1 /* 2 * Copyright 2012 Red Hat Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 * Authors: Ben Skeggs 23 */ 24 #include <subdev/clk.h> 25 #include "pll.h" 26 27 #include <subdev/bios.h> 28 #include <subdev/bios/pll.h> 29 #include <subdev/timer.h> 30 31 struct gf100_clk_info { 32 u32 freq; 33 u32 ssel; 34 u32 mdiv; 35 u32 dsrc; 36 u32 ddiv; 37 u32 coef; 38 }; 39 40 struct gf100_clk { 41 struct nvkm_clk base; 42 struct gf100_clk_info eng[16]; 43 }; 44 45 static u32 read_div(struct gf100_clk *, int, u32, u32); 46 47 static u32 48 read_vco(struct gf100_clk *clk, u32 dsrc) 49 { 50 struct nvkm_device *device = clk->base.subdev.device; 51 u32 ssrc = nvkm_rd32(device, dsrc); 52 if (!(ssrc & 0x00000100)) 53 return clk->base.read(&clk->base, nv_clk_src_sppll0); 54 return clk->base.read(&clk->base, nv_clk_src_sppll1); 55 } 56 57 static u32 58 read_pll(struct gf100_clk *clk, u32 pll) 59 { 60 struct nvkm_device *device = clk->base.subdev.device; 61 u32 ctrl = nvkm_rd32(device, pll + 0x00); 62 u32 coef = nvkm_rd32(device, pll + 0x04); 63 u32 P = (coef & 0x003f0000) >> 16; 64 u32 N = (coef & 0x0000ff00) >> 8; 65 u32 M = (coef & 0x000000ff) >> 0; 66 u32 sclk; 67 68 if (!(ctrl & 0x00000001)) 69 return 0; 70 71 switch (pll) { 72 case 0x00e800: 73 case 0x00e820: 74 sclk = device->crystal; 75 P = 1; 76 break; 77 case 0x132000: 78 sclk = clk->base.read(&clk->base, nv_clk_src_mpllsrc); 79 break; 80 case 0x132020: 81 sclk = clk->base.read(&clk->base, nv_clk_src_mpllsrcref); 82 break; 83 case 0x137000: 84 case 0x137020: 85 case 0x137040: 86 case 0x1370e0: 87 sclk = read_div(clk, (pll & 0xff) / 0x20, 0x137120, 0x137140); 88 break; 89 default: 90 return 0; 91 } 92 93 return sclk * N / M / P; 94 } 95 96 static u32 97 read_div(struct gf100_clk *clk, int doff, u32 dsrc, u32 dctl) 98 { 99 struct nvkm_device *device = clk->base.subdev.device; 100 u32 ssrc = nvkm_rd32(device, dsrc + (doff * 4)); 101 u32 sctl = nvkm_rd32(device, dctl + (doff * 4)); 102 103 switch (ssrc & 0x00000003) { 104 case 0: 105 if ((ssrc & 0x00030000) != 0x00030000) 106 return device->crystal; 107 return 108000; 108 case 2: 109 return 100000; 110 case 3: 111 if (sctl & 0x80000000) { 112 u32 sclk = read_vco(clk, dsrc + (doff * 4)); 113 u32 sdiv = (sctl & 0x0000003f) + 2; 114 return (sclk * 2) / sdiv; 115 } 116 117 return read_vco(clk, dsrc + (doff * 4)); 118 default: 119 return 0; 120 } 121 } 122 123 static u32 124 read_clk(struct gf100_clk *clk, int idx) 125 { 126 struct nvkm_device *device = clk->base.subdev.device; 127 u32 sctl = nvkm_rd32(device, 0x137250 + (idx * 4)); 128 u32 ssel = nvkm_rd32(device, 0x137100); 129 u32 sclk, sdiv; 130 131 if (ssel & (1 << idx)) { 132 if (idx < 7) 133 sclk = read_pll(clk, 0x137000 + (idx * 0x20)); 134 else 135 sclk = read_pll(clk, 0x1370e0); 136 sdiv = ((sctl & 0x00003f00) >> 8) + 2; 137 } else { 138 sclk = read_div(clk, idx, 0x137160, 0x1371d0); 139 sdiv = ((sctl & 0x0000003f) >> 0) + 2; 140 } 141 142 if (sctl & 0x80000000) 143 return (sclk * 2) / sdiv; 144 145 return sclk; 146 } 147 148 static int 149 gf100_clk_read(struct nvkm_clk *obj, enum nv_clk_src src) 150 { 151 struct gf100_clk *clk = container_of(obj, typeof(*clk), base); 152 struct nvkm_subdev *subdev = &clk->base.subdev; 153 struct nvkm_device *device = subdev->device; 154 155 switch (src) { 156 case nv_clk_src_crystal: 157 return device->crystal; 158 case nv_clk_src_href: 159 return 100000; 160 case nv_clk_src_sppll0: 161 return read_pll(clk, 0x00e800); 162 case nv_clk_src_sppll1: 163 return read_pll(clk, 0x00e820); 164 165 case nv_clk_src_mpllsrcref: 166 return read_div(clk, 0, 0x137320, 0x137330); 167 case nv_clk_src_mpllsrc: 168 return read_pll(clk, 0x132020); 169 case nv_clk_src_mpll: 170 return read_pll(clk, 0x132000); 171 case nv_clk_src_mdiv: 172 return read_div(clk, 0, 0x137300, 0x137310); 173 case nv_clk_src_mem: 174 if (nvkm_rd32(device, 0x1373f0) & 0x00000002) 175 return clk->base.read(&clk->base, nv_clk_src_mpll); 176 return clk->base.read(&clk->base, nv_clk_src_mdiv); 177 178 case nv_clk_src_gpc: 179 return read_clk(clk, 0x00); 180 case nv_clk_src_rop: 181 return read_clk(clk, 0x01); 182 case nv_clk_src_hubk07: 183 return read_clk(clk, 0x02); 184 case nv_clk_src_hubk06: 185 return read_clk(clk, 0x07); 186 case nv_clk_src_hubk01: 187 return read_clk(clk, 0x08); 188 case nv_clk_src_copy: 189 return read_clk(clk, 0x09); 190 case nv_clk_src_daemon: 191 return read_clk(clk, 0x0c); 192 case nv_clk_src_vdec: 193 return read_clk(clk, 0x0e); 194 default: 195 nvkm_error(subdev, "invalid clock source %d\n", src); 196 return -EINVAL; 197 } 198 } 199 200 static u32 201 calc_div(struct gf100_clk *clk, int idx, u32 ref, u32 freq, u32 *ddiv) 202 { 203 u32 div = min((ref * 2) / freq, (u32)65); 204 if (div < 2) 205 div = 2; 206 207 *ddiv = div - 2; 208 return (ref * 2) / div; 209 } 210 211 static u32 212 calc_src(struct gf100_clk *clk, int idx, u32 freq, u32 *dsrc, u32 *ddiv) 213 { 214 u32 sclk; 215 216 /* use one of the fixed frequencies if possible */ 217 *ddiv = 0x00000000; 218 switch (freq) { 219 case 27000: 220 case 108000: 221 *dsrc = 0x00000000; 222 if (freq == 108000) 223 *dsrc |= 0x00030000; 224 return freq; 225 case 100000: 226 *dsrc = 0x00000002; 227 return freq; 228 default: 229 *dsrc = 0x00000003; 230 break; 231 } 232 233 /* otherwise, calculate the closest divider */ 234 sclk = read_vco(clk, 0x137160 + (idx * 4)); 235 if (idx < 7) 236 sclk = calc_div(clk, idx, sclk, freq, ddiv); 237 return sclk; 238 } 239 240 static u32 241 calc_pll(struct gf100_clk *clk, int idx, u32 freq, u32 *coef) 242 { 243 struct nvkm_bios *bios = nvkm_bios(clk); 244 struct nvbios_pll limits; 245 int N, M, P, ret; 246 247 ret = nvbios_pll_parse(bios, 0x137000 + (idx * 0x20), &limits); 248 if (ret) 249 return 0; 250 251 limits.refclk = read_div(clk, idx, 0x137120, 0x137140); 252 if (!limits.refclk) 253 return 0; 254 255 ret = gt215_pll_calc(nv_subdev(clk), &limits, freq, &N, NULL, &M, &P); 256 if (ret <= 0) 257 return 0; 258 259 *coef = (P << 16) | (N << 8) | M; 260 return ret; 261 } 262 263 static int 264 calc_clk(struct gf100_clk *clk, struct nvkm_cstate *cstate, int idx, int dom) 265 { 266 struct gf100_clk_info *info = &clk->eng[idx]; 267 u32 freq = cstate->domain[dom]; 268 u32 src0, div0, div1D, div1P = 0; 269 u32 clk0, clk1 = 0; 270 271 /* invalid clock domain */ 272 if (!freq) 273 return 0; 274 275 /* first possible path, using only dividers */ 276 clk0 = calc_src(clk, idx, freq, &src0, &div0); 277 clk0 = calc_div(clk, idx, clk0, freq, &div1D); 278 279 /* see if we can get any closer using PLLs */ 280 if (clk0 != freq && (0x00004387 & (1 << idx))) { 281 if (idx <= 7) 282 clk1 = calc_pll(clk, idx, freq, &info->coef); 283 else 284 clk1 = cstate->domain[nv_clk_src_hubk06]; 285 clk1 = calc_div(clk, idx, clk1, freq, &div1P); 286 } 287 288 /* select the method which gets closest to target freq */ 289 if (abs((int)freq - clk0) <= abs((int)freq - clk1)) { 290 info->dsrc = src0; 291 if (div0) { 292 info->ddiv |= 0x80000000; 293 info->ddiv |= div0 << 8; 294 info->ddiv |= div0; 295 } 296 if (div1D) { 297 info->mdiv |= 0x80000000; 298 info->mdiv |= div1D; 299 } 300 info->ssel = info->coef = 0; 301 info->freq = clk0; 302 } else { 303 if (div1P) { 304 info->mdiv |= 0x80000000; 305 info->mdiv |= div1P << 8; 306 } 307 info->ssel = (1 << idx); 308 info->freq = clk1; 309 } 310 311 return 0; 312 } 313 314 static int 315 gf100_clk_calc(struct nvkm_clk *obj, struct nvkm_cstate *cstate) 316 { 317 struct gf100_clk *clk = container_of(obj, typeof(*clk), base); 318 int ret; 319 320 if ((ret = calc_clk(clk, cstate, 0x00, nv_clk_src_gpc)) || 321 (ret = calc_clk(clk, cstate, 0x01, nv_clk_src_rop)) || 322 (ret = calc_clk(clk, cstate, 0x02, nv_clk_src_hubk07)) || 323 (ret = calc_clk(clk, cstate, 0x07, nv_clk_src_hubk06)) || 324 (ret = calc_clk(clk, cstate, 0x08, nv_clk_src_hubk01)) || 325 (ret = calc_clk(clk, cstate, 0x09, nv_clk_src_copy)) || 326 (ret = calc_clk(clk, cstate, 0x0c, nv_clk_src_daemon)) || 327 (ret = calc_clk(clk, cstate, 0x0e, nv_clk_src_vdec))) 328 return ret; 329 330 return 0; 331 } 332 333 static void 334 gf100_clk_prog_0(struct gf100_clk *clk, int idx) 335 { 336 struct gf100_clk_info *info = &clk->eng[idx]; 337 struct nvkm_device *device = clk->base.subdev.device; 338 if (idx < 7 && !info->ssel) { 339 nvkm_mask(device, 0x1371d0 + (idx * 0x04), 0x80003f3f, info->ddiv); 340 nvkm_wr32(device, 0x137160 + (idx * 0x04), info->dsrc); 341 } 342 } 343 344 static void 345 gf100_clk_prog_1(struct gf100_clk *clk, int idx) 346 { 347 struct nvkm_device *device = clk->base.subdev.device; 348 nvkm_mask(device, 0x137100, (1 << idx), 0x00000000); 349 nvkm_msec(device, 2000, 350 if (!(nvkm_rd32(device, 0x137100) & (1 << idx))) 351 break; 352 ); 353 } 354 355 static void 356 gf100_clk_prog_2(struct gf100_clk *clk, int idx) 357 { 358 struct gf100_clk_info *info = &clk->eng[idx]; 359 struct nvkm_device *device = clk->base.subdev.device; 360 const u32 addr = 0x137000 + (idx * 0x20); 361 if (idx <= 7) { 362 nvkm_mask(device, addr + 0x00, 0x00000004, 0x00000000); 363 nvkm_mask(device, addr + 0x00, 0x00000001, 0x00000000); 364 if (info->coef) { 365 nvkm_wr32(device, addr + 0x04, info->coef); 366 nvkm_mask(device, addr + 0x00, 0x00000001, 0x00000001); 367 nvkm_msec(device, 2000, 368 if (nvkm_rd32(device, addr + 0x00) & 0x00020000) 369 break; 370 ); 371 nvkm_mask(device, addr + 0x00, 0x00020004, 0x00000004); 372 } 373 } 374 } 375 376 static void 377 gf100_clk_prog_3(struct gf100_clk *clk, int idx) 378 { 379 struct gf100_clk_info *info = &clk->eng[idx]; 380 struct nvkm_device *device = clk->base.subdev.device; 381 if (info->ssel) { 382 nvkm_mask(device, 0x137100, (1 << idx), info->ssel); 383 nvkm_msec(device, 2000, 384 u32 tmp = nvkm_rd32(device, 0x137100) & (1 << idx); 385 if (tmp == info->ssel) 386 break; 387 ); 388 } 389 } 390 391 static void 392 gf100_clk_prog_4(struct gf100_clk *clk, int idx) 393 { 394 struct gf100_clk_info *info = &clk->eng[idx]; 395 struct nvkm_device *device = clk->base.subdev.device; 396 nvkm_mask(device, 0x137250 + (idx * 0x04), 0x00003f3f, info->mdiv); 397 } 398 399 static int 400 gf100_clk_prog(struct nvkm_clk *obj) 401 { 402 struct gf100_clk *clk = container_of(obj, typeof(*clk), base); 403 struct { 404 void (*exec)(struct gf100_clk *, int); 405 } stage[] = { 406 { gf100_clk_prog_0 }, /* div programming */ 407 { gf100_clk_prog_1 }, /* select div mode */ 408 { gf100_clk_prog_2 }, /* (maybe) program pll */ 409 { gf100_clk_prog_3 }, /* (maybe) select pll mode */ 410 { gf100_clk_prog_4 }, /* final divider */ 411 }; 412 int i, j; 413 414 for (i = 0; i < ARRAY_SIZE(stage); i++) { 415 for (j = 0; j < ARRAY_SIZE(clk->eng); j++) { 416 if (!clk->eng[j].freq) 417 continue; 418 stage[i].exec(clk, j); 419 } 420 } 421 422 return 0; 423 } 424 425 static void 426 gf100_clk_tidy(struct nvkm_clk *obj) 427 { 428 struct gf100_clk *clk = container_of(obj, typeof(*clk), base); 429 memset(clk->eng, 0x00, sizeof(clk->eng)); 430 } 431 432 static struct nvkm_domain 433 gf100_domain[] = { 434 { nv_clk_src_crystal, 0xff }, 435 { nv_clk_src_href , 0xff }, 436 { nv_clk_src_hubk06 , 0x00 }, 437 { nv_clk_src_hubk01 , 0x01 }, 438 { nv_clk_src_copy , 0x02 }, 439 { nv_clk_src_gpc , 0x03, 0, "core", 2000 }, 440 { nv_clk_src_rop , 0x04 }, 441 { nv_clk_src_mem , 0x05, 0, "memory", 1000 }, 442 { nv_clk_src_vdec , 0x06 }, 443 { nv_clk_src_daemon , 0x0a }, 444 { nv_clk_src_hubk07 , 0x0b }, 445 { nv_clk_src_max } 446 }; 447 448 static int 449 gf100_clk_ctor(struct nvkm_object *parent, struct nvkm_object *engine, 450 struct nvkm_oclass *oclass, void *data, u32 size, 451 struct nvkm_object **pobject) 452 { 453 struct gf100_clk *clk; 454 int ret; 455 456 ret = nvkm_clk_create(parent, engine, oclass, gf100_domain, 457 NULL, 0, false, &clk); 458 *pobject = nv_object(clk); 459 if (ret) 460 return ret; 461 462 clk->base.read = gf100_clk_read; 463 clk->base.calc = gf100_clk_calc; 464 clk->base.prog = gf100_clk_prog; 465 clk->base.tidy = gf100_clk_tidy; 466 return 0; 467 } 468 469 struct nvkm_oclass 470 gf100_clk_oclass = { 471 .handle = NV_SUBDEV(CLK, 0xc0), 472 .ofuncs = &(struct nvkm_ofuncs) { 473 .ctor = gf100_clk_ctor, 474 .dtor = _nvkm_clk_dtor, 475 .init = _nvkm_clk_init, 476 .fini = _nvkm_clk_fini, 477 }, 478 }; 479