc_src(struct gk104_clk *clk, int idx, u32 freq, u32 *dsrc, u32 *ddiv) 228 { 229 u32 sclk; 230 231 /* use one of the fixed frequencies if possible */ 232 *ddiv = 0x00000000; 233 switch (freq) { 234 case 27000: 235 case 108000: 236 *dsrc = 0x00000000; 237 if (freq == 108000) 238 *dsrc |= 0x00030000; 239 return freq; 240 case 100000: 241 *dsrc = 0x00000002; 242 return freq; 243 default: 244 *dsrc = 0x00000003; 245 break; 246 } 247 248 /* otherwise, calculate the closest divider */ 249 sclk = read_vco(clk, 0x137160 + (idx * 4)); 250 if (idx < 7) 251 sclk = calc_div(clk, idx, sclk, freq, ddiv); 252 return sclk; 253 } 254 255 static u32 256 calc_pll(struct gk104_clk *clk, int idx, u32 freq, u32 *coef) 257 { 258 struct nvkm_bios *bios = nvkm_bios(clk); 259 struct nvbios_pll limits; 260 int N, M, P, ret; 261 262 ret = nvbios_pll_parse(bios, 0x137000 + (idx * 0x20), &limits); 263 if (ret) 264 return 0; 265 266 limits.refclk = read_div(clk, idx, 0x137120, 0x137140); 267 if (!limits.refclk) 268 return 0; 269 270 ret = gt215_pll_calc(nv_subdev(clk), &limits, freq, &N, NULL, &M, &P); 271 if (ret <= 0) 272 return 0; 273 274 *coef = (P << 16) | (N << 8) | M; 275 return ret; 276 } 277 278 static int 279 calc_clk(struct gk104_clk *clk, 280 struct nvkm_cstate *cstate, int idx, int dom) 281 { 282 struct gk104_clk_info *info = &clk->eng[idx]; 283 u32 freq = cstate->domain[dom]; 284 u32 src0, div0, div1D, div1P = 0; 285 u32 clk0, clk1 = 0; 286 287 /* invalid clock domain */ 288 if (!freq) 289 return 0; 290 291 /* first possible path, using only dividers */ 292 clk0 = calc_src(clk, idx, freq, &src0, &div0); 293 clk0 = calc_div(clk, idx, clk0, freq, &div1D); 294 295 /* see if we can get any closer using PLLs */ 296 if (clk0 != freq && (0x0000ff87 & (1 << idx))) { 297 if (idx <= 7) 298 clk1 = calc_pll(clk, idx, freq, &info->coef); 299 else 300 clk1 = cstate->domain[nv_clk_src_hubk06]; 301 clk1 = calc_div(clk, idx, clk1, freq, &div1P); 302 } 303 304 /* select the method which gets closest to target freq */ 305 if (abs((int)freq - clk0) <= abs((int)freq - clk1)) { 306 info->dsrc = src0; 307 if (div0) { 308 info->ddiv |= 0x80000000; 309 info->ddiv |= div0; 310 } 311 if (div1D) { 312 info->mdiv |= 0x80000000; 313 info->mdiv |= div1D; 314 } 315 info->ssel = 0; 316 info->freq = clk0; 317 } else { 318 if (div1P) { 319 info->mdiv |= 0x80000000; 320 info->mdiv |= div1P << 8; 321 } 322 info->ssel = (1 << idx); 323 info->dsrc = 0x40000100; 324 info->freq = clk1; 325 } 326 327 return 0; 328 } 329 330 static int 331 gk104_clk_calc(struct nvkm_clk *obj, struct nvkm_cstate *cstate) 332 { 333 struct gk104_clk *clk = container_of(obj, typeof(*clk), base); 334 int ret; 335 336 if ((ret = calc_clk(clk, cstate, 0x00, nv_clk_src_gpc)) || 337 (ret = calc_clk(clk, cstate, 0x01, nv_clk_src_rop)) || 338 (ret = calc_clk(clk, cstate, 0x02, nv_clk_src_hubk07)) || 339 (ret = calc_clk(clk, cstate, 0x07, nv_clk_src_hubk06)) || 340 (ret = calc_clk(clk, cstate, 0x08, nv_clk_src_hubk01)) || 341 (ret = calc_clk(clk, cstate, 0x0c, nv_clk_src_daemon)) || 342 (ret = calc_clk(clk, cstate, 0x0e, nv_clk_src_vdec))) 343 return ret; 344 345 return 0; 346 } 347 348 static void 349 gk104_clk_prog_0(struct gk104_clk *clk, int idx) 350 { 351 struct gk104_clk_info *info = &clk->eng[idx]; 352 if (!info->ssel) { 353 nv_mask(clk, 0x1371d0 + (idx * 0x04), 0x8000003f, info->ddiv); 354 nv_wr32(clk, 0x137160 + (idx * 0x04), info->dsrc); 355 } 356 } 357 358 static void 359 gk104_clk_prog_1_0(struct gk104_clk *clk, int idx) 360 { 361 nv_mask(clk, 0x137100, (1 << idx), 0x00000000); 362 nv_wait(clk, 0x137100, (1 << idx), 0x00000000); 363 } 364 365 static void 366 gk104_clk_prog_1_1(struct gk104_clk *clk, int idx) 367 { 368 nv_mask(clk, 0x137160 + (idx * 0x04), 0x00000100, 0x00000000); 369 } 370 371 static void 372 gk104_clk_prog_2(struct gk104_clk *clk, int idx) 373 { 374 struct gk104_clk_info *info = &clk->eng[idx]; 375 const u32 addr = 0x137000 + (idx * 0x20); 376 nv_mask(clk, addr + 0x00, 0x00000004, 0x00000000); 377 nv_mask(clk, addr + 0x00, 0x00000001, 0x00000000); 378 if (info->coef) { 379 nv_wr32(clk, addr + 0x04, info->coef); 380 nv_mask(clk, addr + 0x00, 0x00000001, 0x00000001); 381 nv_wait(clk, addr + 0x00, 0x00020000, 0x00020000); 382 nv_mask(clk, addr + 0x00, 0x00020004, 0x00000004); 383 } 384 } 385 386 static void 387 gk104_clk_prog_3(struct gk104_clk *clk, int idx) 388 { 389 struct gk104_clk_info *info = &clk->eng[idx]; 390 if (info->ssel) 391 nv_mask(clk, 0x137250 + (idx * 0x04), 0x00003f00, info->mdiv); 392 else 393 nv_mask(clk, 0x137250 + (idx * 0x04), 0x0000003f, info->mdiv); 394 } 395 396 static void 397 gk104_clk_prog_4_0(struct gk104_clk *clk, int idx) 398 { 399 struct gk104_clk_info *info = &clk->eng[idx]; 400 if (info->ssel) { 401 nv_mask(clk, 0x137100, (1 << idx), info->ssel); 402 nv_wait(clk, 0x137100, (1 << idx), info->ssel); 403 } 404 } 405 406 static void 407 gk104_clk_prog_4_1(struct gk104_clk *clk, int idx) 408 { 409 struct gk104_clk_info *info = &clk->eng[idx]; 410 if (info->ssel) { 411 nv_mask(clk, 0x137160 + (idx * 0x04), 0x40000000, 0x40000000); 412 nv_mask(clk, 0x137160 + (idx * 0x04), 0x00000100, 0x00000100); 413 } 414 } 415 416 static int 417 gk104_clk_prog(struct nvkm_clk *obj) 418 { 419 struct gk104_clk *clk = container_of(obj, typeof(*clk), base); 420 struct { 421 u32 mask; 422 void (*exec)(struct gk104_clk *, int); 423 } stage[] = { 424 { 0x007f, gk104_clk_prog_0 }, /* div programming */ 425 { 0x007f, gk104_clk_prog_1_0 }, /* select div mode */ 426 { 0xff80, gk104_clk_prog_1_1 }, 427 { 0x00ff, gk104_clk_prog_2 }, /* (maybe) program pll */ 428 { 0xff80, gk104_clk_prog_3 }, /* final divider */ 429 { 0x007f, gk104_clk_prog_4_0 }, /* (maybe) select pll mode */ 430 { 0xff80, gk104_clk_prog_4_1 }, 431 }; 432 int i, j; 433 434 for (i = 0; i < ARRAY_SIZE(stage); i++) { 435 for (j = 0; j < ARRAY_SIZE(clk->eng); j++) { 436 if (!(stage[i].mask & (1 << j))) 437 continue; 438 if (!clk->eng[j].freq) 439 continue; 440 stage[i].exec(clk, j); 441 } 442 } 443 444 return 0; 445 } 446 447 static void 448 gk104_clk_tidy(struct nvkm_clk *obj) 449 { 450 struct gk104_clk *clk = container_of(obj, typeof(*clk), base); 451 memset(clk->eng, 0x00, sizeof(clk->eng)); 452 } 453 454 static struct nvkm_domain 455 gk104_domain[] = { 456 { nv_clk_src_crystal, 0xff }, 457 { nv_clk_src_href , 0xff }, 458 { nv_clk_src_gpc , 0x00, NVKM_CLK_DOM_FLAG_CORE, "core", 2000 }, 459 { nv_clk_src_hubk07 , 0x01, NVKM_CLK_DOM_FLAG_CORE }, 460 { nv_clk_src_rop , 0x02, NVKM_CLK_DOM_FLAG_CORE }, 461 { nv_clk_src_mem , 0x03, 0, "memory", 500 }, 462 { nv_clk_src_hubk06 , 0x04, NVKM_CLK_DOM_FLAG_CORE }, 463 { nv_clk_src_hubk01 , 0x05 }, 464 { nv_clk_src_vdec , 0x06 }, 465 { nv_clk_src_daemon , 0x07 }, 466 { nv_clk_src_max } 467 }; 468 469 static int 470 gk104_clk_ctor(struct nvkm_object *parent, struct nvkm_object *engine, 471 struct nvkm_oclass *oclass, void *data, u32 size, 472 struct nvkm_object **pobject) 473 { 474 struct gk104_clk *clk; 475 int ret; 476 477 ret = nvkm_clk_create(parent, engine, oclass, gk104_domain, 478 NULL, 0, true, &clk); 479 *pobject = nv_object(clk); 480 if (ret) 481 return ret; 482 483 clk->base.read = gk104_clk_read; 484 clk->base.calc = gk104_clk_calc; 485 clk->base.prog = gk104_clk_prog; 486 clk->base.tidy = gk104_clk_tidy; 487 return 0; 488 } 489 490 struct nvkm_oclass 491 gk104_clk_oclass = { 492 .handle = NV_SUBDEV(CLK, 0xe0), 493 .ofuncs = &(struct nvkm_ofuncs) { 494 .ctor = gk104_clk_ctor, 495 .dtor = _nvkm_clk_dtor, 496 .init = _nvkm_clk_init, 497 .fini = _nvkm_clk_fini, 498 }, 499 }; 500