1 /* 2 * Copyright 2012 Red Hat Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 * Authors: Ben Skeggs 23 */ 24 #include "gf100.h" 25 #include "ctxgf100.h" 26 #include "fuc/os.h" 27 28 #include <core/client.h> 29 #include <core/option.h> 30 #include <core/firmware.h> 31 #include <subdev/secboot.h> 32 #include <subdev/fb.h> 33 #include <subdev/mc.h> 34 #include <subdev/pmu.h> 35 #include <subdev/timer.h> 36 #include <engine/fifo.h> 37 38 #include <nvif/class.h> 39 #include <nvif/cl9097.h> 40 #include <nvif/unpack.h> 41 42 /******************************************************************************* 43 * Zero Bandwidth Clear 44 ******************************************************************************/ 45 46 static void 47 gf100_gr_zbc_clear_color(struct gf100_gr *gr, int zbc) 48 { 49 struct nvkm_device *device = gr->base.engine.subdev.device; 50 if (gr->zbc_color[zbc].format) { 51 nvkm_wr32(device, 0x405804, gr->zbc_color[zbc].ds[0]); 52 nvkm_wr32(device, 0x405808, gr->zbc_color[zbc].ds[1]); 53 nvkm_wr32(device, 0x40580c, gr->zbc_color[zbc].ds[2]); 54 nvkm_wr32(device, 0x405810, gr->zbc_color[zbc].ds[3]); 55 } 56 nvkm_wr32(device, 0x405814, gr->zbc_color[zbc].format); 57 nvkm_wr32(device, 0x405820, zbc); 58 nvkm_wr32(device, 0x405824, 0x00000004); /* TRIGGER | WRITE | COLOR */ 59 } 60 61 static int 62 gf100_gr_zbc_color_get(struct gf100_gr *gr, int format, 63 const u32 ds[4], const u32 l2[4]) 64 { 65 struct nvkm_ltc *ltc = gr->base.engine.subdev.device->ltc; 66 int zbc = -ENOSPC, i; 67 68 for (i = ltc->zbc_min; i <= ltc->zbc_max; i++) { 69 if (gr->zbc_color[i].format) { 70 if (gr->zbc_color[i].format != format) 71 continue; 72 if (memcmp(gr->zbc_color[i].ds, ds, sizeof( 73 gr->zbc_color[i].ds))) 74 continue; 75 if (memcmp(gr->zbc_color[i].l2, l2, sizeof( 76 gr->zbc_color[i].l2))) { 77 WARN_ON(1); 78 return -EINVAL; 79 } 80 return i; 81 } else { 82 zbc = (zbc < 0) ? i : zbc; 83 } 84 } 85 86 if (zbc < 0) 87 return zbc; 88 89 memcpy(gr->zbc_color[zbc].ds, ds, sizeof(gr->zbc_color[zbc].ds)); 90 memcpy(gr->zbc_color[zbc].l2, l2, sizeof(gr->zbc_color[zbc].l2)); 91 gr->zbc_color[zbc].format = format; 92 nvkm_ltc_zbc_color_get(ltc, zbc, l2); 93 gf100_gr_zbc_clear_color(gr, zbc); 94 return zbc; 95 } 96 97 static void 98 gf100_gr_zbc_clear_depth(struct gf100_gr *gr, int zbc) 99 { 100 struct nvkm_device *device = gr->base.engine.subdev.device; 101 if (gr->zbc_depth[zbc].format) 102 nvkm_wr32(device, 0x405818, gr->zbc_depth[zbc].ds); 103 nvkm_wr32(device, 0x40581c, gr->zbc_depth[zbc].format); 104 nvkm_wr32(device, 0x405820, zbc); 105 nvkm_wr32(device, 0x405824, 0x00000005); /* TRIGGER | WRITE | DEPTH */ 106 } 107 108 static int 109 gf100_gr_zbc_depth_get(struct gf100_gr *gr, int format, 110 const u32 ds, const u32 l2) 111 { 112 struct nvkm_ltc *ltc = gr->base.engine.subdev.device->ltc; 113 int zbc = -ENOSPC, i; 114 115 for (i = ltc->zbc_min; i <= ltc->zbc_max; i++) { 116 if (gr->zbc_depth[i].format) { 117 if (gr->zbc_depth[i].format != format) 118 continue; 119 if (gr->zbc_depth[i].ds != ds) 120 continue; 121 if (gr->zbc_depth[i].l2 != l2) { 122 WARN_ON(1); 123 return -EINVAL; 124 } 125 return i; 126 } else { 127 zbc = (zbc < 0) ? i : zbc; 128 } 129 } 130 131 if (zbc < 0) 132 return zbc; 133 134 gr->zbc_depth[zbc].format = format; 135 gr->zbc_depth[zbc].ds = ds; 136 gr->zbc_depth[zbc].l2 = l2; 137 nvkm_ltc_zbc_depth_get(ltc, zbc, l2); 138 gf100_gr_zbc_clear_depth(gr, zbc); 139 return zbc; 140 } 141 142 /******************************************************************************* 143 * Graphics object classes 144 ******************************************************************************/ 145 #define gf100_gr_object(p) container_of((p), struct gf100_gr_object, object) 146 147 struct gf100_gr_object { 148 struct nvkm_object object; 149 struct gf100_gr_chan *chan; 150 }; 151 152 static int 153 gf100_fermi_mthd_zbc_color(struct nvkm_object *object, void *data, u32 size) 154 { 155 struct gf100_gr *gr = gf100_gr(nvkm_gr(object->engine)); 156 union { 157 struct fermi_a_zbc_color_v0 v0; 158 } *args = data; 159 int ret = -ENOSYS; 160 161 if (!(ret = nvif_unpack(ret, &data, &size, args->v0, 0, 0, false))) { 162 switch (args->v0.format) { 163 case FERMI_A_ZBC_COLOR_V0_FMT_ZERO: 164 case FERMI_A_ZBC_COLOR_V0_FMT_UNORM_ONE: 165 case FERMI_A_ZBC_COLOR_V0_FMT_RF32_GF32_BF32_AF32: 166 case FERMI_A_ZBC_COLOR_V0_FMT_R16_G16_B16_A16: 167 case FERMI_A_ZBC_COLOR_V0_FMT_RN16_GN16_BN16_AN16: 168 case FERMI_A_ZBC_COLOR_V0_FMT_RS16_GS16_BS16_AS16: 169 case FERMI_A_ZBC_COLOR_V0_FMT_RU16_GU16_BU16_AU16: 170 case FERMI_A_ZBC_COLOR_V0_FMT_RF16_GF16_BF16_AF16: 171 case FERMI_A_ZBC_COLOR_V0_FMT_A8R8G8B8: 172 case FERMI_A_ZBC_COLOR_V0_FMT_A8RL8GL8BL8: 173 case FERMI_A_ZBC_COLOR_V0_FMT_A2B10G10R10: 174 case FERMI_A_ZBC_COLOR_V0_FMT_AU2BU10GU10RU10: 175 case FERMI_A_ZBC_COLOR_V0_FMT_A8B8G8R8: 176 case FERMI_A_ZBC_COLOR_V0_FMT_A8BL8GL8RL8: 177 case FERMI_A_ZBC_COLOR_V0_FMT_AN8BN8GN8RN8: 178 case FERMI_A_ZBC_COLOR_V0_FMT_AS8BS8GS8RS8: 179 case FERMI_A_ZBC_COLOR_V0_FMT_AU8BU8GU8RU8: 180 case FERMI_A_ZBC_COLOR_V0_FMT_A2R10G10B10: 181 case FERMI_A_ZBC_COLOR_V0_FMT_BF10GF11RF11: 182 ret = gf100_gr_zbc_color_get(gr, args->v0.format, 183 args->v0.ds, 184 args->v0.l2); 185 if (ret >= 0) { 186 args->v0.index = ret; 187 return 0; 188 } 189 break; 190 default: 191 return -EINVAL; 192 } 193 } 194 195 return ret; 196 } 197 198 static int 199 gf100_fermi_mthd_zbc_depth(struct nvkm_object *object, void *data, u32 size) 200 { 201 struct gf100_gr *gr = gf100_gr(nvkm_gr(object->engine)); 202 union { 203 struct fermi_a_zbc_depth_v0 v0; 204 } *args = data; 205 int ret = -ENOSYS; 206 207 if (!(ret = nvif_unpack(ret, &data, &size, args->v0, 0, 0, false))) { 208 switch (args->v0.format) { 209 case FERMI_A_ZBC_DEPTH_V0_FMT_FP32: 210 ret = gf100_gr_zbc_depth_get(gr, args->v0.format, 211 args->v0.ds, 212 args->v0.l2); 213 return (ret >= 0) ? 0 : -ENOSPC; 214 default: 215 return -EINVAL; 216 } 217 } 218 219 return ret; 220 } 221 222 static int 223 gf100_fermi_mthd(struct nvkm_object *object, u32 mthd, void *data, u32 size) 224 { 225 nvif_ioctl(object, "fermi mthd %08x\n", mthd); 226 switch (mthd) { 227 case FERMI_A_ZBC_COLOR: 228 return gf100_fermi_mthd_zbc_color(object, data, size); 229 case FERMI_A_ZBC_DEPTH: 230 return gf100_fermi_mthd_zbc_depth(object, data, size); 231 default: 232 break; 233 } 234 return -EINVAL; 235 } 236 237 const struct nvkm_object_func 238 gf100_fermi = { 239 .mthd = gf100_fermi_mthd, 240 }; 241 242 static void 243 gf100_gr_mthd_set_shader_exceptions(struct nvkm_device *device, u32 data) 244 { 245 nvkm_wr32(device, 0x419e44, data ? 0xffffffff : 0x00000000); 246 nvkm_wr32(device, 0x419e4c, data ? 0xffffffff : 0x00000000); 247 } 248 249 static bool 250 gf100_gr_mthd_sw(struct nvkm_device *device, u16 class, u32 mthd, u32 data) 251 { 252 switch (class & 0x00ff) { 253 case 0x97: 254 case 0xc0: 255 switch (mthd) { 256 case 0x1528: 257 gf100_gr_mthd_set_shader_exceptions(device, data); 258 return true; 259 default: 260 break; 261 } 262 break; 263 default: 264 break; 265 } 266 return false; 267 } 268 269 static const struct nvkm_object_func 270 gf100_gr_object_func = { 271 }; 272 273 static int 274 gf100_gr_object_new(const struct nvkm_oclass *oclass, void *data, u32 size, 275 struct nvkm_object **pobject) 276 { 277 struct gf100_gr_chan *chan = gf100_gr_chan(oclass->parent); 278 struct gf100_gr_object *object; 279 280 if (!(object = kzalloc(sizeof(*object), GFP_KERNEL))) 281 return -ENOMEM; 282 *pobject = &object->object; 283 284 nvkm_object_ctor(oclass->base.func ? oclass->base.func : 285 &gf100_gr_object_func, oclass, &object->object); 286 object->chan = chan; 287 return 0; 288 } 289 290 static int 291 gf100_gr_object_get(struct nvkm_gr *base, int index, struct nvkm_sclass *sclass) 292 { 293 struct gf100_gr *gr = gf100_gr(base); 294 int c = 0; 295 296 while (gr->func->sclass[c].oclass) { 297 if (c++ == index) { 298 *sclass = gr->func->sclass[index]; 299 sclass->ctor = gf100_gr_object_new; 300 return index; 301 } 302 } 303 304 return c; 305 } 306 307 /******************************************************************************* 308 * PGRAPH context 309 ******************************************************************************/ 310 311 static int 312 gf100_gr_chan_bind(struct nvkm_object *object, struct nvkm_gpuobj *parent, 313 int align, struct nvkm_gpuobj **pgpuobj) 314 { 315 struct gf100_gr_chan *chan = gf100_gr_chan(object); 316 struct gf100_gr *gr = chan->gr; 317 int ret, i; 318 319 ret = nvkm_gpuobj_new(gr->base.engine.subdev.device, gr->size, 320 align, false, parent, pgpuobj); 321 if (ret) 322 return ret; 323 324 nvkm_kmap(*pgpuobj); 325 for (i = 0; i < gr->size; i += 4) 326 nvkm_wo32(*pgpuobj, i, gr->data[i / 4]); 327 328 if (!gr->firmware) { 329 nvkm_wo32(*pgpuobj, 0x00, chan->mmio_nr / 2); 330 nvkm_wo32(*pgpuobj, 0x04, chan->mmio_vma.offset >> 8); 331 } else { 332 nvkm_wo32(*pgpuobj, 0xf4, 0); 333 nvkm_wo32(*pgpuobj, 0xf8, 0); 334 nvkm_wo32(*pgpuobj, 0x10, chan->mmio_nr / 2); 335 nvkm_wo32(*pgpuobj, 0x14, lower_32_bits(chan->mmio_vma.offset)); 336 nvkm_wo32(*pgpuobj, 0x18, upper_32_bits(chan->mmio_vma.offset)); 337 nvkm_wo32(*pgpuobj, 0x1c, 1); 338 nvkm_wo32(*pgpuobj, 0x20, 0); 339 nvkm_wo32(*pgpuobj, 0x28, 0); 340 nvkm_wo32(*pgpuobj, 0x2c, 0); 341 } 342 nvkm_done(*pgpuobj); 343 return 0; 344 } 345 346 static void * 347 gf100_gr_chan_dtor(struct nvkm_object *object) 348 { 349 struct gf100_gr_chan *chan = gf100_gr_chan(object); 350 int i; 351 352 for (i = 0; i < ARRAY_SIZE(chan->data); i++) { 353 if (chan->data[i].vma.node) { 354 nvkm_vm_unmap(&chan->data[i].vma); 355 nvkm_vm_put(&chan->data[i].vma); 356 } 357 nvkm_memory_del(&chan->data[i].mem); 358 } 359 360 if (chan->mmio_vma.node) { 361 nvkm_vm_unmap(&chan->mmio_vma); 362 nvkm_vm_put(&chan->mmio_vma); 363 } 364 nvkm_memory_del(&chan->mmio); 365 return chan; 366 } 367 368 static const struct nvkm_object_func 369 gf100_gr_chan = { 370 .dtor = gf100_gr_chan_dtor, 371 .bind = gf100_gr_chan_bind, 372 }; 373 374 static int 375 gf100_gr_chan_new(struct nvkm_gr *base, struct nvkm_fifo_chan *fifoch, 376 const struct nvkm_oclass *oclass, 377 struct nvkm_object **pobject) 378 { 379 struct gf100_gr *gr = gf100_gr(base); 380 struct gf100_gr_data *data = gr->mmio_data; 381 struct gf100_gr_mmio *mmio = gr->mmio_list; 382 struct gf100_gr_chan *chan; 383 struct nvkm_device *device = gr->base.engine.subdev.device; 384 int ret, i; 385 386 if (!(chan = kzalloc(sizeof(*chan), GFP_KERNEL))) 387 return -ENOMEM; 388 nvkm_object_ctor(&gf100_gr_chan, oclass, &chan->object); 389 chan->gr = gr; 390 *pobject = &chan->object; 391 392 /* allocate memory for a "mmio list" buffer that's used by the HUB 393 * fuc to modify some per-context register settings on first load 394 * of the context. 395 */ 396 ret = nvkm_memory_new(device, NVKM_MEM_TARGET_INST, 0x1000, 0x100, 397 false, &chan->mmio); 398 if (ret) 399 return ret; 400 401 ret = nvkm_vm_get(fifoch->vm, 0x1000, 12, NV_MEM_ACCESS_RW | 402 NV_MEM_ACCESS_SYS, &chan->mmio_vma); 403 if (ret) 404 return ret; 405 406 nvkm_memory_map(chan->mmio, &chan->mmio_vma, 0); 407 408 /* allocate buffers referenced by mmio list */ 409 for (i = 0; data->size && i < ARRAY_SIZE(gr->mmio_data); i++) { 410 ret = nvkm_memory_new(device, NVKM_MEM_TARGET_INST, 411 data->size, data->align, false, 412 &chan->data[i].mem); 413 if (ret) 414 return ret; 415 416 ret = nvkm_vm_get(fifoch->vm, 417 nvkm_memory_size(chan->data[i].mem), 12, 418 data->access, &chan->data[i].vma); 419 if (ret) 420 return ret; 421 422 nvkm_memory_map(chan->data[i].mem, &chan->data[i].vma, 0); 423 data++; 424 } 425 426 /* finally, fill in the mmio list and point the context at it */ 427 nvkm_kmap(chan->mmio); 428 for (i = 0; mmio->addr && i < ARRAY_SIZE(gr->mmio_list); i++) { 429 u32 addr = mmio->addr; 430 u32 data = mmio->data; 431 432 if (mmio->buffer >= 0) { 433 u64 info = chan->data[mmio->buffer].vma.offset; 434 data |= info >> mmio->shift; 435 } 436 437 nvkm_wo32(chan->mmio, chan->mmio_nr++ * 4, addr); 438 nvkm_wo32(chan->mmio, chan->mmio_nr++ * 4, data); 439 mmio++; 440 } 441 nvkm_done(chan->mmio); 442 return 0; 443 } 444 445 /******************************************************************************* 446 * PGRAPH register lists 447 ******************************************************************************/ 448 449 const struct gf100_gr_init 450 gf100_gr_init_main_0[] = { 451 { 0x400080, 1, 0x04, 0x003083c2 }, 452 { 0x400088, 1, 0x04, 0x00006fe7 }, 453 { 0x40008c, 1, 0x04, 0x00000000 }, 454 { 0x400090, 1, 0x04, 0x00000030 }, 455 { 0x40013c, 1, 0x04, 0x013901f7 }, 456 { 0x400140, 1, 0x04, 0x00000100 }, 457 { 0x400144, 1, 0x04, 0x00000000 }, 458 { 0x400148, 1, 0x04, 0x00000110 }, 459 { 0x400138, 1, 0x04, 0x00000000 }, 460 { 0x400130, 2, 0x04, 0x00000000 }, 461 { 0x400124, 1, 0x04, 0x00000002 }, 462 {} 463 }; 464 465 const struct gf100_gr_init 466 gf100_gr_init_fe_0[] = { 467 { 0x40415c, 1, 0x04, 0x00000000 }, 468 { 0x404170, 1, 0x04, 0x00000000 }, 469 {} 470 }; 471 472 const struct gf100_gr_init 473 gf100_gr_init_pri_0[] = { 474 { 0x404488, 2, 0x04, 0x00000000 }, 475 {} 476 }; 477 478 const struct gf100_gr_init 479 gf100_gr_init_rstr2d_0[] = { 480 { 0x407808, 1, 0x04, 0x00000000 }, 481 {} 482 }; 483 484 const struct gf100_gr_init 485 gf100_gr_init_pd_0[] = { 486 { 0x406024, 1, 0x04, 0x00000000 }, 487 {} 488 }; 489 490 const struct gf100_gr_init 491 gf100_gr_init_ds_0[] = { 492 { 0x405844, 1, 0x04, 0x00ffffff }, 493 { 0x405850, 1, 0x04, 0x00000000 }, 494 { 0x405908, 1, 0x04, 0x00000000 }, 495 {} 496 }; 497 498 const struct gf100_gr_init 499 gf100_gr_init_scc_0[] = { 500 { 0x40803c, 1, 0x04, 0x00000000 }, 501 {} 502 }; 503 504 const struct gf100_gr_init 505 gf100_gr_init_prop_0[] = { 506 { 0x4184a0, 1, 0x04, 0x00000000 }, 507 {} 508 }; 509 510 const struct gf100_gr_init 511 gf100_gr_init_gpc_unk_0[] = { 512 { 0x418604, 1, 0x04, 0x00000000 }, 513 { 0x418680, 1, 0x04, 0x00000000 }, 514 { 0x418714, 1, 0x04, 0x80000000 }, 515 { 0x418384, 1, 0x04, 0x00000000 }, 516 {} 517 }; 518 519 const struct gf100_gr_init 520 gf100_gr_init_setup_0[] = { 521 { 0x418814, 3, 0x04, 0x00000000 }, 522 {} 523 }; 524 525 const struct gf100_gr_init 526 gf100_gr_init_crstr_0[] = { 527 { 0x418b04, 1, 0x04, 0x00000000 }, 528 {} 529 }; 530 531 const struct gf100_gr_init 532 gf100_gr_init_setup_1[] = { 533 { 0x4188c8, 1, 0x04, 0x80000000 }, 534 { 0x4188cc, 1, 0x04, 0x00000000 }, 535 { 0x4188d0, 1, 0x04, 0x00010000 }, 536 { 0x4188d4, 1, 0x04, 0x00000001 }, 537 {} 538 }; 539 540 const struct gf100_gr_init 541 gf100_gr_init_zcull_0[] = { 542 { 0x418910, 1, 0x04, 0x00010001 }, 543 { 0x418914, 1, 0x04, 0x00000301 }, 544 { 0x418918, 1, 0x04, 0x00800000 }, 545 { 0x418980, 1, 0x04, 0x77777770 }, 546 { 0x418984, 3, 0x04, 0x77777777 }, 547 {} 548 }; 549 550 const struct gf100_gr_init 551 gf100_gr_init_gpm_0[] = { 552 { 0x418c04, 1, 0x04, 0x00000000 }, 553 { 0x418c88, 1, 0x04, 0x00000000 }, 554 {} 555 }; 556 557 const struct gf100_gr_init 558 gf100_gr_init_gpc_unk_1[] = { 559 { 0x418d00, 1, 0x04, 0x00000000 }, 560 { 0x418f08, 1, 0x04, 0x00000000 }, 561 { 0x418e00, 1, 0x04, 0x00000050 }, 562 { 0x418e08, 1, 0x04, 0x00000000 }, 563 {} 564 }; 565 566 const struct gf100_gr_init 567 gf100_gr_init_gcc_0[] = { 568 { 0x41900c, 1, 0x04, 0x00000000 }, 569 { 0x419018, 1, 0x04, 0x00000000 }, 570 {} 571 }; 572 573 const struct gf100_gr_init 574 gf100_gr_init_tpccs_0[] = { 575 { 0x419d08, 2, 0x04, 0x00000000 }, 576 { 0x419d10, 1, 0x04, 0x00000014 }, 577 {} 578 }; 579 580 const struct gf100_gr_init 581 gf100_gr_init_tex_0[] = { 582 { 0x419ab0, 1, 0x04, 0x00000000 }, 583 { 0x419ab8, 1, 0x04, 0x000000e7 }, 584 { 0x419abc, 2, 0x04, 0x00000000 }, 585 {} 586 }; 587 588 const struct gf100_gr_init 589 gf100_gr_init_pe_0[] = { 590 { 0x41980c, 3, 0x04, 0x00000000 }, 591 { 0x419844, 1, 0x04, 0x00000000 }, 592 { 0x41984c, 1, 0x04, 0x00005bc5 }, 593 { 0x419850, 4, 0x04, 0x00000000 }, 594 {} 595 }; 596 597 const struct gf100_gr_init 598 gf100_gr_init_l1c_0[] = { 599 { 0x419c98, 1, 0x04, 0x00000000 }, 600 { 0x419ca8, 1, 0x04, 0x80000000 }, 601 { 0x419cb4, 1, 0x04, 0x00000000 }, 602 { 0x419cb8, 1, 0x04, 0x00008bf4 }, 603 { 0x419cbc, 1, 0x04, 0x28137606 }, 604 { 0x419cc0, 2, 0x04, 0x00000000 }, 605 {} 606 }; 607 608 const struct gf100_gr_init 609 gf100_gr_init_wwdx_0[] = { 610 { 0x419bd4, 1, 0x04, 0x00800000 }, 611 { 0x419bdc, 1, 0x04, 0x00000000 }, 612 {} 613 }; 614 615 const struct gf100_gr_init 616 gf100_gr_init_tpccs_1[] = { 617 { 0x419d2c, 1, 0x04, 0x00000000 }, 618 {} 619 }; 620 621 const struct gf100_gr_init 622 gf100_gr_init_mpc_0[] = { 623 { 0x419c0c, 1, 0x04, 0x00000000 }, 624 {} 625 }; 626 627 static const struct gf100_gr_init 628 gf100_gr_init_sm_0[] = { 629 { 0x419e00, 1, 0x04, 0x00000000 }, 630 { 0x419ea0, 1, 0x04, 0x00000000 }, 631 { 0x419ea4, 1, 0x04, 0x00000100 }, 632 { 0x419ea8, 1, 0x04, 0x00001100 }, 633 { 0x419eac, 1, 0x04, 0x11100702 }, 634 { 0x419eb0, 1, 0x04, 0x00000003 }, 635 { 0x419eb4, 4, 0x04, 0x00000000 }, 636 { 0x419ec8, 1, 0x04, 0x06060618 }, 637 { 0x419ed0, 1, 0x04, 0x0eff0e38 }, 638 { 0x419ed4, 1, 0x04, 0x011104f1 }, 639 { 0x419edc, 1, 0x04, 0x00000000 }, 640 { 0x419f00, 1, 0x04, 0x00000000 }, 641 { 0x419f2c, 1, 0x04, 0x00000000 }, 642 {} 643 }; 644 645 const struct gf100_gr_init 646 gf100_gr_init_be_0[] = { 647 { 0x40880c, 1, 0x04, 0x00000000 }, 648 { 0x408910, 9, 0x04, 0x00000000 }, 649 { 0x408950, 1, 0x04, 0x00000000 }, 650 { 0x408954, 1, 0x04, 0x0000ffff }, 651 { 0x408984, 1, 0x04, 0x00000000 }, 652 { 0x408988, 1, 0x04, 0x08040201 }, 653 { 0x40898c, 1, 0x04, 0x80402010 }, 654 {} 655 }; 656 657 const struct gf100_gr_init 658 gf100_gr_init_fe_1[] = { 659 { 0x4040f0, 1, 0x04, 0x00000000 }, 660 {} 661 }; 662 663 const struct gf100_gr_init 664 gf100_gr_init_pe_1[] = { 665 { 0x419880, 1, 0x04, 0x00000002 }, 666 {} 667 }; 668 669 static const struct gf100_gr_pack 670 gf100_gr_pack_mmio[] = { 671 { gf100_gr_init_main_0 }, 672 { gf100_gr_init_fe_0 }, 673 { gf100_gr_init_pri_0 }, 674 { gf100_gr_init_rstr2d_0 }, 675 { gf100_gr_init_pd_0 }, 676 { gf100_gr_init_ds_0 }, 677 { gf100_gr_init_scc_0 }, 678 { gf100_gr_init_prop_0 }, 679 { gf100_gr_init_gpc_unk_0 }, 680 { gf100_gr_init_setup_0 }, 681 { gf100_gr_init_crstr_0 }, 682 { gf100_gr_init_setup_1 }, 683 { gf100_gr_init_zcull_0 }, 684 { gf100_gr_init_gpm_0 }, 685 { gf100_gr_init_gpc_unk_1 }, 686 { gf100_gr_init_gcc_0 }, 687 { gf100_gr_init_tpccs_0 }, 688 { gf100_gr_init_tex_0 }, 689 { gf100_gr_init_pe_0 }, 690 { gf100_gr_init_l1c_0 }, 691 { gf100_gr_init_wwdx_0 }, 692 { gf100_gr_init_tpccs_1 }, 693 { gf100_gr_init_mpc_0 }, 694 { gf100_gr_init_sm_0 }, 695 { gf100_gr_init_be_0 }, 696 { gf100_gr_init_fe_1 }, 697 { gf100_gr_init_pe_1 }, 698 {} 699 }; 700 701 /******************************************************************************* 702 * PGRAPH engine/subdev functions 703 ******************************************************************************/ 704 705 static bool 706 gf100_gr_chsw_load(struct nvkm_gr *base) 707 { 708 struct gf100_gr *gr = gf100_gr(base); 709 if (!gr->firmware) { 710 u32 trace = nvkm_rd32(gr->base.engine.subdev.device, 0x40981c); 711 if (trace & 0x00000040) 712 return true; 713 } else { 714 u32 mthd = nvkm_rd32(gr->base.engine.subdev.device, 0x409808); 715 if (mthd & 0x00080000) 716 return true; 717 } 718 return false; 719 } 720 721 int 722 gf100_gr_rops(struct gf100_gr *gr) 723 { 724 struct nvkm_device *device = gr->base.engine.subdev.device; 725 return (nvkm_rd32(device, 0x409604) & 0x001f0000) >> 16; 726 } 727 728 void 729 gf100_gr_zbc_init(struct gf100_gr *gr) 730 { 731 const u32 zero[] = { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 732 0x00000000, 0x00000000, 0x00000000, 0x00000000 }; 733 const u32 one[] = { 0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000, 734 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff }; 735 const u32 f32_0[] = { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 736 0x00000000, 0x00000000, 0x00000000, 0x00000000 }; 737 const u32 f32_1[] = { 0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000, 738 0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000 }; 739 struct nvkm_ltc *ltc = gr->base.engine.subdev.device->ltc; 740 int index; 741 742 if (!gr->zbc_color[0].format) { 743 gf100_gr_zbc_color_get(gr, 1, & zero[0], &zero[4]); 744 gf100_gr_zbc_color_get(gr, 2, & one[0], &one[4]); 745 gf100_gr_zbc_color_get(gr, 4, &f32_0[0], &f32_0[4]); 746 gf100_gr_zbc_color_get(gr, 4, &f32_1[0], &f32_1[4]); 747 gf100_gr_zbc_depth_get(gr, 1, 0x00000000, 0x00000000); 748 gf100_gr_zbc_depth_get(gr, 1, 0x3f800000, 0x3f800000); 749 } 750 751 for (index = ltc->zbc_min; index <= ltc->zbc_max; index++) 752 gf100_gr_zbc_clear_color(gr, index); 753 for (index = ltc->zbc_min; index <= ltc->zbc_max; index++) 754 gf100_gr_zbc_clear_depth(gr, index); 755 } 756 757 /** 758 * Wait until GR goes idle. GR is considered idle if it is disabled by the 759 * MC (0x200) register, or GR is not busy and a context switch is not in 760 * progress. 761 */ 762 int 763 gf100_gr_wait_idle(struct gf100_gr *gr) 764 { 765 struct nvkm_subdev *subdev = &gr->base.engine.subdev; 766 struct nvkm_device *device = subdev->device; 767 unsigned long end_jiffies = jiffies + msecs_to_jiffies(2000); 768 bool gr_enabled, ctxsw_active, gr_busy; 769 770 do { 771 /* 772 * required to make sure FIFO_ENGINE_STATUS (0x2640) is 773 * up-to-date 774 */ 775 nvkm_rd32(device, 0x400700); 776 777 gr_enabled = nvkm_rd32(device, 0x200) & 0x1000; 778 ctxsw_active = nvkm_rd32(device, 0x2640) & 0x8000; 779 gr_busy = nvkm_rd32(device, 0x40060c) & 0x1; 780 781 if (!gr_enabled || (!gr_busy && !ctxsw_active)) 782 return 0; 783 } while (time_before(jiffies, end_jiffies)); 784 785 nvkm_error(subdev, 786 "wait for idle timeout (en: %d, ctxsw: %d, busy: %d)\n", 787 gr_enabled, ctxsw_active, gr_busy); 788 return -EAGAIN; 789 } 790 791 void 792 gf100_gr_mmio(struct gf100_gr *gr, const struct gf100_gr_pack *p) 793 { 794 struct nvkm_device *device = gr->base.engine.subdev.device; 795 const struct gf100_gr_pack *pack; 796 const struct gf100_gr_init *init; 797 798 pack_for_each_init(init, pack, p) { 799 u32 next = init->addr + init->count * init->pitch; 800 u32 addr = init->addr; 801 while (addr < next) { 802 nvkm_wr32(device, addr, init->data); 803 addr += init->pitch; 804 } 805 } 806 } 807 808 void 809 gf100_gr_icmd(struct gf100_gr *gr, const struct gf100_gr_pack *p) 810 { 811 struct nvkm_device *device = gr->base.engine.subdev.device; 812 const struct gf100_gr_pack *pack; 813 const struct gf100_gr_init *init; 814 u32 data = 0; 815 816 nvkm_wr32(device, 0x400208, 0x80000000); 817 818 pack_for_each_init(init, pack, p) { 819 u32 next = init->addr + init->count * init->pitch; 820 u32 addr = init->addr; 821 822 if ((pack == p && init == p->init) || data != init->data) { 823 nvkm_wr32(device, 0x400204, init->data); 824 data = init->data; 825 } 826 827 while (addr < next) { 828 nvkm_wr32(device, 0x400200, addr); 829 /** 830 * Wait for GR to go idle after submitting a 831 * GO_IDLE bundle 832 */ 833 if ((addr & 0xffff) == 0xe100) 834 gf100_gr_wait_idle(gr); 835 nvkm_msec(device, 2000, 836 if (!(nvkm_rd32(device, 0x400700) & 0x00000004)) 837 break; 838 ); 839 addr += init->pitch; 840 } 841 } 842 843 nvkm_wr32(device, 0x400208, 0x00000000); 844 } 845 846 void 847 gf100_gr_mthd(struct gf100_gr *gr, const struct gf100_gr_pack *p) 848 { 849 struct nvkm_device *device = gr->base.engine.subdev.device; 850 const struct gf100_gr_pack *pack; 851 const struct gf100_gr_init *init; 852 u32 data = 0; 853 854 pack_for_each_init(init, pack, p) { 855 u32 ctrl = 0x80000000 | pack->type; 856 u32 next = init->addr + init->count * init->pitch; 857 u32 addr = init->addr; 858 859 if ((pack == p && init == p->init) || data != init->data) { 860 nvkm_wr32(device, 0x40448c, init->data); 861 data = init->data; 862 } 863 864 while (addr < next) { 865 nvkm_wr32(device, 0x404488, ctrl | (addr << 14)); 866 addr += init->pitch; 867 } 868 } 869 } 870 871 u64 872 gf100_gr_units(struct nvkm_gr *base) 873 { 874 struct gf100_gr *gr = gf100_gr(base); 875 u64 cfg; 876 877 cfg = (u32)gr->gpc_nr; 878 cfg |= (u32)gr->tpc_total << 8; 879 cfg |= (u64)gr->rop_nr << 32; 880 881 return cfg; 882 } 883 884 static const struct nvkm_bitfield gf100_dispatch_error[] = { 885 { 0x00000001, "INJECTED_BUNDLE_ERROR" }, 886 { 0x00000002, "CLASS_SUBCH_MISMATCH" }, 887 { 0x00000004, "SUBCHSW_DURING_NOTIFY" }, 888 {} 889 }; 890 891 static const struct nvkm_bitfield gf100_m2mf_error[] = { 892 { 0x00000001, "PUSH_TOO_MUCH_DATA" }, 893 { 0x00000002, "PUSH_NOT_ENOUGH_DATA" }, 894 {} 895 }; 896 897 static const struct nvkm_bitfield gf100_unk6_error[] = { 898 { 0x00000001, "TEMP_TOO_SMALL" }, 899 {} 900 }; 901 902 static const struct nvkm_bitfield gf100_ccache_error[] = { 903 { 0x00000001, "INTR" }, 904 { 0x00000002, "LDCONST_OOB" }, 905 {} 906 }; 907 908 static const struct nvkm_bitfield gf100_macro_error[] = { 909 { 0x00000001, "TOO_FEW_PARAMS" }, 910 { 0x00000002, "TOO_MANY_PARAMS" }, 911 { 0x00000004, "ILLEGAL_OPCODE" }, 912 { 0x00000008, "DOUBLE_BRANCH" }, 913 { 0x00000010, "WATCHDOG" }, 914 {} 915 }; 916 917 static const struct nvkm_bitfield gk104_sked_error[] = { 918 { 0x00000040, "CTA_RESUME" }, 919 { 0x00000080, "CONSTANT_BUFFER_SIZE" }, 920 { 0x00000200, "LOCAL_MEMORY_SIZE_POS" }, 921 { 0x00000400, "LOCAL_MEMORY_SIZE_NEG" }, 922 { 0x00000800, "WARP_CSTACK_SIZE" }, 923 { 0x00001000, "TOTAL_TEMP_SIZE" }, 924 { 0x00002000, "REGISTER_COUNT" }, 925 { 0x00040000, "TOTAL_THREADS" }, 926 { 0x00100000, "PROGRAM_OFFSET" }, 927 { 0x00200000, "SHARED_MEMORY_SIZE" }, 928 { 0x00800000, "CTA_THREAD_DIMENSION_ZERO" }, 929 { 0x01000000, "MEMORY_WINDOW_OVERLAP" }, 930 { 0x02000000, "SHARED_CONFIG_TOO_SMALL" }, 931 { 0x04000000, "TOTAL_REGISTER_COUNT" }, 932 {} 933 }; 934 935 static const struct nvkm_bitfield gf100_gpc_rop_error[] = { 936 { 0x00000002, "RT_PITCH_OVERRUN" }, 937 { 0x00000010, "RT_WIDTH_OVERRUN" }, 938 { 0x00000020, "RT_HEIGHT_OVERRUN" }, 939 { 0x00000080, "ZETA_STORAGE_TYPE_MISMATCH" }, 940 { 0x00000100, "RT_STORAGE_TYPE_MISMATCH" }, 941 { 0x00000400, "RT_LINEAR_MISMATCH" }, 942 {} 943 }; 944 945 static void 946 gf100_gr_trap_gpc_rop(struct gf100_gr *gr, int gpc) 947 { 948 struct nvkm_subdev *subdev = &gr->base.engine.subdev; 949 struct nvkm_device *device = subdev->device; 950 char error[128]; 951 u32 trap[4]; 952 953 trap[0] = nvkm_rd32(device, GPC_UNIT(gpc, 0x0420)) & 0x3fffffff; 954 trap[1] = nvkm_rd32(device, GPC_UNIT(gpc, 0x0434)); 955 trap[2] = nvkm_rd32(device, GPC_UNIT(gpc, 0x0438)); 956 trap[3] = nvkm_rd32(device, GPC_UNIT(gpc, 0x043c)); 957 958 nvkm_snprintbf(error, sizeof(error), gf100_gpc_rop_error, trap[0]); 959 960 nvkm_error(subdev, "GPC%d/PROP trap: %08x [%s] x = %u, y = %u, " 961 "format = %x, storage type = %x\n", 962 gpc, trap[0], error, trap[1] & 0xffff, trap[1] >> 16, 963 (trap[2] >> 8) & 0x3f, trap[3] & 0xff); 964 nvkm_wr32(device, GPC_UNIT(gpc, 0x0420), 0xc0000000); 965 } 966 967 static const struct nvkm_enum gf100_mp_warp_error[] = { 968 { 0x01, "STACK_ERROR" }, 969 { 0x02, "API_STACK_ERROR" }, 970 { 0x03, "RET_EMPTY_STACK_ERROR" }, 971 { 0x04, "PC_WRAP" }, 972 { 0x05, "MISALIGNED_PC" }, 973 { 0x06, "PC_OVERFLOW" }, 974 { 0x07, "MISALIGNED_IMMC_ADDR" }, 975 { 0x08, "MISALIGNED_REG" }, 976 { 0x09, "ILLEGAL_INSTR_ENCODING" }, 977 { 0x0a, "ILLEGAL_SPH_INSTR_COMBO" }, 978 { 0x0b, "ILLEGAL_INSTR_PARAM" }, 979 { 0x0c, "INVALID_CONST_ADDR" }, 980 { 0x0d, "OOR_REG" }, 981 { 0x0e, "OOR_ADDR" }, 982 { 0x0f, "MISALIGNED_ADDR" }, 983 { 0x10, "INVALID_ADDR_SPACE" }, 984 { 0x11, "ILLEGAL_INSTR_PARAM2" }, 985 { 0x12, "INVALID_CONST_ADDR_LDC" }, 986 { 0x13, "GEOMETRY_SM_ERROR" }, 987 { 0x14, "DIVERGENT" }, 988 { 0x15, "WARP_EXIT" }, 989 {} 990 }; 991 992 static const struct nvkm_bitfield gf100_mp_global_error[] = { 993 { 0x00000001, "SM_TO_SM_FAULT" }, 994 { 0x00000002, "L1_ERROR" }, 995 { 0x00000004, "MULTIPLE_WARP_ERRORS" }, 996 { 0x00000008, "PHYSICAL_STACK_OVERFLOW" }, 997 { 0x00000010, "BPT_INT" }, 998 { 0x00000020, "BPT_PAUSE" }, 999 { 0x00000040, "SINGLE_STEP_COMPLETE" }, 1000 { 0x20000000, "ECC_SEC_ERROR" }, 1001 { 0x40000000, "ECC_DED_ERROR" }, 1002 { 0x80000000, "TIMEOUT" }, 1003 {} 1004 }; 1005 1006 static void 1007 gf100_gr_trap_mp(struct gf100_gr *gr, int gpc, int tpc) 1008 { 1009 struct nvkm_subdev *subdev = &gr->base.engine.subdev; 1010 struct nvkm_device *device = subdev->device; 1011 u32 werr = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x648)); 1012 u32 gerr = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x650)); 1013 const struct nvkm_enum *warp; 1014 char glob[128]; 1015 1016 nvkm_snprintbf(glob, sizeof(glob), gf100_mp_global_error, gerr); 1017 warp = nvkm_enum_find(gf100_mp_warp_error, werr & 0xffff); 1018 1019 nvkm_error(subdev, "GPC%i/TPC%i/MP trap: " 1020 "global %08x [%s] warp %04x [%s]\n", 1021 gpc, tpc, gerr, glob, werr, warp ? warp->name : ""); 1022 1023 nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x648), 0x00000000); 1024 nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x650), gerr); 1025 } 1026 1027 static void 1028 gf100_gr_trap_tpc(struct gf100_gr *gr, int gpc, int tpc) 1029 { 1030 struct nvkm_subdev *subdev = &gr->base.engine.subdev; 1031 struct nvkm_device *device = subdev->device; 1032 u32 stat = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x0508)); 1033 1034 if (stat & 0x00000001) { 1035 u32 trap = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x0224)); 1036 nvkm_error(subdev, "GPC%d/TPC%d/TEX: %08x\n", gpc, tpc, trap); 1037 nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x0224), 0xc0000000); 1038 stat &= ~0x00000001; 1039 } 1040 1041 if (stat & 0x00000002) { 1042 gf100_gr_trap_mp(gr, gpc, tpc); 1043 stat &= ~0x00000002; 1044 } 1045 1046 if (stat & 0x00000004) { 1047 u32 trap = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x0084)); 1048 nvkm_error(subdev, "GPC%d/TPC%d/POLY: %08x\n", gpc, tpc, trap); 1049 nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x0084), 0xc0000000); 1050 stat &= ~0x00000004; 1051 } 1052 1053 if (stat & 0x00000008) { 1054 u32 trap = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x048c)); 1055 nvkm_error(subdev, "GPC%d/TPC%d/L1C: %08x\n", gpc, tpc, trap); 1056 nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x048c), 0xc0000000); 1057 stat &= ~0x00000008; 1058 } 1059 1060 if (stat & 0x00000010) { 1061 u32 trap = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x0430)); 1062 nvkm_error(subdev, "GPC%d/TPC%d/MPC: %08x\n", gpc, tpc, trap); 1063 nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x0430), 0xc0000000); 1064 stat &= ~0x00000010; 1065 } 1066 1067 if (stat) { 1068 nvkm_error(subdev, "GPC%d/TPC%d/%08x: unknown\n", gpc, tpc, stat); 1069 } 1070 } 1071 1072 static void 1073 gf100_gr_trap_gpc(struct gf100_gr *gr, int gpc) 1074 { 1075 struct nvkm_subdev *subdev = &gr->base.engine.subdev; 1076 struct nvkm_device *device = subdev->device; 1077 u32 stat = nvkm_rd32(device, GPC_UNIT(gpc, 0x2c90)); 1078 int tpc; 1079 1080 if (stat & 0x00000001) { 1081 gf100_gr_trap_gpc_rop(gr, gpc); 1082 stat &= ~0x00000001; 1083 } 1084 1085 if (stat & 0x00000002) { 1086 u32 trap = nvkm_rd32(device, GPC_UNIT(gpc, 0x0900)); 1087 nvkm_error(subdev, "GPC%d/ZCULL: %08x\n", gpc, trap); 1088 nvkm_wr32(device, GPC_UNIT(gpc, 0x0900), 0xc0000000); 1089 stat &= ~0x00000002; 1090 } 1091 1092 if (stat & 0x00000004) { 1093 u32 trap = nvkm_rd32(device, GPC_UNIT(gpc, 0x1028)); 1094 nvkm_error(subdev, "GPC%d/CCACHE: %08x\n", gpc, trap); 1095 nvkm_wr32(device, GPC_UNIT(gpc, 0x1028), 0xc0000000); 1096 stat &= ~0x00000004; 1097 } 1098 1099 if (stat & 0x00000008) { 1100 u32 trap = nvkm_rd32(device, GPC_UNIT(gpc, 0x0824)); 1101 nvkm_error(subdev, "GPC%d/ESETUP: %08x\n", gpc, trap); 1102 nvkm_wr32(device, GPC_UNIT(gpc, 0x0824), 0xc0000000); 1103 stat &= ~0x00000009; 1104 } 1105 1106 for (tpc = 0; tpc < gr->tpc_nr[gpc]; tpc++) { 1107 u32 mask = 0x00010000 << tpc; 1108 if (stat & mask) { 1109 gf100_gr_trap_tpc(gr, gpc, tpc); 1110 nvkm_wr32(device, GPC_UNIT(gpc, 0x2c90), mask); 1111 stat &= ~mask; 1112 } 1113 } 1114 1115 if (stat) { 1116 nvkm_error(subdev, "GPC%d/%08x: unknown\n", gpc, stat); 1117 } 1118 } 1119 1120 static void 1121 gf100_gr_trap_intr(struct gf100_gr *gr) 1122 { 1123 struct nvkm_subdev *subdev = &gr->base.engine.subdev; 1124 struct nvkm_device *device = subdev->device; 1125 char error[128]; 1126 u32 trap = nvkm_rd32(device, 0x400108); 1127 int rop, gpc; 1128 1129 if (trap & 0x00000001) { 1130 u32 stat = nvkm_rd32(device, 0x404000); 1131 1132 nvkm_snprintbf(error, sizeof(error), gf100_dispatch_error, 1133 stat & 0x3fffffff); 1134 nvkm_error(subdev, "DISPATCH %08x [%s]\n", stat, error); 1135 nvkm_wr32(device, 0x404000, 0xc0000000); 1136 nvkm_wr32(device, 0x400108, 0x00000001); 1137 trap &= ~0x00000001; 1138 } 1139 1140 if (trap & 0x00000002) { 1141 u32 stat = nvkm_rd32(device, 0x404600); 1142 1143 nvkm_snprintbf(error, sizeof(error), gf100_m2mf_error, 1144 stat & 0x3fffffff); 1145 nvkm_error(subdev, "M2MF %08x [%s]\n", stat, error); 1146 1147 nvkm_wr32(device, 0x404600, 0xc0000000); 1148 nvkm_wr32(device, 0x400108, 0x00000002); 1149 trap &= ~0x00000002; 1150 } 1151 1152 if (trap & 0x00000008) { 1153 u32 stat = nvkm_rd32(device, 0x408030); 1154 1155 nvkm_snprintbf(error, sizeof(error), gf100_ccache_error, 1156 stat & 0x3fffffff); 1157 nvkm_error(subdev, "CCACHE %08x [%s]\n", stat, error); 1158 nvkm_wr32(device, 0x408030, 0xc0000000); 1159 nvkm_wr32(device, 0x400108, 0x00000008); 1160 trap &= ~0x00000008; 1161 } 1162 1163 if (trap & 0x00000010) { 1164 u32 stat = nvkm_rd32(device, 0x405840); 1165 nvkm_error(subdev, "SHADER %08x, sph: 0x%06x, stage: 0x%02x\n", 1166 stat, stat & 0xffffff, (stat >> 24) & 0x3f); 1167 nvkm_wr32(device, 0x405840, 0xc0000000); 1168 nvkm_wr32(device, 0x400108, 0x00000010); 1169 trap &= ~0x00000010; 1170 } 1171 1172 if (trap & 0x00000040) { 1173 u32 stat = nvkm_rd32(device, 0x40601c); 1174 1175 nvkm_snprintbf(error, sizeof(error), gf100_unk6_error, 1176 stat & 0x3fffffff); 1177 nvkm_error(subdev, "UNK6 %08x [%s]\n", stat, error); 1178 1179 nvkm_wr32(device, 0x40601c, 0xc0000000); 1180 nvkm_wr32(device, 0x400108, 0x00000040); 1181 trap &= ~0x00000040; 1182 } 1183 1184 if (trap & 0x00000080) { 1185 u32 stat = nvkm_rd32(device, 0x404490); 1186 u32 pc = nvkm_rd32(device, 0x404494); 1187 u32 op = nvkm_rd32(device, 0x40449c); 1188 1189 nvkm_snprintbf(error, sizeof(error), gf100_macro_error, 1190 stat & 0x1fffffff); 1191 nvkm_error(subdev, "MACRO %08x [%s], pc: 0x%03x%s, op: 0x%08x\n", 1192 stat, error, pc & 0x7ff, 1193 (pc & 0x10000000) ? "" : " (invalid)", 1194 op); 1195 1196 nvkm_wr32(device, 0x404490, 0xc0000000); 1197 nvkm_wr32(device, 0x400108, 0x00000080); 1198 trap &= ~0x00000080; 1199 } 1200 1201 if (trap & 0x00000100) { 1202 u32 stat = nvkm_rd32(device, 0x407020) & 0x3fffffff; 1203 1204 nvkm_snprintbf(error, sizeof(error), gk104_sked_error, stat); 1205 nvkm_error(subdev, "SKED: %08x [%s]\n", stat, error); 1206 1207 if (stat) 1208 nvkm_wr32(device, 0x407020, 0x40000000); 1209 nvkm_wr32(device, 0x400108, 0x00000100); 1210 trap &= ~0x00000100; 1211 } 1212 1213 if (trap & 0x01000000) { 1214 u32 stat = nvkm_rd32(device, 0x400118); 1215 for (gpc = 0; stat && gpc < gr->gpc_nr; gpc++) { 1216 u32 mask = 0x00000001 << gpc; 1217 if (stat & mask) { 1218 gf100_gr_trap_gpc(gr, gpc); 1219 nvkm_wr32(device, 0x400118, mask); 1220 stat &= ~mask; 1221 } 1222 } 1223 nvkm_wr32(device, 0x400108, 0x01000000); 1224 trap &= ~0x01000000; 1225 } 1226 1227 if (trap & 0x02000000) { 1228 for (rop = 0; rop < gr->rop_nr; rop++) { 1229 u32 statz = nvkm_rd32(device, ROP_UNIT(rop, 0x070)); 1230 u32 statc = nvkm_rd32(device, ROP_UNIT(rop, 0x144)); 1231 nvkm_error(subdev, "ROP%d %08x %08x\n", 1232 rop, statz, statc); 1233 nvkm_wr32(device, ROP_UNIT(rop, 0x070), 0xc0000000); 1234 nvkm_wr32(device, ROP_UNIT(rop, 0x144), 0xc0000000); 1235 } 1236 nvkm_wr32(device, 0x400108, 0x02000000); 1237 trap &= ~0x02000000; 1238 } 1239 1240 if (trap) { 1241 nvkm_error(subdev, "TRAP UNHANDLED %08x\n", trap); 1242 nvkm_wr32(device, 0x400108, trap); 1243 } 1244 } 1245 1246 static void 1247 gf100_gr_ctxctl_debug_unit(struct gf100_gr *gr, u32 base) 1248 { 1249 struct nvkm_subdev *subdev = &gr->base.engine.subdev; 1250 struct nvkm_device *device = subdev->device; 1251 nvkm_error(subdev, "%06x - done %08x\n", base, 1252 nvkm_rd32(device, base + 0x400)); 1253 nvkm_error(subdev, "%06x - stat %08x %08x %08x %08x\n", base, 1254 nvkm_rd32(device, base + 0x800), 1255 nvkm_rd32(device, base + 0x804), 1256 nvkm_rd32(device, base + 0x808), 1257 nvkm_rd32(device, base + 0x80c)); 1258 nvkm_error(subdev, "%06x - stat %08x %08x %08x %08x\n", base, 1259 nvkm_rd32(device, base + 0x810), 1260 nvkm_rd32(device, base + 0x814), 1261 nvkm_rd32(device, base + 0x818), 1262 nvkm_rd32(device, base + 0x81c)); 1263 } 1264 1265 void 1266 gf100_gr_ctxctl_debug(struct gf100_gr *gr) 1267 { 1268 struct nvkm_device *device = gr->base.engine.subdev.device; 1269 u32 gpcnr = nvkm_rd32(device, 0x409604) & 0xffff; 1270 u32 gpc; 1271 1272 gf100_gr_ctxctl_debug_unit(gr, 0x409000); 1273 for (gpc = 0; gpc < gpcnr; gpc++) 1274 gf100_gr_ctxctl_debug_unit(gr, 0x502000 + (gpc * 0x8000)); 1275 } 1276 1277 static void 1278 gf100_gr_ctxctl_isr(struct gf100_gr *gr) 1279 { 1280 struct nvkm_subdev *subdev = &gr->base.engine.subdev; 1281 struct nvkm_device *device = subdev->device; 1282 u32 stat = nvkm_rd32(device, 0x409c18); 1283 1284 if (!gr->firmware && (stat & 0x00000001)) { 1285 u32 code = nvkm_rd32(device, 0x409814); 1286 if (code == E_BAD_FWMTHD) { 1287 u32 class = nvkm_rd32(device, 0x409808); 1288 u32 addr = nvkm_rd32(device, 0x40980c); 1289 u32 subc = (addr & 0x00070000) >> 16; 1290 u32 mthd = (addr & 0x00003ffc); 1291 u32 data = nvkm_rd32(device, 0x409810); 1292 1293 nvkm_error(subdev, "FECS MTHD subc %d class %04x " 1294 "mthd %04x data %08x\n", 1295 subc, class, mthd, data); 1296 } else { 1297 nvkm_error(subdev, "FECS ucode error %d\n", code); 1298 } 1299 nvkm_wr32(device, 0x409c20, 0x00000001); 1300 stat &= ~0x00000001; 1301 } 1302 1303 if (!gr->firmware && (stat & 0x00080000)) { 1304 nvkm_error(subdev, "FECS watchdog timeout\n"); 1305 gf100_gr_ctxctl_debug(gr); 1306 nvkm_wr32(device, 0x409c20, 0x00080000); 1307 stat &= ~0x00080000; 1308 } 1309 1310 if (stat) { 1311 nvkm_error(subdev, "FECS %08x\n", stat); 1312 gf100_gr_ctxctl_debug(gr); 1313 nvkm_wr32(device, 0x409c20, stat); 1314 } 1315 } 1316 1317 static void 1318 gf100_gr_intr(struct nvkm_gr *base) 1319 { 1320 struct gf100_gr *gr = gf100_gr(base); 1321 struct nvkm_subdev *subdev = &gr->base.engine.subdev; 1322 struct nvkm_device *device = subdev->device; 1323 struct nvkm_fifo_chan *chan; 1324 unsigned long flags; 1325 u64 inst = nvkm_rd32(device, 0x409b00) & 0x0fffffff; 1326 u32 stat = nvkm_rd32(device, 0x400100); 1327 u32 addr = nvkm_rd32(device, 0x400704); 1328 u32 mthd = (addr & 0x00003ffc); 1329 u32 subc = (addr & 0x00070000) >> 16; 1330 u32 data = nvkm_rd32(device, 0x400708); 1331 u32 code = nvkm_rd32(device, 0x400110); 1332 u32 class; 1333 const char *name = "unknown"; 1334 int chid = -1; 1335 1336 chan = nvkm_fifo_chan_inst(device->fifo, (u64)inst << 12, &flags); 1337 if (chan) { 1338 name = chan->object.client->name; 1339 chid = chan->chid; 1340 } 1341 1342 if (device->card_type < NV_E0 || subc < 4) 1343 class = nvkm_rd32(device, 0x404200 + (subc * 4)); 1344 else 1345 class = 0x0000; 1346 1347 if (stat & 0x00000001) { 1348 /* 1349 * notifier interrupt, only needed for cyclestats 1350 * can be safely ignored 1351 */ 1352 nvkm_wr32(device, 0x400100, 0x00000001); 1353 stat &= ~0x00000001; 1354 } 1355 1356 if (stat & 0x00000010) { 1357 if (!gf100_gr_mthd_sw(device, class, mthd, data)) { 1358 nvkm_error(subdev, "ILLEGAL_MTHD ch %d [%010llx %s] " 1359 "subc %d class %04x mthd %04x data %08x\n", 1360 chid, inst << 12, name, subc, 1361 class, mthd, data); 1362 } 1363 nvkm_wr32(device, 0x400100, 0x00000010); 1364 stat &= ~0x00000010; 1365 } 1366 1367 if (stat & 0x00000020) { 1368 nvkm_error(subdev, "ILLEGAL_CLASS ch %d [%010llx %s] " 1369 "subc %d class %04x mthd %04x data %08x\n", 1370 chid, inst << 12, name, subc, class, mthd, data); 1371 nvkm_wr32(device, 0x400100, 0x00000020); 1372 stat &= ~0x00000020; 1373 } 1374 1375 if (stat & 0x00100000) { 1376 const struct nvkm_enum *en = 1377 nvkm_enum_find(nv50_data_error_names, code); 1378 nvkm_error(subdev, "DATA_ERROR %08x [%s] ch %d [%010llx %s] " 1379 "subc %d class %04x mthd %04x data %08x\n", 1380 code, en ? en->name : "", chid, inst << 12, 1381 name, subc, class, mthd, data); 1382 nvkm_wr32(device, 0x400100, 0x00100000); 1383 stat &= ~0x00100000; 1384 } 1385 1386 if (stat & 0x00200000) { 1387 nvkm_error(subdev, "TRAP ch %d [%010llx %s]\n", 1388 chid, inst << 12, name); 1389 gf100_gr_trap_intr(gr); 1390 nvkm_wr32(device, 0x400100, 0x00200000); 1391 stat &= ~0x00200000; 1392 } 1393 1394 if (stat & 0x00080000) { 1395 gf100_gr_ctxctl_isr(gr); 1396 nvkm_wr32(device, 0x400100, 0x00080000); 1397 stat &= ~0x00080000; 1398 } 1399 1400 if (stat) { 1401 nvkm_error(subdev, "intr %08x\n", stat); 1402 nvkm_wr32(device, 0x400100, stat); 1403 } 1404 1405 nvkm_wr32(device, 0x400500, 0x00010001); 1406 nvkm_fifo_chan_put(device->fifo, flags, &chan); 1407 } 1408 1409 static void 1410 gf100_gr_init_fw(struct nvkm_falcon *falcon, 1411 struct gf100_gr_fuc *code, struct gf100_gr_fuc *data) 1412 { 1413 nvkm_falcon_load_dmem(falcon, data->data, 0x0, data->size, 0); 1414 nvkm_falcon_load_imem(falcon, code->data, 0x0, code->size, 0, 0, false); 1415 } 1416 1417 static void 1418 gf100_gr_init_csdata(struct gf100_gr *gr, 1419 const struct gf100_gr_pack *pack, 1420 u32 falcon, u32 starstar, u32 base) 1421 { 1422 struct nvkm_device *device = gr->base.engine.subdev.device; 1423 const struct gf100_gr_pack *iter; 1424 const struct gf100_gr_init *init; 1425 u32 addr = ~0, prev = ~0, xfer = 0; 1426 u32 star, temp; 1427 1428 nvkm_wr32(device, falcon + 0x01c0, 0x02000000 + starstar); 1429 star = nvkm_rd32(device, falcon + 0x01c4); 1430 temp = nvkm_rd32(device, falcon + 0x01c4); 1431 if (temp > star) 1432 star = temp; 1433 nvkm_wr32(device, falcon + 0x01c0, 0x01000000 + star); 1434 1435 pack_for_each_init(init, iter, pack) { 1436 u32 head = init->addr - base; 1437 u32 tail = head + init->count * init->pitch; 1438 while (head < tail) { 1439 if (head != prev + 4 || xfer >= 32) { 1440 if (xfer) { 1441 u32 data = ((--xfer << 26) | addr); 1442 nvkm_wr32(device, falcon + 0x01c4, data); 1443 star += 4; 1444 } 1445 addr = head; 1446 xfer = 0; 1447 } 1448 prev = head; 1449 xfer = xfer + 1; 1450 head = head + init->pitch; 1451 } 1452 } 1453 1454 nvkm_wr32(device, falcon + 0x01c4, (--xfer << 26) | addr); 1455 nvkm_wr32(device, falcon + 0x01c0, 0x01000004 + starstar); 1456 nvkm_wr32(device, falcon + 0x01c4, star + 4); 1457 } 1458 1459 /* Initialize context from an external (secure or not) firmware */ 1460 static int 1461 gf100_gr_init_ctxctl_ext(struct gf100_gr *gr) 1462 { 1463 struct nvkm_subdev *subdev = &gr->base.engine.subdev; 1464 struct nvkm_device *device = subdev->device; 1465 struct nvkm_secboot *sb = device->secboot; 1466 int ret = 0; 1467 1468 /* load fuc microcode */ 1469 nvkm_mc_unk260(device, 0); 1470 1471 /* securely-managed falcons must be reset using secure boot */ 1472 if (nvkm_secboot_is_managed(sb, NVKM_SECBOOT_FALCON_FECS)) 1473 ret = nvkm_secboot_reset(sb, NVKM_SECBOOT_FALCON_FECS); 1474 else 1475 gf100_gr_init_fw(gr->fecs, &gr->fuc409c, &gr->fuc409d); 1476 if (ret) 1477 return ret; 1478 1479 if (nvkm_secboot_is_managed(sb, NVKM_SECBOOT_FALCON_GPCCS)) 1480 ret = nvkm_secboot_reset(sb, NVKM_SECBOOT_FALCON_GPCCS); 1481 else 1482 gf100_gr_init_fw(gr->gpccs, &gr->fuc41ac, &gr->fuc41ad); 1483 if (ret) 1484 return ret; 1485 1486 nvkm_mc_unk260(device, 1); 1487 1488 /* start both of them running */ 1489 nvkm_wr32(device, 0x409840, 0xffffffff); 1490 nvkm_wr32(device, 0x41a10c, 0x00000000); 1491 nvkm_wr32(device, 0x40910c, 0x00000000); 1492 1493 nvkm_falcon_start(gr->gpccs); 1494 nvkm_falcon_start(gr->fecs); 1495 1496 if (nvkm_msec(device, 2000, 1497 if (nvkm_rd32(device, 0x409800) & 0x00000001) 1498 break; 1499 ) < 0) 1500 return -EBUSY; 1501 1502 nvkm_wr32(device, 0x409840, 0xffffffff); 1503 nvkm_wr32(device, 0x409500, 0x7fffffff); 1504 nvkm_wr32(device, 0x409504, 0x00000021); 1505 1506 nvkm_wr32(device, 0x409840, 0xffffffff); 1507 nvkm_wr32(device, 0x409500, 0x00000000); 1508 nvkm_wr32(device, 0x409504, 0x00000010); 1509 if (nvkm_msec(device, 2000, 1510 if ((gr->size = nvkm_rd32(device, 0x409800))) 1511 break; 1512 ) < 0) 1513 return -EBUSY; 1514 1515 nvkm_wr32(device, 0x409840, 0xffffffff); 1516 nvkm_wr32(device, 0x409500, 0x00000000); 1517 nvkm_wr32(device, 0x409504, 0x00000016); 1518 if (nvkm_msec(device, 2000, 1519 if (nvkm_rd32(device, 0x409800)) 1520 break; 1521 ) < 0) 1522 return -EBUSY; 1523 1524 nvkm_wr32(device, 0x409840, 0xffffffff); 1525 nvkm_wr32(device, 0x409500, 0x00000000); 1526 nvkm_wr32(device, 0x409504, 0x00000025); 1527 if (nvkm_msec(device, 2000, 1528 if (nvkm_rd32(device, 0x409800)) 1529 break; 1530 ) < 0) 1531 return -EBUSY; 1532 1533 if (device->chipset >= 0xe0) { 1534 nvkm_wr32(device, 0x409800, 0x00000000); 1535 nvkm_wr32(device, 0x409500, 0x00000001); 1536 nvkm_wr32(device, 0x409504, 0x00000030); 1537 if (nvkm_msec(device, 2000, 1538 if (nvkm_rd32(device, 0x409800)) 1539 break; 1540 ) < 0) 1541 return -EBUSY; 1542 1543 nvkm_wr32(device, 0x409810, 0xb00095c8); 1544 nvkm_wr32(device, 0x409800, 0x00000000); 1545 nvkm_wr32(device, 0x409500, 0x00000001); 1546 nvkm_wr32(device, 0x409504, 0x00000031); 1547 if (nvkm_msec(device, 2000, 1548 if (nvkm_rd32(device, 0x409800)) 1549 break; 1550 ) < 0) 1551 return -EBUSY; 1552 1553 nvkm_wr32(device, 0x409810, 0x00080420); 1554 nvkm_wr32(device, 0x409800, 0x00000000); 1555 nvkm_wr32(device, 0x409500, 0x00000001); 1556 nvkm_wr32(device, 0x409504, 0x00000032); 1557 if (nvkm_msec(device, 2000, 1558 if (nvkm_rd32(device, 0x409800)) 1559 break; 1560 ) < 0) 1561 return -EBUSY; 1562 1563 nvkm_wr32(device, 0x409614, 0x00000070); 1564 nvkm_wr32(device, 0x409614, 0x00000770); 1565 nvkm_wr32(device, 0x40802c, 0x00000001); 1566 } 1567 1568 if (gr->data == NULL) { 1569 int ret = gf100_grctx_generate(gr); 1570 if (ret) { 1571 nvkm_error(subdev, "failed to construct context\n"); 1572 return ret; 1573 } 1574 } 1575 1576 return 0; 1577 } 1578 1579 static int 1580 gf100_gr_init_ctxctl_int(struct gf100_gr *gr) 1581 { 1582 const struct gf100_grctx_func *grctx = gr->func->grctx; 1583 struct nvkm_subdev *subdev = &gr->base.engine.subdev; 1584 struct nvkm_device *device = subdev->device; 1585 1586 if (!gr->func->fecs.ucode) { 1587 return -ENOSYS; 1588 } 1589 1590 /* load HUB microcode */ 1591 nvkm_mc_unk260(device, 0); 1592 nvkm_falcon_load_dmem(gr->fecs, gr->func->fecs.ucode->data.data, 0x0, 1593 gr->func->fecs.ucode->data.size, 0); 1594 nvkm_falcon_load_imem(gr->fecs, gr->func->fecs.ucode->code.data, 0x0, 1595 gr->func->fecs.ucode->code.size, 0, 0, false); 1596 1597 /* load GPC microcode */ 1598 nvkm_falcon_load_dmem(gr->gpccs, gr->func->gpccs.ucode->data.data, 0x0, 1599 gr->func->gpccs.ucode->data.size, 0); 1600 nvkm_falcon_load_imem(gr->gpccs, gr->func->gpccs.ucode->code.data, 0x0, 1601 gr->func->gpccs.ucode->code.size, 0, 0, false); 1602 nvkm_mc_unk260(device, 1); 1603 1604 /* load register lists */ 1605 gf100_gr_init_csdata(gr, grctx->hub, 0x409000, 0x000, 0x000000); 1606 gf100_gr_init_csdata(gr, grctx->gpc, 0x41a000, 0x000, 0x418000); 1607 gf100_gr_init_csdata(gr, grctx->tpc, 0x41a000, 0x004, 0x419800); 1608 gf100_gr_init_csdata(gr, grctx->ppc, 0x41a000, 0x008, 0x41be00); 1609 1610 /* start HUB ucode running, it'll init the GPCs */ 1611 nvkm_wr32(device, 0x40910c, 0x00000000); 1612 nvkm_wr32(device, 0x409100, 0x00000002); 1613 if (nvkm_msec(device, 2000, 1614 if (nvkm_rd32(device, 0x409800) & 0x80000000) 1615 break; 1616 ) < 0) { 1617 gf100_gr_ctxctl_debug(gr); 1618 return -EBUSY; 1619 } 1620 1621 gr->size = nvkm_rd32(device, 0x409804); 1622 if (gr->data == NULL) { 1623 int ret = gf100_grctx_generate(gr); 1624 if (ret) { 1625 nvkm_error(subdev, "failed to construct context\n"); 1626 return ret; 1627 } 1628 } 1629 1630 return 0; 1631 } 1632 1633 int 1634 gf100_gr_init_ctxctl(struct gf100_gr *gr) 1635 { 1636 int ret; 1637 1638 if (gr->firmware) 1639 ret = gf100_gr_init_ctxctl_ext(gr); 1640 else 1641 ret = gf100_gr_init_ctxctl_int(gr); 1642 1643 return ret; 1644 } 1645 1646 static int 1647 gf100_gr_oneinit(struct nvkm_gr *base) 1648 { 1649 struct gf100_gr *gr = gf100_gr(base); 1650 struct nvkm_device *device = gr->base.engine.subdev.device; 1651 int i, j; 1652 1653 nvkm_pmu_pgob(device->pmu, false); 1654 1655 gr->rop_nr = gr->func->rops(gr); 1656 gr->gpc_nr = nvkm_rd32(device, 0x409604) & 0x0000001f; 1657 for (i = 0; i < gr->gpc_nr; i++) { 1658 gr->tpc_nr[i] = nvkm_rd32(device, GPC_UNIT(i, 0x2608)); 1659 gr->tpc_total += gr->tpc_nr[i]; 1660 gr->ppc_nr[i] = gr->func->ppc_nr; 1661 for (j = 0; j < gr->ppc_nr[i]; j++) { 1662 u8 mask = nvkm_rd32(device, GPC_UNIT(i, 0x0c30 + (j * 4))); 1663 if (mask) 1664 gr->ppc_mask[i] |= (1 << j); 1665 gr->ppc_tpc_nr[i][j] = hweight8(mask); 1666 } 1667 } 1668 1669 /*XXX: these need figuring out... though it might not even matter */ 1670 switch (device->chipset) { 1671 case 0xc0: 1672 if (gr->tpc_total == 11) { /* 465, 3/4/4/0, 4 */ 1673 gr->screen_tile_row_offset = 0x07; 1674 } else 1675 if (gr->tpc_total == 14) { /* 470, 3/3/4/4, 5 */ 1676 gr->screen_tile_row_offset = 0x05; 1677 } else 1678 if (gr->tpc_total == 15) { /* 480, 3/4/4/4, 6 */ 1679 gr->screen_tile_row_offset = 0x06; 1680 } 1681 break; 1682 case 0xc3: /* 450, 4/0/0/0, 2 */ 1683 gr->screen_tile_row_offset = 0x03; 1684 break; 1685 case 0xc4: /* 460, 3/4/0/0, 4 */ 1686 gr->screen_tile_row_offset = 0x01; 1687 break; 1688 case 0xc1: /* 2/0/0/0, 1 */ 1689 gr->screen_tile_row_offset = 0x01; 1690 break; 1691 case 0xc8: /* 4/4/3/4, 5 */ 1692 gr->screen_tile_row_offset = 0x06; 1693 break; 1694 case 0xce: /* 4/4/0/0, 4 */ 1695 gr->screen_tile_row_offset = 0x03; 1696 break; 1697 case 0xcf: /* 4/0/0/0, 3 */ 1698 gr->screen_tile_row_offset = 0x03; 1699 break; 1700 case 0xd7: 1701 case 0xd9: /* 1/0/0/0, 1 */ 1702 case 0xea: /* gk20a */ 1703 case 0x12b: /* gm20b */ 1704 gr->screen_tile_row_offset = 0x01; 1705 break; 1706 } 1707 1708 return 0; 1709 } 1710 1711 static int 1712 gf100_gr_init_(struct nvkm_gr *base) 1713 { 1714 struct gf100_gr *gr = gf100_gr(base); 1715 struct nvkm_subdev *subdev = &base->engine.subdev; 1716 u32 ret; 1717 1718 nvkm_pmu_pgob(gr->base.engine.subdev.device->pmu, false); 1719 1720 ret = nvkm_falcon_get(gr->fecs, subdev); 1721 if (ret) 1722 return ret; 1723 1724 ret = nvkm_falcon_get(gr->gpccs, subdev); 1725 if (ret) 1726 return ret; 1727 1728 return gr->func->init(gr); 1729 } 1730 1731 static int 1732 gf100_gr_fini_(struct nvkm_gr *base, bool suspend) 1733 { 1734 struct gf100_gr *gr = gf100_gr(base); 1735 struct nvkm_subdev *subdev = &gr->base.engine.subdev; 1736 nvkm_falcon_put(gr->gpccs, subdev); 1737 nvkm_falcon_put(gr->fecs, subdev); 1738 return 0; 1739 } 1740 1741 void 1742 gf100_gr_dtor_fw(struct gf100_gr_fuc *fuc) 1743 { 1744 kfree(fuc->data); 1745 fuc->data = NULL; 1746 } 1747 1748 static void 1749 gf100_gr_dtor_init(struct gf100_gr_pack *pack) 1750 { 1751 vfree(pack); 1752 } 1753 1754 void * 1755 gf100_gr_dtor(struct nvkm_gr *base) 1756 { 1757 struct gf100_gr *gr = gf100_gr(base); 1758 1759 if (gr->func->dtor) 1760 gr->func->dtor(gr); 1761 kfree(gr->data); 1762 1763 nvkm_falcon_del(&gr->gpccs); 1764 nvkm_falcon_del(&gr->fecs); 1765 1766 gf100_gr_dtor_fw(&gr->fuc409c); 1767 gf100_gr_dtor_fw(&gr->fuc409d); 1768 gf100_gr_dtor_fw(&gr->fuc41ac); 1769 gf100_gr_dtor_fw(&gr->fuc41ad); 1770 1771 gf100_gr_dtor_init(gr->fuc_bundle); 1772 gf100_gr_dtor_init(gr->fuc_method); 1773 gf100_gr_dtor_init(gr->fuc_sw_ctx); 1774 gf100_gr_dtor_init(gr->fuc_sw_nonctx); 1775 1776 return gr; 1777 } 1778 1779 static const struct nvkm_gr_func 1780 gf100_gr_ = { 1781 .dtor = gf100_gr_dtor, 1782 .oneinit = gf100_gr_oneinit, 1783 .init = gf100_gr_init_, 1784 .fini = gf100_gr_fini_, 1785 .intr = gf100_gr_intr, 1786 .units = gf100_gr_units, 1787 .chan_new = gf100_gr_chan_new, 1788 .object_get = gf100_gr_object_get, 1789 .chsw_load = gf100_gr_chsw_load, 1790 }; 1791 1792 int 1793 gf100_gr_ctor_fw_legacy(struct gf100_gr *gr, const char *fwname, 1794 struct gf100_gr_fuc *fuc, int ret) 1795 { 1796 struct nvkm_subdev *subdev = &gr->base.engine.subdev; 1797 struct nvkm_device *device = subdev->device; 1798 const struct firmware *fw; 1799 char f[32]; 1800 1801 /* see if this firmware has a legacy path */ 1802 if (!strcmp(fwname, "fecs_inst")) 1803 fwname = "fuc409c"; 1804 else if (!strcmp(fwname, "fecs_data")) 1805 fwname = "fuc409d"; 1806 else if (!strcmp(fwname, "gpccs_inst")) 1807 fwname = "fuc41ac"; 1808 else if (!strcmp(fwname, "gpccs_data")) 1809 fwname = "fuc41ad"; 1810 else { 1811 /* nope, let's just return the error we got */ 1812 nvkm_error(subdev, "failed to load %s\n", fwname); 1813 return ret; 1814 } 1815 1816 /* yes, try to load from the legacy path */ 1817 nvkm_debug(subdev, "%s: falling back to legacy path\n", fwname); 1818 1819 snprintf(f, sizeof(f), "nouveau/nv%02x_%s", device->chipset, fwname); 1820 ret = request_firmware(&fw, f, device->dev); 1821 if (ret) { 1822 snprintf(f, sizeof(f), "nouveau/%s", fwname); 1823 ret = request_firmware(&fw, f, device->dev); 1824 if (ret) { 1825 nvkm_error(subdev, "failed to load %s\n", fwname); 1826 return ret; 1827 } 1828 } 1829 1830 fuc->size = fw->size; 1831 fuc->data = kmemdup(fw->data, fuc->size, GFP_KERNEL); 1832 release_firmware(fw); 1833 return (fuc->data != NULL) ? 0 : -ENOMEM; 1834 } 1835 1836 int 1837 gf100_gr_ctor_fw(struct gf100_gr *gr, const char *fwname, 1838 struct gf100_gr_fuc *fuc) 1839 { 1840 struct nvkm_subdev *subdev = &gr->base.engine.subdev; 1841 struct nvkm_device *device = subdev->device; 1842 const struct firmware *fw; 1843 int ret; 1844 1845 ret = nvkm_firmware_get(device, fwname, &fw); 1846 if (ret) 1847 return gf100_gr_ctor_fw_legacy(gr, fwname, fuc, ret); 1848 1849 fuc->size = fw->size; 1850 fuc->data = kmemdup(fw->data, fuc->size, GFP_KERNEL); 1851 nvkm_firmware_put(fw); 1852 return (fuc->data != NULL) ? 0 : -ENOMEM; 1853 } 1854 1855 int 1856 gf100_gr_ctor(const struct gf100_gr_func *func, struct nvkm_device *device, 1857 int index, struct gf100_gr *gr) 1858 { 1859 struct nvkm_subdev *subdev = &gr->base.engine.subdev; 1860 int ret; 1861 1862 gr->func = func; 1863 gr->firmware = nvkm_boolopt(device->cfgopt, "NvGrUseFW", 1864 func->fecs.ucode == NULL); 1865 1866 ret = nvkm_gr_ctor(&gf100_gr_, device, index, 1867 gr->firmware || func->fecs.ucode != NULL, 1868 &gr->base); 1869 if (ret) 1870 return ret; 1871 1872 ret = nvkm_falcon_v1_new(subdev, "FECS", 0x409000, &gr->fecs); 1873 if (ret) 1874 return ret; 1875 1876 return nvkm_falcon_v1_new(subdev, "GPCCS", 0x41a000, &gr->gpccs); 1877 } 1878 1879 int 1880 gf100_gr_new_(const struct gf100_gr_func *func, struct nvkm_device *device, 1881 int index, struct nvkm_gr **pgr) 1882 { 1883 struct gf100_gr *gr; 1884 int ret; 1885 1886 if (!(gr = kzalloc(sizeof(*gr), GFP_KERNEL))) 1887 return -ENOMEM; 1888 *pgr = &gr->base; 1889 1890 ret = gf100_gr_ctor(func, device, index, gr); 1891 if (ret) 1892 return ret; 1893 1894 if (gr->firmware) { 1895 if (gf100_gr_ctor_fw(gr, "fecs_inst", &gr->fuc409c) || 1896 gf100_gr_ctor_fw(gr, "fecs_data", &gr->fuc409d) || 1897 gf100_gr_ctor_fw(gr, "gpccs_inst", &gr->fuc41ac) || 1898 gf100_gr_ctor_fw(gr, "gpccs_data", &gr->fuc41ad)) 1899 return -ENODEV; 1900 } 1901 1902 return 0; 1903 } 1904 1905 int 1906 gf100_gr_init(struct gf100_gr *gr) 1907 { 1908 struct nvkm_device *device = gr->base.engine.subdev.device; 1909 struct nvkm_fb *fb = device->fb; 1910 const u32 magicgpc918 = DIV_ROUND_UP(0x00800000, gr->tpc_total); 1911 u32 data[TPC_MAX / 8] = {}; 1912 u8 tpcnr[GPC_MAX]; 1913 int gpc, tpc, rop; 1914 int i; 1915 1916 nvkm_wr32(device, GPC_BCAST(0x0880), 0x00000000); 1917 nvkm_wr32(device, GPC_BCAST(0x08a4), 0x00000000); 1918 nvkm_wr32(device, GPC_BCAST(0x0888), 0x00000000); 1919 nvkm_wr32(device, GPC_BCAST(0x088c), 0x00000000); 1920 nvkm_wr32(device, GPC_BCAST(0x0890), 0x00000000); 1921 nvkm_wr32(device, GPC_BCAST(0x0894), 0x00000000); 1922 nvkm_wr32(device, GPC_BCAST(0x08b4), nvkm_memory_addr(fb->mmu_wr) >> 8); 1923 nvkm_wr32(device, GPC_BCAST(0x08b8), nvkm_memory_addr(fb->mmu_rd) >> 8); 1924 1925 gf100_gr_mmio(gr, gr->func->mmio); 1926 1927 nvkm_mask(device, TPC_UNIT(0, 0, 0x05c), 0x00000001, 0x00000001); 1928 1929 memcpy(tpcnr, gr->tpc_nr, sizeof(gr->tpc_nr)); 1930 for (i = 0, gpc = -1; i < gr->tpc_total; i++) { 1931 do { 1932 gpc = (gpc + 1) % gr->gpc_nr; 1933 } while (!tpcnr[gpc]); 1934 tpc = gr->tpc_nr[gpc] - tpcnr[gpc]--; 1935 1936 data[i / 8] |= tpc << ((i % 8) * 4); 1937 } 1938 1939 nvkm_wr32(device, GPC_BCAST(0x0980), data[0]); 1940 nvkm_wr32(device, GPC_BCAST(0x0984), data[1]); 1941 nvkm_wr32(device, GPC_BCAST(0x0988), data[2]); 1942 nvkm_wr32(device, GPC_BCAST(0x098c), data[3]); 1943 1944 for (gpc = 0; gpc < gr->gpc_nr; gpc++) { 1945 nvkm_wr32(device, GPC_UNIT(gpc, 0x0914), 1946 gr->screen_tile_row_offset << 8 | gr->tpc_nr[gpc]); 1947 nvkm_wr32(device, GPC_UNIT(gpc, 0x0910), 0x00040000 | 1948 gr->tpc_total); 1949 nvkm_wr32(device, GPC_UNIT(gpc, 0x0918), magicgpc918); 1950 } 1951 1952 if (device->chipset != 0xd7) 1953 nvkm_wr32(device, GPC_BCAST(0x1bd4), magicgpc918); 1954 else 1955 nvkm_wr32(device, GPC_BCAST(0x3fd4), magicgpc918); 1956 1957 nvkm_wr32(device, GPC_BCAST(0x08ac), nvkm_rd32(device, 0x100800)); 1958 1959 nvkm_wr32(device, 0x400500, 0x00010001); 1960 1961 nvkm_wr32(device, 0x400100, 0xffffffff); 1962 nvkm_wr32(device, 0x40013c, 0xffffffff); 1963 1964 nvkm_wr32(device, 0x409c24, 0x000f0000); 1965 nvkm_wr32(device, 0x404000, 0xc0000000); 1966 nvkm_wr32(device, 0x404600, 0xc0000000); 1967 nvkm_wr32(device, 0x408030, 0xc0000000); 1968 nvkm_wr32(device, 0x40601c, 0xc0000000); 1969 nvkm_wr32(device, 0x404490, 0xc0000000); 1970 nvkm_wr32(device, 0x406018, 0xc0000000); 1971 nvkm_wr32(device, 0x405840, 0xc0000000); 1972 nvkm_wr32(device, 0x405844, 0x00ffffff); 1973 nvkm_mask(device, 0x419cc0, 0x00000008, 0x00000008); 1974 nvkm_mask(device, 0x419eb4, 0x00001000, 0x00001000); 1975 1976 for (gpc = 0; gpc < gr->gpc_nr; gpc++) { 1977 nvkm_wr32(device, GPC_UNIT(gpc, 0x0420), 0xc0000000); 1978 nvkm_wr32(device, GPC_UNIT(gpc, 0x0900), 0xc0000000); 1979 nvkm_wr32(device, GPC_UNIT(gpc, 0x1028), 0xc0000000); 1980 nvkm_wr32(device, GPC_UNIT(gpc, 0x0824), 0xc0000000); 1981 for (tpc = 0; tpc < gr->tpc_nr[gpc]; tpc++) { 1982 nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x508), 0xffffffff); 1983 nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x50c), 0xffffffff); 1984 nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x224), 0xc0000000); 1985 nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x48c), 0xc0000000); 1986 nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x084), 0xc0000000); 1987 nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x644), 0x001ffffe); 1988 nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x64c), 0x0000000f); 1989 } 1990 nvkm_wr32(device, GPC_UNIT(gpc, 0x2c90), 0xffffffff); 1991 nvkm_wr32(device, GPC_UNIT(gpc, 0x2c94), 0xffffffff); 1992 } 1993 1994 for (rop = 0; rop < gr->rop_nr; rop++) { 1995 nvkm_wr32(device, ROP_UNIT(rop, 0x144), 0xc0000000); 1996 nvkm_wr32(device, ROP_UNIT(rop, 0x070), 0xc0000000); 1997 nvkm_wr32(device, ROP_UNIT(rop, 0x204), 0xffffffff); 1998 nvkm_wr32(device, ROP_UNIT(rop, 0x208), 0xffffffff); 1999 } 2000 2001 nvkm_wr32(device, 0x400108, 0xffffffff); 2002 nvkm_wr32(device, 0x400138, 0xffffffff); 2003 nvkm_wr32(device, 0x400118, 0xffffffff); 2004 nvkm_wr32(device, 0x400130, 0xffffffff); 2005 nvkm_wr32(device, 0x40011c, 0xffffffff); 2006 nvkm_wr32(device, 0x400134, 0xffffffff); 2007 2008 nvkm_wr32(device, 0x400054, 0x34ce3464); 2009 2010 gf100_gr_zbc_init(gr); 2011 2012 return gf100_gr_init_ctxctl(gr); 2013 } 2014 2015 #include "fuc/hubgf100.fuc3.h" 2016 2017 struct gf100_gr_ucode 2018 gf100_gr_fecs_ucode = { 2019 .code.data = gf100_grhub_code, 2020 .code.size = sizeof(gf100_grhub_code), 2021 .data.data = gf100_grhub_data, 2022 .data.size = sizeof(gf100_grhub_data), 2023 }; 2024 2025 #include "fuc/gpcgf100.fuc3.h" 2026 2027 struct gf100_gr_ucode 2028 gf100_gr_gpccs_ucode = { 2029 .code.data = gf100_grgpc_code, 2030 .code.size = sizeof(gf100_grgpc_code), 2031 .data.data = gf100_grgpc_data, 2032 .data.size = sizeof(gf100_grgpc_data), 2033 }; 2034 2035 static const struct gf100_gr_func 2036 gf100_gr = { 2037 .init = gf100_gr_init, 2038 .mmio = gf100_gr_pack_mmio, 2039 .fecs.ucode = &gf100_gr_fecs_ucode, 2040 .gpccs.ucode = &gf100_gr_gpccs_ucode, 2041 .rops = gf100_gr_rops, 2042 .grctx = &gf100_grctx, 2043 .sclass = { 2044 { -1, -1, FERMI_TWOD_A }, 2045 { -1, -1, FERMI_MEMORY_TO_MEMORY_FORMAT_A }, 2046 { -1, -1, FERMI_A, &gf100_fermi }, 2047 { -1, -1, FERMI_COMPUTE_A }, 2048 {} 2049 } 2050 }; 2051 2052 int 2053 gf100_gr_new(struct nvkm_device *device, int index, struct nvkm_gr **pgr) 2054 { 2055 return gf100_gr_new_(&gf100_gr, device, index, pgr); 2056 } 2057