1 /* 2 * Copyright 2013 Red Hat Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 * Authors: Ben Skeggs 23 */ 24 #include <subdev/clk.h> 25 #include "pll.h" 26 27 #include <subdev/timer.h> 28 #include <subdev/bios.h> 29 #include <subdev/bios/pll.h> 30 31 struct gk104_clk_info { 32 u32 freq; 33 u32 ssel; 34 u32 mdiv; 35 u32 dsrc; 36 u32 ddiv; 37 u32 coef; 38 }; 39 40 struct gk104_clk { 41 struct nvkm_clk base; 42 struct gk104_clk_info eng[16]; 43 }; 44 45 static u32 read_div(struct gk104_clk *, int, u32, u32); 46 static u32 read_pll(struct gk104_clk *, u32); 47 48 static u32 49 read_vco(struct gk104_clk *clk, u32 dsrc) 50 { 51 struct nvkm_device *device = clk->base.subdev.device; 52 u32 ssrc = nvkm_rd32(device, dsrc); 53 if (!(ssrc & 0x00000100)) 54 return read_pll(clk, 0x00e800); 55 return read_pll(clk, 0x00e820); 56 } 57 58 static u32 59 read_pll(struct gk104_clk *clk, u32 pll) 60 { 61 struct nvkm_device *device = clk->base.subdev.device; 62 u32 ctrl = nvkm_rd32(device, pll + 0x00); 63 u32 coef = nvkm_rd32(device, pll + 0x04); 64 u32 P = (coef & 0x003f0000) >> 16; 65 u32 N = (coef & 0x0000ff00) >> 8; 66 u32 M = (coef & 0x000000ff) >> 0; 67 u32 sclk; 68 u16 fN = 0xf000; 69 70 if (!(ctrl & 0x00000001)) 71 return 0; 72 73 switch (pll) { 74 case 0x00e800: 75 case 0x00e820: 76 sclk = device->crystal; 77 P = 1; 78 break; 79 case 0x132000: 80 sclk = read_pll(clk, 0x132020); 81 P = (coef & 0x10000000) ? 2 : 1; 82 break; 83 case 0x132020: 84 sclk = read_div(clk, 0, 0x137320, 0x137330); 85 fN = nvkm_rd32(device, pll + 0x10) >> 16; 86 break; 87 case 0x137000: 88 case 0x137020: 89 case 0x137040: 90 case 0x1370e0: 91 sclk = read_div(clk, (pll & 0xff) / 0x20, 0x137120, 0x137140); 92 break; 93 default: 94 return 0; 95 } 96 97 if (P == 0) 98 P = 1; 99 100 sclk = (sclk * N) + (((u16)(fN + 4096) * sclk) >> 13); 101 return sclk / (M * P); 102 } 103 104 static u32 105 read_div(struct gk104_clk *clk, int doff, u32 dsrc, u32 dctl) 106 { 107 struct nvkm_device *device = clk->base.subdev.device; 108 u32 ssrc = nvkm_rd32(device, dsrc + (doff * 4)); 109 u32 sctl = nvkm_rd32(device, dctl + (doff * 4)); 110 111 switch (ssrc & 0x00000003) { 112 case 0: 113 if ((ssrc & 0x00030000) != 0x00030000) 114 return device->crystal; 115 return 108000; 116 case 2: 117 return 100000; 118 case 3: 119 if (sctl & 0x80000000) { 120 u32 sclk = read_vco(clk, dsrc + (doff * 4)); 121 u32 sdiv = (sctl & 0x0000003f) + 2; 122 return (sclk * 2) / sdiv; 123 } 124 125 return read_vco(clk, dsrc + (doff * 4)); 126 default: 127 return 0; 128 } 129 } 130 131 static u32 132 read_mem(struct gk104_clk *clk) 133 { 134 struct nvkm_device *device = clk->base.subdev.device; 135 switch (nvkm_rd32(device, 0x1373f4) & 0x0000000f) { 136 case 1: return read_pll(clk, 0x132020); 137 case 2: return read_pll(clk, 0x132000); 138 default: 139 return 0; 140 } 141 } 142 143 static u32 144 read_clk(struct gk104_clk *clk, int idx) 145 { 146 struct nvkm_device *device = clk->base.subdev.device; 147 u32 sctl = nvkm_rd32(device, 0x137250 + (idx * 4)); 148 u32 sclk, sdiv; 149 150 if (idx < 7) { 151 u32 ssel = nvkm_rd32(device, 0x137100); 152 if (ssel & (1 << idx)) { 153 sclk = read_pll(clk, 0x137000 + (idx * 0x20)); 154 sdiv = 1; 155 } else { 156 sclk = read_div(clk, idx, 0x137160, 0x1371d0); 157 sdiv = 0; 158 } 159 } else { 160 u32 ssrc = nvkm_rd32(device, 0x137160 + (idx * 0x04)); 161 if ((ssrc & 0x00000003) == 0x00000003) { 162 sclk = read_div(clk, idx, 0x137160, 0x1371d0); 163 if (ssrc & 0x00000100) { 164 if (ssrc & 0x40000000) 165 sclk = read_pll(clk, 0x1370e0); 166 sdiv = 1; 167 } else { 168 sdiv = 0; 169 } 170 } else { 171 sclk = read_div(clk, idx, 0x137160, 0x1371d0); 172 sdiv = 0; 173 } 174 } 175 176 if (sctl & 0x80000000) { 177 if (sdiv) 178 sdiv = ((sctl & 0x00003f00) >> 8) + 2; 179 else 180 sdiv = ((sctl & 0x0000003f) >> 0) + 2; 181 return (sclk * 2) / sdiv; 182 } 183 184 return sclk; 185 } 186 187 static int 188 gk104_clk_read(struct nvkm_clk *obj, enum nv_clk_src src) 189 { 190 struct gk104_clk *clk = container_of(obj, typeof(*clk), base); 191 struct nvkm_device *device = clk->base.subdev.device; 192 193 switch (src) { 194 case nv_clk_src_crystal: 195 return device->crystal; 196 case nv_clk_src_href: 197 return 100000; 198 case nv_clk_src_mem: 199 return read_mem(clk); 200 case nv_clk_src_gpc: 201 return read_clk(clk, 0x00); 202 case nv_clk_src_rop: 203 return read_clk(clk, 0x01); 204 case nv_clk_src_hubk07: 205 return read_clk(clk, 0x02); 206 case nv_clk_src_hubk06: 207 return read_clk(clk, 0x07); 208 case nv_clk_src_hubk01: 209 return read_clk(clk, 0x08); 210 case nv_clk_src_daemon: 211 return read_clk(clk, 0x0c); 212 case nv_clk_src_vdec: 213 return read_clk(clk, 0x0e); 214 default: 215 nv_error(clk, "invalid clock source %d\n", src); 216 return -EINVAL; 217 } 218 } 219 220 static u32 221 calc_div(struct gk104_clk *clk, int idx, u32 ref, u32 freq, u32 *ddiv) 222 { 223 u32 div = min((ref * 2) / freq, (u32)65); 224 if (div < 2) 225 div = 2; 226 227 *ddiv = div - 2; 228 return (ref * 2) / div; 229 } 230 231 static u32 232 calc_src(struct gk104_clk *clk, int idx, u32 freq, u32 *dsrc, u32 *ddiv) 233 { 234 u32 sclk; 235 236 /* use one of the fixed frequencies if possible */ 237 *ddiv = 0x00000000; 238 switch (freq) { 239 case 27000: 240 case 108000: 241 *dsrc = 0x00000000; 242 if (freq == 108000) 243 *dsrc |= 0x00030000; 244 return freq; 245 case 100000: 246 *dsrc = 0x00000002; 247 return freq; 248 default: 249 *dsrc = 0x00000003; 250 break; 251 } 252 253 /* otherwise, calculate the closest divider */ 254 sclk = read_vco(clk, 0x137160 + (idx * 4)); 255 if (idx < 7) 256 sclk = calc_div(clk, idx, sclk, freq, ddiv); 257 return sclk; 258 } 259 260 static u32 261 calc_pll(struct gk104_clk *clk, int idx, u32 freq, u32 *coef) 262 { 263 struct nvkm_bios *bios = nvkm_bios(clk); 264 struct nvbios_pll limits; 265 int N, M, P, ret; 266 267 ret = nvbios_pll_parse(bios, 0x137000 + (idx * 0x20), &limits); 268 if (ret) 269 return 0; 270 271 limits.refclk = read_div(clk, idx, 0x137120, 0x137140); 272 if (!limits.refclk) 273 return 0; 274 275 ret = gt215_pll_calc(nv_subdev(clk), &limits, freq, &N, NULL, &M, &P); 276 if (ret <= 0) 277 return 0; 278 279 *coef = (P << 16) | (N << 8) | M; 280 return ret; 281 } 282 283 static int 284 calc_clk(struct gk104_clk *clk, 285 struct nvkm_cstate *cstate, int idx, int dom) 286 { 287 struct gk104_clk_info *info = &clk->eng[idx]; 288 u32 freq = cstate->domain[dom]; 289 u32 src0, div0, div1D, div1P = 0; 290 u32 clk0, clk1 = 0; 291 292 /* invalid clock domain */ 293 if (!freq) 294 return 0; 295 296 /* first possible path, using only dividers */ 297 clk0 = calc_src(clk, idx, freq, &src0, &div0); 298 clk0 = calc_div(clk, idx, clk0, freq, &div1D); 299 300 /* see if we can get any closer using PLLs */ 301 if (clk0 != freq && (0x0000ff87 & (1 << idx))) { 302 if (idx <= 7) 303 clk1 = calc_pll(clk, idx, freq, &info->coef); 304 else 305 clk1 = cstate->domain[nv_clk_src_hubk06]; 306 clk1 = calc_div(clk, idx, clk1, freq, &div1P); 307 } 308 309 /* select the method which gets closest to target freq */ 310 if (abs((int)freq - clk0) <= abs((int)freq - clk1)) { 311 info->dsrc = src0; 312 if (div0) { 313 info->ddiv |= 0x80000000; 314 info->ddiv |= div0; 315 } 316 if (div1D) { 317 info->mdiv |= 0x80000000; 318 info->mdiv |= div1D; 319 } 320 info->ssel = 0; 321 info->freq = clk0; 322 } else { 323 if (div1P) { 324 info->mdiv |= 0x80000000; 325 info->mdiv |= div1P << 8; 326 } 327 info->ssel = (1 << idx); 328 info->dsrc = 0x40000100; 329 info->freq = clk1; 330 } 331 332 return 0; 333 } 334 335 static int 336 gk104_clk_calc(struct nvkm_clk *obj, struct nvkm_cstate *cstate) 337 { 338 struct gk104_clk *clk = container_of(obj, typeof(*clk), base); 339 int ret; 340 341 if ((ret = calc_clk(clk, cstate, 0x00, nv_clk_src_gpc)) || 342 (ret = calc_clk(clk, cstate, 0x01, nv_clk_src_rop)) || 343 (ret = calc_clk(clk, cstate, 0x02, nv_clk_src_hubk07)) || 344 (ret = calc_clk(clk, cstate, 0x07, nv_clk_src_hubk06)) || 345 (ret = calc_clk(clk, cstate, 0x08, nv_clk_src_hubk01)) || 346 (ret = calc_clk(clk, cstate, 0x0c, nv_clk_src_daemon)) || 347 (ret = calc_clk(clk, cstate, 0x0e, nv_clk_src_vdec))) 348 return ret; 349 350 return 0; 351 } 352 353 static void 354 gk104_clk_prog_0(struct gk104_clk *clk, int idx) 355 { 356 struct gk104_clk_info *info = &clk->eng[idx]; 357 struct nvkm_device *device = clk->base.subdev.device; 358 if (!info->ssel) { 359 nvkm_mask(device, 0x1371d0 + (idx * 0x04), 0x8000003f, info->ddiv); 360 nvkm_wr32(device, 0x137160 + (idx * 0x04), info->dsrc); 361 } 362 } 363 364 static void 365 gk104_clk_prog_1_0(struct gk104_clk *clk, int idx) 366 { 367 struct nvkm_device *device = clk->base.subdev.device; 368 nvkm_mask(device, 0x137100, (1 << idx), 0x00000000); 369 nv_wait(clk, 0x137100, (1 << idx), 0x00000000); 370 } 371 372 static void 373 gk104_clk_prog_1_1(struct gk104_clk *clk, int idx) 374 { 375 struct nvkm_device *device = clk->base.subdev.device; 376 nvkm_mask(device, 0x137160 + (idx * 0x04), 0x00000100, 0x00000000); 377 } 378 379 static void 380 gk104_clk_prog_2(struct gk104_clk *clk, int idx) 381 { 382 struct gk104_clk_info *info = &clk->eng[idx]; 383 struct nvkm_device *device = clk->base.subdev.device; 384 const u32 addr = 0x137000 + (idx * 0x20); 385 nvkm_mask(device, addr + 0x00, 0x00000004, 0x00000000); 386 nvkm_mask(device, addr + 0x00, 0x00000001, 0x00000000); 387 if (info->coef) { 388 nvkm_wr32(device, addr + 0x04, info->coef); 389 nvkm_mask(device, addr + 0x00, 0x00000001, 0x00000001); 390 nv_wait(clk, addr + 0x00, 0x00020000, 0x00020000); 391 nvkm_mask(device, addr + 0x00, 0x00020004, 0x00000004); 392 } 393 } 394 395 static void 396 gk104_clk_prog_3(struct gk104_clk *clk, int idx) 397 { 398 struct gk104_clk_info *info = &clk->eng[idx]; 399 struct nvkm_device *device = clk->base.subdev.device; 400 if (info->ssel) 401 nvkm_mask(device, 0x137250 + (idx * 0x04), 0x00003f00, info->mdiv); 402 else 403 nvkm_mask(device, 0x137250 + (idx * 0x04), 0x0000003f, info->mdiv); 404 } 405 406 static void 407 gk104_clk_prog_4_0(struct gk104_clk *clk, int idx) 408 { 409 struct gk104_clk_info *info = &clk->eng[idx]; 410 struct nvkm_device *device = clk->base.subdev.device; 411 if (info->ssel) { 412 nvkm_mask(device, 0x137100, (1 << idx), info->ssel); 413 nv_wait(clk, 0x137100, (1 << idx), info->ssel); 414 } 415 } 416 417 static void 418 gk104_clk_prog_4_1(struct gk104_clk *clk, int idx) 419 { 420 struct gk104_clk_info *info = &clk->eng[idx]; 421 struct nvkm_device *device = clk->base.subdev.device; 422 if (info->ssel) { 423 nvkm_mask(device, 0x137160 + (idx * 0x04), 0x40000000, 0x40000000); 424 nvkm_mask(device, 0x137160 + (idx * 0x04), 0x00000100, 0x00000100); 425 } 426 } 427 428 static int 429 gk104_clk_prog(struct nvkm_clk *obj) 430 { 431 struct gk104_clk *clk = container_of(obj, typeof(*clk), base); 432 struct { 433 u32 mask; 434 void (*exec)(struct gk104_clk *, int); 435 } stage[] = { 436 { 0x007f, gk104_clk_prog_0 }, /* div programming */ 437 { 0x007f, gk104_clk_prog_1_0 }, /* select div mode */ 438 { 0xff80, gk104_clk_prog_1_1 }, 439 { 0x00ff, gk104_clk_prog_2 }, /* (maybe) program pll */ 440 { 0xff80, gk104_clk_prog_3 }, /* final divider */ 441 { 0x007f, gk104_clk_prog_4_0 }, /* (maybe) select pll mode */ 442 { 0xff80, gk104_clk_prog_4_1 }, 443 }; 444 int i, j; 445 446 for (i = 0; i < ARRAY_SIZE(stage); i++) { 447 for (j = 0; j < ARRAY_SIZE(clk->eng); j++) { 448 if (!(stage[i].mask & (1 << j))) 449 continue; 450 if (!clk->eng[j].freq) 451 continue; 452 stage[i].exec(clk, j); 453 } 454 } 455 456 return 0; 457 } 458 459 static void 460 gk104_clk_tidy(struct nvkm_clk *obj) 461 { 462 struct gk104_clk *clk = container_of(obj, typeof(*clk), base); 463 memset(clk->eng, 0x00, sizeof(clk->eng)); 464 } 465 466 static struct nvkm_domain 467 gk104_domain[] = { 468 { nv_clk_src_crystal, 0xff }, 469 { nv_clk_src_href , 0xff }, 470 { nv_clk_src_gpc , 0x00, NVKM_CLK_DOM_FLAG_CORE, "core", 2000 }, 471 { nv_clk_src_hubk07 , 0x01, NVKM_CLK_DOM_FLAG_CORE }, 472 { nv_clk_src_rop , 0x02, NVKM_CLK_DOM_FLAG_CORE }, 473 { nv_clk_src_mem , 0x03, 0, "memory", 500 }, 474 { nv_clk_src_hubk06 , 0x04, NVKM_CLK_DOM_FLAG_CORE }, 475 { nv_clk_src_hubk01 , 0x05 }, 476 { nv_clk_src_vdec , 0x06 }, 477 { nv_clk_src_daemon , 0x07 }, 478 { nv_clk_src_max } 479 }; 480 481 static int 482 gk104_clk_ctor(struct nvkm_object *parent, struct nvkm_object *engine, 483 struct nvkm_oclass *oclass, void *data, u32 size, 484 struct nvkm_object **pobject) 485 { 486 struct gk104_clk *clk; 487 int ret; 488 489 ret = nvkm_clk_create(parent, engine, oclass, gk104_domain, 490 NULL, 0, true, &clk); 491 *pobject = nv_object(clk); 492 if (ret) 493 return ret; 494 495 clk->base.read = gk104_clk_read; 496 clk->base.calc = gk104_clk_calc; 497 clk->base.prog = gk104_clk_prog; 498 clk->base.tidy = gk104_clk_tidy; 499 return 0; 500 } 501 502 struct nvkm_oclass 503 gk104_clk_oclass = { 504 .handle = NV_SUBDEV(CLK, 0xe0), 505 .ofuncs = &(struct nvkm_ofuncs) { 506 .ctor = gk104_clk_ctor, 507 .dtor = _nvkm_clk_dtor, 508 .init = _nvkm_clk_init, 509 .fini = _nvkm_clk_fini, 510 }, 511 }; 512