1 /*
2  * Copyright 2012 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Ben Skeggs
23  */
24 #include "gf100.h"
25 #include "ctxgf100.h"
26 #include "fuc/os.h"
27 
28 #include <core/client.h>
29 #include <core/option.h>
30 #include <core/firmware.h>
31 #include <subdev/secboot.h>
32 #include <subdev/fb.h>
33 #include <subdev/mc.h>
34 #include <subdev/pmu.h>
35 #include <subdev/therm.h>
36 #include <subdev/timer.h>
37 #include <engine/fifo.h>
38 
39 #include <nvif/class.h>
40 #include <nvif/cl9097.h>
41 #include <nvif/if900d.h>
42 #include <nvif/unpack.h>
43 
44 /*******************************************************************************
45  * Zero Bandwidth Clear
46  ******************************************************************************/
47 
48 static void
49 gf100_gr_zbc_clear_color(struct gf100_gr *gr, int zbc)
50 {
51 	struct nvkm_device *device = gr->base.engine.subdev.device;
52 	if (gr->zbc_color[zbc].format) {
53 		nvkm_wr32(device, 0x405804, gr->zbc_color[zbc].ds[0]);
54 		nvkm_wr32(device, 0x405808, gr->zbc_color[zbc].ds[1]);
55 		nvkm_wr32(device, 0x40580c, gr->zbc_color[zbc].ds[2]);
56 		nvkm_wr32(device, 0x405810, gr->zbc_color[zbc].ds[3]);
57 	}
58 	nvkm_wr32(device, 0x405814, gr->zbc_color[zbc].format);
59 	nvkm_wr32(device, 0x405820, zbc);
60 	nvkm_wr32(device, 0x405824, 0x00000004); /* TRIGGER | WRITE | COLOR */
61 }
62 
63 static int
64 gf100_gr_zbc_color_get(struct gf100_gr *gr, int format,
65 		       const u32 ds[4], const u32 l2[4])
66 {
67 	struct nvkm_ltc *ltc = gr->base.engine.subdev.device->ltc;
68 	int zbc = -ENOSPC, i;
69 
70 	for (i = ltc->zbc_min; i <= ltc->zbc_max; i++) {
71 		if (gr->zbc_color[i].format) {
72 			if (gr->zbc_color[i].format != format)
73 				continue;
74 			if (memcmp(gr->zbc_color[i].ds, ds, sizeof(
75 				   gr->zbc_color[i].ds)))
76 				continue;
77 			if (memcmp(gr->zbc_color[i].l2, l2, sizeof(
78 				   gr->zbc_color[i].l2))) {
79 				WARN_ON(1);
80 				return -EINVAL;
81 			}
82 			return i;
83 		} else {
84 			zbc = (zbc < 0) ? i : zbc;
85 		}
86 	}
87 
88 	if (zbc < 0)
89 		return zbc;
90 
91 	memcpy(gr->zbc_color[zbc].ds, ds, sizeof(gr->zbc_color[zbc].ds));
92 	memcpy(gr->zbc_color[zbc].l2, l2, sizeof(gr->zbc_color[zbc].l2));
93 	gr->zbc_color[zbc].format = format;
94 	nvkm_ltc_zbc_color_get(ltc, zbc, l2);
95 	gr->func->zbc->clear_color(gr, zbc);
96 	return zbc;
97 }
98 
99 static void
100 gf100_gr_zbc_clear_depth(struct gf100_gr *gr, int zbc)
101 {
102 	struct nvkm_device *device = gr->base.engine.subdev.device;
103 	if (gr->zbc_depth[zbc].format)
104 		nvkm_wr32(device, 0x405818, gr->zbc_depth[zbc].ds);
105 	nvkm_wr32(device, 0x40581c, gr->zbc_depth[zbc].format);
106 	nvkm_wr32(device, 0x405820, zbc);
107 	nvkm_wr32(device, 0x405824, 0x00000005); /* TRIGGER | WRITE | DEPTH */
108 }
109 
110 static int
111 gf100_gr_zbc_depth_get(struct gf100_gr *gr, int format,
112 		       const u32 ds, const u32 l2)
113 {
114 	struct nvkm_ltc *ltc = gr->base.engine.subdev.device->ltc;
115 	int zbc = -ENOSPC, i;
116 
117 	for (i = ltc->zbc_min; i <= ltc->zbc_max; i++) {
118 		if (gr->zbc_depth[i].format) {
119 			if (gr->zbc_depth[i].format != format)
120 				continue;
121 			if (gr->zbc_depth[i].ds != ds)
122 				continue;
123 			if (gr->zbc_depth[i].l2 != l2) {
124 				WARN_ON(1);
125 				return -EINVAL;
126 			}
127 			return i;
128 		} else {
129 			zbc = (zbc < 0) ? i : zbc;
130 		}
131 	}
132 
133 	if (zbc < 0)
134 		return zbc;
135 
136 	gr->zbc_depth[zbc].format = format;
137 	gr->zbc_depth[zbc].ds = ds;
138 	gr->zbc_depth[zbc].l2 = l2;
139 	nvkm_ltc_zbc_depth_get(ltc, zbc, l2);
140 	gr->func->zbc->clear_depth(gr, zbc);
141 	return zbc;
142 }
143 
144 const struct gf100_gr_func_zbc
145 gf100_gr_zbc = {
146 	.clear_color = gf100_gr_zbc_clear_color,
147 	.clear_depth = gf100_gr_zbc_clear_depth,
148 };
149 
150 /*******************************************************************************
151  * Graphics object classes
152  ******************************************************************************/
153 #define gf100_gr_object(p) container_of((p), struct gf100_gr_object, object)
154 
155 struct gf100_gr_object {
156 	struct nvkm_object object;
157 	struct gf100_gr_chan *chan;
158 };
159 
160 static int
161 gf100_fermi_mthd_zbc_color(struct nvkm_object *object, void *data, u32 size)
162 {
163 	struct gf100_gr *gr = gf100_gr(nvkm_gr(object->engine));
164 	union {
165 		struct fermi_a_zbc_color_v0 v0;
166 	} *args = data;
167 	int ret = -ENOSYS;
168 
169 	if (!(ret = nvif_unpack(ret, &data, &size, args->v0, 0, 0, false))) {
170 		switch (args->v0.format) {
171 		case FERMI_A_ZBC_COLOR_V0_FMT_ZERO:
172 		case FERMI_A_ZBC_COLOR_V0_FMT_UNORM_ONE:
173 		case FERMI_A_ZBC_COLOR_V0_FMT_RF32_GF32_BF32_AF32:
174 		case FERMI_A_ZBC_COLOR_V0_FMT_R16_G16_B16_A16:
175 		case FERMI_A_ZBC_COLOR_V0_FMT_RN16_GN16_BN16_AN16:
176 		case FERMI_A_ZBC_COLOR_V0_FMT_RS16_GS16_BS16_AS16:
177 		case FERMI_A_ZBC_COLOR_V0_FMT_RU16_GU16_BU16_AU16:
178 		case FERMI_A_ZBC_COLOR_V0_FMT_RF16_GF16_BF16_AF16:
179 		case FERMI_A_ZBC_COLOR_V0_FMT_A8R8G8B8:
180 		case FERMI_A_ZBC_COLOR_V0_FMT_A8RL8GL8BL8:
181 		case FERMI_A_ZBC_COLOR_V0_FMT_A2B10G10R10:
182 		case FERMI_A_ZBC_COLOR_V0_FMT_AU2BU10GU10RU10:
183 		case FERMI_A_ZBC_COLOR_V0_FMT_A8B8G8R8:
184 		case FERMI_A_ZBC_COLOR_V0_FMT_A8BL8GL8RL8:
185 		case FERMI_A_ZBC_COLOR_V0_FMT_AN8BN8GN8RN8:
186 		case FERMI_A_ZBC_COLOR_V0_FMT_AS8BS8GS8RS8:
187 		case FERMI_A_ZBC_COLOR_V0_FMT_AU8BU8GU8RU8:
188 		case FERMI_A_ZBC_COLOR_V0_FMT_A2R10G10B10:
189 		case FERMI_A_ZBC_COLOR_V0_FMT_BF10GF11RF11:
190 			ret = gf100_gr_zbc_color_get(gr, args->v0.format,
191 							   args->v0.ds,
192 							   args->v0.l2);
193 			if (ret >= 0) {
194 				args->v0.index = ret;
195 				return 0;
196 			}
197 			break;
198 		default:
199 			return -EINVAL;
200 		}
201 	}
202 
203 	return ret;
204 }
205 
206 static int
207 gf100_fermi_mthd_zbc_depth(struct nvkm_object *object, void *data, u32 size)
208 {
209 	struct gf100_gr *gr = gf100_gr(nvkm_gr(object->engine));
210 	union {
211 		struct fermi_a_zbc_depth_v0 v0;
212 	} *args = data;
213 	int ret = -ENOSYS;
214 
215 	if (!(ret = nvif_unpack(ret, &data, &size, args->v0, 0, 0, false))) {
216 		switch (args->v0.format) {
217 		case FERMI_A_ZBC_DEPTH_V0_FMT_FP32:
218 			ret = gf100_gr_zbc_depth_get(gr, args->v0.format,
219 							   args->v0.ds,
220 							   args->v0.l2);
221 			return (ret >= 0) ? 0 : -ENOSPC;
222 		default:
223 			return -EINVAL;
224 		}
225 	}
226 
227 	return ret;
228 }
229 
230 static int
231 gf100_fermi_mthd(struct nvkm_object *object, u32 mthd, void *data, u32 size)
232 {
233 	nvif_ioctl(object, "fermi mthd %08x\n", mthd);
234 	switch (mthd) {
235 	case FERMI_A_ZBC_COLOR:
236 		return gf100_fermi_mthd_zbc_color(object, data, size);
237 	case FERMI_A_ZBC_DEPTH:
238 		return gf100_fermi_mthd_zbc_depth(object, data, size);
239 	default:
240 		break;
241 	}
242 	return -EINVAL;
243 }
244 
245 const struct nvkm_object_func
246 gf100_fermi = {
247 	.mthd = gf100_fermi_mthd,
248 };
249 
250 static void
251 gf100_gr_mthd_set_shader_exceptions(struct nvkm_device *device, u32 data)
252 {
253 	nvkm_wr32(device, 0x419e44, data ? 0xffffffff : 0x00000000);
254 	nvkm_wr32(device, 0x419e4c, data ? 0xffffffff : 0x00000000);
255 }
256 
257 static bool
258 gf100_gr_mthd_sw(struct nvkm_device *device, u16 class, u32 mthd, u32 data)
259 {
260 	switch (class & 0x00ff) {
261 	case 0x97:
262 	case 0xc0:
263 		switch (mthd) {
264 		case 0x1528:
265 			gf100_gr_mthd_set_shader_exceptions(device, data);
266 			return true;
267 		default:
268 			break;
269 		}
270 		break;
271 	default:
272 		break;
273 	}
274 	return false;
275 }
276 
277 static const struct nvkm_object_func
278 gf100_gr_object_func = {
279 };
280 
281 static int
282 gf100_gr_object_new(const struct nvkm_oclass *oclass, void *data, u32 size,
283 		    struct nvkm_object **pobject)
284 {
285 	struct gf100_gr_chan *chan = gf100_gr_chan(oclass->parent);
286 	struct gf100_gr_object *object;
287 
288 	if (!(object = kzalloc(sizeof(*object), GFP_KERNEL)))
289 		return -ENOMEM;
290 	*pobject = &object->object;
291 
292 	nvkm_object_ctor(oclass->base.func ? oclass->base.func :
293 			 &gf100_gr_object_func, oclass, &object->object);
294 	object->chan = chan;
295 	return 0;
296 }
297 
298 static int
299 gf100_gr_object_get(struct nvkm_gr *base, int index, struct nvkm_sclass *sclass)
300 {
301 	struct gf100_gr *gr = gf100_gr(base);
302 	int c = 0;
303 
304 	while (gr->func->sclass[c].oclass) {
305 		if (c++ == index) {
306 			*sclass = gr->func->sclass[index];
307 			sclass->ctor = gf100_gr_object_new;
308 			return index;
309 		}
310 	}
311 
312 	return c;
313 }
314 
315 /*******************************************************************************
316  * PGRAPH context
317  ******************************************************************************/
318 
319 static int
320 gf100_gr_chan_bind(struct nvkm_object *object, struct nvkm_gpuobj *parent,
321 		   int align, struct nvkm_gpuobj **pgpuobj)
322 {
323 	struct gf100_gr_chan *chan = gf100_gr_chan(object);
324 	struct gf100_gr *gr = chan->gr;
325 	int ret, i;
326 
327 	ret = nvkm_gpuobj_new(gr->base.engine.subdev.device, gr->size,
328 			      align, false, parent, pgpuobj);
329 	if (ret)
330 		return ret;
331 
332 	nvkm_kmap(*pgpuobj);
333 	for (i = 0; i < gr->size; i += 4)
334 		nvkm_wo32(*pgpuobj, i, gr->data[i / 4]);
335 
336 	if (!gr->firmware) {
337 		nvkm_wo32(*pgpuobj, 0x00, chan->mmio_nr / 2);
338 		nvkm_wo32(*pgpuobj, 0x04, chan->mmio_vma->addr >> 8);
339 	} else {
340 		nvkm_wo32(*pgpuobj, 0xf4, 0);
341 		nvkm_wo32(*pgpuobj, 0xf8, 0);
342 		nvkm_wo32(*pgpuobj, 0x10, chan->mmio_nr / 2);
343 		nvkm_wo32(*pgpuobj, 0x14, lower_32_bits(chan->mmio_vma->addr));
344 		nvkm_wo32(*pgpuobj, 0x18, upper_32_bits(chan->mmio_vma->addr));
345 		nvkm_wo32(*pgpuobj, 0x1c, 1);
346 		nvkm_wo32(*pgpuobj, 0x20, 0);
347 		nvkm_wo32(*pgpuobj, 0x28, 0);
348 		nvkm_wo32(*pgpuobj, 0x2c, 0);
349 	}
350 	nvkm_done(*pgpuobj);
351 	return 0;
352 }
353 
354 static void *
355 gf100_gr_chan_dtor(struct nvkm_object *object)
356 {
357 	struct gf100_gr_chan *chan = gf100_gr_chan(object);
358 	int i;
359 
360 	for (i = 0; i < ARRAY_SIZE(chan->data); i++) {
361 		nvkm_vmm_put(chan->vmm, &chan->data[i].vma);
362 		nvkm_memory_unref(&chan->data[i].mem);
363 	}
364 
365 	nvkm_vmm_put(chan->vmm, &chan->mmio_vma);
366 	nvkm_memory_unref(&chan->mmio);
367 	nvkm_vmm_unref(&chan->vmm);
368 	return chan;
369 }
370 
371 static const struct nvkm_object_func
372 gf100_gr_chan = {
373 	.dtor = gf100_gr_chan_dtor,
374 	.bind = gf100_gr_chan_bind,
375 };
376 
377 static int
378 gf100_gr_chan_new(struct nvkm_gr *base, struct nvkm_fifo_chan *fifoch,
379 		  const struct nvkm_oclass *oclass,
380 		  struct nvkm_object **pobject)
381 {
382 	struct gf100_gr *gr = gf100_gr(base);
383 	struct gf100_gr_data *data = gr->mmio_data;
384 	struct gf100_gr_mmio *mmio = gr->mmio_list;
385 	struct gf100_gr_chan *chan;
386 	struct gf100_vmm_map_v0 args = { .priv = 1 };
387 	struct nvkm_device *device = gr->base.engine.subdev.device;
388 	int ret, i;
389 
390 	if (!(chan = kzalloc(sizeof(*chan), GFP_KERNEL)))
391 		return -ENOMEM;
392 	nvkm_object_ctor(&gf100_gr_chan, oclass, &chan->object);
393 	chan->gr = gr;
394 	chan->vmm = nvkm_vmm_ref(fifoch->vmm);
395 	*pobject = &chan->object;
396 
397 	/* allocate memory for a "mmio list" buffer that's used by the HUB
398 	 * fuc to modify some per-context register settings on first load
399 	 * of the context.
400 	 */
401 	ret = nvkm_memory_new(device, NVKM_MEM_TARGET_INST, 0x1000, 0x100,
402 			      false, &chan->mmio);
403 	if (ret)
404 		return ret;
405 
406 	ret = nvkm_vmm_get(fifoch->vmm, 12, 0x1000, &chan->mmio_vma);
407 	if (ret)
408 		return ret;
409 
410 	ret = nvkm_memory_map(chan->mmio, 0, fifoch->vmm,
411 			      chan->mmio_vma, &args, sizeof(args));
412 	if (ret)
413 		return ret;
414 
415 	/* allocate buffers referenced by mmio list */
416 	for (i = 0; data->size && i < ARRAY_SIZE(gr->mmio_data); i++) {
417 		ret = nvkm_memory_new(device, NVKM_MEM_TARGET_INST,
418 				      data->size, data->align, false,
419 				      &chan->data[i].mem);
420 		if (ret)
421 			return ret;
422 
423 		ret = nvkm_vmm_get(fifoch->vmm, 12,
424 				   nvkm_memory_size(chan->data[i].mem),
425 				   &chan->data[i].vma);
426 		if (ret)
427 			return ret;
428 
429 		args.priv = data->priv;
430 
431 		ret = nvkm_memory_map(chan->data[i].mem, 0, chan->vmm,
432 				      chan->data[i].vma, &args, sizeof(args));
433 		if (ret)
434 			return ret;
435 
436 		data++;
437 	}
438 
439 	/* finally, fill in the mmio list and point the context at it */
440 	nvkm_kmap(chan->mmio);
441 	for (i = 0; mmio->addr && i < ARRAY_SIZE(gr->mmio_list); i++) {
442 		u32 addr = mmio->addr;
443 		u32 data = mmio->data;
444 
445 		if (mmio->buffer >= 0) {
446 			u64 info = chan->data[mmio->buffer].vma->addr;
447 			data |= info >> mmio->shift;
448 		}
449 
450 		nvkm_wo32(chan->mmio, chan->mmio_nr++ * 4, addr);
451 		nvkm_wo32(chan->mmio, chan->mmio_nr++ * 4, data);
452 		mmio++;
453 	}
454 	nvkm_done(chan->mmio);
455 	return 0;
456 }
457 
458 /*******************************************************************************
459  * PGRAPH register lists
460  ******************************************************************************/
461 
462 const struct gf100_gr_init
463 gf100_gr_init_main_0[] = {
464 	{ 0x400080,   1, 0x04, 0x003083c2 },
465 	{ 0x400088,   1, 0x04, 0x00006fe7 },
466 	{ 0x40008c,   1, 0x04, 0x00000000 },
467 	{ 0x400090,   1, 0x04, 0x00000030 },
468 	{ 0x40013c,   1, 0x04, 0x013901f7 },
469 	{ 0x400140,   1, 0x04, 0x00000100 },
470 	{ 0x400144,   1, 0x04, 0x00000000 },
471 	{ 0x400148,   1, 0x04, 0x00000110 },
472 	{ 0x400138,   1, 0x04, 0x00000000 },
473 	{ 0x400130,   2, 0x04, 0x00000000 },
474 	{ 0x400124,   1, 0x04, 0x00000002 },
475 	{}
476 };
477 
478 const struct gf100_gr_init
479 gf100_gr_init_fe_0[] = {
480 	{ 0x40415c,   1, 0x04, 0x00000000 },
481 	{ 0x404170,   1, 0x04, 0x00000000 },
482 	{}
483 };
484 
485 const struct gf100_gr_init
486 gf100_gr_init_pri_0[] = {
487 	{ 0x404488,   2, 0x04, 0x00000000 },
488 	{}
489 };
490 
491 const struct gf100_gr_init
492 gf100_gr_init_rstr2d_0[] = {
493 	{ 0x407808,   1, 0x04, 0x00000000 },
494 	{}
495 };
496 
497 const struct gf100_gr_init
498 gf100_gr_init_pd_0[] = {
499 	{ 0x406024,   1, 0x04, 0x00000000 },
500 	{}
501 };
502 
503 const struct gf100_gr_init
504 gf100_gr_init_ds_0[] = {
505 	{ 0x405844,   1, 0x04, 0x00ffffff },
506 	{ 0x405850,   1, 0x04, 0x00000000 },
507 	{ 0x405908,   1, 0x04, 0x00000000 },
508 	{}
509 };
510 
511 const struct gf100_gr_init
512 gf100_gr_init_scc_0[] = {
513 	{ 0x40803c,   1, 0x04, 0x00000000 },
514 	{}
515 };
516 
517 const struct gf100_gr_init
518 gf100_gr_init_prop_0[] = {
519 	{ 0x4184a0,   1, 0x04, 0x00000000 },
520 	{}
521 };
522 
523 const struct gf100_gr_init
524 gf100_gr_init_gpc_unk_0[] = {
525 	{ 0x418604,   1, 0x04, 0x00000000 },
526 	{ 0x418680,   1, 0x04, 0x00000000 },
527 	{ 0x418714,   1, 0x04, 0x80000000 },
528 	{ 0x418384,   1, 0x04, 0x00000000 },
529 	{}
530 };
531 
532 const struct gf100_gr_init
533 gf100_gr_init_setup_0[] = {
534 	{ 0x418814,   3, 0x04, 0x00000000 },
535 	{}
536 };
537 
538 const struct gf100_gr_init
539 gf100_gr_init_crstr_0[] = {
540 	{ 0x418b04,   1, 0x04, 0x00000000 },
541 	{}
542 };
543 
544 const struct gf100_gr_init
545 gf100_gr_init_setup_1[] = {
546 	{ 0x4188c8,   1, 0x04, 0x80000000 },
547 	{ 0x4188cc,   1, 0x04, 0x00000000 },
548 	{ 0x4188d0,   1, 0x04, 0x00010000 },
549 	{ 0x4188d4,   1, 0x04, 0x00000001 },
550 	{}
551 };
552 
553 const struct gf100_gr_init
554 gf100_gr_init_zcull_0[] = {
555 	{ 0x418910,   1, 0x04, 0x00010001 },
556 	{ 0x418914,   1, 0x04, 0x00000301 },
557 	{ 0x418918,   1, 0x04, 0x00800000 },
558 	{ 0x418980,   1, 0x04, 0x77777770 },
559 	{ 0x418984,   3, 0x04, 0x77777777 },
560 	{}
561 };
562 
563 const struct gf100_gr_init
564 gf100_gr_init_gpm_0[] = {
565 	{ 0x418c04,   1, 0x04, 0x00000000 },
566 	{ 0x418c88,   1, 0x04, 0x00000000 },
567 	{}
568 };
569 
570 const struct gf100_gr_init
571 gf100_gr_init_gpc_unk_1[] = {
572 	{ 0x418d00,   1, 0x04, 0x00000000 },
573 	{ 0x418f08,   1, 0x04, 0x00000000 },
574 	{ 0x418e00,   1, 0x04, 0x00000050 },
575 	{ 0x418e08,   1, 0x04, 0x00000000 },
576 	{}
577 };
578 
579 const struct gf100_gr_init
580 gf100_gr_init_gcc_0[] = {
581 	{ 0x41900c,   1, 0x04, 0x00000000 },
582 	{ 0x419018,   1, 0x04, 0x00000000 },
583 	{}
584 };
585 
586 const struct gf100_gr_init
587 gf100_gr_init_tpccs_0[] = {
588 	{ 0x419d08,   2, 0x04, 0x00000000 },
589 	{ 0x419d10,   1, 0x04, 0x00000014 },
590 	{}
591 };
592 
593 const struct gf100_gr_init
594 gf100_gr_init_tex_0[] = {
595 	{ 0x419ab0,   1, 0x04, 0x00000000 },
596 	{ 0x419ab8,   1, 0x04, 0x000000e7 },
597 	{ 0x419abc,   2, 0x04, 0x00000000 },
598 	{}
599 };
600 
601 const struct gf100_gr_init
602 gf100_gr_init_pe_0[] = {
603 	{ 0x41980c,   3, 0x04, 0x00000000 },
604 	{ 0x419844,   1, 0x04, 0x00000000 },
605 	{ 0x41984c,   1, 0x04, 0x00005bc5 },
606 	{ 0x419850,   4, 0x04, 0x00000000 },
607 	{}
608 };
609 
610 const struct gf100_gr_init
611 gf100_gr_init_l1c_0[] = {
612 	{ 0x419c98,   1, 0x04, 0x00000000 },
613 	{ 0x419ca8,   1, 0x04, 0x80000000 },
614 	{ 0x419cb4,   1, 0x04, 0x00000000 },
615 	{ 0x419cb8,   1, 0x04, 0x00008bf4 },
616 	{ 0x419cbc,   1, 0x04, 0x28137606 },
617 	{ 0x419cc0,   2, 0x04, 0x00000000 },
618 	{}
619 };
620 
621 const struct gf100_gr_init
622 gf100_gr_init_wwdx_0[] = {
623 	{ 0x419bd4,   1, 0x04, 0x00800000 },
624 	{ 0x419bdc,   1, 0x04, 0x00000000 },
625 	{}
626 };
627 
628 const struct gf100_gr_init
629 gf100_gr_init_tpccs_1[] = {
630 	{ 0x419d2c,   1, 0x04, 0x00000000 },
631 	{}
632 };
633 
634 const struct gf100_gr_init
635 gf100_gr_init_mpc_0[] = {
636 	{ 0x419c0c,   1, 0x04, 0x00000000 },
637 	{}
638 };
639 
640 static const struct gf100_gr_init
641 gf100_gr_init_sm_0[] = {
642 	{ 0x419e00,   1, 0x04, 0x00000000 },
643 	{ 0x419ea0,   1, 0x04, 0x00000000 },
644 	{ 0x419ea4,   1, 0x04, 0x00000100 },
645 	{ 0x419ea8,   1, 0x04, 0x00001100 },
646 	{ 0x419eac,   1, 0x04, 0x11100702 },
647 	{ 0x419eb0,   1, 0x04, 0x00000003 },
648 	{ 0x419eb4,   4, 0x04, 0x00000000 },
649 	{ 0x419ec8,   1, 0x04, 0x06060618 },
650 	{ 0x419ed0,   1, 0x04, 0x0eff0e38 },
651 	{ 0x419ed4,   1, 0x04, 0x011104f1 },
652 	{ 0x419edc,   1, 0x04, 0x00000000 },
653 	{ 0x419f00,   1, 0x04, 0x00000000 },
654 	{ 0x419f2c,   1, 0x04, 0x00000000 },
655 	{}
656 };
657 
658 const struct gf100_gr_init
659 gf100_gr_init_be_0[] = {
660 	{ 0x40880c,   1, 0x04, 0x00000000 },
661 	{ 0x408910,   9, 0x04, 0x00000000 },
662 	{ 0x408950,   1, 0x04, 0x00000000 },
663 	{ 0x408954,   1, 0x04, 0x0000ffff },
664 	{ 0x408984,   1, 0x04, 0x00000000 },
665 	{ 0x408988,   1, 0x04, 0x08040201 },
666 	{ 0x40898c,   1, 0x04, 0x80402010 },
667 	{}
668 };
669 
670 const struct gf100_gr_init
671 gf100_gr_init_fe_1[] = {
672 	{ 0x4040f0,   1, 0x04, 0x00000000 },
673 	{}
674 };
675 
676 const struct gf100_gr_init
677 gf100_gr_init_pe_1[] = {
678 	{ 0x419880,   1, 0x04, 0x00000002 },
679 	{}
680 };
681 
682 static const struct gf100_gr_pack
683 gf100_gr_pack_mmio[] = {
684 	{ gf100_gr_init_main_0 },
685 	{ gf100_gr_init_fe_0 },
686 	{ gf100_gr_init_pri_0 },
687 	{ gf100_gr_init_rstr2d_0 },
688 	{ gf100_gr_init_pd_0 },
689 	{ gf100_gr_init_ds_0 },
690 	{ gf100_gr_init_scc_0 },
691 	{ gf100_gr_init_prop_0 },
692 	{ gf100_gr_init_gpc_unk_0 },
693 	{ gf100_gr_init_setup_0 },
694 	{ gf100_gr_init_crstr_0 },
695 	{ gf100_gr_init_setup_1 },
696 	{ gf100_gr_init_zcull_0 },
697 	{ gf100_gr_init_gpm_0 },
698 	{ gf100_gr_init_gpc_unk_1 },
699 	{ gf100_gr_init_gcc_0 },
700 	{ gf100_gr_init_tpccs_0 },
701 	{ gf100_gr_init_tex_0 },
702 	{ gf100_gr_init_pe_0 },
703 	{ gf100_gr_init_l1c_0 },
704 	{ gf100_gr_init_wwdx_0 },
705 	{ gf100_gr_init_tpccs_1 },
706 	{ gf100_gr_init_mpc_0 },
707 	{ gf100_gr_init_sm_0 },
708 	{ gf100_gr_init_be_0 },
709 	{ gf100_gr_init_fe_1 },
710 	{ gf100_gr_init_pe_1 },
711 	{}
712 };
713 
714 /*******************************************************************************
715  * PGRAPH engine/subdev functions
716  ******************************************************************************/
717 
718 static int
719 gf100_gr_fecs_discover_zcull_image_size(struct gf100_gr *gr, u32 *psize)
720 {
721 	struct nvkm_device *device = gr->base.engine.subdev.device;
722 
723 	nvkm_wr32(device, 0x409840, 0xffffffff);
724 	nvkm_wr32(device, 0x409500, 0x00000000);
725 	nvkm_wr32(device, 0x409504, 0x00000016);
726 	nvkm_msec(device, 2000,
727 		if ((*psize = nvkm_rd32(device, 0x409800)))
728 			return 0;
729 	);
730 
731 	return -ETIMEDOUT;
732 }
733 
734 static int
735 gf100_gr_fecs_discover_image_size(struct gf100_gr *gr, u32 *psize)
736 {
737 	struct nvkm_device *device = gr->base.engine.subdev.device;
738 
739 	nvkm_wr32(device, 0x409840, 0xffffffff);
740 	nvkm_wr32(device, 0x409500, 0x00000000);
741 	nvkm_wr32(device, 0x409504, 0x00000010);
742 	nvkm_msec(device, 2000,
743 		if ((*psize = nvkm_rd32(device, 0x409800)))
744 			return 0;
745 	);
746 
747 	return -ETIMEDOUT;
748 }
749 
750 static void
751 gf100_gr_fecs_set_watchdog_timeout(struct gf100_gr *gr, u32 timeout)
752 {
753 	struct nvkm_device *device = gr->base.engine.subdev.device;
754 
755 	nvkm_wr32(device, 0x409840, 0xffffffff);
756 	nvkm_wr32(device, 0x409500, timeout);
757 	nvkm_wr32(device, 0x409504, 0x00000021);
758 }
759 
760 static bool
761 gf100_gr_chsw_load(struct nvkm_gr *base)
762 {
763 	struct gf100_gr *gr = gf100_gr(base);
764 	if (!gr->firmware) {
765 		u32 trace = nvkm_rd32(gr->base.engine.subdev.device, 0x40981c);
766 		if (trace & 0x00000040)
767 			return true;
768 	} else {
769 		u32 mthd = nvkm_rd32(gr->base.engine.subdev.device, 0x409808);
770 		if (mthd & 0x00080000)
771 			return true;
772 	}
773 	return false;
774 }
775 
776 int
777 gf100_gr_rops(struct gf100_gr *gr)
778 {
779 	struct nvkm_device *device = gr->base.engine.subdev.device;
780 	return (nvkm_rd32(device, 0x409604) & 0x001f0000) >> 16;
781 }
782 
783 void
784 gf100_gr_zbc_init(struct gf100_gr *gr)
785 {
786 	const u32  zero[] = { 0x00000000, 0x00000000, 0x00000000, 0x00000000,
787 			      0x00000000, 0x00000000, 0x00000000, 0x00000000 };
788 	const u32   one[] = { 0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000,
789 			      0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff };
790 	const u32 f32_0[] = { 0x00000000, 0x00000000, 0x00000000, 0x00000000,
791 			      0x00000000, 0x00000000, 0x00000000, 0x00000000 };
792 	const u32 f32_1[] = { 0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000,
793 			      0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000 };
794 	struct nvkm_ltc *ltc = gr->base.engine.subdev.device->ltc;
795 	int index, c = ltc->zbc_min, d = ltc->zbc_min, s = ltc->zbc_min;
796 
797 	if (!gr->zbc_color[0].format) {
798 		gf100_gr_zbc_color_get(gr, 1,  & zero[0],   &zero[4]); c++;
799 		gf100_gr_zbc_color_get(gr, 2,  &  one[0],    &one[4]); c++;
800 		gf100_gr_zbc_color_get(gr, 4,  &f32_0[0],  &f32_0[4]); c++;
801 		gf100_gr_zbc_color_get(gr, 4,  &f32_1[0],  &f32_1[4]); c++;
802 		gf100_gr_zbc_depth_get(gr, 1, 0x00000000, 0x00000000); d++;
803 		gf100_gr_zbc_depth_get(gr, 1, 0x3f800000, 0x3f800000); d++;
804 		if (gr->func->zbc->stencil_get) {
805 			gr->func->zbc->stencil_get(gr, 1, 0x00, 0x00); s++;
806 			gr->func->zbc->stencil_get(gr, 1, 0x01, 0x01); s++;
807 			gr->func->zbc->stencil_get(gr, 1, 0xff, 0xff); s++;
808 		}
809 	}
810 
811 	for (index = c; index <= ltc->zbc_max; index++)
812 		gr->func->zbc->clear_color(gr, index);
813 	for (index = d; index <= ltc->zbc_max; index++)
814 		gr->func->zbc->clear_depth(gr, index);
815 
816 	if (gr->func->zbc->clear_stencil) {
817 		for (index = s; index <= ltc->zbc_max; index++)
818 			gr->func->zbc->clear_stencil(gr, index);
819 	}
820 }
821 
822 /**
823  * Wait until GR goes idle. GR is considered idle if it is disabled by the
824  * MC (0x200) register, or GR is not busy and a context switch is not in
825  * progress.
826  */
827 int
828 gf100_gr_wait_idle(struct gf100_gr *gr)
829 {
830 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
831 	struct nvkm_device *device = subdev->device;
832 	unsigned long end_jiffies = jiffies + msecs_to_jiffies(2000);
833 	bool gr_enabled, ctxsw_active, gr_busy;
834 
835 	do {
836 		/*
837 		 * required to make sure FIFO_ENGINE_STATUS (0x2640) is
838 		 * up-to-date
839 		 */
840 		nvkm_rd32(device, 0x400700);
841 
842 		gr_enabled = nvkm_rd32(device, 0x200) & 0x1000;
843 		ctxsw_active = nvkm_rd32(device, 0x2640) & 0x8000;
844 		gr_busy = nvkm_rd32(device, 0x40060c) & 0x1;
845 
846 		if (!gr_enabled || (!gr_busy && !ctxsw_active))
847 			return 0;
848 	} while (time_before(jiffies, end_jiffies));
849 
850 	nvkm_error(subdev,
851 		   "wait for idle timeout (en: %d, ctxsw: %d, busy: %d)\n",
852 		   gr_enabled, ctxsw_active, gr_busy);
853 	return -EAGAIN;
854 }
855 
856 void
857 gf100_gr_mmio(struct gf100_gr *gr, const struct gf100_gr_pack *p)
858 {
859 	struct nvkm_device *device = gr->base.engine.subdev.device;
860 	const struct gf100_gr_pack *pack;
861 	const struct gf100_gr_init *init;
862 
863 	pack_for_each_init(init, pack, p) {
864 		u32 next = init->addr + init->count * init->pitch;
865 		u32 addr = init->addr;
866 		while (addr < next) {
867 			nvkm_wr32(device, addr, init->data);
868 			addr += init->pitch;
869 		}
870 	}
871 }
872 
873 void
874 gf100_gr_icmd(struct gf100_gr *gr, const struct gf100_gr_pack *p)
875 {
876 	struct nvkm_device *device = gr->base.engine.subdev.device;
877 	const struct gf100_gr_pack *pack;
878 	const struct gf100_gr_init *init;
879 	u32 data = 0;
880 
881 	nvkm_wr32(device, 0x400208, 0x80000000);
882 
883 	pack_for_each_init(init, pack, p) {
884 		u32 next = init->addr + init->count * init->pitch;
885 		u32 addr = init->addr;
886 
887 		if ((pack == p && init == p->init) || data != init->data) {
888 			nvkm_wr32(device, 0x400204, init->data);
889 			data = init->data;
890 		}
891 
892 		while (addr < next) {
893 			nvkm_wr32(device, 0x400200, addr);
894 			/**
895 			 * Wait for GR to go idle after submitting a
896 			 * GO_IDLE bundle
897 			 */
898 			if ((addr & 0xffff) == 0xe100)
899 				gf100_gr_wait_idle(gr);
900 			nvkm_msec(device, 2000,
901 				if (!(nvkm_rd32(device, 0x400700) & 0x00000004))
902 					break;
903 			);
904 			addr += init->pitch;
905 		}
906 	}
907 
908 	nvkm_wr32(device, 0x400208, 0x00000000);
909 }
910 
911 void
912 gf100_gr_mthd(struct gf100_gr *gr, const struct gf100_gr_pack *p)
913 {
914 	struct nvkm_device *device = gr->base.engine.subdev.device;
915 	const struct gf100_gr_pack *pack;
916 	const struct gf100_gr_init *init;
917 	u32 data = 0;
918 
919 	pack_for_each_init(init, pack, p) {
920 		u32 ctrl = 0x80000000 | pack->type;
921 		u32 next = init->addr + init->count * init->pitch;
922 		u32 addr = init->addr;
923 
924 		if ((pack == p && init == p->init) || data != init->data) {
925 			nvkm_wr32(device, 0x40448c, init->data);
926 			data = init->data;
927 		}
928 
929 		while (addr < next) {
930 			nvkm_wr32(device, 0x404488, ctrl | (addr << 14));
931 			addr += init->pitch;
932 		}
933 	}
934 }
935 
936 u64
937 gf100_gr_units(struct nvkm_gr *base)
938 {
939 	struct gf100_gr *gr = gf100_gr(base);
940 	u64 cfg;
941 
942 	cfg  = (u32)gr->gpc_nr;
943 	cfg |= (u32)gr->tpc_total << 8;
944 	cfg |= (u64)gr->rop_nr << 32;
945 
946 	return cfg;
947 }
948 
949 static const struct nvkm_bitfield gf100_dispatch_error[] = {
950 	{ 0x00000001, "INJECTED_BUNDLE_ERROR" },
951 	{ 0x00000002, "CLASS_SUBCH_MISMATCH" },
952 	{ 0x00000004, "SUBCHSW_DURING_NOTIFY" },
953 	{}
954 };
955 
956 static const struct nvkm_bitfield gf100_m2mf_error[] = {
957 	{ 0x00000001, "PUSH_TOO_MUCH_DATA" },
958 	{ 0x00000002, "PUSH_NOT_ENOUGH_DATA" },
959 	{}
960 };
961 
962 static const struct nvkm_bitfield gf100_unk6_error[] = {
963 	{ 0x00000001, "TEMP_TOO_SMALL" },
964 	{}
965 };
966 
967 static const struct nvkm_bitfield gf100_ccache_error[] = {
968 	{ 0x00000001, "INTR" },
969 	{ 0x00000002, "LDCONST_OOB" },
970 	{}
971 };
972 
973 static const struct nvkm_bitfield gf100_macro_error[] = {
974 	{ 0x00000001, "TOO_FEW_PARAMS" },
975 	{ 0x00000002, "TOO_MANY_PARAMS" },
976 	{ 0x00000004, "ILLEGAL_OPCODE" },
977 	{ 0x00000008, "DOUBLE_BRANCH" },
978 	{ 0x00000010, "WATCHDOG" },
979 	{}
980 };
981 
982 static const struct nvkm_bitfield gk104_sked_error[] = {
983 	{ 0x00000040, "CTA_RESUME" },
984 	{ 0x00000080, "CONSTANT_BUFFER_SIZE" },
985 	{ 0x00000200, "LOCAL_MEMORY_SIZE_POS" },
986 	{ 0x00000400, "LOCAL_MEMORY_SIZE_NEG" },
987 	{ 0x00000800, "WARP_CSTACK_SIZE" },
988 	{ 0x00001000, "TOTAL_TEMP_SIZE" },
989 	{ 0x00002000, "REGISTER_COUNT" },
990 	{ 0x00040000, "TOTAL_THREADS" },
991 	{ 0x00100000, "PROGRAM_OFFSET" },
992 	{ 0x00200000, "SHARED_MEMORY_SIZE" },
993 	{ 0x00800000, "CTA_THREAD_DIMENSION_ZERO" },
994 	{ 0x01000000, "MEMORY_WINDOW_OVERLAP" },
995 	{ 0x02000000, "SHARED_CONFIG_TOO_SMALL" },
996 	{ 0x04000000, "TOTAL_REGISTER_COUNT" },
997 	{}
998 };
999 
1000 static const struct nvkm_bitfield gf100_gpc_rop_error[] = {
1001 	{ 0x00000002, "RT_PITCH_OVERRUN" },
1002 	{ 0x00000010, "RT_WIDTH_OVERRUN" },
1003 	{ 0x00000020, "RT_HEIGHT_OVERRUN" },
1004 	{ 0x00000080, "ZETA_STORAGE_TYPE_MISMATCH" },
1005 	{ 0x00000100, "RT_STORAGE_TYPE_MISMATCH" },
1006 	{ 0x00000400, "RT_LINEAR_MISMATCH" },
1007 	{}
1008 };
1009 
1010 static void
1011 gf100_gr_trap_gpc_rop(struct gf100_gr *gr, int gpc)
1012 {
1013 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1014 	struct nvkm_device *device = subdev->device;
1015 	char error[128];
1016 	u32 trap[4];
1017 
1018 	trap[0] = nvkm_rd32(device, GPC_UNIT(gpc, 0x0420)) & 0x3fffffff;
1019 	trap[1] = nvkm_rd32(device, GPC_UNIT(gpc, 0x0434));
1020 	trap[2] = nvkm_rd32(device, GPC_UNIT(gpc, 0x0438));
1021 	trap[3] = nvkm_rd32(device, GPC_UNIT(gpc, 0x043c));
1022 
1023 	nvkm_snprintbf(error, sizeof(error), gf100_gpc_rop_error, trap[0]);
1024 
1025 	nvkm_error(subdev, "GPC%d/PROP trap: %08x [%s] x = %u, y = %u, "
1026 			   "format = %x, storage type = %x\n",
1027 		   gpc, trap[0], error, trap[1] & 0xffff, trap[1] >> 16,
1028 		   (trap[2] >> 8) & 0x3f, trap[3] & 0xff);
1029 	nvkm_wr32(device, GPC_UNIT(gpc, 0x0420), 0xc0000000);
1030 }
1031 
1032 const struct nvkm_enum gf100_mp_warp_error[] = {
1033 	{ 0x01, "STACK_ERROR" },
1034 	{ 0x02, "API_STACK_ERROR" },
1035 	{ 0x03, "RET_EMPTY_STACK_ERROR" },
1036 	{ 0x04, "PC_WRAP" },
1037 	{ 0x05, "MISALIGNED_PC" },
1038 	{ 0x06, "PC_OVERFLOW" },
1039 	{ 0x07, "MISALIGNED_IMMC_ADDR" },
1040 	{ 0x08, "MISALIGNED_REG" },
1041 	{ 0x09, "ILLEGAL_INSTR_ENCODING" },
1042 	{ 0x0a, "ILLEGAL_SPH_INSTR_COMBO" },
1043 	{ 0x0b, "ILLEGAL_INSTR_PARAM" },
1044 	{ 0x0c, "INVALID_CONST_ADDR" },
1045 	{ 0x0d, "OOR_REG" },
1046 	{ 0x0e, "OOR_ADDR" },
1047 	{ 0x0f, "MISALIGNED_ADDR" },
1048 	{ 0x10, "INVALID_ADDR_SPACE" },
1049 	{ 0x11, "ILLEGAL_INSTR_PARAM2" },
1050 	{ 0x12, "INVALID_CONST_ADDR_LDC" },
1051 	{ 0x13, "GEOMETRY_SM_ERROR" },
1052 	{ 0x14, "DIVERGENT" },
1053 	{ 0x15, "WARP_EXIT" },
1054 	{}
1055 };
1056 
1057 const struct nvkm_bitfield gf100_mp_global_error[] = {
1058 	{ 0x00000001, "SM_TO_SM_FAULT" },
1059 	{ 0x00000002, "L1_ERROR" },
1060 	{ 0x00000004, "MULTIPLE_WARP_ERRORS" },
1061 	{ 0x00000008, "PHYSICAL_STACK_OVERFLOW" },
1062 	{ 0x00000010, "BPT_INT" },
1063 	{ 0x00000020, "BPT_PAUSE" },
1064 	{ 0x00000040, "SINGLE_STEP_COMPLETE" },
1065 	{ 0x20000000, "ECC_SEC_ERROR" },
1066 	{ 0x40000000, "ECC_DED_ERROR" },
1067 	{ 0x80000000, "TIMEOUT" },
1068 	{}
1069 };
1070 
1071 void
1072 gf100_gr_trap_mp(struct gf100_gr *gr, int gpc, int tpc)
1073 {
1074 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1075 	struct nvkm_device *device = subdev->device;
1076 	u32 werr = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x648));
1077 	u32 gerr = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x650));
1078 	const struct nvkm_enum *warp;
1079 	char glob[128];
1080 
1081 	nvkm_snprintbf(glob, sizeof(glob), gf100_mp_global_error, gerr);
1082 	warp = nvkm_enum_find(gf100_mp_warp_error, werr & 0xffff);
1083 
1084 	nvkm_error(subdev, "GPC%i/TPC%i/MP trap: "
1085 			   "global %08x [%s] warp %04x [%s]\n",
1086 		   gpc, tpc, gerr, glob, werr, warp ? warp->name : "");
1087 
1088 	nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x648), 0x00000000);
1089 	nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x650), gerr);
1090 }
1091 
1092 static void
1093 gf100_gr_trap_tpc(struct gf100_gr *gr, int gpc, int tpc)
1094 {
1095 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1096 	struct nvkm_device *device = subdev->device;
1097 	u32 stat = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x0508));
1098 
1099 	if (stat & 0x00000001) {
1100 		u32 trap = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x0224));
1101 		nvkm_error(subdev, "GPC%d/TPC%d/TEX: %08x\n", gpc, tpc, trap);
1102 		nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x0224), 0xc0000000);
1103 		stat &= ~0x00000001;
1104 	}
1105 
1106 	if (stat & 0x00000002) {
1107 		gr->func->trap_mp(gr, gpc, tpc);
1108 		stat &= ~0x00000002;
1109 	}
1110 
1111 	if (stat & 0x00000004) {
1112 		u32 trap = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x0084));
1113 		nvkm_error(subdev, "GPC%d/TPC%d/POLY: %08x\n", gpc, tpc, trap);
1114 		nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x0084), 0xc0000000);
1115 		stat &= ~0x00000004;
1116 	}
1117 
1118 	if (stat & 0x00000008) {
1119 		u32 trap = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x048c));
1120 		nvkm_error(subdev, "GPC%d/TPC%d/L1C: %08x\n", gpc, tpc, trap);
1121 		nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x048c), 0xc0000000);
1122 		stat &= ~0x00000008;
1123 	}
1124 
1125 	if (stat & 0x00000010) {
1126 		u32 trap = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x0430));
1127 		nvkm_error(subdev, "GPC%d/TPC%d/MPC: %08x\n", gpc, tpc, trap);
1128 		nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x0430), 0xc0000000);
1129 		stat &= ~0x00000010;
1130 	}
1131 
1132 	if (stat) {
1133 		nvkm_error(subdev, "GPC%d/TPC%d/%08x: unknown\n", gpc, tpc, stat);
1134 	}
1135 }
1136 
1137 static void
1138 gf100_gr_trap_gpc(struct gf100_gr *gr, int gpc)
1139 {
1140 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1141 	struct nvkm_device *device = subdev->device;
1142 	u32 stat = nvkm_rd32(device, GPC_UNIT(gpc, 0x2c90));
1143 	int tpc;
1144 
1145 	if (stat & 0x00000001) {
1146 		gf100_gr_trap_gpc_rop(gr, gpc);
1147 		stat &= ~0x00000001;
1148 	}
1149 
1150 	if (stat & 0x00000002) {
1151 		u32 trap = nvkm_rd32(device, GPC_UNIT(gpc, 0x0900));
1152 		nvkm_error(subdev, "GPC%d/ZCULL: %08x\n", gpc, trap);
1153 		nvkm_wr32(device, GPC_UNIT(gpc, 0x0900), 0xc0000000);
1154 		stat &= ~0x00000002;
1155 	}
1156 
1157 	if (stat & 0x00000004) {
1158 		u32 trap = nvkm_rd32(device, GPC_UNIT(gpc, 0x1028));
1159 		nvkm_error(subdev, "GPC%d/CCACHE: %08x\n", gpc, trap);
1160 		nvkm_wr32(device, GPC_UNIT(gpc, 0x1028), 0xc0000000);
1161 		stat &= ~0x00000004;
1162 	}
1163 
1164 	if (stat & 0x00000008) {
1165 		u32 trap = nvkm_rd32(device, GPC_UNIT(gpc, 0x0824));
1166 		nvkm_error(subdev, "GPC%d/ESETUP: %08x\n", gpc, trap);
1167 		nvkm_wr32(device, GPC_UNIT(gpc, 0x0824), 0xc0000000);
1168 		stat &= ~0x00000009;
1169 	}
1170 
1171 	for (tpc = 0; tpc < gr->tpc_nr[gpc]; tpc++) {
1172 		u32 mask = 0x00010000 << tpc;
1173 		if (stat & mask) {
1174 			gf100_gr_trap_tpc(gr, gpc, tpc);
1175 			nvkm_wr32(device, GPC_UNIT(gpc, 0x2c90), mask);
1176 			stat &= ~mask;
1177 		}
1178 	}
1179 
1180 	if (stat) {
1181 		nvkm_error(subdev, "GPC%d/%08x: unknown\n", gpc, stat);
1182 	}
1183 }
1184 
1185 static void
1186 gf100_gr_trap_intr(struct gf100_gr *gr)
1187 {
1188 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1189 	struct nvkm_device *device = subdev->device;
1190 	char error[128];
1191 	u32 trap = nvkm_rd32(device, 0x400108);
1192 	int rop, gpc;
1193 
1194 	if (trap & 0x00000001) {
1195 		u32 stat = nvkm_rd32(device, 0x404000);
1196 
1197 		nvkm_snprintbf(error, sizeof(error), gf100_dispatch_error,
1198 			       stat & 0x3fffffff);
1199 		nvkm_error(subdev, "DISPATCH %08x [%s]\n", stat, error);
1200 		nvkm_wr32(device, 0x404000, 0xc0000000);
1201 		nvkm_wr32(device, 0x400108, 0x00000001);
1202 		trap &= ~0x00000001;
1203 	}
1204 
1205 	if (trap & 0x00000002) {
1206 		u32 stat = nvkm_rd32(device, 0x404600);
1207 
1208 		nvkm_snprintbf(error, sizeof(error), gf100_m2mf_error,
1209 			       stat & 0x3fffffff);
1210 		nvkm_error(subdev, "M2MF %08x [%s]\n", stat, error);
1211 
1212 		nvkm_wr32(device, 0x404600, 0xc0000000);
1213 		nvkm_wr32(device, 0x400108, 0x00000002);
1214 		trap &= ~0x00000002;
1215 	}
1216 
1217 	if (trap & 0x00000008) {
1218 		u32 stat = nvkm_rd32(device, 0x408030);
1219 
1220 		nvkm_snprintbf(error, sizeof(error), gf100_ccache_error,
1221 			       stat & 0x3fffffff);
1222 		nvkm_error(subdev, "CCACHE %08x [%s]\n", stat, error);
1223 		nvkm_wr32(device, 0x408030, 0xc0000000);
1224 		nvkm_wr32(device, 0x400108, 0x00000008);
1225 		trap &= ~0x00000008;
1226 	}
1227 
1228 	if (trap & 0x00000010) {
1229 		u32 stat = nvkm_rd32(device, 0x405840);
1230 		nvkm_error(subdev, "SHADER %08x, sph: 0x%06x, stage: 0x%02x\n",
1231 			   stat, stat & 0xffffff, (stat >> 24) & 0x3f);
1232 		nvkm_wr32(device, 0x405840, 0xc0000000);
1233 		nvkm_wr32(device, 0x400108, 0x00000010);
1234 		trap &= ~0x00000010;
1235 	}
1236 
1237 	if (trap & 0x00000040) {
1238 		u32 stat = nvkm_rd32(device, 0x40601c);
1239 
1240 		nvkm_snprintbf(error, sizeof(error), gf100_unk6_error,
1241 			       stat & 0x3fffffff);
1242 		nvkm_error(subdev, "UNK6 %08x [%s]\n", stat, error);
1243 
1244 		nvkm_wr32(device, 0x40601c, 0xc0000000);
1245 		nvkm_wr32(device, 0x400108, 0x00000040);
1246 		trap &= ~0x00000040;
1247 	}
1248 
1249 	if (trap & 0x00000080) {
1250 		u32 stat = nvkm_rd32(device, 0x404490);
1251 		u32 pc = nvkm_rd32(device, 0x404494);
1252 		u32 op = nvkm_rd32(device, 0x40449c);
1253 
1254 		nvkm_snprintbf(error, sizeof(error), gf100_macro_error,
1255 			       stat & 0x1fffffff);
1256 		nvkm_error(subdev, "MACRO %08x [%s], pc: 0x%03x%s, op: 0x%08x\n",
1257 			   stat, error, pc & 0x7ff,
1258 			   (pc & 0x10000000) ? "" : " (invalid)",
1259 			   op);
1260 
1261 		nvkm_wr32(device, 0x404490, 0xc0000000);
1262 		nvkm_wr32(device, 0x400108, 0x00000080);
1263 		trap &= ~0x00000080;
1264 	}
1265 
1266 	if (trap & 0x00000100) {
1267 		u32 stat = nvkm_rd32(device, 0x407020) & 0x3fffffff;
1268 
1269 		nvkm_snprintbf(error, sizeof(error), gk104_sked_error, stat);
1270 		nvkm_error(subdev, "SKED: %08x [%s]\n", stat, error);
1271 
1272 		if (stat)
1273 			nvkm_wr32(device, 0x407020, 0x40000000);
1274 		nvkm_wr32(device, 0x400108, 0x00000100);
1275 		trap &= ~0x00000100;
1276 	}
1277 
1278 	if (trap & 0x01000000) {
1279 		u32 stat = nvkm_rd32(device, 0x400118);
1280 		for (gpc = 0; stat && gpc < gr->gpc_nr; gpc++) {
1281 			u32 mask = 0x00000001 << gpc;
1282 			if (stat & mask) {
1283 				gf100_gr_trap_gpc(gr, gpc);
1284 				nvkm_wr32(device, 0x400118, mask);
1285 				stat &= ~mask;
1286 			}
1287 		}
1288 		nvkm_wr32(device, 0x400108, 0x01000000);
1289 		trap &= ~0x01000000;
1290 	}
1291 
1292 	if (trap & 0x02000000) {
1293 		for (rop = 0; rop < gr->rop_nr; rop++) {
1294 			u32 statz = nvkm_rd32(device, ROP_UNIT(rop, 0x070));
1295 			u32 statc = nvkm_rd32(device, ROP_UNIT(rop, 0x144));
1296 			nvkm_error(subdev, "ROP%d %08x %08x\n",
1297 				 rop, statz, statc);
1298 			nvkm_wr32(device, ROP_UNIT(rop, 0x070), 0xc0000000);
1299 			nvkm_wr32(device, ROP_UNIT(rop, 0x144), 0xc0000000);
1300 		}
1301 		nvkm_wr32(device, 0x400108, 0x02000000);
1302 		trap &= ~0x02000000;
1303 	}
1304 
1305 	if (trap) {
1306 		nvkm_error(subdev, "TRAP UNHANDLED %08x\n", trap);
1307 		nvkm_wr32(device, 0x400108, trap);
1308 	}
1309 }
1310 
1311 static void
1312 gf100_gr_ctxctl_debug_unit(struct gf100_gr *gr, u32 base)
1313 {
1314 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1315 	struct nvkm_device *device = subdev->device;
1316 	nvkm_error(subdev, "%06x - done %08x\n", base,
1317 		   nvkm_rd32(device, base + 0x400));
1318 	nvkm_error(subdev, "%06x - stat %08x %08x %08x %08x\n", base,
1319 		   nvkm_rd32(device, base + 0x800),
1320 		   nvkm_rd32(device, base + 0x804),
1321 		   nvkm_rd32(device, base + 0x808),
1322 		   nvkm_rd32(device, base + 0x80c));
1323 	nvkm_error(subdev, "%06x - stat %08x %08x %08x %08x\n", base,
1324 		   nvkm_rd32(device, base + 0x810),
1325 		   nvkm_rd32(device, base + 0x814),
1326 		   nvkm_rd32(device, base + 0x818),
1327 		   nvkm_rd32(device, base + 0x81c));
1328 }
1329 
1330 void
1331 gf100_gr_ctxctl_debug(struct gf100_gr *gr)
1332 {
1333 	struct nvkm_device *device = gr->base.engine.subdev.device;
1334 	u32 gpcnr = nvkm_rd32(device, 0x409604) & 0xffff;
1335 	u32 gpc;
1336 
1337 	gf100_gr_ctxctl_debug_unit(gr, 0x409000);
1338 	for (gpc = 0; gpc < gpcnr; gpc++)
1339 		gf100_gr_ctxctl_debug_unit(gr, 0x502000 + (gpc * 0x8000));
1340 }
1341 
1342 static void
1343 gf100_gr_ctxctl_isr(struct gf100_gr *gr)
1344 {
1345 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1346 	struct nvkm_device *device = subdev->device;
1347 	u32 stat = nvkm_rd32(device, 0x409c18);
1348 
1349 	if (!gr->firmware && (stat & 0x00000001)) {
1350 		u32 code = nvkm_rd32(device, 0x409814);
1351 		if (code == E_BAD_FWMTHD) {
1352 			u32 class = nvkm_rd32(device, 0x409808);
1353 			u32  addr = nvkm_rd32(device, 0x40980c);
1354 			u32  subc = (addr & 0x00070000) >> 16;
1355 			u32  mthd = (addr & 0x00003ffc);
1356 			u32  data = nvkm_rd32(device, 0x409810);
1357 
1358 			nvkm_error(subdev, "FECS MTHD subc %d class %04x "
1359 					   "mthd %04x data %08x\n",
1360 				   subc, class, mthd, data);
1361 		} else {
1362 			nvkm_error(subdev, "FECS ucode error %d\n", code);
1363 		}
1364 		nvkm_wr32(device, 0x409c20, 0x00000001);
1365 		stat &= ~0x00000001;
1366 	}
1367 
1368 	if (!gr->firmware && (stat & 0x00080000)) {
1369 		nvkm_error(subdev, "FECS watchdog timeout\n");
1370 		gf100_gr_ctxctl_debug(gr);
1371 		nvkm_wr32(device, 0x409c20, 0x00080000);
1372 		stat &= ~0x00080000;
1373 	}
1374 
1375 	if (stat) {
1376 		nvkm_error(subdev, "FECS %08x\n", stat);
1377 		gf100_gr_ctxctl_debug(gr);
1378 		nvkm_wr32(device, 0x409c20, stat);
1379 	}
1380 }
1381 
1382 static void
1383 gf100_gr_intr(struct nvkm_gr *base)
1384 {
1385 	struct gf100_gr *gr = gf100_gr(base);
1386 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1387 	struct nvkm_device *device = subdev->device;
1388 	struct nvkm_fifo_chan *chan;
1389 	unsigned long flags;
1390 	u64 inst = nvkm_rd32(device, 0x409b00) & 0x0fffffff;
1391 	u32 stat = nvkm_rd32(device, 0x400100);
1392 	u32 addr = nvkm_rd32(device, 0x400704);
1393 	u32 mthd = (addr & 0x00003ffc);
1394 	u32 subc = (addr & 0x00070000) >> 16;
1395 	u32 data = nvkm_rd32(device, 0x400708);
1396 	u32 code = nvkm_rd32(device, 0x400110);
1397 	u32 class;
1398 	const char *name = "unknown";
1399 	int chid = -1;
1400 
1401 	chan = nvkm_fifo_chan_inst(device->fifo, (u64)inst << 12, &flags);
1402 	if (chan) {
1403 		name = chan->object.client->name;
1404 		chid = chan->chid;
1405 	}
1406 
1407 	if (device->card_type < NV_E0 || subc < 4)
1408 		class = nvkm_rd32(device, 0x404200 + (subc * 4));
1409 	else
1410 		class = 0x0000;
1411 
1412 	if (stat & 0x00000001) {
1413 		/*
1414 		 * notifier interrupt, only needed for cyclestats
1415 		 * can be safely ignored
1416 		 */
1417 		nvkm_wr32(device, 0x400100, 0x00000001);
1418 		stat &= ~0x00000001;
1419 	}
1420 
1421 	if (stat & 0x00000010) {
1422 		if (!gf100_gr_mthd_sw(device, class, mthd, data)) {
1423 			nvkm_error(subdev, "ILLEGAL_MTHD ch %d [%010llx %s] "
1424 				   "subc %d class %04x mthd %04x data %08x\n",
1425 				   chid, inst << 12, name, subc,
1426 				   class, mthd, data);
1427 		}
1428 		nvkm_wr32(device, 0x400100, 0x00000010);
1429 		stat &= ~0x00000010;
1430 	}
1431 
1432 	if (stat & 0x00000020) {
1433 		nvkm_error(subdev, "ILLEGAL_CLASS ch %d [%010llx %s] "
1434 			   "subc %d class %04x mthd %04x data %08x\n",
1435 			   chid, inst << 12, name, subc, class, mthd, data);
1436 		nvkm_wr32(device, 0x400100, 0x00000020);
1437 		stat &= ~0x00000020;
1438 	}
1439 
1440 	if (stat & 0x00100000) {
1441 		const struct nvkm_enum *en =
1442 			nvkm_enum_find(nv50_data_error_names, code);
1443 		nvkm_error(subdev, "DATA_ERROR %08x [%s] ch %d [%010llx %s] "
1444 				   "subc %d class %04x mthd %04x data %08x\n",
1445 			   code, en ? en->name : "", chid, inst << 12,
1446 			   name, subc, class, mthd, data);
1447 		nvkm_wr32(device, 0x400100, 0x00100000);
1448 		stat &= ~0x00100000;
1449 	}
1450 
1451 	if (stat & 0x00200000) {
1452 		nvkm_error(subdev, "TRAP ch %d [%010llx %s]\n",
1453 			   chid, inst << 12, name);
1454 		gf100_gr_trap_intr(gr);
1455 		nvkm_wr32(device, 0x400100, 0x00200000);
1456 		stat &= ~0x00200000;
1457 	}
1458 
1459 	if (stat & 0x00080000) {
1460 		gf100_gr_ctxctl_isr(gr);
1461 		nvkm_wr32(device, 0x400100, 0x00080000);
1462 		stat &= ~0x00080000;
1463 	}
1464 
1465 	if (stat) {
1466 		nvkm_error(subdev, "intr %08x\n", stat);
1467 		nvkm_wr32(device, 0x400100, stat);
1468 	}
1469 
1470 	nvkm_wr32(device, 0x400500, 0x00010001);
1471 	nvkm_fifo_chan_put(device->fifo, flags, &chan);
1472 }
1473 
1474 static void
1475 gf100_gr_init_fw(struct nvkm_falcon *falcon,
1476 		 struct gf100_gr_fuc *code, struct gf100_gr_fuc *data)
1477 {
1478 	nvkm_falcon_load_dmem(falcon, data->data, 0x0, data->size, 0);
1479 	nvkm_falcon_load_imem(falcon, code->data, 0x0, code->size, 0, 0, false);
1480 }
1481 
1482 static void
1483 gf100_gr_init_csdata(struct gf100_gr *gr,
1484 		     const struct gf100_gr_pack *pack,
1485 		     u32 falcon, u32 starstar, u32 base)
1486 {
1487 	struct nvkm_device *device = gr->base.engine.subdev.device;
1488 	const struct gf100_gr_pack *iter;
1489 	const struct gf100_gr_init *init;
1490 	u32 addr = ~0, prev = ~0, xfer = 0;
1491 	u32 star, temp;
1492 
1493 	nvkm_wr32(device, falcon + 0x01c0, 0x02000000 + starstar);
1494 	star = nvkm_rd32(device, falcon + 0x01c4);
1495 	temp = nvkm_rd32(device, falcon + 0x01c4);
1496 	if (temp > star)
1497 		star = temp;
1498 	nvkm_wr32(device, falcon + 0x01c0, 0x01000000 + star);
1499 
1500 	pack_for_each_init(init, iter, pack) {
1501 		u32 head = init->addr - base;
1502 		u32 tail = head + init->count * init->pitch;
1503 		while (head < tail) {
1504 			if (head != prev + 4 || xfer >= 32) {
1505 				if (xfer) {
1506 					u32 data = ((--xfer << 26) | addr);
1507 					nvkm_wr32(device, falcon + 0x01c4, data);
1508 					star += 4;
1509 				}
1510 				addr = head;
1511 				xfer = 0;
1512 			}
1513 			prev = head;
1514 			xfer = xfer + 1;
1515 			head = head + init->pitch;
1516 		}
1517 	}
1518 
1519 	nvkm_wr32(device, falcon + 0x01c4, (--xfer << 26) | addr);
1520 	nvkm_wr32(device, falcon + 0x01c0, 0x01000004 + starstar);
1521 	nvkm_wr32(device, falcon + 0x01c4, star + 4);
1522 }
1523 
1524 /* Initialize context from an external (secure or not) firmware */
1525 static int
1526 gf100_gr_init_ctxctl_ext(struct gf100_gr *gr)
1527 {
1528 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1529 	struct nvkm_device *device = subdev->device;
1530 	struct nvkm_secboot *sb = device->secboot;
1531 	u32 secboot_mask = 0;
1532 	int ret;
1533 
1534 	/* load fuc microcode */
1535 	nvkm_mc_unk260(device, 0);
1536 
1537 	/* securely-managed falcons must be reset using secure boot */
1538 	if (nvkm_secboot_is_managed(sb, NVKM_SECBOOT_FALCON_FECS))
1539 		secboot_mask |= BIT(NVKM_SECBOOT_FALCON_FECS);
1540 	else
1541 		gf100_gr_init_fw(gr->fecs, &gr->fuc409c, &gr->fuc409d);
1542 
1543 	if (nvkm_secboot_is_managed(sb, NVKM_SECBOOT_FALCON_GPCCS))
1544 		secboot_mask |= BIT(NVKM_SECBOOT_FALCON_GPCCS);
1545 	else
1546 		gf100_gr_init_fw(gr->gpccs, &gr->fuc41ac, &gr->fuc41ad);
1547 
1548 	if (secboot_mask != 0) {
1549 		int ret = nvkm_secboot_reset(sb, secboot_mask);
1550 		if (ret)
1551 			return ret;
1552 	}
1553 
1554 	nvkm_mc_unk260(device, 1);
1555 
1556 	/* start both of them running */
1557 	nvkm_wr32(device, 0x409840, 0xffffffff);
1558 	nvkm_wr32(device, 0x41a10c, 0x00000000);
1559 	nvkm_wr32(device, 0x40910c, 0x00000000);
1560 
1561 	nvkm_falcon_start(gr->gpccs);
1562 	nvkm_falcon_start(gr->fecs);
1563 
1564 	if (nvkm_msec(device, 2000,
1565 		if (nvkm_rd32(device, 0x409800) & 0x00000001)
1566 			break;
1567 	) < 0)
1568 		return -EBUSY;
1569 
1570 	gf100_gr_fecs_set_watchdog_timeout(gr, 0x7fffffff);
1571 
1572 	/* Determine how much memory is required to store main context image. */
1573 	ret = gf100_gr_fecs_discover_image_size(gr, &gr->size);
1574 	if (ret)
1575 		return ret;
1576 
1577 	/* Determine how much memory is required to store ZCULL image. */
1578 	ret = gf100_gr_fecs_discover_zcull_image_size(gr, &gr->size_zcull);
1579 	if (ret)
1580 		return ret;
1581 
1582 	nvkm_wr32(device, 0x409840, 0xffffffff);
1583 	nvkm_wr32(device, 0x409500, 0x00000000);
1584 	nvkm_wr32(device, 0x409504, 0x00000025);
1585 	if (nvkm_msec(device, 2000,
1586 		if (nvkm_rd32(device, 0x409800))
1587 			break;
1588 	) < 0)
1589 		return -EBUSY;
1590 
1591 	if (device->chipset >= 0xe0) {
1592 		nvkm_wr32(device, 0x409800, 0x00000000);
1593 		nvkm_wr32(device, 0x409500, 0x00000001);
1594 		nvkm_wr32(device, 0x409504, 0x00000030);
1595 		if (nvkm_msec(device, 2000,
1596 			if (nvkm_rd32(device, 0x409800))
1597 				break;
1598 		) < 0)
1599 			return -EBUSY;
1600 
1601 		nvkm_wr32(device, 0x409810, 0xb00095c8);
1602 		nvkm_wr32(device, 0x409800, 0x00000000);
1603 		nvkm_wr32(device, 0x409500, 0x00000001);
1604 		nvkm_wr32(device, 0x409504, 0x00000031);
1605 		if (nvkm_msec(device, 2000,
1606 			if (nvkm_rd32(device, 0x409800))
1607 				break;
1608 		) < 0)
1609 			return -EBUSY;
1610 
1611 		nvkm_wr32(device, 0x409810, 0x00080420);
1612 		nvkm_wr32(device, 0x409800, 0x00000000);
1613 		nvkm_wr32(device, 0x409500, 0x00000001);
1614 		nvkm_wr32(device, 0x409504, 0x00000032);
1615 		if (nvkm_msec(device, 2000,
1616 			if (nvkm_rd32(device, 0x409800))
1617 				break;
1618 		) < 0)
1619 			return -EBUSY;
1620 
1621 		nvkm_wr32(device, 0x409614, 0x00000070);
1622 		nvkm_wr32(device, 0x409614, 0x00000770);
1623 		nvkm_wr32(device, 0x40802c, 0x00000001);
1624 	}
1625 
1626 	if (gr->data == NULL) {
1627 		int ret = gf100_grctx_generate(gr);
1628 		if (ret) {
1629 			nvkm_error(subdev, "failed to construct context\n");
1630 			return ret;
1631 		}
1632 	}
1633 
1634 	return 0;
1635 }
1636 
1637 static int
1638 gf100_gr_init_ctxctl_int(struct gf100_gr *gr)
1639 {
1640 	const struct gf100_grctx_func *grctx = gr->func->grctx;
1641 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1642 	struct nvkm_device *device = subdev->device;
1643 
1644 	if (!gr->func->fecs.ucode) {
1645 		return -ENOSYS;
1646 	}
1647 
1648 	/* load HUB microcode */
1649 	nvkm_mc_unk260(device, 0);
1650 	nvkm_falcon_load_dmem(gr->fecs, gr->func->fecs.ucode->data.data, 0x0,
1651 			      gr->func->fecs.ucode->data.size, 0);
1652 	nvkm_falcon_load_imem(gr->fecs, gr->func->fecs.ucode->code.data, 0x0,
1653 			      gr->func->fecs.ucode->code.size, 0, 0, false);
1654 
1655 	/* load GPC microcode */
1656 	nvkm_falcon_load_dmem(gr->gpccs, gr->func->gpccs.ucode->data.data, 0x0,
1657 			      gr->func->gpccs.ucode->data.size, 0);
1658 	nvkm_falcon_load_imem(gr->gpccs, gr->func->gpccs.ucode->code.data, 0x0,
1659 			      gr->func->gpccs.ucode->code.size, 0, 0, false);
1660 	nvkm_mc_unk260(device, 1);
1661 
1662 	/* load register lists */
1663 	gf100_gr_init_csdata(gr, grctx->hub, 0x409000, 0x000, 0x000000);
1664 	gf100_gr_init_csdata(gr, grctx->gpc_0, 0x41a000, 0x000, 0x418000);
1665 	gf100_gr_init_csdata(gr, grctx->gpc_1, 0x41a000, 0x000, 0x418000);
1666 	gf100_gr_init_csdata(gr, grctx->tpc, 0x41a000, 0x004, 0x419800);
1667 	gf100_gr_init_csdata(gr, grctx->ppc, 0x41a000, 0x008, 0x41be00);
1668 
1669 	/* start HUB ucode running, it'll init the GPCs */
1670 	nvkm_wr32(device, 0x40910c, 0x00000000);
1671 	nvkm_wr32(device, 0x409100, 0x00000002);
1672 	if (nvkm_msec(device, 2000,
1673 		if (nvkm_rd32(device, 0x409800) & 0x80000000)
1674 			break;
1675 	) < 0) {
1676 		gf100_gr_ctxctl_debug(gr);
1677 		return -EBUSY;
1678 	}
1679 
1680 	gr->size = nvkm_rd32(device, 0x409804);
1681 	if (gr->data == NULL) {
1682 		int ret = gf100_grctx_generate(gr);
1683 		if (ret) {
1684 			nvkm_error(subdev, "failed to construct context\n");
1685 			return ret;
1686 		}
1687 	}
1688 
1689 	return 0;
1690 }
1691 
1692 int
1693 gf100_gr_init_ctxctl(struct gf100_gr *gr)
1694 {
1695 	int ret;
1696 
1697 	if (gr->firmware)
1698 		ret = gf100_gr_init_ctxctl_ext(gr);
1699 	else
1700 		ret = gf100_gr_init_ctxctl_int(gr);
1701 
1702 	return ret;
1703 }
1704 
1705 void
1706 gf100_gr_oneinit_sm_id(struct gf100_gr *gr)
1707 {
1708 	int tpc, gpc;
1709 	for (tpc = 0; tpc < gr->tpc_max; tpc++) {
1710 		for (gpc = 0; gpc < gr->gpc_nr; gpc++) {
1711 			if (tpc < gr->tpc_nr[gpc]) {
1712 				gr->sm[gr->sm_nr].gpc = gpc;
1713 				gr->sm[gr->sm_nr].tpc = tpc;
1714 				gr->sm_nr++;
1715 			}
1716 		}
1717 	}
1718 }
1719 
1720 void
1721 gf100_gr_oneinit_tiles(struct gf100_gr *gr)
1722 {
1723 	static const u8 primes[] = {
1724 		3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61
1725 	};
1726 	int init_frac[GPC_MAX], init_err[GPC_MAX], run_err[GPC_MAX], i, j;
1727 	u32 mul_factor, comm_denom;
1728 	u8  gpc_map[GPC_MAX];
1729 	bool sorted;
1730 
1731 	switch (gr->tpc_total) {
1732 	case 15: gr->screen_tile_row_offset = 0x06; break;
1733 	case 14: gr->screen_tile_row_offset = 0x05; break;
1734 	case 13: gr->screen_tile_row_offset = 0x02; break;
1735 	case 11: gr->screen_tile_row_offset = 0x07; break;
1736 	case 10: gr->screen_tile_row_offset = 0x06; break;
1737 	case  7:
1738 	case  5: gr->screen_tile_row_offset = 0x01; break;
1739 	case  3: gr->screen_tile_row_offset = 0x02; break;
1740 	case  2:
1741 	case  1: gr->screen_tile_row_offset = 0x01; break;
1742 	default: gr->screen_tile_row_offset = 0x03;
1743 		for (i = 0; i < ARRAY_SIZE(primes); i++) {
1744 			if (gr->tpc_total % primes[i]) {
1745 				gr->screen_tile_row_offset = primes[i];
1746 				break;
1747 			}
1748 		}
1749 		break;
1750 	}
1751 
1752 	/* Sort GPCs by TPC count, highest-to-lowest. */
1753 	for (i = 0; i < gr->gpc_nr; i++)
1754 		gpc_map[i] = i;
1755 	sorted = false;
1756 
1757 	while (!sorted) {
1758 		for (sorted = true, i = 0; i < gr->gpc_nr - 1; i++) {
1759 			if (gr->tpc_nr[gpc_map[i + 1]] >
1760 			    gr->tpc_nr[gpc_map[i + 0]]) {
1761 				u8 swap = gpc_map[i];
1762 				gpc_map[i + 0] = gpc_map[i + 1];
1763 				gpc_map[i + 1] = swap;
1764 				sorted = false;
1765 			}
1766 		}
1767 	}
1768 
1769 	/* Determine tile->GPC mapping */
1770 	mul_factor = gr->gpc_nr * gr->tpc_max;
1771 	if (mul_factor & 1)
1772 		mul_factor = 2;
1773 	else
1774 		mul_factor = 1;
1775 
1776 	comm_denom = gr->gpc_nr * gr->tpc_max * mul_factor;
1777 
1778 	for (i = 0; i < gr->gpc_nr; i++) {
1779 		init_frac[i] = gr->tpc_nr[gpc_map[i]] * gr->gpc_nr * mul_factor;
1780 		 init_err[i] = i * gr->tpc_max * mul_factor - comm_denom/2;
1781 		  run_err[i] = init_frac[i] + init_err[i];
1782 	}
1783 
1784 	for (i = 0; i < gr->tpc_total;) {
1785 		for (j = 0; j < gr->gpc_nr; j++) {
1786 			if ((run_err[j] * 2) >= comm_denom) {
1787 				gr->tile[i++] = gpc_map[j];
1788 				run_err[j] += init_frac[j] - comm_denom;
1789 			} else {
1790 				run_err[j] += init_frac[j];
1791 			}
1792 		}
1793 	}
1794 }
1795 
1796 static int
1797 gf100_gr_oneinit(struct nvkm_gr *base)
1798 {
1799 	struct gf100_gr *gr = gf100_gr(base);
1800 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1801 	struct nvkm_device *device = subdev->device;
1802 	int i, j;
1803 	int ret;
1804 
1805 	ret = nvkm_falcon_v1_new(subdev, "FECS", 0x409000, &gr->fecs);
1806 	if (ret)
1807 		return ret;
1808 
1809 	ret = nvkm_falcon_v1_new(subdev, "GPCCS", 0x41a000, &gr->gpccs);
1810 	if (ret)
1811 		return ret;
1812 
1813 	nvkm_pmu_pgob(device->pmu, false);
1814 
1815 	gr->rop_nr = gr->func->rops(gr);
1816 	gr->gpc_nr = nvkm_rd32(device, 0x409604) & 0x0000001f;
1817 	for (i = 0; i < gr->gpc_nr; i++) {
1818 		gr->tpc_nr[i]  = nvkm_rd32(device, GPC_UNIT(i, 0x2608));
1819 		gr->tpc_max = max(gr->tpc_max, gr->tpc_nr[i]);
1820 		gr->tpc_total += gr->tpc_nr[i];
1821 		gr->ppc_nr[i]  = gr->func->ppc_nr;
1822 		for (j = 0; j < gr->ppc_nr[i]; j++) {
1823 			gr->ppc_tpc_mask[i][j] =
1824 				nvkm_rd32(device, GPC_UNIT(i, 0x0c30 + (j * 4)));
1825 			if (gr->ppc_tpc_mask[i][j] == 0)
1826 				continue;
1827 			gr->ppc_mask[i] |= (1 << j);
1828 			gr->ppc_tpc_nr[i][j] = hweight8(gr->ppc_tpc_mask[i][j]);
1829 			if (gr->ppc_tpc_min == 0 ||
1830 			    gr->ppc_tpc_min > gr->ppc_tpc_nr[i][j])
1831 				gr->ppc_tpc_min = gr->ppc_tpc_nr[i][j];
1832 			if (gr->ppc_tpc_max < gr->ppc_tpc_nr[i][j])
1833 				gr->ppc_tpc_max = gr->ppc_tpc_nr[i][j];
1834 		}
1835 	}
1836 
1837 	memset(gr->tile, 0xff, sizeof(gr->tile));
1838 	gr->func->oneinit_tiles(gr);
1839 	gr->func->oneinit_sm_id(gr);
1840 	return 0;
1841 }
1842 
1843 static int
1844 gf100_gr_init_(struct nvkm_gr *base)
1845 {
1846 	struct gf100_gr *gr = gf100_gr(base);
1847 	struct nvkm_subdev *subdev = &base->engine.subdev;
1848 	u32 ret;
1849 
1850 	nvkm_pmu_pgob(gr->base.engine.subdev.device->pmu, false);
1851 
1852 	ret = nvkm_falcon_get(gr->fecs, subdev);
1853 	if (ret)
1854 		return ret;
1855 
1856 	ret = nvkm_falcon_get(gr->gpccs, subdev);
1857 	if (ret)
1858 		return ret;
1859 
1860 	return gr->func->init(gr);
1861 }
1862 
1863 static int
1864 gf100_gr_fini_(struct nvkm_gr *base, bool suspend)
1865 {
1866 	struct gf100_gr *gr = gf100_gr(base);
1867 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1868 	nvkm_falcon_put(gr->gpccs, subdev);
1869 	nvkm_falcon_put(gr->fecs, subdev);
1870 	return 0;
1871 }
1872 
1873 void
1874 gf100_gr_dtor_fw(struct gf100_gr_fuc *fuc)
1875 {
1876 	kfree(fuc->data);
1877 	fuc->data = NULL;
1878 }
1879 
1880 static void
1881 gf100_gr_dtor_init(struct gf100_gr_pack *pack)
1882 {
1883 	vfree(pack);
1884 }
1885 
1886 void *
1887 gf100_gr_dtor(struct nvkm_gr *base)
1888 {
1889 	struct gf100_gr *gr = gf100_gr(base);
1890 
1891 	if (gr->func->dtor)
1892 		gr->func->dtor(gr);
1893 	kfree(gr->data);
1894 
1895 	nvkm_falcon_del(&gr->gpccs);
1896 	nvkm_falcon_del(&gr->fecs);
1897 
1898 	gf100_gr_dtor_fw(&gr->fuc409c);
1899 	gf100_gr_dtor_fw(&gr->fuc409d);
1900 	gf100_gr_dtor_fw(&gr->fuc41ac);
1901 	gf100_gr_dtor_fw(&gr->fuc41ad);
1902 
1903 	gf100_gr_dtor_init(gr->fuc_bundle);
1904 	gf100_gr_dtor_init(gr->fuc_method);
1905 	gf100_gr_dtor_init(gr->fuc_sw_ctx);
1906 	gf100_gr_dtor_init(gr->fuc_sw_nonctx);
1907 
1908 	return gr;
1909 }
1910 
1911 static const struct nvkm_gr_func
1912 gf100_gr_ = {
1913 	.dtor = gf100_gr_dtor,
1914 	.oneinit = gf100_gr_oneinit,
1915 	.init = gf100_gr_init_,
1916 	.fini = gf100_gr_fini_,
1917 	.intr = gf100_gr_intr,
1918 	.units = gf100_gr_units,
1919 	.chan_new = gf100_gr_chan_new,
1920 	.object_get = gf100_gr_object_get,
1921 	.chsw_load = gf100_gr_chsw_load,
1922 };
1923 
1924 int
1925 gf100_gr_ctor_fw_legacy(struct gf100_gr *gr, const char *fwname,
1926 			struct gf100_gr_fuc *fuc, int ret)
1927 {
1928 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1929 	struct nvkm_device *device = subdev->device;
1930 	const struct firmware *fw;
1931 	char f[32];
1932 
1933 	/* see if this firmware has a legacy path */
1934 	if (!strcmp(fwname, "fecs_inst"))
1935 		fwname = "fuc409c";
1936 	else if (!strcmp(fwname, "fecs_data"))
1937 		fwname = "fuc409d";
1938 	else if (!strcmp(fwname, "gpccs_inst"))
1939 		fwname = "fuc41ac";
1940 	else if (!strcmp(fwname, "gpccs_data"))
1941 		fwname = "fuc41ad";
1942 	else {
1943 		/* nope, let's just return the error we got */
1944 		nvkm_error(subdev, "failed to load %s\n", fwname);
1945 		return ret;
1946 	}
1947 
1948 	/* yes, try to load from the legacy path */
1949 	nvkm_debug(subdev, "%s: falling back to legacy path\n", fwname);
1950 
1951 	snprintf(f, sizeof(f), "nouveau/nv%02x_%s", device->chipset, fwname);
1952 	ret = request_firmware(&fw, f, device->dev);
1953 	if (ret) {
1954 		snprintf(f, sizeof(f), "nouveau/%s", fwname);
1955 		ret = request_firmware(&fw, f, device->dev);
1956 		if (ret) {
1957 			nvkm_error(subdev, "failed to load %s\n", fwname);
1958 			return ret;
1959 		}
1960 	}
1961 
1962 	fuc->size = fw->size;
1963 	fuc->data = kmemdup(fw->data, fuc->size, GFP_KERNEL);
1964 	release_firmware(fw);
1965 	return (fuc->data != NULL) ? 0 : -ENOMEM;
1966 }
1967 
1968 int
1969 gf100_gr_ctor_fw(struct gf100_gr *gr, const char *fwname,
1970 		 struct gf100_gr_fuc *fuc)
1971 {
1972 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1973 	struct nvkm_device *device = subdev->device;
1974 	const struct firmware *fw;
1975 	int ret;
1976 
1977 	ret = nvkm_firmware_get(device, fwname, &fw);
1978 	if (ret) {
1979 		ret = gf100_gr_ctor_fw_legacy(gr, fwname, fuc, ret);
1980 		if (ret)
1981 			return -ENODEV;
1982 		return 0;
1983 	}
1984 
1985 	fuc->size = fw->size;
1986 	fuc->data = kmemdup(fw->data, fuc->size, GFP_KERNEL);
1987 	nvkm_firmware_put(fw);
1988 	return (fuc->data != NULL) ? 0 : -ENOMEM;
1989 }
1990 
1991 int
1992 gf100_gr_ctor(const struct gf100_gr_func *func, struct nvkm_device *device,
1993 	      int index, struct gf100_gr *gr)
1994 {
1995 	gr->func = func;
1996 	gr->firmware = nvkm_boolopt(device->cfgopt, "NvGrUseFW",
1997 				    func->fecs.ucode == NULL);
1998 
1999 	return nvkm_gr_ctor(&gf100_gr_, device, index,
2000 			    gr->firmware || func->fecs.ucode != NULL,
2001 			    &gr->base);
2002 }
2003 
2004 int
2005 gf100_gr_new_(const struct gf100_gr_func *func, struct nvkm_device *device,
2006 	      int index, struct nvkm_gr **pgr)
2007 {
2008 	struct gf100_gr *gr;
2009 	int ret;
2010 
2011 	if (!(gr = kzalloc(sizeof(*gr), GFP_KERNEL)))
2012 		return -ENOMEM;
2013 	*pgr = &gr->base;
2014 
2015 	ret = gf100_gr_ctor(func, device, index, gr);
2016 	if (ret)
2017 		return ret;
2018 
2019 	if (gr->firmware) {
2020 		if (gf100_gr_ctor_fw(gr, "fecs_inst", &gr->fuc409c) ||
2021 		    gf100_gr_ctor_fw(gr, "fecs_data", &gr->fuc409d) ||
2022 		    gf100_gr_ctor_fw(gr, "gpccs_inst", &gr->fuc41ac) ||
2023 		    gf100_gr_ctor_fw(gr, "gpccs_data", &gr->fuc41ad))
2024 			return -ENODEV;
2025 	}
2026 
2027 	return 0;
2028 }
2029 
2030 void
2031 gf100_gr_init_400054(struct gf100_gr *gr)
2032 {
2033 	nvkm_wr32(gr->base.engine.subdev.device, 0x400054, 0x34ce3464);
2034 }
2035 
2036 void
2037 gf100_gr_init_shader_exceptions(struct gf100_gr *gr, int gpc, int tpc)
2038 {
2039 	struct nvkm_device *device = gr->base.engine.subdev.device;
2040 	nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x644), 0x001ffffe);
2041 	nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x64c), 0x0000000f);
2042 }
2043 
2044 void
2045 gf100_gr_init_tex_hww_esr(struct gf100_gr *gr, int gpc, int tpc)
2046 {
2047 	struct nvkm_device *device = gr->base.engine.subdev.device;
2048 	nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x224), 0xc0000000);
2049 }
2050 
2051 void
2052 gf100_gr_init_419eb4(struct gf100_gr *gr)
2053 {
2054 	struct nvkm_device *device = gr->base.engine.subdev.device;
2055 	nvkm_mask(device, 0x419eb4, 0x00001000, 0x00001000);
2056 }
2057 
2058 void
2059 gf100_gr_init_419cc0(struct gf100_gr *gr)
2060 {
2061 	struct nvkm_device *device = gr->base.engine.subdev.device;
2062 	int gpc, tpc;
2063 
2064 	nvkm_mask(device, 0x419cc0, 0x00000008, 0x00000008);
2065 
2066 	for (gpc = 0; gpc < gr->gpc_nr; gpc++) {
2067 		for (tpc = 0; tpc < gr->tpc_nr[gpc]; tpc++)
2068 			nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x48c), 0xc0000000);
2069 	}
2070 }
2071 
2072 void
2073 gf100_gr_init_40601c(struct gf100_gr *gr)
2074 {
2075 	nvkm_wr32(gr->base.engine.subdev.device, 0x40601c, 0xc0000000);
2076 }
2077 
2078 void
2079 gf100_gr_init_fecs_exceptions(struct gf100_gr *gr)
2080 {
2081 	const u32 data = gr->firmware ? 0x000e0000 : 0x000e0001;
2082 	nvkm_wr32(gr->base.engine.subdev.device, 0x409c24, data);
2083 }
2084 
2085 void
2086 gf100_gr_init_gpc_mmu(struct gf100_gr *gr)
2087 {
2088 	struct nvkm_device *device = gr->base.engine.subdev.device;
2089 	struct nvkm_fb *fb = device->fb;
2090 
2091 	nvkm_wr32(device, 0x418880, nvkm_rd32(device, 0x100c80) & 0x00000001);
2092 	nvkm_wr32(device, 0x4188a4, 0x03000000);
2093 	nvkm_wr32(device, 0x418888, 0x00000000);
2094 	nvkm_wr32(device, 0x41888c, 0x00000000);
2095 	nvkm_wr32(device, 0x418890, 0x00000000);
2096 	nvkm_wr32(device, 0x418894, 0x00000000);
2097 	nvkm_wr32(device, 0x4188b4, nvkm_memory_addr(fb->mmu_wr) >> 8);
2098 	nvkm_wr32(device, 0x4188b8, nvkm_memory_addr(fb->mmu_rd) >> 8);
2099 }
2100 
2101 void
2102 gf100_gr_init_num_active_ltcs(struct gf100_gr *gr)
2103 {
2104 	struct nvkm_device *device = gr->base.engine.subdev.device;
2105 	nvkm_wr32(device, GPC_BCAST(0x08ac), nvkm_rd32(device, 0x100800));
2106 }
2107 
2108 void
2109 gf100_gr_init_zcull(struct gf100_gr *gr)
2110 {
2111 	struct nvkm_device *device = gr->base.engine.subdev.device;
2112 	const u32 magicgpc918 = DIV_ROUND_UP(0x00800000, gr->tpc_total);
2113 	const u8 tile_nr = ALIGN(gr->tpc_total, 32);
2114 	u8 bank[GPC_MAX] = {}, gpc, i, j;
2115 	u32 data;
2116 
2117 	for (i = 0; i < tile_nr; i += 8) {
2118 		for (data = 0, j = 0; j < 8 && i + j < gr->tpc_total; j++) {
2119 			data |= bank[gr->tile[i + j]] << (j * 4);
2120 			bank[gr->tile[i + j]]++;
2121 		}
2122 		nvkm_wr32(device, GPC_BCAST(0x0980 + ((i / 8) * 4)), data);
2123 	}
2124 
2125 	for (gpc = 0; gpc < gr->gpc_nr; gpc++) {
2126 		nvkm_wr32(device, GPC_UNIT(gpc, 0x0914),
2127 			  gr->screen_tile_row_offset << 8 | gr->tpc_nr[gpc]);
2128 		nvkm_wr32(device, GPC_UNIT(gpc, 0x0910), 0x00040000 |
2129 							 gr->tpc_total);
2130 		nvkm_wr32(device, GPC_UNIT(gpc, 0x0918), magicgpc918);
2131 	}
2132 
2133 	nvkm_wr32(device, GPC_BCAST(0x1bd4), magicgpc918);
2134 }
2135 
2136 void
2137 gf100_gr_init_vsc_stream_master(struct gf100_gr *gr)
2138 {
2139 	struct nvkm_device *device = gr->base.engine.subdev.device;
2140 	nvkm_mask(device, TPC_UNIT(0, 0, 0x05c), 0x00000001, 0x00000001);
2141 }
2142 
2143 int
2144 gf100_gr_init(struct gf100_gr *gr)
2145 {
2146 	struct nvkm_device *device = gr->base.engine.subdev.device;
2147 	int gpc, tpc, rop;
2148 
2149 	if (gr->func->init_419bd8)
2150 		gr->func->init_419bd8(gr);
2151 
2152 	gr->func->init_gpc_mmu(gr);
2153 
2154 	if (gr->fuc_sw_nonctx)
2155 		gf100_gr_mmio(gr, gr->fuc_sw_nonctx);
2156 	else
2157 		gf100_gr_mmio(gr, gr->func->mmio);
2158 
2159 	gf100_gr_wait_idle(gr);
2160 
2161 	if (gr->func->init_r405a14)
2162 		gr->func->init_r405a14(gr);
2163 
2164 	if (gr->func->clkgate_pack)
2165 		nvkm_therm_clkgate_init(device->therm, gr->func->clkgate_pack);
2166 
2167 	if (gr->func->init_bios)
2168 		gr->func->init_bios(gr);
2169 
2170 	gr->func->init_vsc_stream_master(gr);
2171 	gr->func->init_zcull(gr);
2172 	gr->func->init_num_active_ltcs(gr);
2173 	if (gr->func->init_rop_active_fbps)
2174 		gr->func->init_rop_active_fbps(gr);
2175 	if (gr->func->init_bios_2)
2176 		gr->func->init_bios_2(gr);
2177 	if (gr->func->init_swdx_pes_mask)
2178 		gr->func->init_swdx_pes_mask(gr);
2179 
2180 	nvkm_wr32(device, 0x400500, 0x00010001);
2181 
2182 	nvkm_wr32(device, 0x400100, 0xffffffff);
2183 	nvkm_wr32(device, 0x40013c, 0xffffffff);
2184 	nvkm_wr32(device, 0x400124, 0x00000002);
2185 
2186 	gr->func->init_fecs_exceptions(gr);
2187 	if (gr->func->init_ds_hww_esr_2)
2188 		gr->func->init_ds_hww_esr_2(gr);
2189 
2190 	nvkm_wr32(device, 0x404000, 0xc0000000);
2191 	nvkm_wr32(device, 0x404600, 0xc0000000);
2192 	nvkm_wr32(device, 0x408030, 0xc0000000);
2193 
2194 	if (gr->func->init_40601c)
2195 		gr->func->init_40601c(gr);
2196 
2197 	nvkm_wr32(device, 0x404490, 0xc0000000);
2198 	nvkm_wr32(device, 0x406018, 0xc0000000);
2199 
2200 	if (gr->func->init_sked_hww_esr)
2201 		gr->func->init_sked_hww_esr(gr);
2202 
2203 	nvkm_wr32(device, 0x405840, 0xc0000000);
2204 	nvkm_wr32(device, 0x405844, 0x00ffffff);
2205 
2206 	if (gr->func->init_419cc0)
2207 		gr->func->init_419cc0(gr);
2208 	if (gr->func->init_419eb4)
2209 		gr->func->init_419eb4(gr);
2210 	if (gr->func->init_419c9c)
2211 		gr->func->init_419c9c(gr);
2212 
2213 	if (gr->func->init_ppc_exceptions)
2214 		gr->func->init_ppc_exceptions(gr);
2215 
2216 	for (gpc = 0; gpc < gr->gpc_nr; gpc++) {
2217 		nvkm_wr32(device, GPC_UNIT(gpc, 0x0420), 0xc0000000);
2218 		nvkm_wr32(device, GPC_UNIT(gpc, 0x0900), 0xc0000000);
2219 		nvkm_wr32(device, GPC_UNIT(gpc, 0x1028), 0xc0000000);
2220 		nvkm_wr32(device, GPC_UNIT(gpc, 0x0824), 0xc0000000);
2221 		for (tpc = 0; tpc < gr->tpc_nr[gpc]; tpc++) {
2222 			nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x508), 0xffffffff);
2223 			nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x50c), 0xffffffff);
2224 			if (gr->func->init_tex_hww_esr)
2225 				gr->func->init_tex_hww_esr(gr, gpc, tpc);
2226 			nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x084), 0xc0000000);
2227 			if (gr->func->init_504430)
2228 				gr->func->init_504430(gr, gpc, tpc);
2229 			gr->func->init_shader_exceptions(gr, gpc, tpc);
2230 		}
2231 		nvkm_wr32(device, GPC_UNIT(gpc, 0x2c90), 0xffffffff);
2232 		nvkm_wr32(device, GPC_UNIT(gpc, 0x2c94), 0xffffffff);
2233 	}
2234 
2235 	for (rop = 0; rop < gr->rop_nr; rop++) {
2236 		nvkm_wr32(device, ROP_UNIT(rop, 0x144), 0x40000000);
2237 		nvkm_wr32(device, ROP_UNIT(rop, 0x070), 0x40000000);
2238 		nvkm_wr32(device, ROP_UNIT(rop, 0x204), 0xffffffff);
2239 		nvkm_wr32(device, ROP_UNIT(rop, 0x208), 0xffffffff);
2240 	}
2241 
2242 	nvkm_wr32(device, 0x400108, 0xffffffff);
2243 	nvkm_wr32(device, 0x400138, 0xffffffff);
2244 	nvkm_wr32(device, 0x400118, 0xffffffff);
2245 	nvkm_wr32(device, 0x400130, 0xffffffff);
2246 	nvkm_wr32(device, 0x40011c, 0xffffffff);
2247 	nvkm_wr32(device, 0x400134, 0xffffffff);
2248 
2249 	if (gr->func->init_400054)
2250 		gr->func->init_400054(gr);
2251 
2252 	gf100_gr_zbc_init(gr);
2253 
2254 	if (gr->func->init_4188a4)
2255 		gr->func->init_4188a4(gr);
2256 
2257 	return gf100_gr_init_ctxctl(gr);
2258 }
2259 
2260 #include "fuc/hubgf100.fuc3.h"
2261 
2262 struct gf100_gr_ucode
2263 gf100_gr_fecs_ucode = {
2264 	.code.data = gf100_grhub_code,
2265 	.code.size = sizeof(gf100_grhub_code),
2266 	.data.data = gf100_grhub_data,
2267 	.data.size = sizeof(gf100_grhub_data),
2268 };
2269 
2270 #include "fuc/gpcgf100.fuc3.h"
2271 
2272 struct gf100_gr_ucode
2273 gf100_gr_gpccs_ucode = {
2274 	.code.data = gf100_grgpc_code,
2275 	.code.size = sizeof(gf100_grgpc_code),
2276 	.data.data = gf100_grgpc_data,
2277 	.data.size = sizeof(gf100_grgpc_data),
2278 };
2279 
2280 static const struct gf100_gr_func
2281 gf100_gr = {
2282 	.oneinit_tiles = gf100_gr_oneinit_tiles,
2283 	.oneinit_sm_id = gf100_gr_oneinit_sm_id,
2284 	.init = gf100_gr_init,
2285 	.init_gpc_mmu = gf100_gr_init_gpc_mmu,
2286 	.init_vsc_stream_master = gf100_gr_init_vsc_stream_master,
2287 	.init_zcull = gf100_gr_init_zcull,
2288 	.init_num_active_ltcs = gf100_gr_init_num_active_ltcs,
2289 	.init_fecs_exceptions = gf100_gr_init_fecs_exceptions,
2290 	.init_40601c = gf100_gr_init_40601c,
2291 	.init_419cc0 = gf100_gr_init_419cc0,
2292 	.init_419eb4 = gf100_gr_init_419eb4,
2293 	.init_tex_hww_esr = gf100_gr_init_tex_hww_esr,
2294 	.init_shader_exceptions = gf100_gr_init_shader_exceptions,
2295 	.init_400054 = gf100_gr_init_400054,
2296 	.trap_mp = gf100_gr_trap_mp,
2297 	.mmio = gf100_gr_pack_mmio,
2298 	.fecs.ucode = &gf100_gr_fecs_ucode,
2299 	.gpccs.ucode = &gf100_gr_gpccs_ucode,
2300 	.rops = gf100_gr_rops,
2301 	.grctx = &gf100_grctx,
2302 	.zbc = &gf100_gr_zbc,
2303 	.sclass = {
2304 		{ -1, -1, FERMI_TWOD_A },
2305 		{ -1, -1, FERMI_MEMORY_TO_MEMORY_FORMAT_A },
2306 		{ -1, -1, FERMI_A, &gf100_fermi },
2307 		{ -1, -1, FERMI_COMPUTE_A },
2308 		{}
2309 	}
2310 };
2311 
2312 int
2313 gf100_gr_new(struct nvkm_device *device, int index, struct nvkm_gr **pgr)
2314 {
2315 	return gf100_gr_new_(&gf100_gr, device, index, pgr);
2316 }
2317