1 /*
2  * Copyright 2012 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Ben Skeggs
23  */
24 #include "gf100.h"
25 #include "ctxgf100.h"
26 #include "fuc/os.h"
27 
28 #include <core/client.h>
29 #include <core/firmware.h>
30 #include <core/option.h>
31 #include <subdev/acr.h>
32 #include <subdev/fb.h>
33 #include <subdev/mc.h>
34 #include <subdev/pmu.h>
35 #include <subdev/therm.h>
36 #include <subdev/timer.h>
37 #include <engine/fifo.h>
38 
39 #include <nvif/class.h>
40 #include <nvif/cl9097.h>
41 #include <nvif/if900d.h>
42 #include <nvif/unpack.h>
43 
44 /*******************************************************************************
45  * Zero Bandwidth Clear
46  ******************************************************************************/
47 
48 static void
49 gf100_gr_zbc_clear_color(struct gf100_gr *gr, int zbc)
50 {
51 	struct nvkm_device *device = gr->base.engine.subdev.device;
52 	if (gr->zbc_color[zbc].format) {
53 		nvkm_wr32(device, 0x405804, gr->zbc_color[zbc].ds[0]);
54 		nvkm_wr32(device, 0x405808, gr->zbc_color[zbc].ds[1]);
55 		nvkm_wr32(device, 0x40580c, gr->zbc_color[zbc].ds[2]);
56 		nvkm_wr32(device, 0x405810, gr->zbc_color[zbc].ds[3]);
57 	}
58 	nvkm_wr32(device, 0x405814, gr->zbc_color[zbc].format);
59 	nvkm_wr32(device, 0x405820, zbc);
60 	nvkm_wr32(device, 0x405824, 0x00000004); /* TRIGGER | WRITE | COLOR */
61 }
62 
63 static int
64 gf100_gr_zbc_color_get(struct gf100_gr *gr, int format,
65 		       const u32 ds[4], const u32 l2[4])
66 {
67 	struct nvkm_ltc *ltc = gr->base.engine.subdev.device->ltc;
68 	int zbc = -ENOSPC, i;
69 
70 	for (i = ltc->zbc_color_min; i <= ltc->zbc_color_max; i++) {
71 		if (gr->zbc_color[i].format) {
72 			if (gr->zbc_color[i].format != format)
73 				continue;
74 			if (memcmp(gr->zbc_color[i].ds, ds, sizeof(
75 				   gr->zbc_color[i].ds)))
76 				continue;
77 			if (memcmp(gr->zbc_color[i].l2, l2, sizeof(
78 				   gr->zbc_color[i].l2))) {
79 				WARN_ON(1);
80 				return -EINVAL;
81 			}
82 			return i;
83 		} else {
84 			zbc = (zbc < 0) ? i : zbc;
85 		}
86 	}
87 
88 	if (zbc < 0)
89 		return zbc;
90 
91 	memcpy(gr->zbc_color[zbc].ds, ds, sizeof(gr->zbc_color[zbc].ds));
92 	memcpy(gr->zbc_color[zbc].l2, l2, sizeof(gr->zbc_color[zbc].l2));
93 	gr->zbc_color[zbc].format = format;
94 	nvkm_ltc_zbc_color_get(ltc, zbc, l2);
95 	gr->func->zbc->clear_color(gr, zbc);
96 	return zbc;
97 }
98 
99 static void
100 gf100_gr_zbc_clear_depth(struct gf100_gr *gr, int zbc)
101 {
102 	struct nvkm_device *device = gr->base.engine.subdev.device;
103 	if (gr->zbc_depth[zbc].format)
104 		nvkm_wr32(device, 0x405818, gr->zbc_depth[zbc].ds);
105 	nvkm_wr32(device, 0x40581c, gr->zbc_depth[zbc].format);
106 	nvkm_wr32(device, 0x405820, zbc);
107 	nvkm_wr32(device, 0x405824, 0x00000005); /* TRIGGER | WRITE | DEPTH */
108 }
109 
110 static int
111 gf100_gr_zbc_depth_get(struct gf100_gr *gr, int format,
112 		       const u32 ds, const u32 l2)
113 {
114 	struct nvkm_ltc *ltc = gr->base.engine.subdev.device->ltc;
115 	int zbc = -ENOSPC, i;
116 
117 	for (i = ltc->zbc_depth_min; i <= ltc->zbc_depth_max; i++) {
118 		if (gr->zbc_depth[i].format) {
119 			if (gr->zbc_depth[i].format != format)
120 				continue;
121 			if (gr->zbc_depth[i].ds != ds)
122 				continue;
123 			if (gr->zbc_depth[i].l2 != l2) {
124 				WARN_ON(1);
125 				return -EINVAL;
126 			}
127 			return i;
128 		} else {
129 			zbc = (zbc < 0) ? i : zbc;
130 		}
131 	}
132 
133 	if (zbc < 0)
134 		return zbc;
135 
136 	gr->zbc_depth[zbc].format = format;
137 	gr->zbc_depth[zbc].ds = ds;
138 	gr->zbc_depth[zbc].l2 = l2;
139 	nvkm_ltc_zbc_depth_get(ltc, zbc, l2);
140 	gr->func->zbc->clear_depth(gr, zbc);
141 	return zbc;
142 }
143 
144 const struct gf100_gr_func_zbc
145 gf100_gr_zbc = {
146 	.clear_color = gf100_gr_zbc_clear_color,
147 	.clear_depth = gf100_gr_zbc_clear_depth,
148 };
149 
150 /*******************************************************************************
151  * Graphics object classes
152  ******************************************************************************/
153 #define gf100_gr_object(p) container_of((p), struct gf100_gr_object, object)
154 
155 struct gf100_gr_object {
156 	struct nvkm_object object;
157 	struct gf100_gr_chan *chan;
158 };
159 
160 static int
161 gf100_fermi_mthd_zbc_color(struct nvkm_object *object, void *data, u32 size)
162 {
163 	struct gf100_gr *gr = gf100_gr(nvkm_gr(object->engine));
164 	union {
165 		struct fermi_a_zbc_color_v0 v0;
166 	} *args = data;
167 	int ret = -ENOSYS;
168 
169 	if (!(ret = nvif_unpack(ret, &data, &size, args->v0, 0, 0, false))) {
170 		switch (args->v0.format) {
171 		case FERMI_A_ZBC_COLOR_V0_FMT_ZERO:
172 		case FERMI_A_ZBC_COLOR_V0_FMT_UNORM_ONE:
173 		case FERMI_A_ZBC_COLOR_V0_FMT_RF32_GF32_BF32_AF32:
174 		case FERMI_A_ZBC_COLOR_V0_FMT_R16_G16_B16_A16:
175 		case FERMI_A_ZBC_COLOR_V0_FMT_RN16_GN16_BN16_AN16:
176 		case FERMI_A_ZBC_COLOR_V0_FMT_RS16_GS16_BS16_AS16:
177 		case FERMI_A_ZBC_COLOR_V0_FMT_RU16_GU16_BU16_AU16:
178 		case FERMI_A_ZBC_COLOR_V0_FMT_RF16_GF16_BF16_AF16:
179 		case FERMI_A_ZBC_COLOR_V0_FMT_A8R8G8B8:
180 		case FERMI_A_ZBC_COLOR_V0_FMT_A8RL8GL8BL8:
181 		case FERMI_A_ZBC_COLOR_V0_FMT_A2B10G10R10:
182 		case FERMI_A_ZBC_COLOR_V0_FMT_AU2BU10GU10RU10:
183 		case FERMI_A_ZBC_COLOR_V0_FMT_A8B8G8R8:
184 		case FERMI_A_ZBC_COLOR_V0_FMT_A8BL8GL8RL8:
185 		case FERMI_A_ZBC_COLOR_V0_FMT_AN8BN8GN8RN8:
186 		case FERMI_A_ZBC_COLOR_V0_FMT_AS8BS8GS8RS8:
187 		case FERMI_A_ZBC_COLOR_V0_FMT_AU8BU8GU8RU8:
188 		case FERMI_A_ZBC_COLOR_V0_FMT_A2R10G10B10:
189 		case FERMI_A_ZBC_COLOR_V0_FMT_BF10GF11RF11:
190 			ret = gf100_gr_zbc_color_get(gr, args->v0.format,
191 							   args->v0.ds,
192 							   args->v0.l2);
193 			if (ret >= 0) {
194 				args->v0.index = ret;
195 				return 0;
196 			}
197 			break;
198 		default:
199 			return -EINVAL;
200 		}
201 	}
202 
203 	return ret;
204 }
205 
206 static int
207 gf100_fermi_mthd_zbc_depth(struct nvkm_object *object, void *data, u32 size)
208 {
209 	struct gf100_gr *gr = gf100_gr(nvkm_gr(object->engine));
210 	union {
211 		struct fermi_a_zbc_depth_v0 v0;
212 	} *args = data;
213 	int ret = -ENOSYS;
214 
215 	if (!(ret = nvif_unpack(ret, &data, &size, args->v0, 0, 0, false))) {
216 		switch (args->v0.format) {
217 		case FERMI_A_ZBC_DEPTH_V0_FMT_FP32:
218 			ret = gf100_gr_zbc_depth_get(gr, args->v0.format,
219 							   args->v0.ds,
220 							   args->v0.l2);
221 			return (ret >= 0) ? 0 : -ENOSPC;
222 		default:
223 			return -EINVAL;
224 		}
225 	}
226 
227 	return ret;
228 }
229 
230 static int
231 gf100_fermi_mthd(struct nvkm_object *object, u32 mthd, void *data, u32 size)
232 {
233 	nvif_ioctl(object, "fermi mthd %08x\n", mthd);
234 	switch (mthd) {
235 	case FERMI_A_ZBC_COLOR:
236 		return gf100_fermi_mthd_zbc_color(object, data, size);
237 	case FERMI_A_ZBC_DEPTH:
238 		return gf100_fermi_mthd_zbc_depth(object, data, size);
239 	default:
240 		break;
241 	}
242 	return -EINVAL;
243 }
244 
245 const struct nvkm_object_func
246 gf100_fermi = {
247 	.mthd = gf100_fermi_mthd,
248 };
249 
250 static void
251 gf100_gr_mthd_set_shader_exceptions(struct nvkm_device *device, u32 data)
252 {
253 	nvkm_wr32(device, 0x419e44, data ? 0xffffffff : 0x00000000);
254 	nvkm_wr32(device, 0x419e4c, data ? 0xffffffff : 0x00000000);
255 }
256 
257 static bool
258 gf100_gr_mthd_sw(struct nvkm_device *device, u16 class, u32 mthd, u32 data)
259 {
260 	switch (class & 0x00ff) {
261 	case 0x97:
262 	case 0xc0:
263 		switch (mthd) {
264 		case 0x1528:
265 			gf100_gr_mthd_set_shader_exceptions(device, data);
266 			return true;
267 		default:
268 			break;
269 		}
270 		break;
271 	default:
272 		break;
273 	}
274 	return false;
275 }
276 
277 static const struct nvkm_object_func
278 gf100_gr_object_func = {
279 };
280 
281 static int
282 gf100_gr_object_new(const struct nvkm_oclass *oclass, void *data, u32 size,
283 		    struct nvkm_object **pobject)
284 {
285 	struct gf100_gr_chan *chan = gf100_gr_chan(oclass->parent);
286 	struct gf100_gr_object *object;
287 
288 	if (!(object = kzalloc(sizeof(*object), GFP_KERNEL)))
289 		return -ENOMEM;
290 	*pobject = &object->object;
291 
292 	nvkm_object_ctor(oclass->base.func ? oclass->base.func :
293 			 &gf100_gr_object_func, oclass, &object->object);
294 	object->chan = chan;
295 	return 0;
296 }
297 
298 static int
299 gf100_gr_object_get(struct nvkm_gr *base, int index, struct nvkm_sclass *sclass)
300 {
301 	struct gf100_gr *gr = gf100_gr(base);
302 	int c = 0;
303 
304 	while (gr->func->sclass[c].oclass) {
305 		if (c++ == index) {
306 			*sclass = gr->func->sclass[index];
307 			sclass->ctor = gf100_gr_object_new;
308 			return index;
309 		}
310 	}
311 
312 	return c;
313 }
314 
315 /*******************************************************************************
316  * PGRAPH context
317  ******************************************************************************/
318 
319 static int
320 gf100_gr_chan_bind(struct nvkm_object *object, struct nvkm_gpuobj *parent,
321 		   int align, struct nvkm_gpuobj **pgpuobj)
322 {
323 	struct gf100_gr_chan *chan = gf100_gr_chan(object);
324 	struct gf100_gr *gr = chan->gr;
325 	int ret, i;
326 
327 	ret = nvkm_gpuobj_new(gr->base.engine.subdev.device, gr->size,
328 			      align, false, parent, pgpuobj);
329 	if (ret)
330 		return ret;
331 
332 	nvkm_kmap(*pgpuobj);
333 	for (i = 0; i < gr->size; i += 4)
334 		nvkm_wo32(*pgpuobj, i, gr->data[i / 4]);
335 
336 	if (!gr->firmware) {
337 		nvkm_wo32(*pgpuobj, 0x00, chan->mmio_nr / 2);
338 		nvkm_wo32(*pgpuobj, 0x04, chan->mmio_vma->addr >> 8);
339 	} else {
340 		nvkm_wo32(*pgpuobj, 0xf4, 0);
341 		nvkm_wo32(*pgpuobj, 0xf8, 0);
342 		nvkm_wo32(*pgpuobj, 0x10, chan->mmio_nr / 2);
343 		nvkm_wo32(*pgpuobj, 0x14, lower_32_bits(chan->mmio_vma->addr));
344 		nvkm_wo32(*pgpuobj, 0x18, upper_32_bits(chan->mmio_vma->addr));
345 		nvkm_wo32(*pgpuobj, 0x1c, 1);
346 		nvkm_wo32(*pgpuobj, 0x20, 0);
347 		nvkm_wo32(*pgpuobj, 0x28, 0);
348 		nvkm_wo32(*pgpuobj, 0x2c, 0);
349 	}
350 	nvkm_done(*pgpuobj);
351 	return 0;
352 }
353 
354 static void *
355 gf100_gr_chan_dtor(struct nvkm_object *object)
356 {
357 	struct gf100_gr_chan *chan = gf100_gr_chan(object);
358 
359 	nvkm_vmm_put(chan->vmm, &chan->mmio_vma);
360 	nvkm_memory_unref(&chan->mmio);
361 
362 	nvkm_vmm_put(chan->vmm, &chan->attrib_cb);
363 	nvkm_vmm_put(chan->vmm, &chan->unknown);
364 	nvkm_vmm_put(chan->vmm, &chan->bundle_cb);
365 	nvkm_vmm_put(chan->vmm, &chan->pagepool);
366 	nvkm_vmm_unref(&chan->vmm);
367 	return chan;
368 }
369 
370 static const struct nvkm_object_func
371 gf100_gr_chan = {
372 	.dtor = gf100_gr_chan_dtor,
373 	.bind = gf100_gr_chan_bind,
374 };
375 
376 static int
377 gf100_gr_chan_new(struct nvkm_gr *base, struct nvkm_fifo_chan *fifoch,
378 		  const struct nvkm_oclass *oclass,
379 		  struct nvkm_object **pobject)
380 {
381 	struct gf100_gr *gr = gf100_gr(base);
382 	struct gf100_gr_chan *chan;
383 	struct gf100_vmm_map_v0 args = { .priv = 1 };
384 	struct nvkm_device *device = gr->base.engine.subdev.device;
385 	int ret;
386 
387 	if (!(chan = kzalloc(sizeof(*chan), GFP_KERNEL)))
388 		return -ENOMEM;
389 	nvkm_object_ctor(&gf100_gr_chan, oclass, &chan->object);
390 	chan->gr = gr;
391 	chan->vmm = nvkm_vmm_ref(fifoch->vmm);
392 	*pobject = &chan->object;
393 
394 	/* Map pagepool. */
395 	ret = nvkm_vmm_get(chan->vmm, 12, nvkm_memory_size(gr->pagepool), &chan->pagepool);
396 	if (ret)
397 		return ret;
398 
399 	ret = nvkm_memory_map(gr->pagepool, 0, chan->vmm, chan->pagepool, &args, sizeof(args));
400 	if (ret)
401 		return ret;
402 
403 	/* Map bundle circular buffer. */
404 	ret = nvkm_vmm_get(chan->vmm, 12, nvkm_memory_size(gr->bundle_cb), &chan->bundle_cb);
405 	if (ret)
406 		return ret;
407 
408 	ret = nvkm_memory_map(gr->bundle_cb, 0, chan->vmm, chan->bundle_cb, &args, sizeof(args));
409 	if (ret)
410 		return ret;
411 
412 	/* Map attribute circular buffer. */
413 	ret = nvkm_vmm_get(chan->vmm, 12, nvkm_memory_size(gr->attrib_cb), &chan->attrib_cb);
414 	if (ret)
415 		return ret;
416 
417 	if (device->card_type < GP100) {
418 		ret = nvkm_memory_map(gr->attrib_cb, 0, chan->vmm, chan->attrib_cb, NULL, 0);
419 		if (ret)
420 			return ret;
421 	} else {
422 		ret = nvkm_memory_map(gr->attrib_cb, 0, chan->vmm, chan->attrib_cb,
423 				      &args, sizeof(args));;
424 		if (ret)
425 			return ret;
426 	}
427 
428 	/* Map some context buffer of unknown purpose. */
429 	if (gr->func->grctx->unknown_size) {
430 		ret = nvkm_vmm_get(chan->vmm, 12, nvkm_memory_size(gr->unknown), &chan->unknown);
431 		if (ret)
432 			return ret;
433 
434 		ret = nvkm_memory_map(gr->unknown, 0, chan->vmm, chan->unknown,
435 				      &args, sizeof(args));
436 		if (ret)
437 			return ret;
438 	}
439 
440 	/* Generate golden context image. */
441 	mutex_lock(&gr->fecs.mutex);
442 	if (gr->data == NULL) {
443 		ret = gf100_grctx_generate(gr, chan, fifoch->inst);
444 		if (ret) {
445 			nvkm_error(&base->engine.subdev, "failed to construct context\n");
446 			return ret;
447 		}
448 	}
449 	mutex_unlock(&gr->fecs.mutex);
450 
451 	/* allocate memory for a "mmio list" buffer that's used by the HUB
452 	 * fuc to modify some per-context register settings on first load
453 	 * of the context.
454 	 */
455 	ret = nvkm_memory_new(device, NVKM_MEM_TARGET_INST, 0x1000, 0x100,
456 			      false, &chan->mmio);
457 	if (ret)
458 		return ret;
459 
460 	ret = nvkm_vmm_get(fifoch->vmm, 12, 0x1000, &chan->mmio_vma);
461 	if (ret)
462 		return ret;
463 
464 	ret = nvkm_memory_map(chan->mmio, 0, fifoch->vmm,
465 			      chan->mmio_vma, &args, sizeof(args));
466 	if (ret)
467 		return ret;
468 
469 	/* finally, fill in the mmio list and point the context at it */
470 	nvkm_kmap(chan->mmio);
471 	gr->func->grctx->pagepool(chan, chan->pagepool->addr);
472 	gr->func->grctx->bundle(chan, chan->bundle_cb->addr, gr->func->grctx->bundle_size);
473 	gr->func->grctx->attrib_cb(chan, chan->attrib_cb->addr, gr->func->grctx->attrib_cb_size(gr));
474 	gr->func->grctx->attrib(chan);
475 	if (gr->func->grctx->patch_ltc)
476 		gr->func->grctx->patch_ltc(chan);
477 	if (gr->func->grctx->unknown_size)
478 		gr->func->grctx->unknown(chan, chan->unknown->addr, gr->func->grctx->unknown_size);
479 	nvkm_done(chan->mmio);
480 	return 0;
481 }
482 
483 /*******************************************************************************
484  * PGRAPH register lists
485  ******************************************************************************/
486 
487 const struct gf100_gr_init
488 gf100_gr_init_main_0[] = {
489 	{ 0x400080,   1, 0x04, 0x003083c2 },
490 	{ 0x400088,   1, 0x04, 0x00006fe7 },
491 	{ 0x40008c,   1, 0x04, 0x00000000 },
492 	{ 0x400090,   1, 0x04, 0x00000030 },
493 	{ 0x40013c,   1, 0x04, 0x013901f7 },
494 	{ 0x400140,   1, 0x04, 0x00000100 },
495 	{ 0x400144,   1, 0x04, 0x00000000 },
496 	{ 0x400148,   1, 0x04, 0x00000110 },
497 	{ 0x400138,   1, 0x04, 0x00000000 },
498 	{ 0x400130,   2, 0x04, 0x00000000 },
499 	{ 0x400124,   1, 0x04, 0x00000002 },
500 	{}
501 };
502 
503 const struct gf100_gr_init
504 gf100_gr_init_fe_0[] = {
505 	{ 0x40415c,   1, 0x04, 0x00000000 },
506 	{ 0x404170,   1, 0x04, 0x00000000 },
507 	{}
508 };
509 
510 const struct gf100_gr_init
511 gf100_gr_init_pri_0[] = {
512 	{ 0x404488,   2, 0x04, 0x00000000 },
513 	{}
514 };
515 
516 const struct gf100_gr_init
517 gf100_gr_init_rstr2d_0[] = {
518 	{ 0x407808,   1, 0x04, 0x00000000 },
519 	{}
520 };
521 
522 const struct gf100_gr_init
523 gf100_gr_init_pd_0[] = {
524 	{ 0x406024,   1, 0x04, 0x00000000 },
525 	{}
526 };
527 
528 const struct gf100_gr_init
529 gf100_gr_init_ds_0[] = {
530 	{ 0x405844,   1, 0x04, 0x00ffffff },
531 	{ 0x405850,   1, 0x04, 0x00000000 },
532 	{ 0x405908,   1, 0x04, 0x00000000 },
533 	{}
534 };
535 
536 const struct gf100_gr_init
537 gf100_gr_init_scc_0[] = {
538 	{ 0x40803c,   1, 0x04, 0x00000000 },
539 	{}
540 };
541 
542 const struct gf100_gr_init
543 gf100_gr_init_prop_0[] = {
544 	{ 0x4184a0,   1, 0x04, 0x00000000 },
545 	{}
546 };
547 
548 const struct gf100_gr_init
549 gf100_gr_init_gpc_unk_0[] = {
550 	{ 0x418604,   1, 0x04, 0x00000000 },
551 	{ 0x418680,   1, 0x04, 0x00000000 },
552 	{ 0x418714,   1, 0x04, 0x80000000 },
553 	{ 0x418384,   1, 0x04, 0x00000000 },
554 	{}
555 };
556 
557 const struct gf100_gr_init
558 gf100_gr_init_setup_0[] = {
559 	{ 0x418814,   3, 0x04, 0x00000000 },
560 	{}
561 };
562 
563 const struct gf100_gr_init
564 gf100_gr_init_crstr_0[] = {
565 	{ 0x418b04,   1, 0x04, 0x00000000 },
566 	{}
567 };
568 
569 const struct gf100_gr_init
570 gf100_gr_init_setup_1[] = {
571 	{ 0x4188c8,   1, 0x04, 0x80000000 },
572 	{ 0x4188cc,   1, 0x04, 0x00000000 },
573 	{ 0x4188d0,   1, 0x04, 0x00010000 },
574 	{ 0x4188d4,   1, 0x04, 0x00000001 },
575 	{}
576 };
577 
578 const struct gf100_gr_init
579 gf100_gr_init_zcull_0[] = {
580 	{ 0x418910,   1, 0x04, 0x00010001 },
581 	{ 0x418914,   1, 0x04, 0x00000301 },
582 	{ 0x418918,   1, 0x04, 0x00800000 },
583 	{ 0x418980,   1, 0x04, 0x77777770 },
584 	{ 0x418984,   3, 0x04, 0x77777777 },
585 	{}
586 };
587 
588 const struct gf100_gr_init
589 gf100_gr_init_gpm_0[] = {
590 	{ 0x418c04,   1, 0x04, 0x00000000 },
591 	{ 0x418c88,   1, 0x04, 0x00000000 },
592 	{}
593 };
594 
595 const struct gf100_gr_init
596 gf100_gr_init_gpc_unk_1[] = {
597 	{ 0x418d00,   1, 0x04, 0x00000000 },
598 	{ 0x418f08,   1, 0x04, 0x00000000 },
599 	{ 0x418e00,   1, 0x04, 0x00000050 },
600 	{ 0x418e08,   1, 0x04, 0x00000000 },
601 	{}
602 };
603 
604 const struct gf100_gr_init
605 gf100_gr_init_gcc_0[] = {
606 	{ 0x41900c,   1, 0x04, 0x00000000 },
607 	{ 0x419018,   1, 0x04, 0x00000000 },
608 	{}
609 };
610 
611 const struct gf100_gr_init
612 gf100_gr_init_tpccs_0[] = {
613 	{ 0x419d08,   2, 0x04, 0x00000000 },
614 	{ 0x419d10,   1, 0x04, 0x00000014 },
615 	{}
616 };
617 
618 const struct gf100_gr_init
619 gf100_gr_init_tex_0[] = {
620 	{ 0x419ab0,   1, 0x04, 0x00000000 },
621 	{ 0x419ab8,   1, 0x04, 0x000000e7 },
622 	{ 0x419abc,   2, 0x04, 0x00000000 },
623 	{}
624 };
625 
626 const struct gf100_gr_init
627 gf100_gr_init_pe_0[] = {
628 	{ 0x41980c,   3, 0x04, 0x00000000 },
629 	{ 0x419844,   1, 0x04, 0x00000000 },
630 	{ 0x41984c,   1, 0x04, 0x00005bc5 },
631 	{ 0x419850,   4, 0x04, 0x00000000 },
632 	{}
633 };
634 
635 const struct gf100_gr_init
636 gf100_gr_init_l1c_0[] = {
637 	{ 0x419c98,   1, 0x04, 0x00000000 },
638 	{ 0x419ca8,   1, 0x04, 0x80000000 },
639 	{ 0x419cb4,   1, 0x04, 0x00000000 },
640 	{ 0x419cb8,   1, 0x04, 0x00008bf4 },
641 	{ 0x419cbc,   1, 0x04, 0x28137606 },
642 	{ 0x419cc0,   2, 0x04, 0x00000000 },
643 	{}
644 };
645 
646 const struct gf100_gr_init
647 gf100_gr_init_wwdx_0[] = {
648 	{ 0x419bd4,   1, 0x04, 0x00800000 },
649 	{ 0x419bdc,   1, 0x04, 0x00000000 },
650 	{}
651 };
652 
653 const struct gf100_gr_init
654 gf100_gr_init_tpccs_1[] = {
655 	{ 0x419d2c,   1, 0x04, 0x00000000 },
656 	{}
657 };
658 
659 const struct gf100_gr_init
660 gf100_gr_init_mpc_0[] = {
661 	{ 0x419c0c,   1, 0x04, 0x00000000 },
662 	{}
663 };
664 
665 static const struct gf100_gr_init
666 gf100_gr_init_sm_0[] = {
667 	{ 0x419e00,   1, 0x04, 0x00000000 },
668 	{ 0x419ea0,   1, 0x04, 0x00000000 },
669 	{ 0x419ea4,   1, 0x04, 0x00000100 },
670 	{ 0x419ea8,   1, 0x04, 0x00001100 },
671 	{ 0x419eac,   1, 0x04, 0x11100702 },
672 	{ 0x419eb0,   1, 0x04, 0x00000003 },
673 	{ 0x419eb4,   4, 0x04, 0x00000000 },
674 	{ 0x419ec8,   1, 0x04, 0x06060618 },
675 	{ 0x419ed0,   1, 0x04, 0x0eff0e38 },
676 	{ 0x419ed4,   1, 0x04, 0x011104f1 },
677 	{ 0x419edc,   1, 0x04, 0x00000000 },
678 	{ 0x419f00,   1, 0x04, 0x00000000 },
679 	{ 0x419f2c,   1, 0x04, 0x00000000 },
680 	{}
681 };
682 
683 const struct gf100_gr_init
684 gf100_gr_init_be_0[] = {
685 	{ 0x40880c,   1, 0x04, 0x00000000 },
686 	{ 0x408910,   9, 0x04, 0x00000000 },
687 	{ 0x408950,   1, 0x04, 0x00000000 },
688 	{ 0x408954,   1, 0x04, 0x0000ffff },
689 	{ 0x408984,   1, 0x04, 0x00000000 },
690 	{ 0x408988,   1, 0x04, 0x08040201 },
691 	{ 0x40898c,   1, 0x04, 0x80402010 },
692 	{}
693 };
694 
695 const struct gf100_gr_init
696 gf100_gr_init_fe_1[] = {
697 	{ 0x4040f0,   1, 0x04, 0x00000000 },
698 	{}
699 };
700 
701 const struct gf100_gr_init
702 gf100_gr_init_pe_1[] = {
703 	{ 0x419880,   1, 0x04, 0x00000002 },
704 	{}
705 };
706 
707 static const struct gf100_gr_pack
708 gf100_gr_pack_mmio[] = {
709 	{ gf100_gr_init_main_0 },
710 	{ gf100_gr_init_fe_0 },
711 	{ gf100_gr_init_pri_0 },
712 	{ gf100_gr_init_rstr2d_0 },
713 	{ gf100_gr_init_pd_0 },
714 	{ gf100_gr_init_ds_0 },
715 	{ gf100_gr_init_scc_0 },
716 	{ gf100_gr_init_prop_0 },
717 	{ gf100_gr_init_gpc_unk_0 },
718 	{ gf100_gr_init_setup_0 },
719 	{ gf100_gr_init_crstr_0 },
720 	{ gf100_gr_init_setup_1 },
721 	{ gf100_gr_init_zcull_0 },
722 	{ gf100_gr_init_gpm_0 },
723 	{ gf100_gr_init_gpc_unk_1 },
724 	{ gf100_gr_init_gcc_0 },
725 	{ gf100_gr_init_tpccs_0 },
726 	{ gf100_gr_init_tex_0 },
727 	{ gf100_gr_init_pe_0 },
728 	{ gf100_gr_init_l1c_0 },
729 	{ gf100_gr_init_wwdx_0 },
730 	{ gf100_gr_init_tpccs_1 },
731 	{ gf100_gr_init_mpc_0 },
732 	{ gf100_gr_init_sm_0 },
733 	{ gf100_gr_init_be_0 },
734 	{ gf100_gr_init_fe_1 },
735 	{ gf100_gr_init_pe_1 },
736 	{}
737 };
738 
739 /*******************************************************************************
740  * PGRAPH engine/subdev functions
741  ******************************************************************************/
742 
743 static u32
744 gf100_gr_ctxsw_inst(struct nvkm_gr *gr)
745 {
746 	return nvkm_rd32(gr->engine.subdev.device, 0x409b00);
747 }
748 
749 static int
750 gf100_gr_fecs_ctrl_ctxsw(struct gf100_gr *gr, u32 mthd)
751 {
752 	struct nvkm_device *device = gr->base.engine.subdev.device;
753 
754 	nvkm_wr32(device, 0x409804, 0xffffffff);
755 	nvkm_wr32(device, 0x409800, 0x00000000);
756 	nvkm_wr32(device, 0x409500, 0xffffffff);
757 	nvkm_wr32(device, 0x409504, mthd);
758 	nvkm_msec(device, 2000,
759 		u32 stat = nvkm_rd32(device, 0x409804);
760 		if (stat == 0x00000002)
761 			return -EIO;
762 		if (stat == 0x00000001)
763 			return 0;
764 	);
765 
766 	return -ETIMEDOUT;
767 }
768 
769 static int
770 gf100_gr_fecs_start_ctxsw(struct nvkm_gr *base)
771 {
772 	struct gf100_gr *gr = gf100_gr(base);
773 	int ret = 0;
774 
775 	mutex_lock(&gr->fecs.mutex);
776 	if (!--gr->fecs.disable) {
777 		if (WARN_ON(ret = gf100_gr_fecs_ctrl_ctxsw(gr, 0x39)))
778 			gr->fecs.disable++;
779 	}
780 	mutex_unlock(&gr->fecs.mutex);
781 	return ret;
782 }
783 
784 static int
785 gf100_gr_fecs_stop_ctxsw(struct nvkm_gr *base)
786 {
787 	struct gf100_gr *gr = gf100_gr(base);
788 	int ret = 0;
789 
790 	mutex_lock(&gr->fecs.mutex);
791 	if (!gr->fecs.disable++) {
792 		if (WARN_ON(ret = gf100_gr_fecs_ctrl_ctxsw(gr, 0x38)))
793 			gr->fecs.disable--;
794 	}
795 	mutex_unlock(&gr->fecs.mutex);
796 	return ret;
797 }
798 
799 static int
800 gf100_gr_fecs_halt_pipeline(struct gf100_gr *gr)
801 {
802 	int ret = 0;
803 
804 	if (gr->firmware) {
805 		mutex_lock(&gr->fecs.mutex);
806 		ret = gf100_gr_fecs_ctrl_ctxsw(gr, 0x04);
807 		mutex_unlock(&gr->fecs.mutex);
808 	}
809 
810 	return ret;
811 }
812 
813 int
814 gf100_gr_fecs_wfi_golden_save(struct gf100_gr *gr, u32 inst)
815 {
816 	struct nvkm_device *device = gr->base.engine.subdev.device;
817 
818 	nvkm_mask(device, 0x409800, 0x00000003, 0x00000000);
819 	nvkm_wr32(device, 0x409500, inst);
820 	nvkm_wr32(device, 0x409504, 0x00000009);
821 	nvkm_msec(device, 2000,
822 		u32 stat = nvkm_rd32(device, 0x409800);
823 		if (stat & 0x00000002)
824 			return -EIO;
825 		if (stat & 0x00000001)
826 			return 0;
827 	);
828 
829 	return -ETIMEDOUT;
830 }
831 
832 int
833 gf100_gr_fecs_bind_pointer(struct gf100_gr *gr, u32 inst)
834 {
835 	struct nvkm_device *device = gr->base.engine.subdev.device;
836 
837 	nvkm_mask(device, 0x409800, 0x00000030, 0x00000000);
838 	nvkm_wr32(device, 0x409500, inst);
839 	nvkm_wr32(device, 0x409504, 0x00000003);
840 	nvkm_msec(device, 2000,
841 		u32 stat = nvkm_rd32(device, 0x409800);
842 		if (stat & 0x00000020)
843 			return -EIO;
844 		if (stat & 0x00000010)
845 			return 0;
846 	);
847 
848 	return -ETIMEDOUT;
849 }
850 
851 static int
852 gf100_gr_fecs_set_reglist_virtual_address(struct gf100_gr *gr, u64 addr)
853 {
854 	struct nvkm_device *device = gr->base.engine.subdev.device;
855 
856 	nvkm_wr32(device, 0x409810, addr >> 8);
857 	nvkm_wr32(device, 0x409800, 0x00000000);
858 	nvkm_wr32(device, 0x409500, 0x00000001);
859 	nvkm_wr32(device, 0x409504, 0x00000032);
860 	nvkm_msec(device, 2000,
861 		if (nvkm_rd32(device, 0x409800) == 0x00000001)
862 			return 0;
863 	);
864 
865 	return -ETIMEDOUT;
866 }
867 
868 static int
869 gf100_gr_fecs_set_reglist_bind_instance(struct gf100_gr *gr, u32 inst)
870 {
871 	struct nvkm_device *device = gr->base.engine.subdev.device;
872 
873 	nvkm_wr32(device, 0x409810, inst);
874 	nvkm_wr32(device, 0x409800, 0x00000000);
875 	nvkm_wr32(device, 0x409500, 0x00000001);
876 	nvkm_wr32(device, 0x409504, 0x00000031);
877 	nvkm_msec(device, 2000,
878 		if (nvkm_rd32(device, 0x409800) == 0x00000001)
879 			return 0;
880 	);
881 
882 	return -ETIMEDOUT;
883 }
884 
885 static int
886 gf100_gr_fecs_discover_reglist_image_size(struct gf100_gr *gr, u32 *psize)
887 {
888 	struct nvkm_device *device = gr->base.engine.subdev.device;
889 
890 	nvkm_wr32(device, 0x409800, 0x00000000);
891 	nvkm_wr32(device, 0x409500, 0x00000001);
892 	nvkm_wr32(device, 0x409504, 0x00000030);
893 	nvkm_msec(device, 2000,
894 		if ((*psize = nvkm_rd32(device, 0x409800)))
895 			return 0;
896 	);
897 
898 	return -ETIMEDOUT;
899 }
900 
901 static int
902 gf100_gr_fecs_elpg_bind(struct gf100_gr *gr)
903 {
904 	u32 size;
905 	int ret;
906 
907 	ret = gf100_gr_fecs_discover_reglist_image_size(gr, &size);
908 	if (ret)
909 		return ret;
910 
911 	/*XXX: We need to allocate + map the above into PMU's inst block,
912 	 *     which which means we probably need a proper PMU before we
913 	 *     even bother.
914 	 */
915 
916 	ret = gf100_gr_fecs_set_reglist_bind_instance(gr, 0);
917 	if (ret)
918 		return ret;
919 
920 	return gf100_gr_fecs_set_reglist_virtual_address(gr, 0);
921 }
922 
923 static int
924 gf100_gr_fecs_discover_pm_image_size(struct gf100_gr *gr, u32 *psize)
925 {
926 	struct nvkm_device *device = gr->base.engine.subdev.device;
927 
928 	nvkm_wr32(device, 0x409800, 0x00000000);
929 	nvkm_wr32(device, 0x409500, 0x00000000);
930 	nvkm_wr32(device, 0x409504, 0x00000025);
931 	nvkm_msec(device, 2000,
932 		if ((*psize = nvkm_rd32(device, 0x409800)))
933 			return 0;
934 	);
935 
936 	return -ETIMEDOUT;
937 }
938 
939 static int
940 gf100_gr_fecs_discover_zcull_image_size(struct gf100_gr *gr, u32 *psize)
941 {
942 	struct nvkm_device *device = gr->base.engine.subdev.device;
943 
944 	nvkm_wr32(device, 0x409800, 0x00000000);
945 	nvkm_wr32(device, 0x409500, 0x00000000);
946 	nvkm_wr32(device, 0x409504, 0x00000016);
947 	nvkm_msec(device, 2000,
948 		if ((*psize = nvkm_rd32(device, 0x409800)))
949 			return 0;
950 	);
951 
952 	return -ETIMEDOUT;
953 }
954 
955 static int
956 gf100_gr_fecs_discover_image_size(struct gf100_gr *gr, u32 *psize)
957 {
958 	struct nvkm_device *device = gr->base.engine.subdev.device;
959 
960 	nvkm_wr32(device, 0x409800, 0x00000000);
961 	nvkm_wr32(device, 0x409500, 0x00000000);
962 	nvkm_wr32(device, 0x409504, 0x00000010);
963 	nvkm_msec(device, 2000,
964 		if ((*psize = nvkm_rd32(device, 0x409800)))
965 			return 0;
966 	);
967 
968 	return -ETIMEDOUT;
969 }
970 
971 static void
972 gf100_gr_fecs_set_watchdog_timeout(struct gf100_gr *gr, u32 timeout)
973 {
974 	struct nvkm_device *device = gr->base.engine.subdev.device;
975 
976 	nvkm_wr32(device, 0x409800, 0x00000000);
977 	nvkm_wr32(device, 0x409500, timeout);
978 	nvkm_wr32(device, 0x409504, 0x00000021);
979 }
980 
981 static bool
982 gf100_gr_chsw_load(struct nvkm_gr *base)
983 {
984 	struct gf100_gr *gr = gf100_gr(base);
985 	if (!gr->firmware) {
986 		u32 trace = nvkm_rd32(gr->base.engine.subdev.device, 0x40981c);
987 		if (trace & 0x00000040)
988 			return true;
989 	} else {
990 		u32 mthd = nvkm_rd32(gr->base.engine.subdev.device, 0x409808);
991 		if (mthd & 0x00080000)
992 			return true;
993 	}
994 	return false;
995 }
996 
997 int
998 gf100_gr_rops(struct gf100_gr *gr)
999 {
1000 	struct nvkm_device *device = gr->base.engine.subdev.device;
1001 	return (nvkm_rd32(device, 0x409604) & 0x001f0000) >> 16;
1002 }
1003 
1004 void
1005 gf100_gr_zbc_init(struct gf100_gr *gr)
1006 {
1007 	const u32  zero[] = { 0x00000000, 0x00000000, 0x00000000, 0x00000000,
1008 			      0x00000000, 0x00000000, 0x00000000, 0x00000000 };
1009 	const u32   one[] = { 0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000,
1010 			      0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff };
1011 	const u32 f32_0[] = { 0x00000000, 0x00000000, 0x00000000, 0x00000000,
1012 			      0x00000000, 0x00000000, 0x00000000, 0x00000000 };
1013 	const u32 f32_1[] = { 0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000,
1014 			      0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000 };
1015 	struct nvkm_ltc *ltc = gr->base.engine.subdev.device->ltc;
1016 	int index, c = ltc->zbc_color_min, d = ltc->zbc_depth_min, s = ltc->zbc_depth_min;
1017 
1018 	if (!gr->zbc_color[0].format) {
1019 		gf100_gr_zbc_color_get(gr, 1,  & zero[0],   &zero[4]); c++;
1020 		gf100_gr_zbc_color_get(gr, 2,  &  one[0],    &one[4]); c++;
1021 		gf100_gr_zbc_color_get(gr, 4,  &f32_0[0],  &f32_0[4]); c++;
1022 		gf100_gr_zbc_color_get(gr, 4,  &f32_1[0],  &f32_1[4]); c++;
1023 		gf100_gr_zbc_depth_get(gr, 1, 0x00000000, 0x00000000); d++;
1024 		gf100_gr_zbc_depth_get(gr, 1, 0x3f800000, 0x3f800000); d++;
1025 		if (gr->func->zbc->stencil_get) {
1026 			gr->func->zbc->stencil_get(gr, 1, 0x00, 0x00); s++;
1027 			gr->func->zbc->stencil_get(gr, 1, 0x01, 0x01); s++;
1028 			gr->func->zbc->stencil_get(gr, 1, 0xff, 0xff); s++;
1029 		}
1030 	}
1031 
1032 	for (index = c; index <= ltc->zbc_color_max; index++)
1033 		gr->func->zbc->clear_color(gr, index);
1034 	for (index = d; index <= ltc->zbc_depth_max; index++)
1035 		gr->func->zbc->clear_depth(gr, index);
1036 
1037 	if (gr->func->zbc->clear_stencil) {
1038 		for (index = s; index <= ltc->zbc_depth_max; index++)
1039 			gr->func->zbc->clear_stencil(gr, index);
1040 	}
1041 }
1042 
1043 /**
1044  * Wait until GR goes idle. GR is considered idle if it is disabled by the
1045  * MC (0x200) register, or GR is not busy and a context switch is not in
1046  * progress.
1047  */
1048 int
1049 gf100_gr_wait_idle(struct gf100_gr *gr)
1050 {
1051 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1052 	struct nvkm_device *device = subdev->device;
1053 	unsigned long end_jiffies = jiffies + msecs_to_jiffies(2000);
1054 	bool gr_enabled, ctxsw_active, gr_busy;
1055 
1056 	do {
1057 		/*
1058 		 * required to make sure FIFO_ENGINE_STATUS (0x2640) is
1059 		 * up-to-date
1060 		 */
1061 		nvkm_rd32(device, 0x400700);
1062 
1063 		gr_enabled = nvkm_rd32(device, 0x200) & 0x1000;
1064 		ctxsw_active = nvkm_fifo_ctxsw_in_progress(&gr->base.engine);
1065 		gr_busy = nvkm_rd32(device, 0x40060c) & 0x1;
1066 
1067 		if (!gr_enabled || (!gr_busy && !ctxsw_active))
1068 			return 0;
1069 	} while (time_before(jiffies, end_jiffies));
1070 
1071 	nvkm_error(subdev,
1072 		   "wait for idle timeout (en: %d, ctxsw: %d, busy: %d)\n",
1073 		   gr_enabled, ctxsw_active, gr_busy);
1074 	return -EAGAIN;
1075 }
1076 
1077 void
1078 gf100_gr_mmio(struct gf100_gr *gr, const struct gf100_gr_pack *p)
1079 {
1080 	struct nvkm_device *device = gr->base.engine.subdev.device;
1081 	const struct gf100_gr_pack *pack;
1082 	const struct gf100_gr_init *init;
1083 
1084 	pack_for_each_init(init, pack, p) {
1085 		u32 next = init->addr + init->count * init->pitch;
1086 		u32 addr = init->addr;
1087 		while (addr < next) {
1088 			nvkm_wr32(device, addr, init->data);
1089 			addr += init->pitch;
1090 		}
1091 	}
1092 }
1093 
1094 void
1095 gf100_gr_icmd(struct gf100_gr *gr, const struct gf100_gr_pack *p)
1096 {
1097 	struct nvkm_device *device = gr->base.engine.subdev.device;
1098 	const struct gf100_gr_pack *pack;
1099 	const struct gf100_gr_init *init;
1100 	u32 data = 0;
1101 
1102 	nvkm_wr32(device, 0x400208, 0x80000000);
1103 
1104 	pack_for_each_init(init, pack, p) {
1105 		u32 next = init->addr + init->count * init->pitch;
1106 		u32 addr = init->addr;
1107 
1108 		if ((pack == p && init == p->init) || data != init->data) {
1109 			nvkm_wr32(device, 0x400204, init->data);
1110 			data = init->data;
1111 		}
1112 
1113 		while (addr < next) {
1114 			nvkm_wr32(device, 0x400200, addr);
1115 			/**
1116 			 * Wait for GR to go idle after submitting a
1117 			 * GO_IDLE bundle
1118 			 */
1119 			if ((addr & 0xffff) == 0xe100)
1120 				gf100_gr_wait_idle(gr);
1121 			nvkm_msec(device, 2000,
1122 				if (!(nvkm_rd32(device, 0x400700) & 0x00000004))
1123 					break;
1124 			);
1125 			addr += init->pitch;
1126 		}
1127 	}
1128 
1129 	nvkm_wr32(device, 0x400208, 0x00000000);
1130 }
1131 
1132 void
1133 gf100_gr_mthd(struct gf100_gr *gr, const struct gf100_gr_pack *p)
1134 {
1135 	struct nvkm_device *device = gr->base.engine.subdev.device;
1136 	const struct gf100_gr_pack *pack;
1137 	const struct gf100_gr_init *init;
1138 	u32 data = 0;
1139 
1140 	pack_for_each_init(init, pack, p) {
1141 		u32 ctrl = 0x80000000 | pack->type;
1142 		u32 next = init->addr + init->count * init->pitch;
1143 		u32 addr = init->addr;
1144 
1145 		if ((pack == p && init == p->init) || data != init->data) {
1146 			nvkm_wr32(device, 0x40448c, init->data);
1147 			data = init->data;
1148 		}
1149 
1150 		while (addr < next) {
1151 			nvkm_wr32(device, 0x404488, ctrl | (addr << 14));
1152 			addr += init->pitch;
1153 		}
1154 	}
1155 }
1156 
1157 u64
1158 gf100_gr_units(struct nvkm_gr *base)
1159 {
1160 	struct gf100_gr *gr = gf100_gr(base);
1161 	u64 cfg;
1162 
1163 	cfg  = (u32)gr->gpc_nr;
1164 	cfg |= (u32)gr->tpc_total << 8;
1165 	cfg |= (u64)gr->rop_nr << 32;
1166 
1167 	return cfg;
1168 }
1169 
1170 static const struct nvkm_bitfield gf100_dispatch_error[] = {
1171 	{ 0x00000001, "INJECTED_BUNDLE_ERROR" },
1172 	{ 0x00000002, "CLASS_SUBCH_MISMATCH" },
1173 	{ 0x00000004, "SUBCHSW_DURING_NOTIFY" },
1174 	{}
1175 };
1176 
1177 static const struct nvkm_bitfield gf100_m2mf_error[] = {
1178 	{ 0x00000001, "PUSH_TOO_MUCH_DATA" },
1179 	{ 0x00000002, "PUSH_NOT_ENOUGH_DATA" },
1180 	{}
1181 };
1182 
1183 static const struct nvkm_bitfield gf100_unk6_error[] = {
1184 	{ 0x00000001, "TEMP_TOO_SMALL" },
1185 	{}
1186 };
1187 
1188 static const struct nvkm_bitfield gf100_ccache_error[] = {
1189 	{ 0x00000001, "INTR" },
1190 	{ 0x00000002, "LDCONST_OOB" },
1191 	{}
1192 };
1193 
1194 static const struct nvkm_bitfield gf100_macro_error[] = {
1195 	{ 0x00000001, "TOO_FEW_PARAMS" },
1196 	{ 0x00000002, "TOO_MANY_PARAMS" },
1197 	{ 0x00000004, "ILLEGAL_OPCODE" },
1198 	{ 0x00000008, "DOUBLE_BRANCH" },
1199 	{ 0x00000010, "WATCHDOG" },
1200 	{}
1201 };
1202 
1203 static const struct nvkm_bitfield gk104_sked_error[] = {
1204 	{ 0x00000040, "CTA_RESUME" },
1205 	{ 0x00000080, "CONSTANT_BUFFER_SIZE" },
1206 	{ 0x00000200, "LOCAL_MEMORY_SIZE_POS" },
1207 	{ 0x00000400, "LOCAL_MEMORY_SIZE_NEG" },
1208 	{ 0x00000800, "WARP_CSTACK_SIZE" },
1209 	{ 0x00001000, "TOTAL_TEMP_SIZE" },
1210 	{ 0x00002000, "REGISTER_COUNT" },
1211 	{ 0x00040000, "TOTAL_THREADS" },
1212 	{ 0x00100000, "PROGRAM_OFFSET" },
1213 	{ 0x00200000, "SHARED_MEMORY_SIZE" },
1214 	{ 0x00800000, "CTA_THREAD_DIMENSION_ZERO" },
1215 	{ 0x01000000, "MEMORY_WINDOW_OVERLAP" },
1216 	{ 0x02000000, "SHARED_CONFIG_TOO_SMALL" },
1217 	{ 0x04000000, "TOTAL_REGISTER_COUNT" },
1218 	{}
1219 };
1220 
1221 static const struct nvkm_bitfield gf100_gpc_rop_error[] = {
1222 	{ 0x00000002, "RT_PITCH_OVERRUN" },
1223 	{ 0x00000010, "RT_WIDTH_OVERRUN" },
1224 	{ 0x00000020, "RT_HEIGHT_OVERRUN" },
1225 	{ 0x00000080, "ZETA_STORAGE_TYPE_MISMATCH" },
1226 	{ 0x00000100, "RT_STORAGE_TYPE_MISMATCH" },
1227 	{ 0x00000400, "RT_LINEAR_MISMATCH" },
1228 	{}
1229 };
1230 
1231 static void
1232 gf100_gr_trap_gpc_rop(struct gf100_gr *gr, int gpc)
1233 {
1234 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1235 	struct nvkm_device *device = subdev->device;
1236 	char error[128];
1237 	u32 trap[4];
1238 
1239 	trap[0] = nvkm_rd32(device, GPC_UNIT(gpc, 0x0420)) & 0x3fffffff;
1240 	trap[1] = nvkm_rd32(device, GPC_UNIT(gpc, 0x0434));
1241 	trap[2] = nvkm_rd32(device, GPC_UNIT(gpc, 0x0438));
1242 	trap[3] = nvkm_rd32(device, GPC_UNIT(gpc, 0x043c));
1243 
1244 	nvkm_snprintbf(error, sizeof(error), gf100_gpc_rop_error, trap[0]);
1245 
1246 	nvkm_error(subdev, "GPC%d/PROP trap: %08x [%s] x = %u, y = %u, "
1247 			   "format = %x, storage type = %x\n",
1248 		   gpc, trap[0], error, trap[1] & 0xffff, trap[1] >> 16,
1249 		   (trap[2] >> 8) & 0x3f, trap[3] & 0xff);
1250 	nvkm_wr32(device, GPC_UNIT(gpc, 0x0420), 0xc0000000);
1251 }
1252 
1253 const struct nvkm_enum gf100_mp_warp_error[] = {
1254 	{ 0x01, "STACK_ERROR" },
1255 	{ 0x02, "API_STACK_ERROR" },
1256 	{ 0x03, "RET_EMPTY_STACK_ERROR" },
1257 	{ 0x04, "PC_WRAP" },
1258 	{ 0x05, "MISALIGNED_PC" },
1259 	{ 0x06, "PC_OVERFLOW" },
1260 	{ 0x07, "MISALIGNED_IMMC_ADDR" },
1261 	{ 0x08, "MISALIGNED_REG" },
1262 	{ 0x09, "ILLEGAL_INSTR_ENCODING" },
1263 	{ 0x0a, "ILLEGAL_SPH_INSTR_COMBO" },
1264 	{ 0x0b, "ILLEGAL_INSTR_PARAM" },
1265 	{ 0x0c, "INVALID_CONST_ADDR" },
1266 	{ 0x0d, "OOR_REG" },
1267 	{ 0x0e, "OOR_ADDR" },
1268 	{ 0x0f, "MISALIGNED_ADDR" },
1269 	{ 0x10, "INVALID_ADDR_SPACE" },
1270 	{ 0x11, "ILLEGAL_INSTR_PARAM2" },
1271 	{ 0x12, "INVALID_CONST_ADDR_LDC" },
1272 	{ 0x13, "GEOMETRY_SM_ERROR" },
1273 	{ 0x14, "DIVERGENT" },
1274 	{ 0x15, "WARP_EXIT" },
1275 	{}
1276 };
1277 
1278 const struct nvkm_bitfield gf100_mp_global_error[] = {
1279 	{ 0x00000001, "SM_TO_SM_FAULT" },
1280 	{ 0x00000002, "L1_ERROR" },
1281 	{ 0x00000004, "MULTIPLE_WARP_ERRORS" },
1282 	{ 0x00000008, "PHYSICAL_STACK_OVERFLOW" },
1283 	{ 0x00000010, "BPT_INT" },
1284 	{ 0x00000020, "BPT_PAUSE" },
1285 	{ 0x00000040, "SINGLE_STEP_COMPLETE" },
1286 	{ 0x20000000, "ECC_SEC_ERROR" },
1287 	{ 0x40000000, "ECC_DED_ERROR" },
1288 	{ 0x80000000, "TIMEOUT" },
1289 	{}
1290 };
1291 
1292 void
1293 gf100_gr_trap_mp(struct gf100_gr *gr, int gpc, int tpc)
1294 {
1295 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1296 	struct nvkm_device *device = subdev->device;
1297 	u32 werr = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x648));
1298 	u32 gerr = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x650));
1299 	const struct nvkm_enum *warp;
1300 	char glob[128];
1301 
1302 	nvkm_snprintbf(glob, sizeof(glob), gf100_mp_global_error, gerr);
1303 	warp = nvkm_enum_find(gf100_mp_warp_error, werr & 0xffff);
1304 
1305 	nvkm_error(subdev, "GPC%i/TPC%i/MP trap: "
1306 			   "global %08x [%s] warp %04x [%s]\n",
1307 		   gpc, tpc, gerr, glob, werr, warp ? warp->name : "");
1308 
1309 	nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x648), 0x00000000);
1310 	nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x650), gerr);
1311 }
1312 
1313 static void
1314 gf100_gr_trap_tpc(struct gf100_gr *gr, int gpc, int tpc)
1315 {
1316 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1317 	struct nvkm_device *device = subdev->device;
1318 	u32 stat = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x0508));
1319 
1320 	if (stat & 0x00000001) {
1321 		u32 trap = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x0224));
1322 		nvkm_error(subdev, "GPC%d/TPC%d/TEX: %08x\n", gpc, tpc, trap);
1323 		nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x0224), 0xc0000000);
1324 		stat &= ~0x00000001;
1325 	}
1326 
1327 	if (stat & 0x00000002) {
1328 		gr->func->trap_mp(gr, gpc, tpc);
1329 		stat &= ~0x00000002;
1330 	}
1331 
1332 	if (stat & 0x00000004) {
1333 		u32 trap = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x0084));
1334 		nvkm_error(subdev, "GPC%d/TPC%d/POLY: %08x\n", gpc, tpc, trap);
1335 		nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x0084), 0xc0000000);
1336 		stat &= ~0x00000004;
1337 	}
1338 
1339 	if (stat & 0x00000008) {
1340 		u32 trap = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x048c));
1341 		nvkm_error(subdev, "GPC%d/TPC%d/L1C: %08x\n", gpc, tpc, trap);
1342 		nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x048c), 0xc0000000);
1343 		stat &= ~0x00000008;
1344 	}
1345 
1346 	if (stat & 0x00000010) {
1347 		u32 trap = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x0430));
1348 		nvkm_error(subdev, "GPC%d/TPC%d/MPC: %08x\n", gpc, tpc, trap);
1349 		nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x0430), 0xc0000000);
1350 		stat &= ~0x00000010;
1351 	}
1352 
1353 	if (stat) {
1354 		nvkm_error(subdev, "GPC%d/TPC%d/%08x: unknown\n", gpc, tpc, stat);
1355 	}
1356 }
1357 
1358 static void
1359 gf100_gr_trap_gpc(struct gf100_gr *gr, int gpc)
1360 {
1361 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1362 	struct nvkm_device *device = subdev->device;
1363 	u32 stat = nvkm_rd32(device, GPC_UNIT(gpc, 0x2c90));
1364 	int tpc;
1365 
1366 	if (stat & 0x00000001) {
1367 		gf100_gr_trap_gpc_rop(gr, gpc);
1368 		stat &= ~0x00000001;
1369 	}
1370 
1371 	if (stat & 0x00000002) {
1372 		u32 trap = nvkm_rd32(device, GPC_UNIT(gpc, 0x0900));
1373 		nvkm_error(subdev, "GPC%d/ZCULL: %08x\n", gpc, trap);
1374 		nvkm_wr32(device, GPC_UNIT(gpc, 0x0900), 0xc0000000);
1375 		stat &= ~0x00000002;
1376 	}
1377 
1378 	if (stat & 0x00000004) {
1379 		u32 trap = nvkm_rd32(device, GPC_UNIT(gpc, 0x1028));
1380 		nvkm_error(subdev, "GPC%d/CCACHE: %08x\n", gpc, trap);
1381 		nvkm_wr32(device, GPC_UNIT(gpc, 0x1028), 0xc0000000);
1382 		stat &= ~0x00000004;
1383 	}
1384 
1385 	if (stat & 0x00000008) {
1386 		u32 trap = nvkm_rd32(device, GPC_UNIT(gpc, 0x0824));
1387 		nvkm_error(subdev, "GPC%d/ESETUP: %08x\n", gpc, trap);
1388 		nvkm_wr32(device, GPC_UNIT(gpc, 0x0824), 0xc0000000);
1389 		stat &= ~0x00000009;
1390 	}
1391 
1392 	for (tpc = 0; tpc < gr->tpc_nr[gpc]; tpc++) {
1393 		u32 mask = 0x00010000 << tpc;
1394 		if (stat & mask) {
1395 			gf100_gr_trap_tpc(gr, gpc, tpc);
1396 			nvkm_wr32(device, GPC_UNIT(gpc, 0x2c90), mask);
1397 			stat &= ~mask;
1398 		}
1399 	}
1400 
1401 	if (stat) {
1402 		nvkm_error(subdev, "GPC%d/%08x: unknown\n", gpc, stat);
1403 	}
1404 }
1405 
1406 static void
1407 gf100_gr_trap_intr(struct gf100_gr *gr)
1408 {
1409 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1410 	struct nvkm_device *device = subdev->device;
1411 	char error[128];
1412 	u32 trap = nvkm_rd32(device, 0x400108);
1413 	int rop, gpc;
1414 
1415 	if (trap & 0x00000001) {
1416 		u32 stat = nvkm_rd32(device, 0x404000);
1417 
1418 		nvkm_snprintbf(error, sizeof(error), gf100_dispatch_error,
1419 			       stat & 0x3fffffff);
1420 		nvkm_error(subdev, "DISPATCH %08x [%s]\n", stat, error);
1421 		nvkm_wr32(device, 0x404000, 0xc0000000);
1422 		nvkm_wr32(device, 0x400108, 0x00000001);
1423 		trap &= ~0x00000001;
1424 	}
1425 
1426 	if (trap & 0x00000002) {
1427 		u32 stat = nvkm_rd32(device, 0x404600);
1428 
1429 		nvkm_snprintbf(error, sizeof(error), gf100_m2mf_error,
1430 			       stat & 0x3fffffff);
1431 		nvkm_error(subdev, "M2MF %08x [%s]\n", stat, error);
1432 
1433 		nvkm_wr32(device, 0x404600, 0xc0000000);
1434 		nvkm_wr32(device, 0x400108, 0x00000002);
1435 		trap &= ~0x00000002;
1436 	}
1437 
1438 	if (trap & 0x00000008) {
1439 		u32 stat = nvkm_rd32(device, 0x408030);
1440 
1441 		nvkm_snprintbf(error, sizeof(error), gf100_ccache_error,
1442 			       stat & 0x3fffffff);
1443 		nvkm_error(subdev, "CCACHE %08x [%s]\n", stat, error);
1444 		nvkm_wr32(device, 0x408030, 0xc0000000);
1445 		nvkm_wr32(device, 0x400108, 0x00000008);
1446 		trap &= ~0x00000008;
1447 	}
1448 
1449 	if (trap & 0x00000010) {
1450 		u32 stat = nvkm_rd32(device, 0x405840);
1451 		nvkm_error(subdev, "SHADER %08x, sph: 0x%06x, stage: 0x%02x\n",
1452 			   stat, stat & 0xffffff, (stat >> 24) & 0x3f);
1453 		nvkm_wr32(device, 0x405840, 0xc0000000);
1454 		nvkm_wr32(device, 0x400108, 0x00000010);
1455 		trap &= ~0x00000010;
1456 	}
1457 
1458 	if (trap & 0x00000040) {
1459 		u32 stat = nvkm_rd32(device, 0x40601c);
1460 
1461 		nvkm_snprintbf(error, sizeof(error), gf100_unk6_error,
1462 			       stat & 0x3fffffff);
1463 		nvkm_error(subdev, "UNK6 %08x [%s]\n", stat, error);
1464 
1465 		nvkm_wr32(device, 0x40601c, 0xc0000000);
1466 		nvkm_wr32(device, 0x400108, 0x00000040);
1467 		trap &= ~0x00000040;
1468 	}
1469 
1470 	if (trap & 0x00000080) {
1471 		u32 stat = nvkm_rd32(device, 0x404490);
1472 		u32 pc = nvkm_rd32(device, 0x404494);
1473 		u32 op = nvkm_rd32(device, 0x40449c);
1474 
1475 		nvkm_snprintbf(error, sizeof(error), gf100_macro_error,
1476 			       stat & 0x1fffffff);
1477 		nvkm_error(subdev, "MACRO %08x [%s], pc: 0x%03x%s, op: 0x%08x\n",
1478 			   stat, error, pc & 0x7ff,
1479 			   (pc & 0x10000000) ? "" : " (invalid)",
1480 			   op);
1481 
1482 		nvkm_wr32(device, 0x404490, 0xc0000000);
1483 		nvkm_wr32(device, 0x400108, 0x00000080);
1484 		trap &= ~0x00000080;
1485 	}
1486 
1487 	if (trap & 0x00000100) {
1488 		u32 stat = nvkm_rd32(device, 0x407020) & 0x3fffffff;
1489 
1490 		nvkm_snprintbf(error, sizeof(error), gk104_sked_error, stat);
1491 		nvkm_error(subdev, "SKED: %08x [%s]\n", stat, error);
1492 
1493 		if (stat)
1494 			nvkm_wr32(device, 0x407020, 0x40000000);
1495 		nvkm_wr32(device, 0x400108, 0x00000100);
1496 		trap &= ~0x00000100;
1497 	}
1498 
1499 	if (trap & 0x01000000) {
1500 		u32 stat = nvkm_rd32(device, 0x400118);
1501 		for (gpc = 0; stat && gpc < gr->gpc_nr; gpc++) {
1502 			u32 mask = 0x00000001 << gpc;
1503 			if (stat & mask) {
1504 				gf100_gr_trap_gpc(gr, gpc);
1505 				nvkm_wr32(device, 0x400118, mask);
1506 				stat &= ~mask;
1507 			}
1508 		}
1509 		nvkm_wr32(device, 0x400108, 0x01000000);
1510 		trap &= ~0x01000000;
1511 	}
1512 
1513 	if (trap & 0x02000000) {
1514 		for (rop = 0; rop < gr->rop_nr; rop++) {
1515 			u32 statz = nvkm_rd32(device, ROP_UNIT(rop, 0x070));
1516 			u32 statc = nvkm_rd32(device, ROP_UNIT(rop, 0x144));
1517 			nvkm_error(subdev, "ROP%d %08x %08x\n",
1518 				 rop, statz, statc);
1519 			nvkm_wr32(device, ROP_UNIT(rop, 0x070), 0xc0000000);
1520 			nvkm_wr32(device, ROP_UNIT(rop, 0x144), 0xc0000000);
1521 		}
1522 		nvkm_wr32(device, 0x400108, 0x02000000);
1523 		trap &= ~0x02000000;
1524 	}
1525 
1526 	if (trap) {
1527 		nvkm_error(subdev, "TRAP UNHANDLED %08x\n", trap);
1528 		nvkm_wr32(device, 0x400108, trap);
1529 	}
1530 }
1531 
1532 static void
1533 gf100_gr_ctxctl_debug_unit(struct gf100_gr *gr, u32 base)
1534 {
1535 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1536 	struct nvkm_device *device = subdev->device;
1537 	nvkm_error(subdev, "%06x - done %08x\n", base,
1538 		   nvkm_rd32(device, base + 0x400));
1539 	nvkm_error(subdev, "%06x - stat %08x %08x %08x %08x\n", base,
1540 		   nvkm_rd32(device, base + 0x800),
1541 		   nvkm_rd32(device, base + 0x804),
1542 		   nvkm_rd32(device, base + 0x808),
1543 		   nvkm_rd32(device, base + 0x80c));
1544 	nvkm_error(subdev, "%06x - stat %08x %08x %08x %08x\n", base,
1545 		   nvkm_rd32(device, base + 0x810),
1546 		   nvkm_rd32(device, base + 0x814),
1547 		   nvkm_rd32(device, base + 0x818),
1548 		   nvkm_rd32(device, base + 0x81c));
1549 }
1550 
1551 void
1552 gf100_gr_ctxctl_debug(struct gf100_gr *gr)
1553 {
1554 	struct nvkm_device *device = gr->base.engine.subdev.device;
1555 	u32 gpcnr = nvkm_rd32(device, 0x409604) & 0xffff;
1556 	u32 gpc;
1557 
1558 	gf100_gr_ctxctl_debug_unit(gr, 0x409000);
1559 	for (gpc = 0; gpc < gpcnr; gpc++)
1560 		gf100_gr_ctxctl_debug_unit(gr, 0x502000 + (gpc * 0x8000));
1561 }
1562 
1563 static void
1564 gf100_gr_ctxctl_isr(struct gf100_gr *gr)
1565 {
1566 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1567 	struct nvkm_device *device = subdev->device;
1568 	u32 stat = nvkm_rd32(device, 0x409c18);
1569 
1570 	if (!gr->firmware && (stat & 0x00000001)) {
1571 		u32 code = nvkm_rd32(device, 0x409814);
1572 		if (code == E_BAD_FWMTHD) {
1573 			u32 class = nvkm_rd32(device, 0x409808);
1574 			u32  addr = nvkm_rd32(device, 0x40980c);
1575 			u32  subc = (addr & 0x00070000) >> 16;
1576 			u32  mthd = (addr & 0x00003ffc);
1577 			u32  data = nvkm_rd32(device, 0x409810);
1578 
1579 			nvkm_error(subdev, "FECS MTHD subc %d class %04x "
1580 					   "mthd %04x data %08x\n",
1581 				   subc, class, mthd, data);
1582 		} else {
1583 			nvkm_error(subdev, "FECS ucode error %d\n", code);
1584 		}
1585 		nvkm_wr32(device, 0x409c20, 0x00000001);
1586 		stat &= ~0x00000001;
1587 	}
1588 
1589 	if (!gr->firmware && (stat & 0x00080000)) {
1590 		nvkm_error(subdev, "FECS watchdog timeout\n");
1591 		gf100_gr_ctxctl_debug(gr);
1592 		nvkm_wr32(device, 0x409c20, 0x00080000);
1593 		stat &= ~0x00080000;
1594 	}
1595 
1596 	if (stat) {
1597 		nvkm_error(subdev, "FECS %08x\n", stat);
1598 		gf100_gr_ctxctl_debug(gr);
1599 		nvkm_wr32(device, 0x409c20, stat);
1600 	}
1601 }
1602 
1603 static void
1604 gf100_gr_intr(struct nvkm_gr *base)
1605 {
1606 	struct gf100_gr *gr = gf100_gr(base);
1607 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1608 	struct nvkm_device *device = subdev->device;
1609 	struct nvkm_chan *chan;
1610 	unsigned long flags;
1611 	u64 inst = nvkm_rd32(device, 0x409b00) & 0x0fffffff;
1612 	u32 stat = nvkm_rd32(device, 0x400100);
1613 	u32 addr = nvkm_rd32(device, 0x400704);
1614 	u32 mthd = (addr & 0x00003ffc);
1615 	u32 subc = (addr & 0x00070000) >> 16;
1616 	u32 data = nvkm_rd32(device, 0x400708);
1617 	u32 code = nvkm_rd32(device, 0x400110);
1618 	u32 class;
1619 	const char *name = "unknown";
1620 	int chid = -1;
1621 
1622 	chan = nvkm_chan_get_inst(&gr->base.engine, (u64)inst << 12, &flags);
1623 	if (chan) {
1624 		name = chan->name;
1625 		chid = chan->id;
1626 	}
1627 
1628 	if (device->card_type < NV_E0 || subc < 4)
1629 		class = nvkm_rd32(device, 0x404200 + (subc * 4));
1630 	else
1631 		class = 0x0000;
1632 
1633 	if (stat & 0x00000001) {
1634 		/*
1635 		 * notifier interrupt, only needed for cyclestats
1636 		 * can be safely ignored
1637 		 */
1638 		nvkm_wr32(device, 0x400100, 0x00000001);
1639 		stat &= ~0x00000001;
1640 	}
1641 
1642 	if (stat & 0x00000010) {
1643 		if (!gf100_gr_mthd_sw(device, class, mthd, data)) {
1644 			nvkm_error(subdev, "ILLEGAL_MTHD ch %d [%010llx %s] "
1645 				   "subc %d class %04x mthd %04x data %08x\n",
1646 				   chid, inst << 12, name, subc,
1647 				   class, mthd, data);
1648 		}
1649 		nvkm_wr32(device, 0x400100, 0x00000010);
1650 		stat &= ~0x00000010;
1651 	}
1652 
1653 	if (stat & 0x00000020) {
1654 		nvkm_error(subdev, "ILLEGAL_CLASS ch %d [%010llx %s] "
1655 			   "subc %d class %04x mthd %04x data %08x\n",
1656 			   chid, inst << 12, name, subc, class, mthd, data);
1657 		nvkm_wr32(device, 0x400100, 0x00000020);
1658 		stat &= ~0x00000020;
1659 	}
1660 
1661 	if (stat & 0x00100000) {
1662 		const struct nvkm_enum *en =
1663 			nvkm_enum_find(nv50_data_error_names, code);
1664 		nvkm_error(subdev, "DATA_ERROR %08x [%s] ch %d [%010llx %s] "
1665 				   "subc %d class %04x mthd %04x data %08x\n",
1666 			   code, en ? en->name : "", chid, inst << 12,
1667 			   name, subc, class, mthd, data);
1668 		nvkm_wr32(device, 0x400100, 0x00100000);
1669 		stat &= ~0x00100000;
1670 	}
1671 
1672 	if (stat & 0x00200000) {
1673 		nvkm_error(subdev, "TRAP ch %d [%010llx %s]\n",
1674 			   chid, inst << 12, name);
1675 		gf100_gr_trap_intr(gr);
1676 		nvkm_wr32(device, 0x400100, 0x00200000);
1677 		stat &= ~0x00200000;
1678 	}
1679 
1680 	if (stat & 0x00080000) {
1681 		gf100_gr_ctxctl_isr(gr);
1682 		nvkm_wr32(device, 0x400100, 0x00080000);
1683 		stat &= ~0x00080000;
1684 	}
1685 
1686 	if (stat) {
1687 		nvkm_error(subdev, "intr %08x\n", stat);
1688 		nvkm_wr32(device, 0x400100, stat);
1689 	}
1690 
1691 	nvkm_wr32(device, 0x400500, 0x00010001);
1692 	nvkm_chan_put(&chan, flags);
1693 }
1694 
1695 static void
1696 gf100_gr_init_fw(struct nvkm_falcon *falcon,
1697 		 struct nvkm_blob *code, struct nvkm_blob *data)
1698 {
1699 	nvkm_falcon_load_dmem(falcon, data->data, 0x0, data->size, 0);
1700 	nvkm_falcon_load_imem(falcon, code->data, 0x0, code->size, 0, 0, false);
1701 }
1702 
1703 static void
1704 gf100_gr_init_csdata(struct gf100_gr *gr,
1705 		     const struct gf100_gr_pack *pack,
1706 		     u32 falcon, u32 starstar, u32 base)
1707 {
1708 	struct nvkm_device *device = gr->base.engine.subdev.device;
1709 	const struct gf100_gr_pack *iter;
1710 	const struct gf100_gr_init *init;
1711 	u32 addr = ~0, prev = ~0, xfer = 0;
1712 	u32 star, temp;
1713 
1714 	nvkm_wr32(device, falcon + 0x01c0, 0x02000000 + starstar);
1715 	star = nvkm_rd32(device, falcon + 0x01c4);
1716 	temp = nvkm_rd32(device, falcon + 0x01c4);
1717 	if (temp > star)
1718 		star = temp;
1719 	nvkm_wr32(device, falcon + 0x01c0, 0x01000000 + star);
1720 
1721 	pack_for_each_init(init, iter, pack) {
1722 		u32 head = init->addr - base;
1723 		u32 tail = head + init->count * init->pitch;
1724 		while (head < tail) {
1725 			if (head != prev + 4 || xfer >= 32) {
1726 				if (xfer) {
1727 					u32 data = ((--xfer << 26) | addr);
1728 					nvkm_wr32(device, falcon + 0x01c4, data);
1729 					star += 4;
1730 				}
1731 				addr = head;
1732 				xfer = 0;
1733 			}
1734 			prev = head;
1735 			xfer = xfer + 1;
1736 			head = head + init->pitch;
1737 		}
1738 	}
1739 
1740 	nvkm_wr32(device, falcon + 0x01c4, (--xfer << 26) | addr);
1741 	nvkm_wr32(device, falcon + 0x01c0, 0x01000004 + starstar);
1742 	nvkm_wr32(device, falcon + 0x01c4, star + 4);
1743 }
1744 
1745 /* Initialize context from an external (secure or not) firmware */
1746 static int
1747 gf100_gr_init_ctxctl_ext(struct gf100_gr *gr)
1748 {
1749 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1750 	struct nvkm_device *device = subdev->device;
1751 	u32 lsf_mask = 0;
1752 	int ret;
1753 
1754 	/* load fuc microcode */
1755 	nvkm_mc_unk260(device, 0);
1756 
1757 	/* securely-managed falcons must be reset using secure boot */
1758 
1759 	if (!nvkm_acr_managed_falcon(device, NVKM_ACR_LSF_FECS)) {
1760 		gf100_gr_init_fw(&gr->fecs.falcon, &gr->fecs.inst,
1761 						   &gr->fecs.data);
1762 	} else {
1763 		lsf_mask |= BIT(NVKM_ACR_LSF_FECS);
1764 	}
1765 
1766 	if (!nvkm_acr_managed_falcon(device, NVKM_ACR_LSF_GPCCS)) {
1767 		gf100_gr_init_fw(&gr->gpccs.falcon, &gr->gpccs.inst,
1768 						    &gr->gpccs.data);
1769 	} else {
1770 		lsf_mask |= BIT(NVKM_ACR_LSF_GPCCS);
1771 	}
1772 
1773 	if (lsf_mask) {
1774 		ret = nvkm_acr_bootstrap_falcons(device, lsf_mask);
1775 		if (ret)
1776 			return ret;
1777 	}
1778 
1779 	nvkm_mc_unk260(device, 1);
1780 
1781 	/* start both of them running */
1782 	nvkm_wr32(device, 0x409800, 0x00000000);
1783 	nvkm_wr32(device, 0x41a10c, 0x00000000);
1784 	nvkm_wr32(device, 0x40910c, 0x00000000);
1785 
1786 	nvkm_falcon_start(&gr->gpccs.falcon);
1787 	nvkm_falcon_start(&gr->fecs.falcon);
1788 
1789 	if (nvkm_msec(device, 2000,
1790 		if (nvkm_rd32(device, 0x409800) & 0x00000001)
1791 			break;
1792 	) < 0)
1793 		return -EBUSY;
1794 
1795 	gf100_gr_fecs_set_watchdog_timeout(gr, 0x7fffffff);
1796 
1797 	/* Determine how much memory is required to store main context image. */
1798 	ret = gf100_gr_fecs_discover_image_size(gr, &gr->size);
1799 	if (ret)
1800 		return ret;
1801 
1802 	/* Determine how much memory is required to store ZCULL image. */
1803 	ret = gf100_gr_fecs_discover_zcull_image_size(gr, &gr->size_zcull);
1804 	if (ret)
1805 		return ret;
1806 
1807 	/* Determine how much memory is required to store PerfMon image. */
1808 	ret = gf100_gr_fecs_discover_pm_image_size(gr, &gr->size_pm);
1809 	if (ret)
1810 		return ret;
1811 
1812 	/*XXX: We (likely) require PMU support to even bother with this.
1813 	 *
1814 	 *     Also, it seems like not all GPUs support ELPG.  Traces I
1815 	 *     have here show RM enabling it on Kepler/Turing, but none
1816 	 *     of the GPUs between those.  NVGPU decides this by PCIID.
1817 	 */
1818 	if (0) {
1819 		ret = gf100_gr_fecs_elpg_bind(gr);
1820 		if (ret)
1821 			return ret;
1822 	}
1823 
1824 	return 0;
1825 }
1826 
1827 static int
1828 gf100_gr_init_ctxctl_int(struct gf100_gr *gr)
1829 {
1830 	const struct gf100_grctx_func *grctx = gr->func->grctx;
1831 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1832 	struct nvkm_device *device = subdev->device;
1833 
1834 	if (!gr->func->fecs.ucode) {
1835 		return -ENOSYS;
1836 	}
1837 
1838 	/* load HUB microcode */
1839 	nvkm_mc_unk260(device, 0);
1840 	nvkm_falcon_load_dmem(&gr->fecs.falcon,
1841 			      gr->func->fecs.ucode->data.data, 0x0,
1842 			      gr->func->fecs.ucode->data.size, 0);
1843 	nvkm_falcon_load_imem(&gr->fecs.falcon,
1844 			      gr->func->fecs.ucode->code.data, 0x0,
1845 			      gr->func->fecs.ucode->code.size, 0, 0, false);
1846 
1847 	/* load GPC microcode */
1848 	nvkm_falcon_load_dmem(&gr->gpccs.falcon,
1849 			      gr->func->gpccs.ucode->data.data, 0x0,
1850 			      gr->func->gpccs.ucode->data.size, 0);
1851 	nvkm_falcon_load_imem(&gr->gpccs.falcon,
1852 			      gr->func->gpccs.ucode->code.data, 0x0,
1853 			      gr->func->gpccs.ucode->code.size, 0, 0, false);
1854 	nvkm_mc_unk260(device, 1);
1855 
1856 	/* load register lists */
1857 	gf100_gr_init_csdata(gr, grctx->hub, 0x409000, 0x000, 0x000000);
1858 	gf100_gr_init_csdata(gr, grctx->gpc_0, 0x41a000, 0x000, 0x418000);
1859 	gf100_gr_init_csdata(gr, grctx->gpc_1, 0x41a000, 0x000, 0x418000);
1860 	gf100_gr_init_csdata(gr, grctx->tpc, 0x41a000, 0x004, 0x419800);
1861 	gf100_gr_init_csdata(gr, grctx->ppc, 0x41a000, 0x008, 0x41be00);
1862 
1863 	/* start HUB ucode running, it'll init the GPCs */
1864 	nvkm_wr32(device, 0x40910c, 0x00000000);
1865 	nvkm_wr32(device, 0x409100, 0x00000002);
1866 	if (nvkm_msec(device, 2000,
1867 		if (nvkm_rd32(device, 0x409800) & 0x80000000)
1868 			break;
1869 	) < 0) {
1870 		gf100_gr_ctxctl_debug(gr);
1871 		return -EBUSY;
1872 	}
1873 
1874 	gr->size = nvkm_rd32(device, 0x409804);
1875 	return 0;
1876 }
1877 
1878 int
1879 gf100_gr_init_ctxctl(struct gf100_gr *gr)
1880 {
1881 	int ret;
1882 
1883 	if (gr->firmware)
1884 		ret = gf100_gr_init_ctxctl_ext(gr);
1885 	else
1886 		ret = gf100_gr_init_ctxctl_int(gr);
1887 
1888 	return ret;
1889 }
1890 
1891 void
1892 gf100_gr_oneinit_sm_id(struct gf100_gr *gr)
1893 {
1894 	int tpc, gpc;
1895 	for (tpc = 0; tpc < gr->tpc_max; tpc++) {
1896 		for (gpc = 0; gpc < gr->gpc_nr; gpc++) {
1897 			if (tpc < gr->tpc_nr[gpc]) {
1898 				gr->sm[gr->sm_nr].gpc = gpc;
1899 				gr->sm[gr->sm_nr].tpc = tpc;
1900 				gr->sm_nr++;
1901 			}
1902 		}
1903 	}
1904 }
1905 
1906 void
1907 gf100_gr_oneinit_tiles(struct gf100_gr *gr)
1908 {
1909 	static const u8 primes[] = {
1910 		3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61
1911 	};
1912 	int init_frac[GPC_MAX], init_err[GPC_MAX], run_err[GPC_MAX], i, j;
1913 	u32 mul_factor, comm_denom;
1914 	u8  gpc_map[GPC_MAX];
1915 	bool sorted;
1916 
1917 	switch (gr->tpc_total) {
1918 	case 15: gr->screen_tile_row_offset = 0x06; break;
1919 	case 14: gr->screen_tile_row_offset = 0x05; break;
1920 	case 13: gr->screen_tile_row_offset = 0x02; break;
1921 	case 11: gr->screen_tile_row_offset = 0x07; break;
1922 	case 10: gr->screen_tile_row_offset = 0x06; break;
1923 	case  7:
1924 	case  5: gr->screen_tile_row_offset = 0x01; break;
1925 	case  3: gr->screen_tile_row_offset = 0x02; break;
1926 	case  2:
1927 	case  1: gr->screen_tile_row_offset = 0x01; break;
1928 	default: gr->screen_tile_row_offset = 0x03;
1929 		for (i = 0; i < ARRAY_SIZE(primes); i++) {
1930 			if (gr->tpc_total % primes[i]) {
1931 				gr->screen_tile_row_offset = primes[i];
1932 				break;
1933 			}
1934 		}
1935 		break;
1936 	}
1937 
1938 	/* Sort GPCs by TPC count, highest-to-lowest. */
1939 	for (i = 0; i < gr->gpc_nr; i++)
1940 		gpc_map[i] = i;
1941 	sorted = false;
1942 
1943 	while (!sorted) {
1944 		for (sorted = true, i = 0; i < gr->gpc_nr - 1; i++) {
1945 			if (gr->tpc_nr[gpc_map[i + 1]] >
1946 			    gr->tpc_nr[gpc_map[i + 0]]) {
1947 				u8 swap = gpc_map[i];
1948 				gpc_map[i + 0] = gpc_map[i + 1];
1949 				gpc_map[i + 1] = swap;
1950 				sorted = false;
1951 			}
1952 		}
1953 	}
1954 
1955 	/* Determine tile->GPC mapping */
1956 	mul_factor = gr->gpc_nr * gr->tpc_max;
1957 	if (mul_factor & 1)
1958 		mul_factor = 2;
1959 	else
1960 		mul_factor = 1;
1961 
1962 	comm_denom = gr->gpc_nr * gr->tpc_max * mul_factor;
1963 
1964 	for (i = 0; i < gr->gpc_nr; i++) {
1965 		init_frac[i] = gr->tpc_nr[gpc_map[i]] * gr->gpc_nr * mul_factor;
1966 		init_err[i] = i * gr->tpc_max * mul_factor - comm_denom/2;
1967 		run_err[i] = init_frac[i] + init_err[i];
1968 	}
1969 
1970 	for (i = 0; i < gr->tpc_total;) {
1971 		for (j = 0; j < gr->gpc_nr; j++) {
1972 			if ((run_err[j] * 2) >= comm_denom) {
1973 				gr->tile[i++] = gpc_map[j];
1974 				run_err[j] += init_frac[j] - comm_denom;
1975 			} else {
1976 				run_err[j] += init_frac[j];
1977 			}
1978 		}
1979 	}
1980 }
1981 
1982 static int
1983 gf100_gr_oneinit(struct nvkm_gr *base)
1984 {
1985 	struct gf100_gr *gr = gf100_gr(base);
1986 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1987 	struct nvkm_device *device = subdev->device;
1988 	int ret, i, j;
1989 
1990 	nvkm_pmu_pgob(device->pmu, false);
1991 
1992 	gr->rop_nr = gr->func->rops(gr);
1993 	gr->gpc_nr = nvkm_rd32(device, 0x409604) & 0x0000001f;
1994 	for (i = 0; i < gr->gpc_nr; i++) {
1995 		gr->tpc_nr[i]  = nvkm_rd32(device, GPC_UNIT(i, 0x2608));
1996 		gr->tpc_max = max(gr->tpc_max, gr->tpc_nr[i]);
1997 		gr->tpc_total += gr->tpc_nr[i];
1998 		gr->ppc_nr[i]  = gr->func->ppc_nr;
1999 		for (j = 0; j < gr->ppc_nr[i]; j++) {
2000 			gr->ppc_tpc_mask[i][j] =
2001 				nvkm_rd32(device, GPC_UNIT(i, 0x0c30 + (j * 4)));
2002 			if (gr->ppc_tpc_mask[i][j] == 0)
2003 				continue;
2004 			gr->ppc_mask[i] |= (1 << j);
2005 			gr->ppc_tpc_nr[i][j] = hweight8(gr->ppc_tpc_mask[i][j]);
2006 			if (gr->ppc_tpc_min == 0 ||
2007 			    gr->ppc_tpc_min > gr->ppc_tpc_nr[i][j])
2008 				gr->ppc_tpc_min = gr->ppc_tpc_nr[i][j];
2009 			if (gr->ppc_tpc_max < gr->ppc_tpc_nr[i][j])
2010 				gr->ppc_tpc_max = gr->ppc_tpc_nr[i][j];
2011 		}
2012 	}
2013 
2014 	/* Allocate global context buffers. */
2015 	ret = nvkm_memory_new(device, NVKM_MEM_TARGET_INST, gr->func->grctx->pagepool_size,
2016 			      0x100, false, &gr->pagepool);
2017 	if (ret)
2018 		return ret;
2019 
2020 	ret = nvkm_memory_new(device, NVKM_MEM_TARGET_INST, gr->func->grctx->bundle_size,
2021 			      0x100, false, &gr->bundle_cb);
2022 	if (ret)
2023 		return ret;
2024 
2025 	ret = nvkm_memory_new(device, NVKM_MEM_TARGET_INST, gr->func->grctx->attrib_cb_size(gr),
2026 			      0x1000, false, &gr->attrib_cb);
2027 	if (ret)
2028 		return ret;
2029 
2030 	if (gr->func->grctx->unknown_size) {
2031 		ret = nvkm_memory_new(device, NVKM_MEM_TARGET_INST, gr->func->grctx->unknown_size,
2032 				      0x100, false, &gr->unknown);
2033 		if (ret)
2034 			return ret;
2035 	}
2036 
2037 	memset(gr->tile, 0xff, sizeof(gr->tile));
2038 	gr->func->oneinit_tiles(gr);
2039 	gr->func->oneinit_sm_id(gr);
2040 	return 0;
2041 }
2042 
2043 static int
2044 gf100_gr_init_(struct nvkm_gr *base)
2045 {
2046 	struct gf100_gr *gr = gf100_gr(base);
2047 	struct nvkm_subdev *subdev = &base->engine.subdev;
2048 	struct nvkm_device *device = subdev->device;
2049 	bool reset = device->chipset == 0x137 || device->chipset == 0x138;
2050 	u32 ret;
2051 
2052 	/* On certain GP107/GP108 boards, we trigger a weird issue where
2053 	 * GR will stop responding to PRI accesses after we've asked the
2054 	 * SEC2 RTOS to boot the GR falcons.  This happens with far more
2055 	 * frequency when cold-booting a board (ie. returning from D3).
2056 	 *
2057 	 * The root cause for this is not known and has proven difficult
2058 	 * to isolate, with many avenues being dead-ends.
2059 	 *
2060 	 * A workaround was discovered by Karol, whereby putting GR into
2061 	 * reset for an extended period right before initialisation
2062 	 * prevents the problem from occuring.
2063 	 *
2064 	 * XXX: As RM does not require any such workaround, this is more
2065 	 *      of a hack than a true fix.
2066 	 */
2067 	reset = nvkm_boolopt(device->cfgopt, "NvGrResetWar", reset);
2068 	if (reset) {
2069 		nvkm_mask(device, 0x000200, 0x00001000, 0x00000000);
2070 		nvkm_rd32(device, 0x000200);
2071 		msleep(50);
2072 		nvkm_mask(device, 0x000200, 0x00001000, 0x00001000);
2073 		nvkm_rd32(device, 0x000200);
2074 	}
2075 
2076 	nvkm_pmu_pgob(gr->base.engine.subdev.device->pmu, false);
2077 
2078 	ret = nvkm_falcon_get(&gr->fecs.falcon, subdev);
2079 	if (ret)
2080 		return ret;
2081 
2082 	ret = nvkm_falcon_get(&gr->gpccs.falcon, subdev);
2083 	if (ret)
2084 		return ret;
2085 
2086 	return gr->func->init(gr);
2087 }
2088 
2089 static int
2090 gf100_gr_fini(struct nvkm_gr *base, bool suspend)
2091 {
2092 	struct gf100_gr *gr = gf100_gr(base);
2093 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
2094 	nvkm_falcon_put(&gr->gpccs.falcon, subdev);
2095 	nvkm_falcon_put(&gr->fecs.falcon, subdev);
2096 	return 0;
2097 }
2098 
2099 static void *
2100 gf100_gr_dtor(struct nvkm_gr *base)
2101 {
2102 	struct gf100_gr *gr = gf100_gr(base);
2103 
2104 	kfree(gr->data);
2105 
2106 	nvkm_memory_unref(&gr->unknown);
2107 	nvkm_memory_unref(&gr->attrib_cb);
2108 	nvkm_memory_unref(&gr->bundle_cb);
2109 	nvkm_memory_unref(&gr->pagepool);
2110 
2111 	nvkm_falcon_dtor(&gr->gpccs.falcon);
2112 	nvkm_falcon_dtor(&gr->fecs.falcon);
2113 
2114 	nvkm_blob_dtor(&gr->fecs.inst);
2115 	nvkm_blob_dtor(&gr->fecs.data);
2116 	nvkm_blob_dtor(&gr->gpccs.inst);
2117 	nvkm_blob_dtor(&gr->gpccs.data);
2118 
2119 	vfree(gr->bundle);
2120 	vfree(gr->method);
2121 	vfree(gr->sw_ctx);
2122 	vfree(gr->sw_nonctx);
2123 
2124 	return gr;
2125 }
2126 
2127 static const struct nvkm_falcon_func
2128 gf100_gr_flcn = {
2129 	.load_imem = nvkm_falcon_v1_load_imem,
2130 	.load_dmem = nvkm_falcon_v1_load_dmem,
2131 	.start = nvkm_falcon_v1_start,
2132 };
2133 
2134 void
2135 gf100_gr_init_num_tpc_per_gpc(struct gf100_gr *gr, bool pd, bool ds)
2136 {
2137 	struct nvkm_device *device = gr->base.engine.subdev.device;
2138 	int gpc, i, j;
2139 	u32 data;
2140 
2141 	for (gpc = 0, i = 0; i < 4; i++) {
2142 		for (data = 0, j = 0; j < 8 && gpc < gr->gpc_nr; j++, gpc++)
2143 			data |= gr->tpc_nr[gpc] << (j * 4);
2144 		if (pd)
2145 			nvkm_wr32(device, 0x406028 + (i * 4), data);
2146 		if (ds)
2147 			nvkm_wr32(device, 0x405870 + (i * 4), data);
2148 	}
2149 }
2150 
2151 void
2152 gf100_gr_init_400054(struct gf100_gr *gr)
2153 {
2154 	nvkm_wr32(gr->base.engine.subdev.device, 0x400054, 0x34ce3464);
2155 }
2156 
2157 void
2158 gf100_gr_init_rop_exceptions(struct gf100_gr *gr)
2159 {
2160 	struct nvkm_device *device = gr->base.engine.subdev.device;
2161 	int rop;
2162 
2163 	for (rop = 0; rop < gr->rop_nr; rop++) {
2164 		nvkm_wr32(device, ROP_UNIT(rop, 0x144), 0x40000000);
2165 		nvkm_wr32(device, ROP_UNIT(rop, 0x070), 0x40000000);
2166 		nvkm_wr32(device, ROP_UNIT(rop, 0x204), 0xffffffff);
2167 		nvkm_wr32(device, ROP_UNIT(rop, 0x208), 0xffffffff);
2168 	}
2169 }
2170 
2171 void
2172 gf100_gr_init_shader_exceptions(struct gf100_gr *gr, int gpc, int tpc)
2173 {
2174 	struct nvkm_device *device = gr->base.engine.subdev.device;
2175 	nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x644), 0x001ffffe);
2176 	nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x64c), 0x0000000f);
2177 }
2178 
2179 void
2180 gf100_gr_init_tex_hww_esr(struct gf100_gr *gr, int gpc, int tpc)
2181 {
2182 	struct nvkm_device *device = gr->base.engine.subdev.device;
2183 	nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x224), 0xc0000000);
2184 }
2185 
2186 void
2187 gf100_gr_init_419eb4(struct gf100_gr *gr)
2188 {
2189 	struct nvkm_device *device = gr->base.engine.subdev.device;
2190 	nvkm_mask(device, 0x419eb4, 0x00001000, 0x00001000);
2191 }
2192 
2193 void
2194 gf100_gr_init_419cc0(struct gf100_gr *gr)
2195 {
2196 	struct nvkm_device *device = gr->base.engine.subdev.device;
2197 	int gpc, tpc;
2198 
2199 	nvkm_mask(device, 0x419cc0, 0x00000008, 0x00000008);
2200 
2201 	for (gpc = 0; gpc < gr->gpc_nr; gpc++) {
2202 		for (tpc = 0; tpc < gr->tpc_nr[gpc]; tpc++)
2203 			nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x48c), 0xc0000000);
2204 	}
2205 }
2206 
2207 void
2208 gf100_gr_init_40601c(struct gf100_gr *gr)
2209 {
2210 	nvkm_wr32(gr->base.engine.subdev.device, 0x40601c, 0xc0000000);
2211 }
2212 
2213 void
2214 gf100_gr_init_fecs_exceptions(struct gf100_gr *gr)
2215 {
2216 	const u32 data = gr->firmware ? 0x000e0000 : 0x000e0001;
2217 	nvkm_wr32(gr->base.engine.subdev.device, 0x409c24, data);
2218 }
2219 
2220 void
2221 gf100_gr_init_gpc_mmu(struct gf100_gr *gr)
2222 {
2223 	struct nvkm_device *device = gr->base.engine.subdev.device;
2224 	struct nvkm_fb *fb = device->fb;
2225 
2226 	nvkm_wr32(device, 0x418880, nvkm_rd32(device, 0x100c80) & 0x00000001);
2227 	nvkm_wr32(device, 0x4188a4, 0x03000000);
2228 	nvkm_wr32(device, 0x418888, 0x00000000);
2229 	nvkm_wr32(device, 0x41888c, 0x00000000);
2230 	nvkm_wr32(device, 0x418890, 0x00000000);
2231 	nvkm_wr32(device, 0x418894, 0x00000000);
2232 	nvkm_wr32(device, 0x4188b4, nvkm_memory_addr(fb->mmu_wr) >> 8);
2233 	nvkm_wr32(device, 0x4188b8, nvkm_memory_addr(fb->mmu_rd) >> 8);
2234 }
2235 
2236 void
2237 gf100_gr_init_num_active_ltcs(struct gf100_gr *gr)
2238 {
2239 	struct nvkm_device *device = gr->base.engine.subdev.device;
2240 	nvkm_wr32(device, GPC_BCAST(0x08ac), nvkm_rd32(device, 0x100800));
2241 }
2242 
2243 void
2244 gf100_gr_init_zcull(struct gf100_gr *gr)
2245 {
2246 	struct nvkm_device *device = gr->base.engine.subdev.device;
2247 	const u32 magicgpc918 = DIV_ROUND_UP(0x00800000, gr->tpc_total);
2248 	const u8 tile_nr = ALIGN(gr->tpc_total, 32);
2249 	u8 bank[GPC_MAX] = {}, gpc, i, j;
2250 	u32 data;
2251 
2252 	for (i = 0; i < tile_nr; i += 8) {
2253 		for (data = 0, j = 0; j < 8 && i + j < gr->tpc_total; j++) {
2254 			data |= bank[gr->tile[i + j]] << (j * 4);
2255 			bank[gr->tile[i + j]]++;
2256 		}
2257 		nvkm_wr32(device, GPC_BCAST(0x0980 + ((i / 8) * 4)), data);
2258 	}
2259 
2260 	for (gpc = 0; gpc < gr->gpc_nr; gpc++) {
2261 		nvkm_wr32(device, GPC_UNIT(gpc, 0x0914),
2262 			  gr->screen_tile_row_offset << 8 | gr->tpc_nr[gpc]);
2263 		nvkm_wr32(device, GPC_UNIT(gpc, 0x0910), 0x00040000 |
2264 							 gr->tpc_total);
2265 		nvkm_wr32(device, GPC_UNIT(gpc, 0x0918), magicgpc918);
2266 	}
2267 
2268 	nvkm_wr32(device, GPC_BCAST(0x1bd4), magicgpc918);
2269 }
2270 
2271 void
2272 gf100_gr_init_vsc_stream_master(struct gf100_gr *gr)
2273 {
2274 	struct nvkm_device *device = gr->base.engine.subdev.device;
2275 	nvkm_mask(device, TPC_UNIT(0, 0, 0x05c), 0x00000001, 0x00000001);
2276 }
2277 
2278 static int
2279 gf100_gr_reset(struct nvkm_gr *base)
2280 {
2281 	struct nvkm_subdev *subdev = &base->engine.subdev;
2282 	struct nvkm_device *device = subdev->device;
2283 	struct gf100_gr *gr = gf100_gr(base);
2284 
2285 	nvkm_mask(device, 0x400500, 0x00000001, 0x00000000);
2286 
2287 	WARN_ON(gf100_gr_fecs_halt_pipeline(gr));
2288 
2289 	subdev->func->fini(subdev, false);
2290 	nvkm_mc_disable(device, subdev->type, subdev->inst);
2291 
2292 	nvkm_mc_enable(device, subdev->type, subdev->inst);
2293 	return subdev->func->init(subdev);
2294 }
2295 
2296 int
2297 gf100_gr_init(struct gf100_gr *gr)
2298 {
2299 	struct nvkm_device *device = gr->base.engine.subdev.device;
2300 	int gpc, tpc;
2301 
2302 	nvkm_mask(device, 0x400500, 0x00010001, 0x00000000);
2303 
2304 	if (gr->func->init_419bd8)
2305 		gr->func->init_419bd8(gr);
2306 
2307 	gr->func->init_gpc_mmu(gr);
2308 
2309 	if (gr->sw_nonctx)
2310 		gf100_gr_mmio(gr, gr->sw_nonctx);
2311 	else
2312 		gf100_gr_mmio(gr, gr->func->mmio);
2313 
2314 	gf100_gr_wait_idle(gr);
2315 
2316 	if (gr->func->init_r405a14)
2317 		gr->func->init_r405a14(gr);
2318 
2319 	if (gr->func->clkgate_pack)
2320 		nvkm_therm_clkgate_init(device->therm, gr->func->clkgate_pack);
2321 
2322 	if (gr->func->init_bios)
2323 		gr->func->init_bios(gr);
2324 
2325 	gr->func->init_vsc_stream_master(gr);
2326 	gr->func->init_zcull(gr);
2327 	gr->func->init_num_active_ltcs(gr);
2328 	if (gr->func->init_rop_active_fbps)
2329 		gr->func->init_rop_active_fbps(gr);
2330 	if (gr->func->init_bios_2)
2331 		gr->func->init_bios_2(gr);
2332 	if (gr->func->init_swdx_pes_mask)
2333 		gr->func->init_swdx_pes_mask(gr);
2334 	if (gr->func->init_fs)
2335 		gr->func->init_fs(gr);
2336 
2337 	nvkm_wr32(device, 0x400500, 0x00010001);
2338 
2339 	nvkm_wr32(device, 0x400100, 0xffffffff);
2340 	nvkm_wr32(device, 0x40013c, 0xffffffff);
2341 	nvkm_wr32(device, 0x400124, 0x00000002);
2342 
2343 	gr->func->init_fecs_exceptions(gr);
2344 	if (gr->func->init_ds_hww_esr_2)
2345 		gr->func->init_ds_hww_esr_2(gr);
2346 
2347 	nvkm_wr32(device, 0x404000, 0xc0000000);
2348 	nvkm_wr32(device, 0x404600, 0xc0000000);
2349 	nvkm_wr32(device, 0x408030, 0xc0000000);
2350 
2351 	if (gr->func->init_40601c)
2352 		gr->func->init_40601c(gr);
2353 
2354 	nvkm_wr32(device, 0x406018, 0xc0000000);
2355 	nvkm_wr32(device, 0x404490, 0xc0000000);
2356 
2357 	if (gr->func->init_sked_hww_esr)
2358 		gr->func->init_sked_hww_esr(gr);
2359 
2360 	nvkm_wr32(device, 0x405840, 0xc0000000);
2361 	nvkm_wr32(device, 0x405844, 0x00ffffff);
2362 
2363 	if (gr->func->init_419cc0)
2364 		gr->func->init_419cc0(gr);
2365 	if (gr->func->init_419eb4)
2366 		gr->func->init_419eb4(gr);
2367 	if (gr->func->init_419c9c)
2368 		gr->func->init_419c9c(gr);
2369 
2370 	if (gr->func->init_ppc_exceptions)
2371 		gr->func->init_ppc_exceptions(gr);
2372 
2373 	for (gpc = 0; gpc < gr->gpc_nr; gpc++) {
2374 		nvkm_wr32(device, GPC_UNIT(gpc, 0x0420), 0xc0000000);
2375 		nvkm_wr32(device, GPC_UNIT(gpc, 0x0900), 0xc0000000);
2376 		nvkm_wr32(device, GPC_UNIT(gpc, 0x1028), 0xc0000000);
2377 		nvkm_wr32(device, GPC_UNIT(gpc, 0x0824), 0xc0000000);
2378 		for (tpc = 0; tpc < gr->tpc_nr[gpc]; tpc++) {
2379 			nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x508), 0xffffffff);
2380 			nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x50c), 0xffffffff);
2381 			if (gr->func->init_tex_hww_esr)
2382 				gr->func->init_tex_hww_esr(gr, gpc, tpc);
2383 			nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x084), 0xc0000000);
2384 			if (gr->func->init_504430)
2385 				gr->func->init_504430(gr, gpc, tpc);
2386 			gr->func->init_shader_exceptions(gr, gpc, tpc);
2387 		}
2388 		nvkm_wr32(device, GPC_UNIT(gpc, 0x2c90), 0xffffffff);
2389 		nvkm_wr32(device, GPC_UNIT(gpc, 0x2c94), 0xffffffff);
2390 	}
2391 
2392 	gr->func->init_rop_exceptions(gr);
2393 
2394 	nvkm_wr32(device, 0x400108, 0xffffffff);
2395 	nvkm_wr32(device, 0x400138, 0xffffffff);
2396 	nvkm_wr32(device, 0x400118, 0xffffffff);
2397 	nvkm_wr32(device, 0x400130, 0xffffffff);
2398 	nvkm_wr32(device, 0x40011c, 0xffffffff);
2399 	nvkm_wr32(device, 0x400134, 0xffffffff);
2400 
2401 	if (gr->func->init_400054)
2402 		gr->func->init_400054(gr);
2403 
2404 	gf100_gr_zbc_init(gr);
2405 
2406 	if (gr->func->init_4188a4)
2407 		gr->func->init_4188a4(gr);
2408 
2409 	return gf100_gr_init_ctxctl(gr);
2410 }
2411 
2412 void
2413 gf100_gr_fecs_reset(struct gf100_gr *gr)
2414 {
2415 	struct nvkm_device *device = gr->base.engine.subdev.device;
2416 
2417 	nvkm_wr32(device, 0x409614, 0x00000070);
2418 	nvkm_usec(device, 10, NVKM_DELAY);
2419 	nvkm_mask(device, 0x409614, 0x00000700, 0x00000700);
2420 	nvkm_usec(device, 10, NVKM_DELAY);
2421 	nvkm_rd32(device, 0x409614);
2422 }
2423 
2424 #include "fuc/hubgf100.fuc3.h"
2425 
2426 struct gf100_gr_ucode
2427 gf100_gr_fecs_ucode = {
2428 	.code.data = gf100_grhub_code,
2429 	.code.size = sizeof(gf100_grhub_code),
2430 	.data.data = gf100_grhub_data,
2431 	.data.size = sizeof(gf100_grhub_data),
2432 };
2433 
2434 #include "fuc/gpcgf100.fuc3.h"
2435 
2436 struct gf100_gr_ucode
2437 gf100_gr_gpccs_ucode = {
2438 	.code.data = gf100_grgpc_code,
2439 	.code.size = sizeof(gf100_grgpc_code),
2440 	.data.data = gf100_grgpc_data,
2441 	.data.size = sizeof(gf100_grgpc_data),
2442 };
2443 
2444 static const struct nvkm_gr_func
2445 gf100_gr_ = {
2446 	.dtor = gf100_gr_dtor,
2447 	.oneinit = gf100_gr_oneinit,
2448 	.init = gf100_gr_init_,
2449 	.fini = gf100_gr_fini,
2450 	.reset = gf100_gr_reset,
2451 	.intr = gf100_gr_intr,
2452 	.units = gf100_gr_units,
2453 	.chan_new = gf100_gr_chan_new,
2454 	.object_get = gf100_gr_object_get,
2455 	.chsw_load = gf100_gr_chsw_load,
2456 	.ctxsw.pause = gf100_gr_fecs_stop_ctxsw,
2457 	.ctxsw.resume = gf100_gr_fecs_start_ctxsw,
2458 	.ctxsw.inst = gf100_gr_ctxsw_inst,
2459 };
2460 
2461 static const struct gf100_gr_func
2462 gf100_gr = {
2463 	.oneinit_tiles = gf100_gr_oneinit_tiles,
2464 	.oneinit_sm_id = gf100_gr_oneinit_sm_id,
2465 	.init = gf100_gr_init,
2466 	.init_gpc_mmu = gf100_gr_init_gpc_mmu,
2467 	.init_vsc_stream_master = gf100_gr_init_vsc_stream_master,
2468 	.init_zcull = gf100_gr_init_zcull,
2469 	.init_num_active_ltcs = gf100_gr_init_num_active_ltcs,
2470 	.init_fecs_exceptions = gf100_gr_init_fecs_exceptions,
2471 	.init_40601c = gf100_gr_init_40601c,
2472 	.init_419cc0 = gf100_gr_init_419cc0,
2473 	.init_419eb4 = gf100_gr_init_419eb4,
2474 	.init_tex_hww_esr = gf100_gr_init_tex_hww_esr,
2475 	.init_shader_exceptions = gf100_gr_init_shader_exceptions,
2476 	.init_rop_exceptions = gf100_gr_init_rop_exceptions,
2477 	.init_400054 = gf100_gr_init_400054,
2478 	.trap_mp = gf100_gr_trap_mp,
2479 	.mmio = gf100_gr_pack_mmio,
2480 	.fecs.ucode = &gf100_gr_fecs_ucode,
2481 	.fecs.reset = gf100_gr_fecs_reset,
2482 	.gpccs.ucode = &gf100_gr_gpccs_ucode,
2483 	.rops = gf100_gr_rops,
2484 	.grctx = &gf100_grctx,
2485 	.zbc = &gf100_gr_zbc,
2486 	.sclass = {
2487 		{ -1, -1, FERMI_TWOD_A },
2488 		{ -1, -1, FERMI_MEMORY_TO_MEMORY_FORMAT_A },
2489 		{ -1, -1, FERMI_A, &gf100_fermi },
2490 		{ -1, -1, FERMI_COMPUTE_A },
2491 		{}
2492 	}
2493 };
2494 
2495 int
2496 gf100_gr_nofw(struct gf100_gr *gr, int ver, const struct gf100_gr_fwif *fwif)
2497 {
2498 	gr->firmware = false;
2499 	return 0;
2500 }
2501 
2502 static int
2503 gf100_gr_load_fw(struct gf100_gr *gr, const char *name,
2504 		 struct nvkm_blob *blob)
2505 {
2506 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
2507 	struct nvkm_device *device = subdev->device;
2508 	const struct firmware *fw;
2509 	char f[32];
2510 	int ret;
2511 
2512 	snprintf(f, sizeof(f), "nouveau/nv%02x_%s", device->chipset, name);
2513 	ret = request_firmware(&fw, f, device->dev);
2514 	if (ret) {
2515 		snprintf(f, sizeof(f), "nouveau/%s", name);
2516 		ret = request_firmware(&fw, f, device->dev);
2517 		if (ret) {
2518 			nvkm_error(subdev, "failed to load %s\n", name);
2519 			return ret;
2520 		}
2521 	}
2522 
2523 	blob->size = fw->size;
2524 	blob->data = kmemdup(fw->data, blob->size, GFP_KERNEL);
2525 	release_firmware(fw);
2526 	return (blob->data != NULL) ? 0 : -ENOMEM;
2527 }
2528 
2529 int
2530 gf100_gr_load(struct gf100_gr *gr, int ver, const struct gf100_gr_fwif *fwif)
2531 {
2532 	struct nvkm_device *device = gr->base.engine.subdev.device;
2533 
2534 	if (!nvkm_boolopt(device->cfgopt, "NvGrUseFW", false))
2535 		return -EINVAL;
2536 
2537 	if (gf100_gr_load_fw(gr, "fuc409c", &gr->fecs.inst) ||
2538 	    gf100_gr_load_fw(gr, "fuc409d", &gr->fecs.data) ||
2539 	    gf100_gr_load_fw(gr, "fuc41ac", &gr->gpccs.inst) ||
2540 	    gf100_gr_load_fw(gr, "fuc41ad", &gr->gpccs.data))
2541 		return -ENOENT;
2542 
2543 	gr->firmware = true;
2544 	return 0;
2545 }
2546 
2547 static const struct gf100_gr_fwif
2548 gf100_gr_fwif[] = {
2549 	{ -1, gf100_gr_load, &gf100_gr },
2550 	{ -1, gf100_gr_nofw, &gf100_gr },
2551 	{}
2552 };
2553 
2554 int
2555 gf100_gr_new_(const struct gf100_gr_fwif *fwif, struct nvkm_device *device,
2556 	      enum nvkm_subdev_type type, int inst, struct nvkm_gr **pgr)
2557 {
2558 	struct gf100_gr *gr;
2559 	int ret;
2560 
2561 	if (!(gr = kzalloc(sizeof(*gr), GFP_KERNEL)))
2562 		return -ENOMEM;
2563 	*pgr = &gr->base;
2564 
2565 	ret = nvkm_gr_ctor(&gf100_gr_, device, type, inst, true, &gr->base);
2566 	if (ret)
2567 		return ret;
2568 
2569 	fwif = nvkm_firmware_load(&gr->base.engine.subdev, fwif, "Gr", gr);
2570 	if (IS_ERR(fwif))
2571 		return PTR_ERR(fwif);
2572 
2573 	gr->func = fwif->func;
2574 
2575 	ret = nvkm_falcon_ctor(&gf100_gr_flcn, &gr->base.engine.subdev,
2576 			       "fecs", 0x409000, &gr->fecs.falcon);
2577 	if (ret)
2578 		return ret;
2579 
2580 	mutex_init(&gr->fecs.mutex);
2581 
2582 	ret = nvkm_falcon_ctor(&gf100_gr_flcn, &gr->base.engine.subdev,
2583 			       "gpccs", 0x41a000, &gr->gpccs.falcon);
2584 	if (ret)
2585 		return ret;
2586 
2587 	return 0;
2588 }
2589 
2590 int
2591 gf100_gr_new(struct nvkm_device *device, enum nvkm_subdev_type type, int inst, struct nvkm_gr **pgr)
2592 {
2593 	return gf100_gr_new_(gf100_gr_fwif, device, type, inst, pgr);
2594 }
2595