1 /*
2  * Copyright 2012 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Ben Skeggs
23  */
24 #include "gf100.h"
25 #include "ctxgf100.h"
26 #include "fuc/os.h"
27 
28 #include <core/client.h>
29 #include <core/option.h>
30 #include <core/firmware.h>
31 #include <subdev/secboot.h>
32 #include <subdev/fb.h>
33 #include <subdev/mc.h>
34 #include <subdev/pmu.h>
35 #include <subdev/therm.h>
36 #include <subdev/timer.h>
37 #include <engine/fifo.h>
38 
39 #include <nvif/class.h>
40 #include <nvif/cl9097.h>
41 #include <nvif/if900d.h>
42 #include <nvif/unpack.h>
43 
44 /*******************************************************************************
45  * Zero Bandwidth Clear
46  ******************************************************************************/
47 
48 static void
49 gf100_gr_zbc_clear_color(struct gf100_gr *gr, int zbc)
50 {
51 	struct nvkm_device *device = gr->base.engine.subdev.device;
52 	if (gr->zbc_color[zbc].format) {
53 		nvkm_wr32(device, 0x405804, gr->zbc_color[zbc].ds[0]);
54 		nvkm_wr32(device, 0x405808, gr->zbc_color[zbc].ds[1]);
55 		nvkm_wr32(device, 0x40580c, gr->zbc_color[zbc].ds[2]);
56 		nvkm_wr32(device, 0x405810, gr->zbc_color[zbc].ds[3]);
57 	}
58 	nvkm_wr32(device, 0x405814, gr->zbc_color[zbc].format);
59 	nvkm_wr32(device, 0x405820, zbc);
60 	nvkm_wr32(device, 0x405824, 0x00000004); /* TRIGGER | WRITE | COLOR */
61 }
62 
63 static int
64 gf100_gr_zbc_color_get(struct gf100_gr *gr, int format,
65 		       const u32 ds[4], const u32 l2[4])
66 {
67 	struct nvkm_ltc *ltc = gr->base.engine.subdev.device->ltc;
68 	int zbc = -ENOSPC, i;
69 
70 	for (i = ltc->zbc_min; i <= ltc->zbc_max; i++) {
71 		if (gr->zbc_color[i].format) {
72 			if (gr->zbc_color[i].format != format)
73 				continue;
74 			if (memcmp(gr->zbc_color[i].ds, ds, sizeof(
75 				   gr->zbc_color[i].ds)))
76 				continue;
77 			if (memcmp(gr->zbc_color[i].l2, l2, sizeof(
78 				   gr->zbc_color[i].l2))) {
79 				WARN_ON(1);
80 				return -EINVAL;
81 			}
82 			return i;
83 		} else {
84 			zbc = (zbc < 0) ? i : zbc;
85 		}
86 	}
87 
88 	if (zbc < 0)
89 		return zbc;
90 
91 	memcpy(gr->zbc_color[zbc].ds, ds, sizeof(gr->zbc_color[zbc].ds));
92 	memcpy(gr->zbc_color[zbc].l2, l2, sizeof(gr->zbc_color[zbc].l2));
93 	gr->zbc_color[zbc].format = format;
94 	nvkm_ltc_zbc_color_get(ltc, zbc, l2);
95 	gr->func->zbc->clear_color(gr, zbc);
96 	return zbc;
97 }
98 
99 static void
100 gf100_gr_zbc_clear_depth(struct gf100_gr *gr, int zbc)
101 {
102 	struct nvkm_device *device = gr->base.engine.subdev.device;
103 	if (gr->zbc_depth[zbc].format)
104 		nvkm_wr32(device, 0x405818, gr->zbc_depth[zbc].ds);
105 	nvkm_wr32(device, 0x40581c, gr->zbc_depth[zbc].format);
106 	nvkm_wr32(device, 0x405820, zbc);
107 	nvkm_wr32(device, 0x405824, 0x00000005); /* TRIGGER | WRITE | DEPTH */
108 }
109 
110 static int
111 gf100_gr_zbc_depth_get(struct gf100_gr *gr, int format,
112 		       const u32 ds, const u32 l2)
113 {
114 	struct nvkm_ltc *ltc = gr->base.engine.subdev.device->ltc;
115 	int zbc = -ENOSPC, i;
116 
117 	for (i = ltc->zbc_min; i <= ltc->zbc_max; i++) {
118 		if (gr->zbc_depth[i].format) {
119 			if (gr->zbc_depth[i].format != format)
120 				continue;
121 			if (gr->zbc_depth[i].ds != ds)
122 				continue;
123 			if (gr->zbc_depth[i].l2 != l2) {
124 				WARN_ON(1);
125 				return -EINVAL;
126 			}
127 			return i;
128 		} else {
129 			zbc = (zbc < 0) ? i : zbc;
130 		}
131 	}
132 
133 	if (zbc < 0)
134 		return zbc;
135 
136 	gr->zbc_depth[zbc].format = format;
137 	gr->zbc_depth[zbc].ds = ds;
138 	gr->zbc_depth[zbc].l2 = l2;
139 	nvkm_ltc_zbc_depth_get(ltc, zbc, l2);
140 	gr->func->zbc->clear_depth(gr, zbc);
141 	return zbc;
142 }
143 
144 const struct gf100_gr_func_zbc
145 gf100_gr_zbc = {
146 	.clear_color = gf100_gr_zbc_clear_color,
147 	.clear_depth = gf100_gr_zbc_clear_depth,
148 };
149 
150 /*******************************************************************************
151  * Graphics object classes
152  ******************************************************************************/
153 #define gf100_gr_object(p) container_of((p), struct gf100_gr_object, object)
154 
155 struct gf100_gr_object {
156 	struct nvkm_object object;
157 	struct gf100_gr_chan *chan;
158 };
159 
160 static int
161 gf100_fermi_mthd_zbc_color(struct nvkm_object *object, void *data, u32 size)
162 {
163 	struct gf100_gr *gr = gf100_gr(nvkm_gr(object->engine));
164 	union {
165 		struct fermi_a_zbc_color_v0 v0;
166 	} *args = data;
167 	int ret = -ENOSYS;
168 
169 	if (!(ret = nvif_unpack(ret, &data, &size, args->v0, 0, 0, false))) {
170 		switch (args->v0.format) {
171 		case FERMI_A_ZBC_COLOR_V0_FMT_ZERO:
172 		case FERMI_A_ZBC_COLOR_V0_FMT_UNORM_ONE:
173 		case FERMI_A_ZBC_COLOR_V0_FMT_RF32_GF32_BF32_AF32:
174 		case FERMI_A_ZBC_COLOR_V0_FMT_R16_G16_B16_A16:
175 		case FERMI_A_ZBC_COLOR_V0_FMT_RN16_GN16_BN16_AN16:
176 		case FERMI_A_ZBC_COLOR_V0_FMT_RS16_GS16_BS16_AS16:
177 		case FERMI_A_ZBC_COLOR_V0_FMT_RU16_GU16_BU16_AU16:
178 		case FERMI_A_ZBC_COLOR_V0_FMT_RF16_GF16_BF16_AF16:
179 		case FERMI_A_ZBC_COLOR_V0_FMT_A8R8G8B8:
180 		case FERMI_A_ZBC_COLOR_V0_FMT_A8RL8GL8BL8:
181 		case FERMI_A_ZBC_COLOR_V0_FMT_A2B10G10R10:
182 		case FERMI_A_ZBC_COLOR_V0_FMT_AU2BU10GU10RU10:
183 		case FERMI_A_ZBC_COLOR_V0_FMT_A8B8G8R8:
184 		case FERMI_A_ZBC_COLOR_V0_FMT_A8BL8GL8RL8:
185 		case FERMI_A_ZBC_COLOR_V0_FMT_AN8BN8GN8RN8:
186 		case FERMI_A_ZBC_COLOR_V0_FMT_AS8BS8GS8RS8:
187 		case FERMI_A_ZBC_COLOR_V0_FMT_AU8BU8GU8RU8:
188 		case FERMI_A_ZBC_COLOR_V0_FMT_A2R10G10B10:
189 		case FERMI_A_ZBC_COLOR_V0_FMT_BF10GF11RF11:
190 			ret = gf100_gr_zbc_color_get(gr, args->v0.format,
191 							   args->v0.ds,
192 							   args->v0.l2);
193 			if (ret >= 0) {
194 				args->v0.index = ret;
195 				return 0;
196 			}
197 			break;
198 		default:
199 			return -EINVAL;
200 		}
201 	}
202 
203 	return ret;
204 }
205 
206 static int
207 gf100_fermi_mthd_zbc_depth(struct nvkm_object *object, void *data, u32 size)
208 {
209 	struct gf100_gr *gr = gf100_gr(nvkm_gr(object->engine));
210 	union {
211 		struct fermi_a_zbc_depth_v0 v0;
212 	} *args = data;
213 	int ret = -ENOSYS;
214 
215 	if (!(ret = nvif_unpack(ret, &data, &size, args->v0, 0, 0, false))) {
216 		switch (args->v0.format) {
217 		case FERMI_A_ZBC_DEPTH_V0_FMT_FP32:
218 			ret = gf100_gr_zbc_depth_get(gr, args->v0.format,
219 							   args->v0.ds,
220 							   args->v0.l2);
221 			return (ret >= 0) ? 0 : -ENOSPC;
222 		default:
223 			return -EINVAL;
224 		}
225 	}
226 
227 	return ret;
228 }
229 
230 static int
231 gf100_fermi_mthd(struct nvkm_object *object, u32 mthd, void *data, u32 size)
232 {
233 	nvif_ioctl(object, "fermi mthd %08x\n", mthd);
234 	switch (mthd) {
235 	case FERMI_A_ZBC_COLOR:
236 		return gf100_fermi_mthd_zbc_color(object, data, size);
237 	case FERMI_A_ZBC_DEPTH:
238 		return gf100_fermi_mthd_zbc_depth(object, data, size);
239 	default:
240 		break;
241 	}
242 	return -EINVAL;
243 }
244 
245 const struct nvkm_object_func
246 gf100_fermi = {
247 	.mthd = gf100_fermi_mthd,
248 };
249 
250 static void
251 gf100_gr_mthd_set_shader_exceptions(struct nvkm_device *device, u32 data)
252 {
253 	nvkm_wr32(device, 0x419e44, data ? 0xffffffff : 0x00000000);
254 	nvkm_wr32(device, 0x419e4c, data ? 0xffffffff : 0x00000000);
255 }
256 
257 static bool
258 gf100_gr_mthd_sw(struct nvkm_device *device, u16 class, u32 mthd, u32 data)
259 {
260 	switch (class & 0x00ff) {
261 	case 0x97:
262 	case 0xc0:
263 		switch (mthd) {
264 		case 0x1528:
265 			gf100_gr_mthd_set_shader_exceptions(device, data);
266 			return true;
267 		default:
268 			break;
269 		}
270 		break;
271 	default:
272 		break;
273 	}
274 	return false;
275 }
276 
277 static const struct nvkm_object_func
278 gf100_gr_object_func = {
279 };
280 
281 static int
282 gf100_gr_object_new(const struct nvkm_oclass *oclass, void *data, u32 size,
283 		    struct nvkm_object **pobject)
284 {
285 	struct gf100_gr_chan *chan = gf100_gr_chan(oclass->parent);
286 	struct gf100_gr_object *object;
287 
288 	if (!(object = kzalloc(sizeof(*object), GFP_KERNEL)))
289 		return -ENOMEM;
290 	*pobject = &object->object;
291 
292 	nvkm_object_ctor(oclass->base.func ? oclass->base.func :
293 			 &gf100_gr_object_func, oclass, &object->object);
294 	object->chan = chan;
295 	return 0;
296 }
297 
298 static int
299 gf100_gr_object_get(struct nvkm_gr *base, int index, struct nvkm_sclass *sclass)
300 {
301 	struct gf100_gr *gr = gf100_gr(base);
302 	int c = 0;
303 
304 	while (gr->func->sclass[c].oclass) {
305 		if (c++ == index) {
306 			*sclass = gr->func->sclass[index];
307 			sclass->ctor = gf100_gr_object_new;
308 			return index;
309 		}
310 	}
311 
312 	return c;
313 }
314 
315 /*******************************************************************************
316  * PGRAPH context
317  ******************************************************************************/
318 
319 static int
320 gf100_gr_chan_bind(struct nvkm_object *object, struct nvkm_gpuobj *parent,
321 		   int align, struct nvkm_gpuobj **pgpuobj)
322 {
323 	struct gf100_gr_chan *chan = gf100_gr_chan(object);
324 	struct gf100_gr *gr = chan->gr;
325 	int ret, i;
326 
327 	ret = nvkm_gpuobj_new(gr->base.engine.subdev.device, gr->size,
328 			      align, false, parent, pgpuobj);
329 	if (ret)
330 		return ret;
331 
332 	nvkm_kmap(*pgpuobj);
333 	for (i = 0; i < gr->size; i += 4)
334 		nvkm_wo32(*pgpuobj, i, gr->data[i / 4]);
335 
336 	if (!gr->firmware) {
337 		nvkm_wo32(*pgpuobj, 0x00, chan->mmio_nr / 2);
338 		nvkm_wo32(*pgpuobj, 0x04, chan->mmio_vma->addr >> 8);
339 	} else {
340 		nvkm_wo32(*pgpuobj, 0xf4, 0);
341 		nvkm_wo32(*pgpuobj, 0xf8, 0);
342 		nvkm_wo32(*pgpuobj, 0x10, chan->mmio_nr / 2);
343 		nvkm_wo32(*pgpuobj, 0x14, lower_32_bits(chan->mmio_vma->addr));
344 		nvkm_wo32(*pgpuobj, 0x18, upper_32_bits(chan->mmio_vma->addr));
345 		nvkm_wo32(*pgpuobj, 0x1c, 1);
346 		nvkm_wo32(*pgpuobj, 0x20, 0);
347 		nvkm_wo32(*pgpuobj, 0x28, 0);
348 		nvkm_wo32(*pgpuobj, 0x2c, 0);
349 	}
350 	nvkm_done(*pgpuobj);
351 	return 0;
352 }
353 
354 static void *
355 gf100_gr_chan_dtor(struct nvkm_object *object)
356 {
357 	struct gf100_gr_chan *chan = gf100_gr_chan(object);
358 	int i;
359 
360 	for (i = 0; i < ARRAY_SIZE(chan->data); i++) {
361 		nvkm_vmm_put(chan->vmm, &chan->data[i].vma);
362 		nvkm_memory_unref(&chan->data[i].mem);
363 	}
364 
365 	nvkm_vmm_put(chan->vmm, &chan->mmio_vma);
366 	nvkm_memory_unref(&chan->mmio);
367 	nvkm_vmm_unref(&chan->vmm);
368 	return chan;
369 }
370 
371 static const struct nvkm_object_func
372 gf100_gr_chan = {
373 	.dtor = gf100_gr_chan_dtor,
374 	.bind = gf100_gr_chan_bind,
375 };
376 
377 static int
378 gf100_gr_chan_new(struct nvkm_gr *base, struct nvkm_fifo_chan *fifoch,
379 		  const struct nvkm_oclass *oclass,
380 		  struct nvkm_object **pobject)
381 {
382 	struct gf100_gr *gr = gf100_gr(base);
383 	struct gf100_gr_data *data = gr->mmio_data;
384 	struct gf100_gr_mmio *mmio = gr->mmio_list;
385 	struct gf100_gr_chan *chan;
386 	struct gf100_vmm_map_v0 args = { .priv = 1 };
387 	struct nvkm_device *device = gr->base.engine.subdev.device;
388 	int ret, i;
389 
390 	if (!(chan = kzalloc(sizeof(*chan), GFP_KERNEL)))
391 		return -ENOMEM;
392 	nvkm_object_ctor(&gf100_gr_chan, oclass, &chan->object);
393 	chan->gr = gr;
394 	chan->vmm = nvkm_vmm_ref(fifoch->vmm);
395 	*pobject = &chan->object;
396 
397 	/* allocate memory for a "mmio list" buffer that's used by the HUB
398 	 * fuc to modify some per-context register settings on first load
399 	 * of the context.
400 	 */
401 	ret = nvkm_memory_new(device, NVKM_MEM_TARGET_INST, 0x1000, 0x100,
402 			      false, &chan->mmio);
403 	if (ret)
404 		return ret;
405 
406 	ret = nvkm_vmm_get(fifoch->vmm, 12, 0x1000, &chan->mmio_vma);
407 	if (ret)
408 		return ret;
409 
410 	ret = nvkm_memory_map(chan->mmio, 0, fifoch->vmm,
411 			      chan->mmio_vma, &args, sizeof(args));
412 	if (ret)
413 		return ret;
414 
415 	/* allocate buffers referenced by mmio list */
416 	for (i = 0; data->size && i < ARRAY_SIZE(gr->mmio_data); i++) {
417 		ret = nvkm_memory_new(device, NVKM_MEM_TARGET_INST,
418 				      data->size, data->align, false,
419 				      &chan->data[i].mem);
420 		if (ret)
421 			return ret;
422 
423 		ret = nvkm_vmm_get(fifoch->vmm, 12,
424 				   nvkm_memory_size(chan->data[i].mem),
425 				   &chan->data[i].vma);
426 		if (ret)
427 			return ret;
428 
429 		args.priv = data->priv;
430 
431 		ret = nvkm_memory_map(chan->data[i].mem, 0, chan->vmm,
432 				      chan->data[i].vma, &args, sizeof(args));
433 		if (ret)
434 			return ret;
435 
436 		data++;
437 	}
438 
439 	/* finally, fill in the mmio list and point the context at it */
440 	nvkm_kmap(chan->mmio);
441 	for (i = 0; mmio->addr && i < ARRAY_SIZE(gr->mmio_list); i++) {
442 		u32 addr = mmio->addr;
443 		u32 data = mmio->data;
444 
445 		if (mmio->buffer >= 0) {
446 			u64 info = chan->data[mmio->buffer].vma->addr;
447 			data |= info >> mmio->shift;
448 		}
449 
450 		nvkm_wo32(chan->mmio, chan->mmio_nr++ * 4, addr);
451 		nvkm_wo32(chan->mmio, chan->mmio_nr++ * 4, data);
452 		mmio++;
453 	}
454 	nvkm_done(chan->mmio);
455 	return 0;
456 }
457 
458 /*******************************************************************************
459  * PGRAPH register lists
460  ******************************************************************************/
461 
462 const struct gf100_gr_init
463 gf100_gr_init_main_0[] = {
464 	{ 0x400080,   1, 0x04, 0x003083c2 },
465 	{ 0x400088,   1, 0x04, 0x00006fe7 },
466 	{ 0x40008c,   1, 0x04, 0x00000000 },
467 	{ 0x400090,   1, 0x04, 0x00000030 },
468 	{ 0x40013c,   1, 0x04, 0x013901f7 },
469 	{ 0x400140,   1, 0x04, 0x00000100 },
470 	{ 0x400144,   1, 0x04, 0x00000000 },
471 	{ 0x400148,   1, 0x04, 0x00000110 },
472 	{ 0x400138,   1, 0x04, 0x00000000 },
473 	{ 0x400130,   2, 0x04, 0x00000000 },
474 	{ 0x400124,   1, 0x04, 0x00000002 },
475 	{}
476 };
477 
478 const struct gf100_gr_init
479 gf100_gr_init_fe_0[] = {
480 	{ 0x40415c,   1, 0x04, 0x00000000 },
481 	{ 0x404170,   1, 0x04, 0x00000000 },
482 	{}
483 };
484 
485 const struct gf100_gr_init
486 gf100_gr_init_pri_0[] = {
487 	{ 0x404488,   2, 0x04, 0x00000000 },
488 	{}
489 };
490 
491 const struct gf100_gr_init
492 gf100_gr_init_rstr2d_0[] = {
493 	{ 0x407808,   1, 0x04, 0x00000000 },
494 	{}
495 };
496 
497 const struct gf100_gr_init
498 gf100_gr_init_pd_0[] = {
499 	{ 0x406024,   1, 0x04, 0x00000000 },
500 	{}
501 };
502 
503 const struct gf100_gr_init
504 gf100_gr_init_ds_0[] = {
505 	{ 0x405844,   1, 0x04, 0x00ffffff },
506 	{ 0x405850,   1, 0x04, 0x00000000 },
507 	{ 0x405908,   1, 0x04, 0x00000000 },
508 	{}
509 };
510 
511 const struct gf100_gr_init
512 gf100_gr_init_scc_0[] = {
513 	{ 0x40803c,   1, 0x04, 0x00000000 },
514 	{}
515 };
516 
517 const struct gf100_gr_init
518 gf100_gr_init_prop_0[] = {
519 	{ 0x4184a0,   1, 0x04, 0x00000000 },
520 	{}
521 };
522 
523 const struct gf100_gr_init
524 gf100_gr_init_gpc_unk_0[] = {
525 	{ 0x418604,   1, 0x04, 0x00000000 },
526 	{ 0x418680,   1, 0x04, 0x00000000 },
527 	{ 0x418714,   1, 0x04, 0x80000000 },
528 	{ 0x418384,   1, 0x04, 0x00000000 },
529 	{}
530 };
531 
532 const struct gf100_gr_init
533 gf100_gr_init_setup_0[] = {
534 	{ 0x418814,   3, 0x04, 0x00000000 },
535 	{}
536 };
537 
538 const struct gf100_gr_init
539 gf100_gr_init_crstr_0[] = {
540 	{ 0x418b04,   1, 0x04, 0x00000000 },
541 	{}
542 };
543 
544 const struct gf100_gr_init
545 gf100_gr_init_setup_1[] = {
546 	{ 0x4188c8,   1, 0x04, 0x80000000 },
547 	{ 0x4188cc,   1, 0x04, 0x00000000 },
548 	{ 0x4188d0,   1, 0x04, 0x00010000 },
549 	{ 0x4188d4,   1, 0x04, 0x00000001 },
550 	{}
551 };
552 
553 const struct gf100_gr_init
554 gf100_gr_init_zcull_0[] = {
555 	{ 0x418910,   1, 0x04, 0x00010001 },
556 	{ 0x418914,   1, 0x04, 0x00000301 },
557 	{ 0x418918,   1, 0x04, 0x00800000 },
558 	{ 0x418980,   1, 0x04, 0x77777770 },
559 	{ 0x418984,   3, 0x04, 0x77777777 },
560 	{}
561 };
562 
563 const struct gf100_gr_init
564 gf100_gr_init_gpm_0[] = {
565 	{ 0x418c04,   1, 0x04, 0x00000000 },
566 	{ 0x418c88,   1, 0x04, 0x00000000 },
567 	{}
568 };
569 
570 const struct gf100_gr_init
571 gf100_gr_init_gpc_unk_1[] = {
572 	{ 0x418d00,   1, 0x04, 0x00000000 },
573 	{ 0x418f08,   1, 0x04, 0x00000000 },
574 	{ 0x418e00,   1, 0x04, 0x00000050 },
575 	{ 0x418e08,   1, 0x04, 0x00000000 },
576 	{}
577 };
578 
579 const struct gf100_gr_init
580 gf100_gr_init_gcc_0[] = {
581 	{ 0x41900c,   1, 0x04, 0x00000000 },
582 	{ 0x419018,   1, 0x04, 0x00000000 },
583 	{}
584 };
585 
586 const struct gf100_gr_init
587 gf100_gr_init_tpccs_0[] = {
588 	{ 0x419d08,   2, 0x04, 0x00000000 },
589 	{ 0x419d10,   1, 0x04, 0x00000014 },
590 	{}
591 };
592 
593 const struct gf100_gr_init
594 gf100_gr_init_tex_0[] = {
595 	{ 0x419ab0,   1, 0x04, 0x00000000 },
596 	{ 0x419ab8,   1, 0x04, 0x000000e7 },
597 	{ 0x419abc,   2, 0x04, 0x00000000 },
598 	{}
599 };
600 
601 const struct gf100_gr_init
602 gf100_gr_init_pe_0[] = {
603 	{ 0x41980c,   3, 0x04, 0x00000000 },
604 	{ 0x419844,   1, 0x04, 0x00000000 },
605 	{ 0x41984c,   1, 0x04, 0x00005bc5 },
606 	{ 0x419850,   4, 0x04, 0x00000000 },
607 	{}
608 };
609 
610 const struct gf100_gr_init
611 gf100_gr_init_l1c_0[] = {
612 	{ 0x419c98,   1, 0x04, 0x00000000 },
613 	{ 0x419ca8,   1, 0x04, 0x80000000 },
614 	{ 0x419cb4,   1, 0x04, 0x00000000 },
615 	{ 0x419cb8,   1, 0x04, 0x00008bf4 },
616 	{ 0x419cbc,   1, 0x04, 0x28137606 },
617 	{ 0x419cc0,   2, 0x04, 0x00000000 },
618 	{}
619 };
620 
621 const struct gf100_gr_init
622 gf100_gr_init_wwdx_0[] = {
623 	{ 0x419bd4,   1, 0x04, 0x00800000 },
624 	{ 0x419bdc,   1, 0x04, 0x00000000 },
625 	{}
626 };
627 
628 const struct gf100_gr_init
629 gf100_gr_init_tpccs_1[] = {
630 	{ 0x419d2c,   1, 0x04, 0x00000000 },
631 	{}
632 };
633 
634 const struct gf100_gr_init
635 gf100_gr_init_mpc_0[] = {
636 	{ 0x419c0c,   1, 0x04, 0x00000000 },
637 	{}
638 };
639 
640 static const struct gf100_gr_init
641 gf100_gr_init_sm_0[] = {
642 	{ 0x419e00,   1, 0x04, 0x00000000 },
643 	{ 0x419ea0,   1, 0x04, 0x00000000 },
644 	{ 0x419ea4,   1, 0x04, 0x00000100 },
645 	{ 0x419ea8,   1, 0x04, 0x00001100 },
646 	{ 0x419eac,   1, 0x04, 0x11100702 },
647 	{ 0x419eb0,   1, 0x04, 0x00000003 },
648 	{ 0x419eb4,   4, 0x04, 0x00000000 },
649 	{ 0x419ec8,   1, 0x04, 0x06060618 },
650 	{ 0x419ed0,   1, 0x04, 0x0eff0e38 },
651 	{ 0x419ed4,   1, 0x04, 0x011104f1 },
652 	{ 0x419edc,   1, 0x04, 0x00000000 },
653 	{ 0x419f00,   1, 0x04, 0x00000000 },
654 	{ 0x419f2c,   1, 0x04, 0x00000000 },
655 	{}
656 };
657 
658 const struct gf100_gr_init
659 gf100_gr_init_be_0[] = {
660 	{ 0x40880c,   1, 0x04, 0x00000000 },
661 	{ 0x408910,   9, 0x04, 0x00000000 },
662 	{ 0x408950,   1, 0x04, 0x00000000 },
663 	{ 0x408954,   1, 0x04, 0x0000ffff },
664 	{ 0x408984,   1, 0x04, 0x00000000 },
665 	{ 0x408988,   1, 0x04, 0x08040201 },
666 	{ 0x40898c,   1, 0x04, 0x80402010 },
667 	{}
668 };
669 
670 const struct gf100_gr_init
671 gf100_gr_init_fe_1[] = {
672 	{ 0x4040f0,   1, 0x04, 0x00000000 },
673 	{}
674 };
675 
676 const struct gf100_gr_init
677 gf100_gr_init_pe_1[] = {
678 	{ 0x419880,   1, 0x04, 0x00000002 },
679 	{}
680 };
681 
682 static const struct gf100_gr_pack
683 gf100_gr_pack_mmio[] = {
684 	{ gf100_gr_init_main_0 },
685 	{ gf100_gr_init_fe_0 },
686 	{ gf100_gr_init_pri_0 },
687 	{ gf100_gr_init_rstr2d_0 },
688 	{ gf100_gr_init_pd_0 },
689 	{ gf100_gr_init_ds_0 },
690 	{ gf100_gr_init_scc_0 },
691 	{ gf100_gr_init_prop_0 },
692 	{ gf100_gr_init_gpc_unk_0 },
693 	{ gf100_gr_init_setup_0 },
694 	{ gf100_gr_init_crstr_0 },
695 	{ gf100_gr_init_setup_1 },
696 	{ gf100_gr_init_zcull_0 },
697 	{ gf100_gr_init_gpm_0 },
698 	{ gf100_gr_init_gpc_unk_1 },
699 	{ gf100_gr_init_gcc_0 },
700 	{ gf100_gr_init_tpccs_0 },
701 	{ gf100_gr_init_tex_0 },
702 	{ gf100_gr_init_pe_0 },
703 	{ gf100_gr_init_l1c_0 },
704 	{ gf100_gr_init_wwdx_0 },
705 	{ gf100_gr_init_tpccs_1 },
706 	{ gf100_gr_init_mpc_0 },
707 	{ gf100_gr_init_sm_0 },
708 	{ gf100_gr_init_be_0 },
709 	{ gf100_gr_init_fe_1 },
710 	{ gf100_gr_init_pe_1 },
711 	{}
712 };
713 
714 /*******************************************************************************
715  * PGRAPH engine/subdev functions
716  ******************************************************************************/
717 
718 static bool
719 gf100_gr_chsw_load(struct nvkm_gr *base)
720 {
721 	struct gf100_gr *gr = gf100_gr(base);
722 	if (!gr->firmware) {
723 		u32 trace = nvkm_rd32(gr->base.engine.subdev.device, 0x40981c);
724 		if (trace & 0x00000040)
725 			return true;
726 	} else {
727 		u32 mthd = nvkm_rd32(gr->base.engine.subdev.device, 0x409808);
728 		if (mthd & 0x00080000)
729 			return true;
730 	}
731 	return false;
732 }
733 
734 int
735 gf100_gr_rops(struct gf100_gr *gr)
736 {
737 	struct nvkm_device *device = gr->base.engine.subdev.device;
738 	return (nvkm_rd32(device, 0x409604) & 0x001f0000) >> 16;
739 }
740 
741 void
742 gf100_gr_zbc_init(struct gf100_gr *gr)
743 {
744 	const u32  zero[] = { 0x00000000, 0x00000000, 0x00000000, 0x00000000,
745 			      0x00000000, 0x00000000, 0x00000000, 0x00000000 };
746 	const u32   one[] = { 0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000,
747 			      0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff };
748 	const u32 f32_0[] = { 0x00000000, 0x00000000, 0x00000000, 0x00000000,
749 			      0x00000000, 0x00000000, 0x00000000, 0x00000000 };
750 	const u32 f32_1[] = { 0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000,
751 			      0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000 };
752 	struct nvkm_ltc *ltc = gr->base.engine.subdev.device->ltc;
753 	int index, c = ltc->zbc_min, d = ltc->zbc_min, s = ltc->zbc_min;
754 
755 	if (!gr->zbc_color[0].format) {
756 		gf100_gr_zbc_color_get(gr, 1,  & zero[0],   &zero[4]); c++;
757 		gf100_gr_zbc_color_get(gr, 2,  &  one[0],    &one[4]); c++;
758 		gf100_gr_zbc_color_get(gr, 4,  &f32_0[0],  &f32_0[4]); c++;
759 		gf100_gr_zbc_color_get(gr, 4,  &f32_1[0],  &f32_1[4]); c++;
760 		gf100_gr_zbc_depth_get(gr, 1, 0x00000000, 0x00000000); d++;
761 		gf100_gr_zbc_depth_get(gr, 1, 0x3f800000, 0x3f800000); d++;
762 		if (gr->func->zbc->stencil_get) {
763 			gr->func->zbc->stencil_get(gr, 1, 0x00, 0x00); s++;
764 			gr->func->zbc->stencil_get(gr, 1, 0x01, 0x01); s++;
765 			gr->func->zbc->stencil_get(gr, 1, 0xff, 0xff); s++;
766 		}
767 	}
768 
769 	for (index = c; index <= ltc->zbc_max; index++)
770 		gr->func->zbc->clear_color(gr, index);
771 	for (index = d; index <= ltc->zbc_max; index++)
772 		gr->func->zbc->clear_depth(gr, index);
773 
774 	if (gr->func->zbc->clear_stencil) {
775 		for (index = s; index <= ltc->zbc_max; index++)
776 			gr->func->zbc->clear_stencil(gr, index);
777 	}
778 }
779 
780 /**
781  * Wait until GR goes idle. GR is considered idle if it is disabled by the
782  * MC (0x200) register, or GR is not busy and a context switch is not in
783  * progress.
784  */
785 int
786 gf100_gr_wait_idle(struct gf100_gr *gr)
787 {
788 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
789 	struct nvkm_device *device = subdev->device;
790 	unsigned long end_jiffies = jiffies + msecs_to_jiffies(2000);
791 	bool gr_enabled, ctxsw_active, gr_busy;
792 
793 	do {
794 		/*
795 		 * required to make sure FIFO_ENGINE_STATUS (0x2640) is
796 		 * up-to-date
797 		 */
798 		nvkm_rd32(device, 0x400700);
799 
800 		gr_enabled = nvkm_rd32(device, 0x200) & 0x1000;
801 		ctxsw_active = nvkm_rd32(device, 0x2640) & 0x8000;
802 		gr_busy = nvkm_rd32(device, 0x40060c) & 0x1;
803 
804 		if (!gr_enabled || (!gr_busy && !ctxsw_active))
805 			return 0;
806 	} while (time_before(jiffies, end_jiffies));
807 
808 	nvkm_error(subdev,
809 		   "wait for idle timeout (en: %d, ctxsw: %d, busy: %d)\n",
810 		   gr_enabled, ctxsw_active, gr_busy);
811 	return -EAGAIN;
812 }
813 
814 void
815 gf100_gr_mmio(struct gf100_gr *gr, const struct gf100_gr_pack *p)
816 {
817 	struct nvkm_device *device = gr->base.engine.subdev.device;
818 	const struct gf100_gr_pack *pack;
819 	const struct gf100_gr_init *init;
820 
821 	pack_for_each_init(init, pack, p) {
822 		u32 next = init->addr + init->count * init->pitch;
823 		u32 addr = init->addr;
824 		while (addr < next) {
825 			nvkm_wr32(device, addr, init->data);
826 			addr += init->pitch;
827 		}
828 	}
829 }
830 
831 void
832 gf100_gr_icmd(struct gf100_gr *gr, const struct gf100_gr_pack *p)
833 {
834 	struct nvkm_device *device = gr->base.engine.subdev.device;
835 	const struct gf100_gr_pack *pack;
836 	const struct gf100_gr_init *init;
837 	u32 data = 0;
838 
839 	nvkm_wr32(device, 0x400208, 0x80000000);
840 
841 	pack_for_each_init(init, pack, p) {
842 		u32 next = init->addr + init->count * init->pitch;
843 		u32 addr = init->addr;
844 
845 		if ((pack == p && init == p->init) || data != init->data) {
846 			nvkm_wr32(device, 0x400204, init->data);
847 			data = init->data;
848 		}
849 
850 		while (addr < next) {
851 			nvkm_wr32(device, 0x400200, addr);
852 			/**
853 			 * Wait for GR to go idle after submitting a
854 			 * GO_IDLE bundle
855 			 */
856 			if ((addr & 0xffff) == 0xe100)
857 				gf100_gr_wait_idle(gr);
858 			nvkm_msec(device, 2000,
859 				if (!(nvkm_rd32(device, 0x400700) & 0x00000004))
860 					break;
861 			);
862 			addr += init->pitch;
863 		}
864 	}
865 
866 	nvkm_wr32(device, 0x400208, 0x00000000);
867 }
868 
869 void
870 gf100_gr_mthd(struct gf100_gr *gr, const struct gf100_gr_pack *p)
871 {
872 	struct nvkm_device *device = gr->base.engine.subdev.device;
873 	const struct gf100_gr_pack *pack;
874 	const struct gf100_gr_init *init;
875 	u32 data = 0;
876 
877 	pack_for_each_init(init, pack, p) {
878 		u32 ctrl = 0x80000000 | pack->type;
879 		u32 next = init->addr + init->count * init->pitch;
880 		u32 addr = init->addr;
881 
882 		if ((pack == p && init == p->init) || data != init->data) {
883 			nvkm_wr32(device, 0x40448c, init->data);
884 			data = init->data;
885 		}
886 
887 		while (addr < next) {
888 			nvkm_wr32(device, 0x404488, ctrl | (addr << 14));
889 			addr += init->pitch;
890 		}
891 	}
892 }
893 
894 u64
895 gf100_gr_units(struct nvkm_gr *base)
896 {
897 	struct gf100_gr *gr = gf100_gr(base);
898 	u64 cfg;
899 
900 	cfg  = (u32)gr->gpc_nr;
901 	cfg |= (u32)gr->tpc_total << 8;
902 	cfg |= (u64)gr->rop_nr << 32;
903 
904 	return cfg;
905 }
906 
907 static const struct nvkm_bitfield gf100_dispatch_error[] = {
908 	{ 0x00000001, "INJECTED_BUNDLE_ERROR" },
909 	{ 0x00000002, "CLASS_SUBCH_MISMATCH" },
910 	{ 0x00000004, "SUBCHSW_DURING_NOTIFY" },
911 	{}
912 };
913 
914 static const struct nvkm_bitfield gf100_m2mf_error[] = {
915 	{ 0x00000001, "PUSH_TOO_MUCH_DATA" },
916 	{ 0x00000002, "PUSH_NOT_ENOUGH_DATA" },
917 	{}
918 };
919 
920 static const struct nvkm_bitfield gf100_unk6_error[] = {
921 	{ 0x00000001, "TEMP_TOO_SMALL" },
922 	{}
923 };
924 
925 static const struct nvkm_bitfield gf100_ccache_error[] = {
926 	{ 0x00000001, "INTR" },
927 	{ 0x00000002, "LDCONST_OOB" },
928 	{}
929 };
930 
931 static const struct nvkm_bitfield gf100_macro_error[] = {
932 	{ 0x00000001, "TOO_FEW_PARAMS" },
933 	{ 0x00000002, "TOO_MANY_PARAMS" },
934 	{ 0x00000004, "ILLEGAL_OPCODE" },
935 	{ 0x00000008, "DOUBLE_BRANCH" },
936 	{ 0x00000010, "WATCHDOG" },
937 	{}
938 };
939 
940 static const struct nvkm_bitfield gk104_sked_error[] = {
941 	{ 0x00000040, "CTA_RESUME" },
942 	{ 0x00000080, "CONSTANT_BUFFER_SIZE" },
943 	{ 0x00000200, "LOCAL_MEMORY_SIZE_POS" },
944 	{ 0x00000400, "LOCAL_MEMORY_SIZE_NEG" },
945 	{ 0x00000800, "WARP_CSTACK_SIZE" },
946 	{ 0x00001000, "TOTAL_TEMP_SIZE" },
947 	{ 0x00002000, "REGISTER_COUNT" },
948 	{ 0x00040000, "TOTAL_THREADS" },
949 	{ 0x00100000, "PROGRAM_OFFSET" },
950 	{ 0x00200000, "SHARED_MEMORY_SIZE" },
951 	{ 0x00800000, "CTA_THREAD_DIMENSION_ZERO" },
952 	{ 0x01000000, "MEMORY_WINDOW_OVERLAP" },
953 	{ 0x02000000, "SHARED_CONFIG_TOO_SMALL" },
954 	{ 0x04000000, "TOTAL_REGISTER_COUNT" },
955 	{}
956 };
957 
958 static const struct nvkm_bitfield gf100_gpc_rop_error[] = {
959 	{ 0x00000002, "RT_PITCH_OVERRUN" },
960 	{ 0x00000010, "RT_WIDTH_OVERRUN" },
961 	{ 0x00000020, "RT_HEIGHT_OVERRUN" },
962 	{ 0x00000080, "ZETA_STORAGE_TYPE_MISMATCH" },
963 	{ 0x00000100, "RT_STORAGE_TYPE_MISMATCH" },
964 	{ 0x00000400, "RT_LINEAR_MISMATCH" },
965 	{}
966 };
967 
968 static void
969 gf100_gr_trap_gpc_rop(struct gf100_gr *gr, int gpc)
970 {
971 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
972 	struct nvkm_device *device = subdev->device;
973 	char error[128];
974 	u32 trap[4];
975 
976 	trap[0] = nvkm_rd32(device, GPC_UNIT(gpc, 0x0420)) & 0x3fffffff;
977 	trap[1] = nvkm_rd32(device, GPC_UNIT(gpc, 0x0434));
978 	trap[2] = nvkm_rd32(device, GPC_UNIT(gpc, 0x0438));
979 	trap[3] = nvkm_rd32(device, GPC_UNIT(gpc, 0x043c));
980 
981 	nvkm_snprintbf(error, sizeof(error), gf100_gpc_rop_error, trap[0]);
982 
983 	nvkm_error(subdev, "GPC%d/PROP trap: %08x [%s] x = %u, y = %u, "
984 			   "format = %x, storage type = %x\n",
985 		   gpc, trap[0], error, trap[1] & 0xffff, trap[1] >> 16,
986 		   (trap[2] >> 8) & 0x3f, trap[3] & 0xff);
987 	nvkm_wr32(device, GPC_UNIT(gpc, 0x0420), 0xc0000000);
988 }
989 
990 const struct nvkm_enum gf100_mp_warp_error[] = {
991 	{ 0x01, "STACK_ERROR" },
992 	{ 0x02, "API_STACK_ERROR" },
993 	{ 0x03, "RET_EMPTY_STACK_ERROR" },
994 	{ 0x04, "PC_WRAP" },
995 	{ 0x05, "MISALIGNED_PC" },
996 	{ 0x06, "PC_OVERFLOW" },
997 	{ 0x07, "MISALIGNED_IMMC_ADDR" },
998 	{ 0x08, "MISALIGNED_REG" },
999 	{ 0x09, "ILLEGAL_INSTR_ENCODING" },
1000 	{ 0x0a, "ILLEGAL_SPH_INSTR_COMBO" },
1001 	{ 0x0b, "ILLEGAL_INSTR_PARAM" },
1002 	{ 0x0c, "INVALID_CONST_ADDR" },
1003 	{ 0x0d, "OOR_REG" },
1004 	{ 0x0e, "OOR_ADDR" },
1005 	{ 0x0f, "MISALIGNED_ADDR" },
1006 	{ 0x10, "INVALID_ADDR_SPACE" },
1007 	{ 0x11, "ILLEGAL_INSTR_PARAM2" },
1008 	{ 0x12, "INVALID_CONST_ADDR_LDC" },
1009 	{ 0x13, "GEOMETRY_SM_ERROR" },
1010 	{ 0x14, "DIVERGENT" },
1011 	{ 0x15, "WARP_EXIT" },
1012 	{}
1013 };
1014 
1015 const struct nvkm_bitfield gf100_mp_global_error[] = {
1016 	{ 0x00000001, "SM_TO_SM_FAULT" },
1017 	{ 0x00000002, "L1_ERROR" },
1018 	{ 0x00000004, "MULTIPLE_WARP_ERRORS" },
1019 	{ 0x00000008, "PHYSICAL_STACK_OVERFLOW" },
1020 	{ 0x00000010, "BPT_INT" },
1021 	{ 0x00000020, "BPT_PAUSE" },
1022 	{ 0x00000040, "SINGLE_STEP_COMPLETE" },
1023 	{ 0x20000000, "ECC_SEC_ERROR" },
1024 	{ 0x40000000, "ECC_DED_ERROR" },
1025 	{ 0x80000000, "TIMEOUT" },
1026 	{}
1027 };
1028 
1029 void
1030 gf100_gr_trap_mp(struct gf100_gr *gr, int gpc, int tpc)
1031 {
1032 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1033 	struct nvkm_device *device = subdev->device;
1034 	u32 werr = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x648));
1035 	u32 gerr = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x650));
1036 	const struct nvkm_enum *warp;
1037 	char glob[128];
1038 
1039 	nvkm_snprintbf(glob, sizeof(glob), gf100_mp_global_error, gerr);
1040 	warp = nvkm_enum_find(gf100_mp_warp_error, werr & 0xffff);
1041 
1042 	nvkm_error(subdev, "GPC%i/TPC%i/MP trap: "
1043 			   "global %08x [%s] warp %04x [%s]\n",
1044 		   gpc, tpc, gerr, glob, werr, warp ? warp->name : "");
1045 
1046 	nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x648), 0x00000000);
1047 	nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x650), gerr);
1048 }
1049 
1050 static void
1051 gf100_gr_trap_tpc(struct gf100_gr *gr, int gpc, int tpc)
1052 {
1053 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1054 	struct nvkm_device *device = subdev->device;
1055 	u32 stat = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x0508));
1056 
1057 	if (stat & 0x00000001) {
1058 		u32 trap = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x0224));
1059 		nvkm_error(subdev, "GPC%d/TPC%d/TEX: %08x\n", gpc, tpc, trap);
1060 		nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x0224), 0xc0000000);
1061 		stat &= ~0x00000001;
1062 	}
1063 
1064 	if (stat & 0x00000002) {
1065 		gr->func->trap_mp(gr, gpc, tpc);
1066 		stat &= ~0x00000002;
1067 	}
1068 
1069 	if (stat & 0x00000004) {
1070 		u32 trap = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x0084));
1071 		nvkm_error(subdev, "GPC%d/TPC%d/POLY: %08x\n", gpc, tpc, trap);
1072 		nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x0084), 0xc0000000);
1073 		stat &= ~0x00000004;
1074 	}
1075 
1076 	if (stat & 0x00000008) {
1077 		u32 trap = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x048c));
1078 		nvkm_error(subdev, "GPC%d/TPC%d/L1C: %08x\n", gpc, tpc, trap);
1079 		nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x048c), 0xc0000000);
1080 		stat &= ~0x00000008;
1081 	}
1082 
1083 	if (stat & 0x00000010) {
1084 		u32 trap = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x0430));
1085 		nvkm_error(subdev, "GPC%d/TPC%d/MPC: %08x\n", gpc, tpc, trap);
1086 		nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x0430), 0xc0000000);
1087 		stat &= ~0x00000010;
1088 	}
1089 
1090 	if (stat) {
1091 		nvkm_error(subdev, "GPC%d/TPC%d/%08x: unknown\n", gpc, tpc, stat);
1092 	}
1093 }
1094 
1095 static void
1096 gf100_gr_trap_gpc(struct gf100_gr *gr, int gpc)
1097 {
1098 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1099 	struct nvkm_device *device = subdev->device;
1100 	u32 stat = nvkm_rd32(device, GPC_UNIT(gpc, 0x2c90));
1101 	int tpc;
1102 
1103 	if (stat & 0x00000001) {
1104 		gf100_gr_trap_gpc_rop(gr, gpc);
1105 		stat &= ~0x00000001;
1106 	}
1107 
1108 	if (stat & 0x00000002) {
1109 		u32 trap = nvkm_rd32(device, GPC_UNIT(gpc, 0x0900));
1110 		nvkm_error(subdev, "GPC%d/ZCULL: %08x\n", gpc, trap);
1111 		nvkm_wr32(device, GPC_UNIT(gpc, 0x0900), 0xc0000000);
1112 		stat &= ~0x00000002;
1113 	}
1114 
1115 	if (stat & 0x00000004) {
1116 		u32 trap = nvkm_rd32(device, GPC_UNIT(gpc, 0x1028));
1117 		nvkm_error(subdev, "GPC%d/CCACHE: %08x\n", gpc, trap);
1118 		nvkm_wr32(device, GPC_UNIT(gpc, 0x1028), 0xc0000000);
1119 		stat &= ~0x00000004;
1120 	}
1121 
1122 	if (stat & 0x00000008) {
1123 		u32 trap = nvkm_rd32(device, GPC_UNIT(gpc, 0x0824));
1124 		nvkm_error(subdev, "GPC%d/ESETUP: %08x\n", gpc, trap);
1125 		nvkm_wr32(device, GPC_UNIT(gpc, 0x0824), 0xc0000000);
1126 		stat &= ~0x00000009;
1127 	}
1128 
1129 	for (tpc = 0; tpc < gr->tpc_nr[gpc]; tpc++) {
1130 		u32 mask = 0x00010000 << tpc;
1131 		if (stat & mask) {
1132 			gf100_gr_trap_tpc(gr, gpc, tpc);
1133 			nvkm_wr32(device, GPC_UNIT(gpc, 0x2c90), mask);
1134 			stat &= ~mask;
1135 		}
1136 	}
1137 
1138 	if (stat) {
1139 		nvkm_error(subdev, "GPC%d/%08x: unknown\n", gpc, stat);
1140 	}
1141 }
1142 
1143 static void
1144 gf100_gr_trap_intr(struct gf100_gr *gr)
1145 {
1146 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1147 	struct nvkm_device *device = subdev->device;
1148 	char error[128];
1149 	u32 trap = nvkm_rd32(device, 0x400108);
1150 	int rop, gpc;
1151 
1152 	if (trap & 0x00000001) {
1153 		u32 stat = nvkm_rd32(device, 0x404000);
1154 
1155 		nvkm_snprintbf(error, sizeof(error), gf100_dispatch_error,
1156 			       stat & 0x3fffffff);
1157 		nvkm_error(subdev, "DISPATCH %08x [%s]\n", stat, error);
1158 		nvkm_wr32(device, 0x404000, 0xc0000000);
1159 		nvkm_wr32(device, 0x400108, 0x00000001);
1160 		trap &= ~0x00000001;
1161 	}
1162 
1163 	if (trap & 0x00000002) {
1164 		u32 stat = nvkm_rd32(device, 0x404600);
1165 
1166 		nvkm_snprintbf(error, sizeof(error), gf100_m2mf_error,
1167 			       stat & 0x3fffffff);
1168 		nvkm_error(subdev, "M2MF %08x [%s]\n", stat, error);
1169 
1170 		nvkm_wr32(device, 0x404600, 0xc0000000);
1171 		nvkm_wr32(device, 0x400108, 0x00000002);
1172 		trap &= ~0x00000002;
1173 	}
1174 
1175 	if (trap & 0x00000008) {
1176 		u32 stat = nvkm_rd32(device, 0x408030);
1177 
1178 		nvkm_snprintbf(error, sizeof(error), gf100_ccache_error,
1179 			       stat & 0x3fffffff);
1180 		nvkm_error(subdev, "CCACHE %08x [%s]\n", stat, error);
1181 		nvkm_wr32(device, 0x408030, 0xc0000000);
1182 		nvkm_wr32(device, 0x400108, 0x00000008);
1183 		trap &= ~0x00000008;
1184 	}
1185 
1186 	if (trap & 0x00000010) {
1187 		u32 stat = nvkm_rd32(device, 0x405840);
1188 		nvkm_error(subdev, "SHADER %08x, sph: 0x%06x, stage: 0x%02x\n",
1189 			   stat, stat & 0xffffff, (stat >> 24) & 0x3f);
1190 		nvkm_wr32(device, 0x405840, 0xc0000000);
1191 		nvkm_wr32(device, 0x400108, 0x00000010);
1192 		trap &= ~0x00000010;
1193 	}
1194 
1195 	if (trap & 0x00000040) {
1196 		u32 stat = nvkm_rd32(device, 0x40601c);
1197 
1198 		nvkm_snprintbf(error, sizeof(error), gf100_unk6_error,
1199 			       stat & 0x3fffffff);
1200 		nvkm_error(subdev, "UNK6 %08x [%s]\n", stat, error);
1201 
1202 		nvkm_wr32(device, 0x40601c, 0xc0000000);
1203 		nvkm_wr32(device, 0x400108, 0x00000040);
1204 		trap &= ~0x00000040;
1205 	}
1206 
1207 	if (trap & 0x00000080) {
1208 		u32 stat = nvkm_rd32(device, 0x404490);
1209 		u32 pc = nvkm_rd32(device, 0x404494);
1210 		u32 op = nvkm_rd32(device, 0x40449c);
1211 
1212 		nvkm_snprintbf(error, sizeof(error), gf100_macro_error,
1213 			       stat & 0x1fffffff);
1214 		nvkm_error(subdev, "MACRO %08x [%s], pc: 0x%03x%s, op: 0x%08x\n",
1215 			   stat, error, pc & 0x7ff,
1216 			   (pc & 0x10000000) ? "" : " (invalid)",
1217 			   op);
1218 
1219 		nvkm_wr32(device, 0x404490, 0xc0000000);
1220 		nvkm_wr32(device, 0x400108, 0x00000080);
1221 		trap &= ~0x00000080;
1222 	}
1223 
1224 	if (trap & 0x00000100) {
1225 		u32 stat = nvkm_rd32(device, 0x407020) & 0x3fffffff;
1226 
1227 		nvkm_snprintbf(error, sizeof(error), gk104_sked_error, stat);
1228 		nvkm_error(subdev, "SKED: %08x [%s]\n", stat, error);
1229 
1230 		if (stat)
1231 			nvkm_wr32(device, 0x407020, 0x40000000);
1232 		nvkm_wr32(device, 0x400108, 0x00000100);
1233 		trap &= ~0x00000100;
1234 	}
1235 
1236 	if (trap & 0x01000000) {
1237 		u32 stat = nvkm_rd32(device, 0x400118);
1238 		for (gpc = 0; stat && gpc < gr->gpc_nr; gpc++) {
1239 			u32 mask = 0x00000001 << gpc;
1240 			if (stat & mask) {
1241 				gf100_gr_trap_gpc(gr, gpc);
1242 				nvkm_wr32(device, 0x400118, mask);
1243 				stat &= ~mask;
1244 			}
1245 		}
1246 		nvkm_wr32(device, 0x400108, 0x01000000);
1247 		trap &= ~0x01000000;
1248 	}
1249 
1250 	if (trap & 0x02000000) {
1251 		for (rop = 0; rop < gr->rop_nr; rop++) {
1252 			u32 statz = nvkm_rd32(device, ROP_UNIT(rop, 0x070));
1253 			u32 statc = nvkm_rd32(device, ROP_UNIT(rop, 0x144));
1254 			nvkm_error(subdev, "ROP%d %08x %08x\n",
1255 				 rop, statz, statc);
1256 			nvkm_wr32(device, ROP_UNIT(rop, 0x070), 0xc0000000);
1257 			nvkm_wr32(device, ROP_UNIT(rop, 0x144), 0xc0000000);
1258 		}
1259 		nvkm_wr32(device, 0x400108, 0x02000000);
1260 		trap &= ~0x02000000;
1261 	}
1262 
1263 	if (trap) {
1264 		nvkm_error(subdev, "TRAP UNHANDLED %08x\n", trap);
1265 		nvkm_wr32(device, 0x400108, trap);
1266 	}
1267 }
1268 
1269 static void
1270 gf100_gr_ctxctl_debug_unit(struct gf100_gr *gr, u32 base)
1271 {
1272 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1273 	struct nvkm_device *device = subdev->device;
1274 	nvkm_error(subdev, "%06x - done %08x\n", base,
1275 		   nvkm_rd32(device, base + 0x400));
1276 	nvkm_error(subdev, "%06x - stat %08x %08x %08x %08x\n", base,
1277 		   nvkm_rd32(device, base + 0x800),
1278 		   nvkm_rd32(device, base + 0x804),
1279 		   nvkm_rd32(device, base + 0x808),
1280 		   nvkm_rd32(device, base + 0x80c));
1281 	nvkm_error(subdev, "%06x - stat %08x %08x %08x %08x\n", base,
1282 		   nvkm_rd32(device, base + 0x810),
1283 		   nvkm_rd32(device, base + 0x814),
1284 		   nvkm_rd32(device, base + 0x818),
1285 		   nvkm_rd32(device, base + 0x81c));
1286 }
1287 
1288 void
1289 gf100_gr_ctxctl_debug(struct gf100_gr *gr)
1290 {
1291 	struct nvkm_device *device = gr->base.engine.subdev.device;
1292 	u32 gpcnr = nvkm_rd32(device, 0x409604) & 0xffff;
1293 	u32 gpc;
1294 
1295 	gf100_gr_ctxctl_debug_unit(gr, 0x409000);
1296 	for (gpc = 0; gpc < gpcnr; gpc++)
1297 		gf100_gr_ctxctl_debug_unit(gr, 0x502000 + (gpc * 0x8000));
1298 }
1299 
1300 static void
1301 gf100_gr_ctxctl_isr(struct gf100_gr *gr)
1302 {
1303 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1304 	struct nvkm_device *device = subdev->device;
1305 	u32 stat = nvkm_rd32(device, 0x409c18);
1306 
1307 	if (!gr->firmware && (stat & 0x00000001)) {
1308 		u32 code = nvkm_rd32(device, 0x409814);
1309 		if (code == E_BAD_FWMTHD) {
1310 			u32 class = nvkm_rd32(device, 0x409808);
1311 			u32  addr = nvkm_rd32(device, 0x40980c);
1312 			u32  subc = (addr & 0x00070000) >> 16;
1313 			u32  mthd = (addr & 0x00003ffc);
1314 			u32  data = nvkm_rd32(device, 0x409810);
1315 
1316 			nvkm_error(subdev, "FECS MTHD subc %d class %04x "
1317 					   "mthd %04x data %08x\n",
1318 				   subc, class, mthd, data);
1319 		} else {
1320 			nvkm_error(subdev, "FECS ucode error %d\n", code);
1321 		}
1322 		nvkm_wr32(device, 0x409c20, 0x00000001);
1323 		stat &= ~0x00000001;
1324 	}
1325 
1326 	if (!gr->firmware && (stat & 0x00080000)) {
1327 		nvkm_error(subdev, "FECS watchdog timeout\n");
1328 		gf100_gr_ctxctl_debug(gr);
1329 		nvkm_wr32(device, 0x409c20, 0x00080000);
1330 		stat &= ~0x00080000;
1331 	}
1332 
1333 	if (stat) {
1334 		nvkm_error(subdev, "FECS %08x\n", stat);
1335 		gf100_gr_ctxctl_debug(gr);
1336 		nvkm_wr32(device, 0x409c20, stat);
1337 	}
1338 }
1339 
1340 static void
1341 gf100_gr_intr(struct nvkm_gr *base)
1342 {
1343 	struct gf100_gr *gr = gf100_gr(base);
1344 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1345 	struct nvkm_device *device = subdev->device;
1346 	struct nvkm_fifo_chan *chan;
1347 	unsigned long flags;
1348 	u64 inst = nvkm_rd32(device, 0x409b00) & 0x0fffffff;
1349 	u32 stat = nvkm_rd32(device, 0x400100);
1350 	u32 addr = nvkm_rd32(device, 0x400704);
1351 	u32 mthd = (addr & 0x00003ffc);
1352 	u32 subc = (addr & 0x00070000) >> 16;
1353 	u32 data = nvkm_rd32(device, 0x400708);
1354 	u32 code = nvkm_rd32(device, 0x400110);
1355 	u32 class;
1356 	const char *name = "unknown";
1357 	int chid = -1;
1358 
1359 	chan = nvkm_fifo_chan_inst(device->fifo, (u64)inst << 12, &flags);
1360 	if (chan) {
1361 		name = chan->object.client->name;
1362 		chid = chan->chid;
1363 	}
1364 
1365 	if (device->card_type < NV_E0 || subc < 4)
1366 		class = nvkm_rd32(device, 0x404200 + (subc * 4));
1367 	else
1368 		class = 0x0000;
1369 
1370 	if (stat & 0x00000001) {
1371 		/*
1372 		 * notifier interrupt, only needed for cyclestats
1373 		 * can be safely ignored
1374 		 */
1375 		nvkm_wr32(device, 0x400100, 0x00000001);
1376 		stat &= ~0x00000001;
1377 	}
1378 
1379 	if (stat & 0x00000010) {
1380 		if (!gf100_gr_mthd_sw(device, class, mthd, data)) {
1381 			nvkm_error(subdev, "ILLEGAL_MTHD ch %d [%010llx %s] "
1382 				   "subc %d class %04x mthd %04x data %08x\n",
1383 				   chid, inst << 12, name, subc,
1384 				   class, mthd, data);
1385 		}
1386 		nvkm_wr32(device, 0x400100, 0x00000010);
1387 		stat &= ~0x00000010;
1388 	}
1389 
1390 	if (stat & 0x00000020) {
1391 		nvkm_error(subdev, "ILLEGAL_CLASS ch %d [%010llx %s] "
1392 			   "subc %d class %04x mthd %04x data %08x\n",
1393 			   chid, inst << 12, name, subc, class, mthd, data);
1394 		nvkm_wr32(device, 0x400100, 0x00000020);
1395 		stat &= ~0x00000020;
1396 	}
1397 
1398 	if (stat & 0x00100000) {
1399 		const struct nvkm_enum *en =
1400 			nvkm_enum_find(nv50_data_error_names, code);
1401 		nvkm_error(subdev, "DATA_ERROR %08x [%s] ch %d [%010llx %s] "
1402 				   "subc %d class %04x mthd %04x data %08x\n",
1403 			   code, en ? en->name : "", chid, inst << 12,
1404 			   name, subc, class, mthd, data);
1405 		nvkm_wr32(device, 0x400100, 0x00100000);
1406 		stat &= ~0x00100000;
1407 	}
1408 
1409 	if (stat & 0x00200000) {
1410 		nvkm_error(subdev, "TRAP ch %d [%010llx %s]\n",
1411 			   chid, inst << 12, name);
1412 		gf100_gr_trap_intr(gr);
1413 		nvkm_wr32(device, 0x400100, 0x00200000);
1414 		stat &= ~0x00200000;
1415 	}
1416 
1417 	if (stat & 0x00080000) {
1418 		gf100_gr_ctxctl_isr(gr);
1419 		nvkm_wr32(device, 0x400100, 0x00080000);
1420 		stat &= ~0x00080000;
1421 	}
1422 
1423 	if (stat) {
1424 		nvkm_error(subdev, "intr %08x\n", stat);
1425 		nvkm_wr32(device, 0x400100, stat);
1426 	}
1427 
1428 	nvkm_wr32(device, 0x400500, 0x00010001);
1429 	nvkm_fifo_chan_put(device->fifo, flags, &chan);
1430 }
1431 
1432 static void
1433 gf100_gr_init_fw(struct nvkm_falcon *falcon,
1434 		 struct gf100_gr_fuc *code, struct gf100_gr_fuc *data)
1435 {
1436 	nvkm_falcon_load_dmem(falcon, data->data, 0x0, data->size, 0);
1437 	nvkm_falcon_load_imem(falcon, code->data, 0x0, code->size, 0, 0, false);
1438 }
1439 
1440 static void
1441 gf100_gr_init_csdata(struct gf100_gr *gr,
1442 		     const struct gf100_gr_pack *pack,
1443 		     u32 falcon, u32 starstar, u32 base)
1444 {
1445 	struct nvkm_device *device = gr->base.engine.subdev.device;
1446 	const struct gf100_gr_pack *iter;
1447 	const struct gf100_gr_init *init;
1448 	u32 addr = ~0, prev = ~0, xfer = 0;
1449 	u32 star, temp;
1450 
1451 	nvkm_wr32(device, falcon + 0x01c0, 0x02000000 + starstar);
1452 	star = nvkm_rd32(device, falcon + 0x01c4);
1453 	temp = nvkm_rd32(device, falcon + 0x01c4);
1454 	if (temp > star)
1455 		star = temp;
1456 	nvkm_wr32(device, falcon + 0x01c0, 0x01000000 + star);
1457 
1458 	pack_for_each_init(init, iter, pack) {
1459 		u32 head = init->addr - base;
1460 		u32 tail = head + init->count * init->pitch;
1461 		while (head < tail) {
1462 			if (head != prev + 4 || xfer >= 32) {
1463 				if (xfer) {
1464 					u32 data = ((--xfer << 26) | addr);
1465 					nvkm_wr32(device, falcon + 0x01c4, data);
1466 					star += 4;
1467 				}
1468 				addr = head;
1469 				xfer = 0;
1470 			}
1471 			prev = head;
1472 			xfer = xfer + 1;
1473 			head = head + init->pitch;
1474 		}
1475 	}
1476 
1477 	nvkm_wr32(device, falcon + 0x01c4, (--xfer << 26) | addr);
1478 	nvkm_wr32(device, falcon + 0x01c0, 0x01000004 + starstar);
1479 	nvkm_wr32(device, falcon + 0x01c4, star + 4);
1480 }
1481 
1482 /* Initialize context from an external (secure or not) firmware */
1483 static int
1484 gf100_gr_init_ctxctl_ext(struct gf100_gr *gr)
1485 {
1486 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1487 	struct nvkm_device *device = subdev->device;
1488 	struct nvkm_secboot *sb = device->secboot;
1489 	u32 secboot_mask = 0;
1490 
1491 	/* load fuc microcode */
1492 	nvkm_mc_unk260(device, 0);
1493 
1494 	/* securely-managed falcons must be reset using secure boot */
1495 	if (nvkm_secboot_is_managed(sb, NVKM_SECBOOT_FALCON_FECS))
1496 		secboot_mask |= BIT(NVKM_SECBOOT_FALCON_FECS);
1497 	else
1498 		gf100_gr_init_fw(gr->fecs, &gr->fuc409c, &gr->fuc409d);
1499 
1500 	if (nvkm_secboot_is_managed(sb, NVKM_SECBOOT_FALCON_GPCCS))
1501 		secboot_mask |= BIT(NVKM_SECBOOT_FALCON_GPCCS);
1502 	else
1503 		gf100_gr_init_fw(gr->gpccs, &gr->fuc41ac, &gr->fuc41ad);
1504 
1505 	if (secboot_mask != 0) {
1506 		int ret = nvkm_secboot_reset(sb, secboot_mask);
1507 		if (ret)
1508 			return ret;
1509 	}
1510 
1511 	nvkm_mc_unk260(device, 1);
1512 
1513 	/* start both of them running */
1514 	nvkm_wr32(device, 0x409840, 0xffffffff);
1515 	nvkm_wr32(device, 0x41a10c, 0x00000000);
1516 	nvkm_wr32(device, 0x40910c, 0x00000000);
1517 
1518 	nvkm_falcon_start(gr->gpccs);
1519 	nvkm_falcon_start(gr->fecs);
1520 
1521 	if (nvkm_msec(device, 2000,
1522 		if (nvkm_rd32(device, 0x409800) & 0x00000001)
1523 			break;
1524 	) < 0)
1525 		return -EBUSY;
1526 
1527 	nvkm_wr32(device, 0x409840, 0xffffffff);
1528 	nvkm_wr32(device, 0x409500, 0x7fffffff);
1529 	nvkm_wr32(device, 0x409504, 0x00000021);
1530 
1531 	nvkm_wr32(device, 0x409840, 0xffffffff);
1532 	nvkm_wr32(device, 0x409500, 0x00000000);
1533 	nvkm_wr32(device, 0x409504, 0x00000010);
1534 	if (nvkm_msec(device, 2000,
1535 		if ((gr->size = nvkm_rd32(device, 0x409800)))
1536 			break;
1537 	) < 0)
1538 		return -EBUSY;
1539 
1540 	nvkm_wr32(device, 0x409840, 0xffffffff);
1541 	nvkm_wr32(device, 0x409500, 0x00000000);
1542 	nvkm_wr32(device, 0x409504, 0x00000016);
1543 	if (nvkm_msec(device, 2000,
1544 		if (nvkm_rd32(device, 0x409800))
1545 			break;
1546 	) < 0)
1547 		return -EBUSY;
1548 
1549 	nvkm_wr32(device, 0x409840, 0xffffffff);
1550 	nvkm_wr32(device, 0x409500, 0x00000000);
1551 	nvkm_wr32(device, 0x409504, 0x00000025);
1552 	if (nvkm_msec(device, 2000,
1553 		if (nvkm_rd32(device, 0x409800))
1554 			break;
1555 	) < 0)
1556 		return -EBUSY;
1557 
1558 	if (device->chipset >= 0xe0) {
1559 		nvkm_wr32(device, 0x409800, 0x00000000);
1560 		nvkm_wr32(device, 0x409500, 0x00000001);
1561 		nvkm_wr32(device, 0x409504, 0x00000030);
1562 		if (nvkm_msec(device, 2000,
1563 			if (nvkm_rd32(device, 0x409800))
1564 				break;
1565 		) < 0)
1566 			return -EBUSY;
1567 
1568 		nvkm_wr32(device, 0x409810, 0xb00095c8);
1569 		nvkm_wr32(device, 0x409800, 0x00000000);
1570 		nvkm_wr32(device, 0x409500, 0x00000001);
1571 		nvkm_wr32(device, 0x409504, 0x00000031);
1572 		if (nvkm_msec(device, 2000,
1573 			if (nvkm_rd32(device, 0x409800))
1574 				break;
1575 		) < 0)
1576 			return -EBUSY;
1577 
1578 		nvkm_wr32(device, 0x409810, 0x00080420);
1579 		nvkm_wr32(device, 0x409800, 0x00000000);
1580 		nvkm_wr32(device, 0x409500, 0x00000001);
1581 		nvkm_wr32(device, 0x409504, 0x00000032);
1582 		if (nvkm_msec(device, 2000,
1583 			if (nvkm_rd32(device, 0x409800))
1584 				break;
1585 		) < 0)
1586 			return -EBUSY;
1587 
1588 		nvkm_wr32(device, 0x409614, 0x00000070);
1589 		nvkm_wr32(device, 0x409614, 0x00000770);
1590 		nvkm_wr32(device, 0x40802c, 0x00000001);
1591 	}
1592 
1593 	if (gr->data == NULL) {
1594 		int ret = gf100_grctx_generate(gr);
1595 		if (ret) {
1596 			nvkm_error(subdev, "failed to construct context\n");
1597 			return ret;
1598 		}
1599 	}
1600 
1601 	return 0;
1602 }
1603 
1604 static int
1605 gf100_gr_init_ctxctl_int(struct gf100_gr *gr)
1606 {
1607 	const struct gf100_grctx_func *grctx = gr->func->grctx;
1608 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1609 	struct nvkm_device *device = subdev->device;
1610 
1611 	if (!gr->func->fecs.ucode) {
1612 		return -ENOSYS;
1613 	}
1614 
1615 	/* load HUB microcode */
1616 	nvkm_mc_unk260(device, 0);
1617 	nvkm_falcon_load_dmem(gr->fecs, gr->func->fecs.ucode->data.data, 0x0,
1618 			      gr->func->fecs.ucode->data.size, 0);
1619 	nvkm_falcon_load_imem(gr->fecs, gr->func->fecs.ucode->code.data, 0x0,
1620 			      gr->func->fecs.ucode->code.size, 0, 0, false);
1621 
1622 	/* load GPC microcode */
1623 	nvkm_falcon_load_dmem(gr->gpccs, gr->func->gpccs.ucode->data.data, 0x0,
1624 			      gr->func->gpccs.ucode->data.size, 0);
1625 	nvkm_falcon_load_imem(gr->gpccs, gr->func->gpccs.ucode->code.data, 0x0,
1626 			      gr->func->gpccs.ucode->code.size, 0, 0, false);
1627 	nvkm_mc_unk260(device, 1);
1628 
1629 	/* load register lists */
1630 	gf100_gr_init_csdata(gr, grctx->hub, 0x409000, 0x000, 0x000000);
1631 	gf100_gr_init_csdata(gr, grctx->gpc_0, 0x41a000, 0x000, 0x418000);
1632 	gf100_gr_init_csdata(gr, grctx->gpc_1, 0x41a000, 0x000, 0x418000);
1633 	gf100_gr_init_csdata(gr, grctx->tpc, 0x41a000, 0x004, 0x419800);
1634 	gf100_gr_init_csdata(gr, grctx->ppc, 0x41a000, 0x008, 0x41be00);
1635 
1636 	/* start HUB ucode running, it'll init the GPCs */
1637 	nvkm_wr32(device, 0x40910c, 0x00000000);
1638 	nvkm_wr32(device, 0x409100, 0x00000002);
1639 	if (nvkm_msec(device, 2000,
1640 		if (nvkm_rd32(device, 0x409800) & 0x80000000)
1641 			break;
1642 	) < 0) {
1643 		gf100_gr_ctxctl_debug(gr);
1644 		return -EBUSY;
1645 	}
1646 
1647 	gr->size = nvkm_rd32(device, 0x409804);
1648 	if (gr->data == NULL) {
1649 		int ret = gf100_grctx_generate(gr);
1650 		if (ret) {
1651 			nvkm_error(subdev, "failed to construct context\n");
1652 			return ret;
1653 		}
1654 	}
1655 
1656 	return 0;
1657 }
1658 
1659 int
1660 gf100_gr_init_ctxctl(struct gf100_gr *gr)
1661 {
1662 	int ret;
1663 
1664 	if (gr->firmware)
1665 		ret = gf100_gr_init_ctxctl_ext(gr);
1666 	else
1667 		ret = gf100_gr_init_ctxctl_int(gr);
1668 
1669 	return ret;
1670 }
1671 
1672 void
1673 gf100_gr_oneinit_sm_id(struct gf100_gr *gr)
1674 {
1675 	int tpc, gpc;
1676 	for (tpc = 0; tpc < gr->tpc_max; tpc++) {
1677 		for (gpc = 0; gpc < gr->gpc_nr; gpc++) {
1678 			if (tpc < gr->tpc_nr[gpc]) {
1679 				gr->sm[gr->sm_nr].gpc = gpc;
1680 				gr->sm[gr->sm_nr].tpc = tpc;
1681 				gr->sm_nr++;
1682 			}
1683 		}
1684 	}
1685 }
1686 
1687 void
1688 gf100_gr_oneinit_tiles(struct gf100_gr *gr)
1689 {
1690 	static const u8 primes[] = {
1691 		3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61
1692 	};
1693 	int init_frac[GPC_MAX], init_err[GPC_MAX], run_err[GPC_MAX], i, j;
1694 	u32 mul_factor, comm_denom;
1695 	u8  gpc_map[GPC_MAX];
1696 	bool sorted;
1697 
1698 	switch (gr->tpc_total) {
1699 	case 15: gr->screen_tile_row_offset = 0x06; break;
1700 	case 14: gr->screen_tile_row_offset = 0x05; break;
1701 	case 13: gr->screen_tile_row_offset = 0x02; break;
1702 	case 11: gr->screen_tile_row_offset = 0x07; break;
1703 	case 10: gr->screen_tile_row_offset = 0x06; break;
1704 	case  7:
1705 	case  5: gr->screen_tile_row_offset = 0x01; break;
1706 	case  3: gr->screen_tile_row_offset = 0x02; break;
1707 	case  2:
1708 	case  1: gr->screen_tile_row_offset = 0x01; break;
1709 	default: gr->screen_tile_row_offset = 0x03;
1710 		for (i = 0; i < ARRAY_SIZE(primes); i++) {
1711 			if (gr->tpc_total % primes[i]) {
1712 				gr->screen_tile_row_offset = primes[i];
1713 				break;
1714 			}
1715 		}
1716 		break;
1717 	}
1718 
1719 	/* Sort GPCs by TPC count, highest-to-lowest. */
1720 	for (i = 0; i < gr->gpc_nr; i++)
1721 		gpc_map[i] = i;
1722 	sorted = false;
1723 
1724 	while (!sorted) {
1725 		for (sorted = true, i = 0; i < gr->gpc_nr - 1; i++) {
1726 			if (gr->tpc_nr[gpc_map[i + 1]] >
1727 			    gr->tpc_nr[gpc_map[i + 0]]) {
1728 				u8 swap = gpc_map[i];
1729 				gpc_map[i + 0] = gpc_map[i + 1];
1730 				gpc_map[i + 1] = swap;
1731 				sorted = false;
1732 			}
1733 		}
1734 	}
1735 
1736 	/* Determine tile->GPC mapping */
1737 	mul_factor = gr->gpc_nr * gr->tpc_max;
1738 	if (mul_factor & 1)
1739 		mul_factor = 2;
1740 	else
1741 		mul_factor = 1;
1742 
1743 	comm_denom = gr->gpc_nr * gr->tpc_max * mul_factor;
1744 
1745 	for (i = 0; i < gr->gpc_nr; i++) {
1746 		init_frac[i] = gr->tpc_nr[gpc_map[i]] * gr->gpc_nr * mul_factor;
1747 		 init_err[i] = i * gr->tpc_max * mul_factor - comm_denom/2;
1748 		  run_err[i] = init_frac[i] + init_err[i];
1749 	}
1750 
1751 	for (i = 0; i < gr->tpc_total;) {
1752 		for (j = 0; j < gr->gpc_nr; j++) {
1753 			if ((run_err[j] * 2) >= comm_denom) {
1754 				gr->tile[i++] = gpc_map[j];
1755 				run_err[j] += init_frac[j] - comm_denom;
1756 			} else {
1757 				run_err[j] += init_frac[j];
1758 			}
1759 		}
1760 	}
1761 }
1762 
1763 static int
1764 gf100_gr_oneinit(struct nvkm_gr *base)
1765 {
1766 	struct gf100_gr *gr = gf100_gr(base);
1767 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1768 	struct nvkm_device *device = subdev->device;
1769 	int i, j;
1770 	int ret;
1771 
1772 	ret = nvkm_falcon_v1_new(subdev, "FECS", 0x409000, &gr->fecs);
1773 	if (ret)
1774 		return ret;
1775 
1776 	ret = nvkm_falcon_v1_new(subdev, "GPCCS", 0x41a000, &gr->gpccs);
1777 	if (ret)
1778 		return ret;
1779 
1780 	nvkm_pmu_pgob(device->pmu, false);
1781 
1782 	gr->rop_nr = gr->func->rops(gr);
1783 	gr->gpc_nr = nvkm_rd32(device, 0x409604) & 0x0000001f;
1784 	for (i = 0; i < gr->gpc_nr; i++) {
1785 		gr->tpc_nr[i]  = nvkm_rd32(device, GPC_UNIT(i, 0x2608));
1786 		gr->tpc_max = max(gr->tpc_max, gr->tpc_nr[i]);
1787 		gr->tpc_total += gr->tpc_nr[i];
1788 		gr->ppc_nr[i]  = gr->func->ppc_nr;
1789 		for (j = 0; j < gr->ppc_nr[i]; j++) {
1790 			gr->ppc_tpc_mask[i][j] =
1791 				nvkm_rd32(device, GPC_UNIT(i, 0x0c30 + (j * 4)));
1792 			if (gr->ppc_tpc_mask[i][j] == 0)
1793 				continue;
1794 			gr->ppc_mask[i] |= (1 << j);
1795 			gr->ppc_tpc_nr[i][j] = hweight8(gr->ppc_tpc_mask[i][j]);
1796 			if (gr->ppc_tpc_min == 0 ||
1797 			    gr->ppc_tpc_min > gr->ppc_tpc_nr[i][j])
1798 				gr->ppc_tpc_min = gr->ppc_tpc_nr[i][j];
1799 			if (gr->ppc_tpc_max < gr->ppc_tpc_nr[i][j])
1800 				gr->ppc_tpc_max = gr->ppc_tpc_nr[i][j];
1801 		}
1802 	}
1803 
1804 	memset(gr->tile, 0xff, sizeof(gr->tile));
1805 	gr->func->oneinit_tiles(gr);
1806 	gr->func->oneinit_sm_id(gr);
1807 	return 0;
1808 }
1809 
1810 static int
1811 gf100_gr_init_(struct nvkm_gr *base)
1812 {
1813 	struct gf100_gr *gr = gf100_gr(base);
1814 	struct nvkm_subdev *subdev = &base->engine.subdev;
1815 	u32 ret;
1816 
1817 	nvkm_pmu_pgob(gr->base.engine.subdev.device->pmu, false);
1818 
1819 	ret = nvkm_falcon_get(gr->fecs, subdev);
1820 	if (ret)
1821 		return ret;
1822 
1823 	ret = nvkm_falcon_get(gr->gpccs, subdev);
1824 	if (ret)
1825 		return ret;
1826 
1827 	return gr->func->init(gr);
1828 }
1829 
1830 static int
1831 gf100_gr_fini_(struct nvkm_gr *base, bool suspend)
1832 {
1833 	struct gf100_gr *gr = gf100_gr(base);
1834 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1835 	nvkm_falcon_put(gr->gpccs, subdev);
1836 	nvkm_falcon_put(gr->fecs, subdev);
1837 	return 0;
1838 }
1839 
1840 void
1841 gf100_gr_dtor_fw(struct gf100_gr_fuc *fuc)
1842 {
1843 	kfree(fuc->data);
1844 	fuc->data = NULL;
1845 }
1846 
1847 static void
1848 gf100_gr_dtor_init(struct gf100_gr_pack *pack)
1849 {
1850 	vfree(pack);
1851 }
1852 
1853 void *
1854 gf100_gr_dtor(struct nvkm_gr *base)
1855 {
1856 	struct gf100_gr *gr = gf100_gr(base);
1857 
1858 	if (gr->func->dtor)
1859 		gr->func->dtor(gr);
1860 	kfree(gr->data);
1861 
1862 	nvkm_falcon_del(&gr->gpccs);
1863 	nvkm_falcon_del(&gr->fecs);
1864 
1865 	gf100_gr_dtor_fw(&gr->fuc409c);
1866 	gf100_gr_dtor_fw(&gr->fuc409d);
1867 	gf100_gr_dtor_fw(&gr->fuc41ac);
1868 	gf100_gr_dtor_fw(&gr->fuc41ad);
1869 
1870 	gf100_gr_dtor_init(gr->fuc_bundle);
1871 	gf100_gr_dtor_init(gr->fuc_method);
1872 	gf100_gr_dtor_init(gr->fuc_sw_ctx);
1873 	gf100_gr_dtor_init(gr->fuc_sw_nonctx);
1874 
1875 	return gr;
1876 }
1877 
1878 static const struct nvkm_gr_func
1879 gf100_gr_ = {
1880 	.dtor = gf100_gr_dtor,
1881 	.oneinit = gf100_gr_oneinit,
1882 	.init = gf100_gr_init_,
1883 	.fini = gf100_gr_fini_,
1884 	.intr = gf100_gr_intr,
1885 	.units = gf100_gr_units,
1886 	.chan_new = gf100_gr_chan_new,
1887 	.object_get = gf100_gr_object_get,
1888 	.chsw_load = gf100_gr_chsw_load,
1889 };
1890 
1891 int
1892 gf100_gr_ctor_fw_legacy(struct gf100_gr *gr, const char *fwname,
1893 			struct gf100_gr_fuc *fuc, int ret)
1894 {
1895 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1896 	struct nvkm_device *device = subdev->device;
1897 	const struct firmware *fw;
1898 	char f[32];
1899 
1900 	/* see if this firmware has a legacy path */
1901 	if (!strcmp(fwname, "fecs_inst"))
1902 		fwname = "fuc409c";
1903 	else if (!strcmp(fwname, "fecs_data"))
1904 		fwname = "fuc409d";
1905 	else if (!strcmp(fwname, "gpccs_inst"))
1906 		fwname = "fuc41ac";
1907 	else if (!strcmp(fwname, "gpccs_data"))
1908 		fwname = "fuc41ad";
1909 	else {
1910 		/* nope, let's just return the error we got */
1911 		nvkm_error(subdev, "failed to load %s\n", fwname);
1912 		return ret;
1913 	}
1914 
1915 	/* yes, try to load from the legacy path */
1916 	nvkm_debug(subdev, "%s: falling back to legacy path\n", fwname);
1917 
1918 	snprintf(f, sizeof(f), "nouveau/nv%02x_%s", device->chipset, fwname);
1919 	ret = request_firmware(&fw, f, device->dev);
1920 	if (ret) {
1921 		snprintf(f, sizeof(f), "nouveau/%s", fwname);
1922 		ret = request_firmware(&fw, f, device->dev);
1923 		if (ret) {
1924 			nvkm_error(subdev, "failed to load %s\n", fwname);
1925 			return ret;
1926 		}
1927 	}
1928 
1929 	fuc->size = fw->size;
1930 	fuc->data = kmemdup(fw->data, fuc->size, GFP_KERNEL);
1931 	release_firmware(fw);
1932 	return (fuc->data != NULL) ? 0 : -ENOMEM;
1933 }
1934 
1935 int
1936 gf100_gr_ctor_fw(struct gf100_gr *gr, const char *fwname,
1937 		 struct gf100_gr_fuc *fuc)
1938 {
1939 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1940 	struct nvkm_device *device = subdev->device;
1941 	const struct firmware *fw;
1942 	int ret;
1943 
1944 	ret = nvkm_firmware_get(device, fwname, &fw);
1945 	if (ret) {
1946 		ret = gf100_gr_ctor_fw_legacy(gr, fwname, fuc, ret);
1947 		if (ret)
1948 			return -ENODEV;
1949 		return 0;
1950 	}
1951 
1952 	fuc->size = fw->size;
1953 	fuc->data = kmemdup(fw->data, fuc->size, GFP_KERNEL);
1954 	nvkm_firmware_put(fw);
1955 	return (fuc->data != NULL) ? 0 : -ENOMEM;
1956 }
1957 
1958 int
1959 gf100_gr_ctor(const struct gf100_gr_func *func, struct nvkm_device *device,
1960 	      int index, struct gf100_gr *gr)
1961 {
1962 	gr->func = func;
1963 	gr->firmware = nvkm_boolopt(device->cfgopt, "NvGrUseFW",
1964 				    func->fecs.ucode == NULL);
1965 
1966 	return nvkm_gr_ctor(&gf100_gr_, device, index,
1967 			    gr->firmware || func->fecs.ucode != NULL,
1968 			    &gr->base);
1969 }
1970 
1971 int
1972 gf100_gr_new_(const struct gf100_gr_func *func, struct nvkm_device *device,
1973 	      int index, struct nvkm_gr **pgr)
1974 {
1975 	struct gf100_gr *gr;
1976 	int ret;
1977 
1978 	if (!(gr = kzalloc(sizeof(*gr), GFP_KERNEL)))
1979 		return -ENOMEM;
1980 	*pgr = &gr->base;
1981 
1982 	ret = gf100_gr_ctor(func, device, index, gr);
1983 	if (ret)
1984 		return ret;
1985 
1986 	if (gr->firmware) {
1987 		if (gf100_gr_ctor_fw(gr, "fecs_inst", &gr->fuc409c) ||
1988 		    gf100_gr_ctor_fw(gr, "fecs_data", &gr->fuc409d) ||
1989 		    gf100_gr_ctor_fw(gr, "gpccs_inst", &gr->fuc41ac) ||
1990 		    gf100_gr_ctor_fw(gr, "gpccs_data", &gr->fuc41ad))
1991 			return -ENODEV;
1992 	}
1993 
1994 	return 0;
1995 }
1996 
1997 void
1998 gf100_gr_init_400054(struct gf100_gr *gr)
1999 {
2000 	nvkm_wr32(gr->base.engine.subdev.device, 0x400054, 0x34ce3464);
2001 }
2002 
2003 void
2004 gf100_gr_init_shader_exceptions(struct gf100_gr *gr, int gpc, int tpc)
2005 {
2006 	struct nvkm_device *device = gr->base.engine.subdev.device;
2007 	nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x644), 0x001ffffe);
2008 	nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x64c), 0x0000000f);
2009 }
2010 
2011 void
2012 gf100_gr_init_tex_hww_esr(struct gf100_gr *gr, int gpc, int tpc)
2013 {
2014 	struct nvkm_device *device = gr->base.engine.subdev.device;
2015 	nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x224), 0xc0000000);
2016 }
2017 
2018 void
2019 gf100_gr_init_419eb4(struct gf100_gr *gr)
2020 {
2021 	struct nvkm_device *device = gr->base.engine.subdev.device;
2022 	nvkm_mask(device, 0x419eb4, 0x00001000, 0x00001000);
2023 }
2024 
2025 void
2026 gf100_gr_init_419cc0(struct gf100_gr *gr)
2027 {
2028 	struct nvkm_device *device = gr->base.engine.subdev.device;
2029 	int gpc, tpc;
2030 
2031 	nvkm_mask(device, 0x419cc0, 0x00000008, 0x00000008);
2032 
2033 	for (gpc = 0; gpc < gr->gpc_nr; gpc++) {
2034 		for (tpc = 0; tpc < gr->tpc_nr[gpc]; tpc++)
2035 			nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x48c), 0xc0000000);
2036 	}
2037 }
2038 
2039 void
2040 gf100_gr_init_40601c(struct gf100_gr *gr)
2041 {
2042 	nvkm_wr32(gr->base.engine.subdev.device, 0x40601c, 0xc0000000);
2043 }
2044 
2045 void
2046 gf100_gr_init_fecs_exceptions(struct gf100_gr *gr)
2047 {
2048 	const u32 data = gr->firmware ? 0x000e0000 : 0x000e0001;
2049 	nvkm_wr32(gr->base.engine.subdev.device, 0x409c24, data);
2050 }
2051 
2052 void
2053 gf100_gr_init_gpc_mmu(struct gf100_gr *gr)
2054 {
2055 	struct nvkm_device *device = gr->base.engine.subdev.device;
2056 	struct nvkm_fb *fb = device->fb;
2057 
2058 	nvkm_wr32(device, 0x418880, nvkm_rd32(device, 0x100c80) & 0x00000001);
2059 	nvkm_wr32(device, 0x4188a4, 0x03000000);
2060 	nvkm_wr32(device, 0x418888, 0x00000000);
2061 	nvkm_wr32(device, 0x41888c, 0x00000000);
2062 	nvkm_wr32(device, 0x418890, 0x00000000);
2063 	nvkm_wr32(device, 0x418894, 0x00000000);
2064 	nvkm_wr32(device, 0x4188b4, nvkm_memory_addr(fb->mmu_wr) >> 8);
2065 	nvkm_wr32(device, 0x4188b8, nvkm_memory_addr(fb->mmu_rd) >> 8);
2066 }
2067 
2068 void
2069 gf100_gr_init_num_active_ltcs(struct gf100_gr *gr)
2070 {
2071 	struct nvkm_device *device = gr->base.engine.subdev.device;
2072 	nvkm_wr32(device, GPC_BCAST(0x08ac), nvkm_rd32(device, 0x100800));
2073 }
2074 
2075 void
2076 gf100_gr_init_zcull(struct gf100_gr *gr)
2077 {
2078 	struct nvkm_device *device = gr->base.engine.subdev.device;
2079 	const u32 magicgpc918 = DIV_ROUND_UP(0x00800000, gr->tpc_total);
2080 	const u8 tile_nr = ALIGN(gr->tpc_total, 32);
2081 	u8 bank[GPC_MAX] = {}, gpc, i, j;
2082 	u32 data;
2083 
2084 	for (i = 0; i < tile_nr; i += 8) {
2085 		for (data = 0, j = 0; j < 8 && i + j < gr->tpc_total; j++) {
2086 			data |= bank[gr->tile[i + j]] << (j * 4);
2087 			bank[gr->tile[i + j]]++;
2088 		}
2089 		nvkm_wr32(device, GPC_BCAST(0x0980 + ((i / 8) * 4)), data);
2090 	}
2091 
2092 	for (gpc = 0; gpc < gr->gpc_nr; gpc++) {
2093 		nvkm_wr32(device, GPC_UNIT(gpc, 0x0914),
2094 			  gr->screen_tile_row_offset << 8 | gr->tpc_nr[gpc]);
2095 		nvkm_wr32(device, GPC_UNIT(gpc, 0x0910), 0x00040000 |
2096 							 gr->tpc_total);
2097 		nvkm_wr32(device, GPC_UNIT(gpc, 0x0918), magicgpc918);
2098 	}
2099 
2100 	nvkm_wr32(device, GPC_BCAST(0x1bd4), magicgpc918);
2101 }
2102 
2103 void
2104 gf100_gr_init_vsc_stream_master(struct gf100_gr *gr)
2105 {
2106 	struct nvkm_device *device = gr->base.engine.subdev.device;
2107 	nvkm_mask(device, TPC_UNIT(0, 0, 0x05c), 0x00000001, 0x00000001);
2108 }
2109 
2110 int
2111 gf100_gr_init(struct gf100_gr *gr)
2112 {
2113 	struct nvkm_device *device = gr->base.engine.subdev.device;
2114 	int gpc, tpc, rop;
2115 
2116 	if (gr->func->init_419bd8)
2117 		gr->func->init_419bd8(gr);
2118 
2119 	gr->func->init_gpc_mmu(gr);
2120 
2121 	if (gr->fuc_sw_nonctx)
2122 		gf100_gr_mmio(gr, gr->fuc_sw_nonctx);
2123 	else
2124 		gf100_gr_mmio(gr, gr->func->mmio);
2125 
2126 	if (gr->func->init_r405a14)
2127 		gr->func->init_r405a14(gr);
2128 
2129 	if (gr->func->clkgate_pack)
2130 		nvkm_therm_clkgate_init(device->therm, gr->func->clkgate_pack);
2131 
2132 	if (gr->func->init_bios)
2133 		gr->func->init_bios(gr);
2134 
2135 	gr->func->init_vsc_stream_master(gr);
2136 	gr->func->init_zcull(gr);
2137 	gr->func->init_num_active_ltcs(gr);
2138 	if (gr->func->init_rop_active_fbps)
2139 		gr->func->init_rop_active_fbps(gr);
2140 	if (gr->func->init_bios_2)
2141 		gr->func->init_bios_2(gr);
2142 	if (gr->func->init_swdx_pes_mask)
2143 		gr->func->init_swdx_pes_mask(gr);
2144 
2145 	nvkm_wr32(device, 0x400500, 0x00010001);
2146 
2147 	nvkm_wr32(device, 0x400100, 0xffffffff);
2148 	nvkm_wr32(device, 0x40013c, 0xffffffff);
2149 	nvkm_wr32(device, 0x400124, 0x00000002);
2150 
2151 	gr->func->init_fecs_exceptions(gr);
2152 	if (gr->func->init_ds_hww_esr_2)
2153 		gr->func->init_ds_hww_esr_2(gr);
2154 
2155 	nvkm_wr32(device, 0x404000, 0xc0000000);
2156 	nvkm_wr32(device, 0x404600, 0xc0000000);
2157 	nvkm_wr32(device, 0x408030, 0xc0000000);
2158 
2159 	if (gr->func->init_40601c)
2160 		gr->func->init_40601c(gr);
2161 
2162 	nvkm_wr32(device, 0x404490, 0xc0000000);
2163 	nvkm_wr32(device, 0x406018, 0xc0000000);
2164 
2165 	if (gr->func->init_sked_hww_esr)
2166 		gr->func->init_sked_hww_esr(gr);
2167 
2168 	nvkm_wr32(device, 0x405840, 0xc0000000);
2169 	nvkm_wr32(device, 0x405844, 0x00ffffff);
2170 
2171 	if (gr->func->init_419cc0)
2172 		gr->func->init_419cc0(gr);
2173 	if (gr->func->init_419eb4)
2174 		gr->func->init_419eb4(gr);
2175 	if (gr->func->init_419c9c)
2176 		gr->func->init_419c9c(gr);
2177 
2178 	if (gr->func->init_ppc_exceptions)
2179 		gr->func->init_ppc_exceptions(gr);
2180 
2181 	for (gpc = 0; gpc < gr->gpc_nr; gpc++) {
2182 		nvkm_wr32(device, GPC_UNIT(gpc, 0x0420), 0xc0000000);
2183 		nvkm_wr32(device, GPC_UNIT(gpc, 0x0900), 0xc0000000);
2184 		nvkm_wr32(device, GPC_UNIT(gpc, 0x1028), 0xc0000000);
2185 		nvkm_wr32(device, GPC_UNIT(gpc, 0x0824), 0xc0000000);
2186 		for (tpc = 0; tpc < gr->tpc_nr[gpc]; tpc++) {
2187 			nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x508), 0xffffffff);
2188 			nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x50c), 0xffffffff);
2189 			if (gr->func->init_tex_hww_esr)
2190 				gr->func->init_tex_hww_esr(gr, gpc, tpc);
2191 			nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x084), 0xc0000000);
2192 			if (gr->func->init_504430)
2193 				gr->func->init_504430(gr, gpc, tpc);
2194 			gr->func->init_shader_exceptions(gr, gpc, tpc);
2195 		}
2196 		nvkm_wr32(device, GPC_UNIT(gpc, 0x2c90), 0xffffffff);
2197 		nvkm_wr32(device, GPC_UNIT(gpc, 0x2c94), 0xffffffff);
2198 	}
2199 
2200 	for (rop = 0; rop < gr->rop_nr; rop++) {
2201 		nvkm_wr32(device, ROP_UNIT(rop, 0x144), 0x40000000);
2202 		nvkm_wr32(device, ROP_UNIT(rop, 0x070), 0x40000000);
2203 		nvkm_wr32(device, ROP_UNIT(rop, 0x204), 0xffffffff);
2204 		nvkm_wr32(device, ROP_UNIT(rop, 0x208), 0xffffffff);
2205 	}
2206 
2207 	nvkm_wr32(device, 0x400108, 0xffffffff);
2208 	nvkm_wr32(device, 0x400138, 0xffffffff);
2209 	nvkm_wr32(device, 0x400118, 0xffffffff);
2210 	nvkm_wr32(device, 0x400130, 0xffffffff);
2211 	nvkm_wr32(device, 0x40011c, 0xffffffff);
2212 	nvkm_wr32(device, 0x400134, 0xffffffff);
2213 
2214 	if (gr->func->init_400054)
2215 		gr->func->init_400054(gr);
2216 
2217 	gf100_gr_zbc_init(gr);
2218 
2219 	if (gr->func->init_4188a4)
2220 		gr->func->init_4188a4(gr);
2221 
2222 	return gf100_gr_init_ctxctl(gr);
2223 }
2224 
2225 #include "fuc/hubgf100.fuc3.h"
2226 
2227 struct gf100_gr_ucode
2228 gf100_gr_fecs_ucode = {
2229 	.code.data = gf100_grhub_code,
2230 	.code.size = sizeof(gf100_grhub_code),
2231 	.data.data = gf100_grhub_data,
2232 	.data.size = sizeof(gf100_grhub_data),
2233 };
2234 
2235 #include "fuc/gpcgf100.fuc3.h"
2236 
2237 struct gf100_gr_ucode
2238 gf100_gr_gpccs_ucode = {
2239 	.code.data = gf100_grgpc_code,
2240 	.code.size = sizeof(gf100_grgpc_code),
2241 	.data.data = gf100_grgpc_data,
2242 	.data.size = sizeof(gf100_grgpc_data),
2243 };
2244 
2245 static const struct gf100_gr_func
2246 gf100_gr = {
2247 	.oneinit_tiles = gf100_gr_oneinit_tiles,
2248 	.oneinit_sm_id = gf100_gr_oneinit_sm_id,
2249 	.init = gf100_gr_init,
2250 	.init_gpc_mmu = gf100_gr_init_gpc_mmu,
2251 	.init_vsc_stream_master = gf100_gr_init_vsc_stream_master,
2252 	.init_zcull = gf100_gr_init_zcull,
2253 	.init_num_active_ltcs = gf100_gr_init_num_active_ltcs,
2254 	.init_fecs_exceptions = gf100_gr_init_fecs_exceptions,
2255 	.init_40601c = gf100_gr_init_40601c,
2256 	.init_419cc0 = gf100_gr_init_419cc0,
2257 	.init_419eb4 = gf100_gr_init_419eb4,
2258 	.init_tex_hww_esr = gf100_gr_init_tex_hww_esr,
2259 	.init_shader_exceptions = gf100_gr_init_shader_exceptions,
2260 	.init_400054 = gf100_gr_init_400054,
2261 	.trap_mp = gf100_gr_trap_mp,
2262 	.mmio = gf100_gr_pack_mmio,
2263 	.fecs.ucode = &gf100_gr_fecs_ucode,
2264 	.gpccs.ucode = &gf100_gr_gpccs_ucode,
2265 	.rops = gf100_gr_rops,
2266 	.grctx = &gf100_grctx,
2267 	.zbc = &gf100_gr_zbc,
2268 	.sclass = {
2269 		{ -1, -1, FERMI_TWOD_A },
2270 		{ -1, -1, FERMI_MEMORY_TO_MEMORY_FORMAT_A },
2271 		{ -1, -1, FERMI_A, &gf100_fermi },
2272 		{ -1, -1, FERMI_COMPUTE_A },
2273 		{}
2274 	}
2275 };
2276 
2277 int
2278 gf100_gr_new(struct nvkm_device *device, int index, struct nvkm_gr **pgr)
2279 {
2280 	return gf100_gr_new_(&gf100_gr, device, index, pgr);
2281 }
2282