xref: /openbmc/linux/drivers/gpu/drm/nouveau/nvkm/subdev/clk/gf100.c (revision b1a792601f264df7172a728f1a83a05b6b399dfb)
1 /*
2  * Copyright 2012 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Ben Skeggs
23  */
24 #define gf100_clk(p) container_of((p), struct gf100_clk, base)
25 #include "priv.h"
26 #include "pll.h"
27 
28 #include <subdev/bios.h>
29 #include <subdev/bios/pll.h>
30 #include <subdev/timer.h>
31 
32 struct gf100_clk_info {
33 	u32 freq;
34 	u32 ssel;
35 	u32 mdiv;
36 	u32 dsrc;
37 	u32 ddiv;
38 	u32 coef;
39 };
40 
41 struct gf100_clk {
42 	struct nvkm_clk base;
43 	struct gf100_clk_info eng[16];
44 };
45 
46 static u32 read_div(struct gf100_clk *, int, u32, u32);
47 
48 static u32
49 read_vco(struct gf100_clk *clk, u32 dsrc)
50 {
51 	struct nvkm_device *device = clk->base.subdev.device;
52 	u32 ssrc = nvkm_rd32(device, dsrc);
53 	if (!(ssrc & 0x00000100))
54 		return nvkm_clk_read(&clk->base, nv_clk_src_sppll0);
55 	return nvkm_clk_read(&clk->base, nv_clk_src_sppll1);
56 }
57 
58 static u32
59 read_pll(struct gf100_clk *clk, u32 pll)
60 {
61 	struct nvkm_device *device = clk->base.subdev.device;
62 	u32 ctrl = nvkm_rd32(device, pll + 0x00);
63 	u32 coef = nvkm_rd32(device, pll + 0x04);
64 	u32 P = (coef & 0x003f0000) >> 16;
65 	u32 N = (coef & 0x0000ff00) >> 8;
66 	u32 M = (coef & 0x000000ff) >> 0;
67 	u32 sclk;
68 
69 	if (!(ctrl & 0x00000001))
70 		return 0;
71 
72 	switch (pll) {
73 	case 0x00e800:
74 	case 0x00e820:
75 		sclk = device->crystal;
76 		P = 1;
77 		break;
78 	case 0x132000:
79 		sclk = nvkm_clk_read(&clk->base, nv_clk_src_mpllsrc);
80 		break;
81 	case 0x132020:
82 		sclk = nvkm_clk_read(&clk->base, nv_clk_src_mpllsrcref);
83 		break;
84 	case 0x137000:
85 	case 0x137020:
86 	case 0x137040:
87 	case 0x1370e0:
88 		sclk = read_div(clk, (pll & 0xff) / 0x20, 0x137120, 0x137140);
89 		break;
90 	default:
91 		return 0;
92 	}
93 
94 	return sclk * N / M / P;
95 }
96 
97 static u32
98 read_div(struct gf100_clk *clk, int doff, u32 dsrc, u32 dctl)
99 {
100 	struct nvkm_device *device = clk->base.subdev.device;
101 	u32 ssrc = nvkm_rd32(device, dsrc + (doff * 4));
102 	u32 sclk, sctl, sdiv = 2;
103 
104 	switch (ssrc & 0x00000003) {
105 	case 0:
106 		if ((ssrc & 0x00030000) != 0x00030000)
107 			return device->crystal;
108 		return 108000;
109 	case 2:
110 		return 100000;
111 	case 3:
112 		sclk = read_vco(clk, dsrc + (doff * 4));
113 
114 		/* Memclk has doff of 0 despite its alt. location */
115 		if (doff <= 2) {
116 			sctl = nvkm_rd32(device, dctl + (doff * 4));
117 
118 			if (sctl & 0x80000000) {
119 				if (ssrc & 0x100)
120 					sctl >>= 8;
121 
122 				sdiv = (sctl & 0x3f) + 2;
123 			}
124 		}
125 
126 		return (sclk * 2) / sdiv;
127 	default:
128 		return 0;
129 	}
130 }
131 
132 static u32
133 read_clk(struct gf100_clk *clk, int idx)
134 {
135 	struct nvkm_device *device = clk->base.subdev.device;
136 	u32 sctl = nvkm_rd32(device, 0x137250 + (idx * 4));
137 	u32 ssel = nvkm_rd32(device, 0x137100);
138 	u32 sclk, sdiv;
139 
140 	if (ssel & (1 << idx)) {
141 		if (idx < 7)
142 			sclk = read_pll(clk, 0x137000 + (idx * 0x20));
143 		else
144 			sclk = read_pll(clk, 0x1370e0);
145 		sdiv = ((sctl & 0x00003f00) >> 8) + 2;
146 	} else {
147 		sclk = read_div(clk, idx, 0x137160, 0x1371d0);
148 		sdiv = ((sctl & 0x0000003f) >> 0) + 2;
149 	}
150 
151 	if (sctl & 0x80000000)
152 		return (sclk * 2) / sdiv;
153 
154 	return sclk;
155 }
156 
157 static int
158 gf100_clk_read(struct nvkm_clk *base, enum nv_clk_src src)
159 {
160 	struct gf100_clk *clk = gf100_clk(base);
161 	struct nvkm_subdev *subdev = &clk->base.subdev;
162 	struct nvkm_device *device = subdev->device;
163 
164 	switch (src) {
165 	case nv_clk_src_crystal:
166 		return device->crystal;
167 	case nv_clk_src_href:
168 		return 100000;
169 	case nv_clk_src_sppll0:
170 		return read_pll(clk, 0x00e800);
171 	case nv_clk_src_sppll1:
172 		return read_pll(clk, 0x00e820);
173 
174 	case nv_clk_src_mpllsrcref:
175 		return read_div(clk, 0, 0x137320, 0x137330);
176 	case nv_clk_src_mpllsrc:
177 		return read_pll(clk, 0x132020);
178 	case nv_clk_src_mpll:
179 		return read_pll(clk, 0x132000);
180 	case nv_clk_src_mdiv:
181 		return read_div(clk, 0, 0x137300, 0x137310);
182 	case nv_clk_src_mem:
183 		if (nvkm_rd32(device, 0x1373f0) & 0x00000002)
184 			return nvkm_clk_read(&clk->base, nv_clk_src_mpll);
185 		return nvkm_clk_read(&clk->base, nv_clk_src_mdiv);
186 
187 	case nv_clk_src_gpc:
188 		return read_clk(clk, 0x00);
189 	case nv_clk_src_rop:
190 		return read_clk(clk, 0x01);
191 	case nv_clk_src_hubk07:
192 		return read_clk(clk, 0x02);
193 	case nv_clk_src_hubk06:
194 		return read_clk(clk, 0x07);
195 	case nv_clk_src_hubk01:
196 		return read_clk(clk, 0x08);
197 	case nv_clk_src_copy:
198 		return read_clk(clk, 0x09);
199 	case nv_clk_src_pmu:
200 		return read_clk(clk, 0x0c);
201 	case nv_clk_src_vdec:
202 		return read_clk(clk, 0x0e);
203 	default:
204 		nvkm_error(subdev, "invalid clock source %d\n", src);
205 		return -EINVAL;
206 	}
207 }
208 
209 static u32
210 calc_div(struct gf100_clk *clk, int idx, u32 ref, u32 freq, u32 *ddiv)
211 {
212 	u32 div = min((ref * 2) / freq, (u32)65);
213 	if (div < 2)
214 		div = 2;
215 
216 	*ddiv = div - 2;
217 	return (ref * 2) / div;
218 }
219 
220 static u32
221 calc_src(struct gf100_clk *clk, int idx, u32 freq, u32 *dsrc, u32 *ddiv)
222 {
223 	u32 sclk;
224 
225 	/* use one of the fixed frequencies if possible */
226 	*ddiv = 0x00000000;
227 	switch (freq) {
228 	case  27000:
229 	case 108000:
230 		*dsrc = 0x00000000;
231 		if (freq == 108000)
232 			*dsrc |= 0x00030000;
233 		return freq;
234 	case 100000:
235 		*dsrc = 0x00000002;
236 		return freq;
237 	default:
238 		*dsrc = 0x00000003;
239 		break;
240 	}
241 
242 	/* otherwise, calculate the closest divider */
243 	sclk = read_vco(clk, 0x137160 + (idx * 4));
244 	if (idx < 7)
245 		sclk = calc_div(clk, idx, sclk, freq, ddiv);
246 	return sclk;
247 }
248 
249 static u32
250 calc_pll(struct gf100_clk *clk, int idx, u32 freq, u32 *coef)
251 {
252 	struct nvkm_subdev *subdev = &clk->base.subdev;
253 	struct nvkm_bios *bios = subdev->device->bios;
254 	struct nvbios_pll limits;
255 	int N, M, P, ret;
256 
257 	ret = nvbios_pll_parse(bios, 0x137000 + (idx * 0x20), &limits);
258 	if (ret)
259 		return 0;
260 
261 	limits.refclk = read_div(clk, idx, 0x137120, 0x137140);
262 	if (!limits.refclk)
263 		return 0;
264 
265 	ret = gt215_pll_calc(subdev, &limits, freq, &N, NULL, &M, &P);
266 	if (ret <= 0)
267 		return 0;
268 
269 	*coef = (P << 16) | (N << 8) | M;
270 	return ret;
271 }
272 
273 static int
274 calc_clk(struct gf100_clk *clk, struct nvkm_cstate *cstate, int idx, int dom)
275 {
276 	struct gf100_clk_info *info = &clk->eng[idx];
277 	u32 freq = cstate->domain[dom];
278 	u32 src0, div0, div1D, div1P = 0;
279 	u32 clk0, clk1 = 0;
280 
281 	/* invalid clock domain */
282 	if (!freq)
283 		return 0;
284 
285 	/* first possible path, using only dividers */
286 	clk0 = calc_src(clk, idx, freq, &src0, &div0);
287 	clk0 = calc_div(clk, idx, clk0, freq, &div1D);
288 
289 	/* see if we can get any closer using PLLs */
290 	if (clk0 != freq && (0x00004387 & (1 << idx))) {
291 		if (idx <= 7)
292 			clk1 = calc_pll(clk, idx, freq, &info->coef);
293 		else
294 			clk1 = cstate->domain[nv_clk_src_hubk06];
295 		clk1 = calc_div(clk, idx, clk1, freq, &div1P);
296 	}
297 
298 	/* select the method which gets closest to target freq */
299 	if (abs((int)freq - clk0) <= abs((int)freq - clk1)) {
300 		info->dsrc = src0;
301 		if (div0) {
302 			info->ddiv |= 0x80000000;
303 			info->ddiv |= div0 << 8;
304 			info->ddiv |= div0;
305 		}
306 		if (div1D) {
307 			info->mdiv |= 0x80000000;
308 			info->mdiv |= div1D;
309 		}
310 		info->ssel = info->coef = 0;
311 		info->freq = clk0;
312 	} else {
313 		if (div1P) {
314 			info->mdiv |= 0x80000000;
315 			info->mdiv |= div1P << 8;
316 		}
317 		info->ssel = (1 << idx);
318 		info->freq = clk1;
319 	}
320 
321 	return 0;
322 }
323 
324 static int
325 gf100_clk_calc(struct nvkm_clk *base, struct nvkm_cstate *cstate)
326 {
327 	struct gf100_clk *clk = gf100_clk(base);
328 	int ret;
329 
330 	if ((ret = calc_clk(clk, cstate, 0x00, nv_clk_src_gpc)) ||
331 	    (ret = calc_clk(clk, cstate, 0x01, nv_clk_src_rop)) ||
332 	    (ret = calc_clk(clk, cstate, 0x02, nv_clk_src_hubk07)) ||
333 	    (ret = calc_clk(clk, cstate, 0x07, nv_clk_src_hubk06)) ||
334 	    (ret = calc_clk(clk, cstate, 0x08, nv_clk_src_hubk01)) ||
335 	    (ret = calc_clk(clk, cstate, 0x09, nv_clk_src_copy)) ||
336 	    (ret = calc_clk(clk, cstate, 0x0c, nv_clk_src_pmu)) ||
337 	    (ret = calc_clk(clk, cstate, 0x0e, nv_clk_src_vdec)))
338 		return ret;
339 
340 	return 0;
341 }
342 
343 static void
344 gf100_clk_prog_0(struct gf100_clk *clk, int idx)
345 {
346 	struct gf100_clk_info *info = &clk->eng[idx];
347 	struct nvkm_device *device = clk->base.subdev.device;
348 	if (idx < 7 && !info->ssel) {
349 		nvkm_mask(device, 0x1371d0 + (idx * 0x04), 0x80003f3f, info->ddiv);
350 		nvkm_wr32(device, 0x137160 + (idx * 0x04), info->dsrc);
351 	}
352 }
353 
354 static void
355 gf100_clk_prog_1(struct gf100_clk *clk, int idx)
356 {
357 	struct nvkm_device *device = clk->base.subdev.device;
358 	nvkm_mask(device, 0x137100, (1 << idx), 0x00000000);
359 	nvkm_msec(device, 2000,
360 		if (!(nvkm_rd32(device, 0x137100) & (1 << idx)))
361 			break;
362 	);
363 }
364 
365 static void
366 gf100_clk_prog_2(struct gf100_clk *clk, int idx)
367 {
368 	struct gf100_clk_info *info = &clk->eng[idx];
369 	struct nvkm_device *device = clk->base.subdev.device;
370 	const u32 addr = 0x137000 + (idx * 0x20);
371 	if (idx <= 7) {
372 		nvkm_mask(device, addr + 0x00, 0x00000004, 0x00000000);
373 		nvkm_mask(device, addr + 0x00, 0x00000001, 0x00000000);
374 		if (info->coef) {
375 			nvkm_wr32(device, addr + 0x04, info->coef);
376 			nvkm_mask(device, addr + 0x00, 0x00000001, 0x00000001);
377 
378 			/* Test PLL lock */
379 			nvkm_mask(device, addr + 0x00, 0x00000010, 0x00000000);
380 			nvkm_msec(device, 2000,
381 				if (nvkm_rd32(device, addr + 0x00) & 0x00020000)
382 					break;
383 			);
384 			nvkm_mask(device, addr + 0x00, 0x00000010, 0x00000010);
385 
386 			/* Enable sync mode */
387 			nvkm_mask(device, addr + 0x00, 0x00000004, 0x00000004);
388 		}
389 	}
390 }
391 
392 static void
393 gf100_clk_prog_3(struct gf100_clk *clk, int idx)
394 {
395 	struct gf100_clk_info *info = &clk->eng[idx];
396 	struct nvkm_device *device = clk->base.subdev.device;
397 	if (info->ssel) {
398 		nvkm_mask(device, 0x137100, (1 << idx), info->ssel);
399 		nvkm_msec(device, 2000,
400 			u32 tmp = nvkm_rd32(device, 0x137100) & (1 << idx);
401 			if (tmp == info->ssel)
402 				break;
403 		);
404 	}
405 }
406 
407 static void
408 gf100_clk_prog_4(struct gf100_clk *clk, int idx)
409 {
410 	struct gf100_clk_info *info = &clk->eng[idx];
411 	struct nvkm_device *device = clk->base.subdev.device;
412 	nvkm_mask(device, 0x137250 + (idx * 0x04), 0x00003f3f, info->mdiv);
413 }
414 
415 static int
416 gf100_clk_prog(struct nvkm_clk *base)
417 {
418 	struct gf100_clk *clk = gf100_clk(base);
419 	struct {
420 		void (*exec)(struct gf100_clk *, int);
421 	} stage[] = {
422 		{ gf100_clk_prog_0 }, /* div programming */
423 		{ gf100_clk_prog_1 }, /* select div mode */
424 		{ gf100_clk_prog_2 }, /* (maybe) program pll */
425 		{ gf100_clk_prog_3 }, /* (maybe) select pll mode */
426 		{ gf100_clk_prog_4 }, /* final divider */
427 	};
428 	int i, j;
429 
430 	for (i = 0; i < ARRAY_SIZE(stage); i++) {
431 		for (j = 0; j < ARRAY_SIZE(clk->eng); j++) {
432 			if (!clk->eng[j].freq)
433 				continue;
434 			stage[i].exec(clk, j);
435 		}
436 	}
437 
438 	return 0;
439 }
440 
441 static void
442 gf100_clk_tidy(struct nvkm_clk *base)
443 {
444 	struct gf100_clk *clk = gf100_clk(base);
445 	memset(clk->eng, 0x00, sizeof(clk->eng));
446 }
447 
448 static const struct nvkm_clk_func
449 gf100_clk = {
450 	.read = gf100_clk_read,
451 	.calc = gf100_clk_calc,
452 	.prog = gf100_clk_prog,
453 	.tidy = gf100_clk_tidy,
454 	.domains = {
455 		{ nv_clk_src_crystal, 0xff },
456 		{ nv_clk_src_href   , 0xff },
457 		{ nv_clk_src_hubk06 , 0x00 },
458 		{ nv_clk_src_hubk01 , 0x01 },
459 		{ nv_clk_src_copy   , 0x02 },
460 		{ nv_clk_src_gpc    , 0x03, NVKM_CLK_DOM_FLAG_VPSTATE, "core", 2000 },
461 		{ nv_clk_src_rop    , 0x04 },
462 		{ nv_clk_src_mem    , 0x05, 0, "memory", 1000 },
463 		{ nv_clk_src_vdec   , 0x06 },
464 		{ nv_clk_src_pmu    , 0x0a },
465 		{ nv_clk_src_hubk07 , 0x0b },
466 		{ nv_clk_src_max }
467 	}
468 };
469 
470 int
471 gf100_clk_new(struct nvkm_device *device, enum nvkm_subdev_type type, int inst,
472 	      struct nvkm_clk **pclk)
473 {
474 	struct gf100_clk *clk;
475 
476 	if (!(clk = kzalloc(sizeof(*clk), GFP_KERNEL)))
477 		return -ENOMEM;
478 	*pclk = &clk->base;
479 
480 	return nvkm_clk_ctor(&gf100_clk, device, type, inst, false, &clk->base);
481 }
482