1 /* 2 * Copyright 2012 Red Hat Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 * Authors: Ben Skeggs 23 */ 24 #include <subdev/clk.h> 25 #include "pll.h" 26 27 #include <subdev/bios.h> 28 #include <subdev/bios/pll.h> 29 #include <subdev/timer.h> 30 31 struct gf100_clk_info { 32 u32 freq; 33 u32 ssel; 34 u32 mdiv; 35 u32 dsrc; 36 u32 ddiv; 37 u32 coef; 38 }; 39 40 struct gf100_clk { 41 struct nvkm_clk base; 42 struct gf100_clk_info eng[16]; 43 }; 44 45 static u32 read_div(struct gf100_clk *, int, u32, u32); 46 47 static u32 48 read_vco(struct gf100_clk *clk, u32 dsrc) 49 { 50 struct nvkm_device *device = clk->base.subdev.device; 51 u32 ssrc = nvkm_rd32(device, dsrc); 52 if (!(ssrc & 0x00000100)) 53 return clk->base.read(&clk->base, nv_clk_src_sppll0); 54 return clk->base.read(&clk->base, nv_clk_src_sppll1); 55 } 56 57 static u32 58 read_pll(struct gf100_clk *clk, u32 pll) 59 { 60 struct nvkm_device *device = clk->base.subdev.device; 61 u32 ctrl = nvkm_rd32(device, pll + 0x00); 62 u32 coef = nvkm_rd32(device, pll + 0x04); 63 u32 P = (coef & 0x003f0000) >> 16; 64 u32 N = (coef & 0x0000ff00) >> 8; 65 u32 M = (coef & 0x000000ff) >> 0; 66 u32 sclk; 67 68 if (!(ctrl & 0x00000001)) 69 return 0; 70 71 switch (pll) { 72 case 0x00e800: 73 case 0x00e820: 74 sclk = device->crystal; 75 P = 1; 76 break; 77 case 0x132000: 78 sclk = clk->base.read(&clk->base, nv_clk_src_mpllsrc); 79 break; 80 case 0x132020: 81 sclk = clk->base.read(&clk->base, nv_clk_src_mpllsrcref); 82 break; 83 case 0x137000: 84 case 0x137020: 85 case 0x137040: 86 case 0x1370e0: 87 sclk = read_div(clk, (pll & 0xff) / 0x20, 0x137120, 0x137140); 88 break; 89 default: 90 return 0; 91 } 92 93 return sclk * N / M / P; 94 } 95 96 static u32 97 read_div(struct gf100_clk *clk, int doff, u32 dsrc, u32 dctl) 98 { 99 struct nvkm_device *device = clk->base.subdev.device; 100 u32 ssrc = nvkm_rd32(device, dsrc + (doff * 4)); 101 u32 sctl = nvkm_rd32(device, dctl + (doff * 4)); 102 103 switch (ssrc & 0x00000003) { 104 case 0: 105 if ((ssrc & 0x00030000) != 0x00030000) 106 return device->crystal; 107 return 108000; 108 case 2: 109 return 100000; 110 case 3: 111 if (sctl & 0x80000000) { 112 u32 sclk = read_vco(clk, dsrc + (doff * 4)); 113 u32 sdiv = (sctl & 0x0000003f) + 2; 114 return (sclk * 2) / sdiv; 115 } 116 117 return read_vco(clk, dsrc + (doff * 4)); 118 default: 119 return 0; 120 } 121 } 122 123 static u32 124 read_clk(struct gf100_clk *clk, int idx) 125 { 126 struct nvkm_device *device = clk->base.subdev.device; 127 u32 sctl = nvkm_rd32(device, 0x137250 + (idx * 4)); 128 u32 ssel = nvkm_rd32(device, 0x137100); 129 u32 sclk, sdiv; 130 131 if (ssel & (1 << idx)) { 132 if (idx < 7) 133 sclk = read_pll(clk, 0x137000 + (idx * 0x20)); 134 else 135 sclk = read_pll(clk, 0x1370e0); 136 sdiv = ((sctl & 0x00003f00) >> 8) + 2; 137 } else { 138 sclk = read_div(clk, idx, 0x137160, 0x1371d0); 139 sdiv = ((sctl & 0x0000003f) >> 0) + 2; 140 } 141 142 if (sctl & 0x80000000) 143 return (sclk * 2) / sdiv; 144 145 return sclk; 146 } 147 148 static int 149 gf100_clk_read(struct nvkm_clk *obj, enum nv_clk_src src) 150 { 151 struct gf100_clk *clk = container_of(obj, typeof(*clk), base); 152 struct nvkm_device *device = clk->base.subdev.device; 153 154 switch (src) { 155 case nv_clk_src_crystal: 156 return device->crystal; 157 case nv_clk_src_href: 158 return 100000; 159 case nv_clk_src_sppll0: 160 return read_pll(clk, 0x00e800); 161 case nv_clk_src_sppll1: 162 return read_pll(clk, 0x00e820); 163 164 case nv_clk_src_mpllsrcref: 165 return read_div(clk, 0, 0x137320, 0x137330); 166 case nv_clk_src_mpllsrc: 167 return read_pll(clk, 0x132020); 168 case nv_clk_src_mpll: 169 return read_pll(clk, 0x132000); 170 case nv_clk_src_mdiv: 171 return read_div(clk, 0, 0x137300, 0x137310); 172 case nv_clk_src_mem: 173 if (nvkm_rd32(device, 0x1373f0) & 0x00000002) 174 return clk->base.read(&clk->base, nv_clk_src_mpll); 175 return clk->base.read(&clk->base, nv_clk_src_mdiv); 176 177 case nv_clk_src_gpc: 178 return read_clk(clk, 0x00); 179 case nv_clk_src_rop: 180 return read_clk(clk, 0x01); 181 case nv_clk_src_hubk07: 182 return read_clk(clk, 0x02); 183 case nv_clk_src_hubk06: 184 return read_clk(clk, 0x07); 185 case nv_clk_src_hubk01: 186 return read_clk(clk, 0x08); 187 case nv_clk_src_copy: 188 return read_clk(clk, 0x09); 189 case nv_clk_src_daemon: 190 return read_clk(clk, 0x0c); 191 case nv_clk_src_vdec: 192 return read_clk(clk, 0x0e); 193 default: 194 nv_error(clk, "invalid clock source %d\n", src); 195 return -EINVAL; 196 } 197 } 198 199 static u32 200 calc_div(struct gf100_clk *clk, int idx, u32 ref, u32 freq, u32 *ddiv) 201 { 202 u32 div = min((ref * 2) / freq, (u32)65); 203 if (div < 2) 204 div = 2; 205 206 *ddiv = div - 2; 207 return (ref * 2) / div; 208 } 209 210 static u32 211 calc_src(struct gf100_clk *clk, int idx, u32 freq, u32 *dsrc, u32 *ddiv) 212 { 213 u32 sclk; 214 215 /* use one of the fixed frequencies if possible */ 216 *ddiv = 0x00000000; 217 switch (freq) { 218 case 27000: 219 case 108000: 220 *dsrc = 0x00000000; 221 if (freq == 108000) 222 *dsrc |= 0x00030000; 223 return freq; 224 case 100000: 225 *dsrc = 0x00000002; 226 return freq; 227 default: 228 *dsrc = 0x00000003; 229 break; 230 } 231 232 /* otherwise, calculate the closest divider */ 233 sclk = read_vco(clk, 0x137160 + (idx * 4)); 234 if (idx < 7) 235 sclk = calc_div(clk, idx, sclk, freq, ddiv); 236 return sclk; 237 } 238 239 static u32 240 calc_pll(struct gf100_clk *clk, int idx, u32 freq, u32 *coef) 241 { 242 struct nvkm_bios *bios = nvkm_bios(clk); 243 struct nvbios_pll limits; 244 int N, M, P, ret; 245 246 ret = nvbios_pll_parse(bios, 0x137000 + (idx * 0x20), &limits); 247 if (ret) 248 return 0; 249 250 limits.refclk = read_div(clk, idx, 0x137120, 0x137140); 251 if (!limits.refclk) 252 return 0; 253 254 ret = gt215_pll_calc(nv_subdev(clk), &limits, freq, &N, NULL, &M, &P); 255 if (ret <= 0) 256 return 0; 257 258 *coef = (P << 16) | (N << 8) | M; 259 return ret; 260 } 261 262 static int 263 calc_clk(struct gf100_clk *clk, struct nvkm_cstate *cstate, int idx, int dom) 264 { 265 struct gf100_clk_info *info = &clk->eng[idx]; 266 u32 freq = cstate->domain[dom]; 267 u32 src0, div0, div1D, div1P = 0; 268 u32 clk0, clk1 = 0; 269 270 /* invalid clock domain */ 271 if (!freq) 272 return 0; 273 274 /* first possible path, using only dividers */ 275 clk0 = calc_src(clk, idx, freq, &src0, &div0); 276 clk0 = calc_div(clk, idx, clk0, freq, &div1D); 277 278 /* see if we can get any closer using PLLs */ 279 if (clk0 != freq && (0x00004387 & (1 << idx))) { 280 if (idx <= 7) 281 clk1 = calc_pll(clk, idx, freq, &info->coef); 282 else 283 clk1 = cstate->domain[nv_clk_src_hubk06]; 284 clk1 = calc_div(clk, idx, clk1, freq, &div1P); 285 } 286 287 /* select the method which gets closest to target freq */ 288 if (abs((int)freq - clk0) <= abs((int)freq - clk1)) { 289 info->dsrc = src0; 290 if (div0) { 291 info->ddiv |= 0x80000000; 292 info->ddiv |= div0 << 8; 293 info->ddiv |= div0; 294 } 295 if (div1D) { 296 info->mdiv |= 0x80000000; 297 info->mdiv |= div1D; 298 } 299 info->ssel = info->coef = 0; 300 info->freq = clk0; 301 } else { 302 if (div1P) { 303 info->mdiv |= 0x80000000; 304 info->mdiv |= div1P << 8; 305 } 306 info->ssel = (1 << idx); 307 info->freq = clk1; 308 } 309 310 return 0; 311 } 312 313 static int 314 gf100_clk_calc(struct nvkm_clk *obj, struct nvkm_cstate *cstate) 315 { 316 struct gf100_clk *clk = container_of(obj, typeof(*clk), base); 317 int ret; 318 319 if ((ret = calc_clk(clk, cstate, 0x00, nv_clk_src_gpc)) || 320 (ret = calc_clk(clk, cstate, 0x01, nv_clk_src_rop)) || 321 (ret = calc_clk(clk, cstate, 0x02, nv_clk_src_hubk07)) || 322 (ret = calc_clk(clk, cstate, 0x07, nv_clk_src_hubk06)) || 323 (ret = calc_clk(clk, cstate, 0x08, nv_clk_src_hubk01)) || 324 (ret = calc_clk(clk, cstate, 0x09, nv_clk_src_copy)) || 325 (ret = calc_clk(clk, cstate, 0x0c, nv_clk_src_daemon)) || 326 (ret = calc_clk(clk, cstate, 0x0e, nv_clk_src_vdec))) 327 return ret; 328 329 return 0; 330 } 331 332 static void 333 gf100_clk_prog_0(struct gf100_clk *clk, int idx) 334 { 335 struct gf100_clk_info *info = &clk->eng[idx]; 336 struct nvkm_device *device = clk->base.subdev.device; 337 if (idx < 7 && !info->ssel) { 338 nvkm_mask(device, 0x1371d0 + (idx * 0x04), 0x80003f3f, info->ddiv); 339 nvkm_wr32(device, 0x137160 + (idx * 0x04), info->dsrc); 340 } 341 } 342 343 static void 344 gf100_clk_prog_1(struct gf100_clk *clk, int idx) 345 { 346 struct nvkm_device *device = clk->base.subdev.device; 347 nvkm_mask(device, 0x137100, (1 << idx), 0x00000000); 348 nv_wait(clk, 0x137100, (1 << idx), 0x00000000); 349 } 350 351 static void 352 gf100_clk_prog_2(struct gf100_clk *clk, int idx) 353 { 354 struct gf100_clk_info *info = &clk->eng[idx]; 355 struct nvkm_device *device = clk->base.subdev.device; 356 const u32 addr = 0x137000 + (idx * 0x20); 357 if (idx <= 7) { 358 nvkm_mask(device, addr + 0x00, 0x00000004, 0x00000000); 359 nvkm_mask(device, addr + 0x00, 0x00000001, 0x00000000); 360 if (info->coef) { 361 nvkm_wr32(device, addr + 0x04, info->coef); 362 nvkm_mask(device, addr + 0x00, 0x00000001, 0x00000001); 363 nv_wait(clk, addr + 0x00, 0x00020000, 0x00020000); 364 nvkm_mask(device, addr + 0x00, 0x00020004, 0x00000004); 365 } 366 } 367 } 368 369 static void 370 gf100_clk_prog_3(struct gf100_clk *clk, int idx) 371 { 372 struct gf100_clk_info *info = &clk->eng[idx]; 373 struct nvkm_device *device = clk->base.subdev.device; 374 if (info->ssel) { 375 nvkm_mask(device, 0x137100, (1 << idx), info->ssel); 376 nv_wait(clk, 0x137100, (1 << idx), info->ssel); 377 } 378 } 379 380 static void 381 gf100_clk_prog_4(struct gf100_clk *clk, int idx) 382 { 383 struct gf100_clk_info *info = &clk->eng[idx]; 384 struct nvkm_device *device = clk->base.subdev.device; 385 nvkm_mask(device, 0x137250 + (idx * 0x04), 0x00003f3f, info->mdiv); 386 } 387 388 static int 389 gf100_clk_prog(struct nvkm_clk *obj) 390 { 391 struct gf100_clk *clk = container_of(obj, typeof(*clk), base); 392 struct { 393 void (*exec)(struct gf100_clk *, int); 394 } stage[] = { 395 { gf100_clk_prog_0 }, /* div programming */ 396 { gf100_clk_prog_1 }, /* select div mode */ 397 { gf100_clk_prog_2 }, /* (maybe) program pll */ 398 { gf100_clk_prog_3 }, /* (maybe) select pll mode */ 399 { gf100_clk_prog_4 }, /* final divider */ 400 }; 401 int i, j; 402 403 for (i = 0; i < ARRAY_SIZE(stage); i++) { 404 for (j = 0; j < ARRAY_SIZE(clk->eng); j++) { 405 if (!clk->eng[j].freq) 406 continue; 407 stage[i].exec(clk, j); 408 } 409 } 410 411 return 0; 412 } 413 414 static void 415 gf100_clk_tidy(struct nvkm_clk *obj) 416 { 417 struct gf100_clk *clk = container_of(obj, typeof(*clk), base); 418 memset(clk->eng, 0x00, sizeof(clk->eng)); 419 } 420 421 static struct nvkm_domain 422 gf100_domain[] = { 423 { nv_clk_src_crystal, 0xff }, 424 { nv_clk_src_href , 0xff }, 425 { nv_clk_src_hubk06 , 0x00 }, 426 { nv_clk_src_hubk01 , 0x01 }, 427 { nv_clk_src_copy , 0x02 }, 428 { nv_clk_src_gpc , 0x03, 0, "core", 2000 }, 429 { nv_clk_src_rop , 0x04 }, 430 { nv_clk_src_mem , 0x05, 0, "memory", 1000 }, 431 { nv_clk_src_vdec , 0x06 }, 432 { nv_clk_src_daemon , 0x0a }, 433 { nv_clk_src_hubk07 , 0x0b }, 434 { nv_clk_src_max } 435 }; 436 437 static int 438 gf100_clk_ctor(struct nvkm_object *parent, struct nvkm_object *engine, 439 struct nvkm_oclass *oclass, void *data, u32 size, 440 struct nvkm_object **pobject) 441 { 442 struct gf100_clk *clk; 443 int ret; 444 445 ret = nvkm_clk_create(parent, engine, oclass, gf100_domain, 446 NULL, 0, false, &clk); 447 *pobject = nv_object(clk); 448 if (ret) 449 return ret; 450 451 clk->base.read = gf100_clk_read; 452 clk->base.calc = gf100_clk_calc; 453 clk->base.prog = gf100_clk_prog; 454 clk->base.tidy = gf100_clk_tidy; 455 return 0; 456 } 457 458 struct nvkm_oclass 459 gf100_clk_oclass = { 460 .handle = NV_SUBDEV(CLK, 0xc0), 461 .ofuncs = &(struct nvkm_ofuncs) { 462 .ctor = gf100_clk_ctor, 463 .dtor = _nvkm_clk_dtor, 464 .init = _nvkm_clk_init, 465 .fini = _nvkm_clk_fini, 466 }, 467 }; 468