1 /*
2  * Copyright 2012 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Ben Skeggs
23  */
24 #include "gf100.h"
25 #include "ctxgf100.h"
26 #include "fuc/os.h"
27 
28 #include <core/client.h>
29 #include <core/option.h>
30 #include <core/firmware.h>
31 #include <subdev/secboot.h>
32 #include <subdev/fb.h>
33 #include <subdev/mc.h>
34 #include <subdev/pmu.h>
35 #include <subdev/timer.h>
36 #include <engine/fifo.h>
37 
38 #include <nvif/class.h>
39 #include <nvif/cl9097.h>
40 #include <nvif/unpack.h>
41 
42 /*******************************************************************************
43  * Zero Bandwidth Clear
44  ******************************************************************************/
45 
46 static void
47 gf100_gr_zbc_clear_color(struct gf100_gr *gr, int zbc)
48 {
49 	struct nvkm_device *device = gr->base.engine.subdev.device;
50 	if (gr->zbc_color[zbc].format) {
51 		nvkm_wr32(device, 0x405804, gr->zbc_color[zbc].ds[0]);
52 		nvkm_wr32(device, 0x405808, gr->zbc_color[zbc].ds[1]);
53 		nvkm_wr32(device, 0x40580c, gr->zbc_color[zbc].ds[2]);
54 		nvkm_wr32(device, 0x405810, gr->zbc_color[zbc].ds[3]);
55 	}
56 	nvkm_wr32(device, 0x405814, gr->zbc_color[zbc].format);
57 	nvkm_wr32(device, 0x405820, zbc);
58 	nvkm_wr32(device, 0x405824, 0x00000004); /* TRIGGER | WRITE | COLOR */
59 }
60 
61 static int
62 gf100_gr_zbc_color_get(struct gf100_gr *gr, int format,
63 		       const u32 ds[4], const u32 l2[4])
64 {
65 	struct nvkm_ltc *ltc = gr->base.engine.subdev.device->ltc;
66 	int zbc = -ENOSPC, i;
67 
68 	for (i = ltc->zbc_min; i <= ltc->zbc_max; i++) {
69 		if (gr->zbc_color[i].format) {
70 			if (gr->zbc_color[i].format != format)
71 				continue;
72 			if (memcmp(gr->zbc_color[i].ds, ds, sizeof(
73 				   gr->zbc_color[i].ds)))
74 				continue;
75 			if (memcmp(gr->zbc_color[i].l2, l2, sizeof(
76 				   gr->zbc_color[i].l2))) {
77 				WARN_ON(1);
78 				return -EINVAL;
79 			}
80 			return i;
81 		} else {
82 			zbc = (zbc < 0) ? i : zbc;
83 		}
84 	}
85 
86 	if (zbc < 0)
87 		return zbc;
88 
89 	memcpy(gr->zbc_color[zbc].ds, ds, sizeof(gr->zbc_color[zbc].ds));
90 	memcpy(gr->zbc_color[zbc].l2, l2, sizeof(gr->zbc_color[zbc].l2));
91 	gr->zbc_color[zbc].format = format;
92 	nvkm_ltc_zbc_color_get(ltc, zbc, l2);
93 	gf100_gr_zbc_clear_color(gr, zbc);
94 	return zbc;
95 }
96 
97 static void
98 gf100_gr_zbc_clear_depth(struct gf100_gr *gr, int zbc)
99 {
100 	struct nvkm_device *device = gr->base.engine.subdev.device;
101 	if (gr->zbc_depth[zbc].format)
102 		nvkm_wr32(device, 0x405818, gr->zbc_depth[zbc].ds);
103 	nvkm_wr32(device, 0x40581c, gr->zbc_depth[zbc].format);
104 	nvkm_wr32(device, 0x405820, zbc);
105 	nvkm_wr32(device, 0x405824, 0x00000005); /* TRIGGER | WRITE | DEPTH */
106 }
107 
108 static int
109 gf100_gr_zbc_depth_get(struct gf100_gr *gr, int format,
110 		       const u32 ds, const u32 l2)
111 {
112 	struct nvkm_ltc *ltc = gr->base.engine.subdev.device->ltc;
113 	int zbc = -ENOSPC, i;
114 
115 	for (i = ltc->zbc_min; i <= ltc->zbc_max; i++) {
116 		if (gr->zbc_depth[i].format) {
117 			if (gr->zbc_depth[i].format != format)
118 				continue;
119 			if (gr->zbc_depth[i].ds != ds)
120 				continue;
121 			if (gr->zbc_depth[i].l2 != l2) {
122 				WARN_ON(1);
123 				return -EINVAL;
124 			}
125 			return i;
126 		} else {
127 			zbc = (zbc < 0) ? i : zbc;
128 		}
129 	}
130 
131 	if (zbc < 0)
132 		return zbc;
133 
134 	gr->zbc_depth[zbc].format = format;
135 	gr->zbc_depth[zbc].ds = ds;
136 	gr->zbc_depth[zbc].l2 = l2;
137 	nvkm_ltc_zbc_depth_get(ltc, zbc, l2);
138 	gf100_gr_zbc_clear_depth(gr, zbc);
139 	return zbc;
140 }
141 
142 /*******************************************************************************
143  * Graphics object classes
144  ******************************************************************************/
145 #define gf100_gr_object(p) container_of((p), struct gf100_gr_object, object)
146 
147 struct gf100_gr_object {
148 	struct nvkm_object object;
149 	struct gf100_gr_chan *chan;
150 };
151 
152 static int
153 gf100_fermi_mthd_zbc_color(struct nvkm_object *object, void *data, u32 size)
154 {
155 	struct gf100_gr *gr = gf100_gr(nvkm_gr(object->engine));
156 	union {
157 		struct fermi_a_zbc_color_v0 v0;
158 	} *args = data;
159 	int ret = -ENOSYS;
160 
161 	if (!(ret = nvif_unpack(ret, &data, &size, args->v0, 0, 0, false))) {
162 		switch (args->v0.format) {
163 		case FERMI_A_ZBC_COLOR_V0_FMT_ZERO:
164 		case FERMI_A_ZBC_COLOR_V0_FMT_UNORM_ONE:
165 		case FERMI_A_ZBC_COLOR_V0_FMT_RF32_GF32_BF32_AF32:
166 		case FERMI_A_ZBC_COLOR_V0_FMT_R16_G16_B16_A16:
167 		case FERMI_A_ZBC_COLOR_V0_FMT_RN16_GN16_BN16_AN16:
168 		case FERMI_A_ZBC_COLOR_V0_FMT_RS16_GS16_BS16_AS16:
169 		case FERMI_A_ZBC_COLOR_V0_FMT_RU16_GU16_BU16_AU16:
170 		case FERMI_A_ZBC_COLOR_V0_FMT_RF16_GF16_BF16_AF16:
171 		case FERMI_A_ZBC_COLOR_V0_FMT_A8R8G8B8:
172 		case FERMI_A_ZBC_COLOR_V0_FMT_A8RL8GL8BL8:
173 		case FERMI_A_ZBC_COLOR_V0_FMT_A2B10G10R10:
174 		case FERMI_A_ZBC_COLOR_V0_FMT_AU2BU10GU10RU10:
175 		case FERMI_A_ZBC_COLOR_V0_FMT_A8B8G8R8:
176 		case FERMI_A_ZBC_COLOR_V0_FMT_A8BL8GL8RL8:
177 		case FERMI_A_ZBC_COLOR_V0_FMT_AN8BN8GN8RN8:
178 		case FERMI_A_ZBC_COLOR_V0_FMT_AS8BS8GS8RS8:
179 		case FERMI_A_ZBC_COLOR_V0_FMT_AU8BU8GU8RU8:
180 		case FERMI_A_ZBC_COLOR_V0_FMT_A2R10G10B10:
181 		case FERMI_A_ZBC_COLOR_V0_FMT_BF10GF11RF11:
182 			ret = gf100_gr_zbc_color_get(gr, args->v0.format,
183 							   args->v0.ds,
184 							   args->v0.l2);
185 			if (ret >= 0) {
186 				args->v0.index = ret;
187 				return 0;
188 			}
189 			break;
190 		default:
191 			return -EINVAL;
192 		}
193 	}
194 
195 	return ret;
196 }
197 
198 static int
199 gf100_fermi_mthd_zbc_depth(struct nvkm_object *object, void *data, u32 size)
200 {
201 	struct gf100_gr *gr = gf100_gr(nvkm_gr(object->engine));
202 	union {
203 		struct fermi_a_zbc_depth_v0 v0;
204 	} *args = data;
205 	int ret = -ENOSYS;
206 
207 	if (!(ret = nvif_unpack(ret, &data, &size, args->v0, 0, 0, false))) {
208 		switch (args->v0.format) {
209 		case FERMI_A_ZBC_DEPTH_V0_FMT_FP32:
210 			ret = gf100_gr_zbc_depth_get(gr, args->v0.format,
211 							   args->v0.ds,
212 							   args->v0.l2);
213 			return (ret >= 0) ? 0 : -ENOSPC;
214 		default:
215 			return -EINVAL;
216 		}
217 	}
218 
219 	return ret;
220 }
221 
222 static int
223 gf100_fermi_mthd(struct nvkm_object *object, u32 mthd, void *data, u32 size)
224 {
225 	nvif_ioctl(object, "fermi mthd %08x\n", mthd);
226 	switch (mthd) {
227 	case FERMI_A_ZBC_COLOR:
228 		return gf100_fermi_mthd_zbc_color(object, data, size);
229 	case FERMI_A_ZBC_DEPTH:
230 		return gf100_fermi_mthd_zbc_depth(object, data, size);
231 	default:
232 		break;
233 	}
234 	return -EINVAL;
235 }
236 
237 const struct nvkm_object_func
238 gf100_fermi = {
239 	.mthd = gf100_fermi_mthd,
240 };
241 
242 static void
243 gf100_gr_mthd_set_shader_exceptions(struct nvkm_device *device, u32 data)
244 {
245 	nvkm_wr32(device, 0x419e44, data ? 0xffffffff : 0x00000000);
246 	nvkm_wr32(device, 0x419e4c, data ? 0xffffffff : 0x00000000);
247 }
248 
249 static bool
250 gf100_gr_mthd_sw(struct nvkm_device *device, u16 class, u32 mthd, u32 data)
251 {
252 	switch (class & 0x00ff) {
253 	case 0x97:
254 	case 0xc0:
255 		switch (mthd) {
256 		case 0x1528:
257 			gf100_gr_mthd_set_shader_exceptions(device, data);
258 			return true;
259 		default:
260 			break;
261 		}
262 		break;
263 	default:
264 		break;
265 	}
266 	return false;
267 }
268 
269 static const struct nvkm_object_func
270 gf100_gr_object_func = {
271 };
272 
273 static int
274 gf100_gr_object_new(const struct nvkm_oclass *oclass, void *data, u32 size,
275 		    struct nvkm_object **pobject)
276 {
277 	struct gf100_gr_chan *chan = gf100_gr_chan(oclass->parent);
278 	struct gf100_gr_object *object;
279 
280 	if (!(object = kzalloc(sizeof(*object), GFP_KERNEL)))
281 		return -ENOMEM;
282 	*pobject = &object->object;
283 
284 	nvkm_object_ctor(oclass->base.func ? oclass->base.func :
285 			 &gf100_gr_object_func, oclass, &object->object);
286 	object->chan = chan;
287 	return 0;
288 }
289 
290 static int
291 gf100_gr_object_get(struct nvkm_gr *base, int index, struct nvkm_sclass *sclass)
292 {
293 	struct gf100_gr *gr = gf100_gr(base);
294 	int c = 0;
295 
296 	while (gr->func->sclass[c].oclass) {
297 		if (c++ == index) {
298 			*sclass = gr->func->sclass[index];
299 			sclass->ctor = gf100_gr_object_new;
300 			return index;
301 		}
302 	}
303 
304 	return c;
305 }
306 
307 /*******************************************************************************
308  * PGRAPH context
309  ******************************************************************************/
310 
311 static int
312 gf100_gr_chan_bind(struct nvkm_object *object, struct nvkm_gpuobj *parent,
313 		   int align, struct nvkm_gpuobj **pgpuobj)
314 {
315 	struct gf100_gr_chan *chan = gf100_gr_chan(object);
316 	struct gf100_gr *gr = chan->gr;
317 	int ret, i;
318 
319 	ret = nvkm_gpuobj_new(gr->base.engine.subdev.device, gr->size,
320 			      align, false, parent, pgpuobj);
321 	if (ret)
322 		return ret;
323 
324 	nvkm_kmap(*pgpuobj);
325 	for (i = 0; i < gr->size; i += 4)
326 		nvkm_wo32(*pgpuobj, i, gr->data[i / 4]);
327 
328 	if (!gr->firmware) {
329 		nvkm_wo32(*pgpuobj, 0x00, chan->mmio_nr / 2);
330 		nvkm_wo32(*pgpuobj, 0x04, chan->mmio_vma.offset >> 8);
331 	} else {
332 		nvkm_wo32(*pgpuobj, 0xf4, 0);
333 		nvkm_wo32(*pgpuobj, 0xf8, 0);
334 		nvkm_wo32(*pgpuobj, 0x10, chan->mmio_nr / 2);
335 		nvkm_wo32(*pgpuobj, 0x14, lower_32_bits(chan->mmio_vma.offset));
336 		nvkm_wo32(*pgpuobj, 0x18, upper_32_bits(chan->mmio_vma.offset));
337 		nvkm_wo32(*pgpuobj, 0x1c, 1);
338 		nvkm_wo32(*pgpuobj, 0x20, 0);
339 		nvkm_wo32(*pgpuobj, 0x28, 0);
340 		nvkm_wo32(*pgpuobj, 0x2c, 0);
341 	}
342 	nvkm_done(*pgpuobj);
343 	return 0;
344 }
345 
346 static void *
347 gf100_gr_chan_dtor(struct nvkm_object *object)
348 {
349 	struct gf100_gr_chan *chan = gf100_gr_chan(object);
350 	int i;
351 
352 	for (i = 0; i < ARRAY_SIZE(chan->data); i++) {
353 		if (chan->data[i].vma.node) {
354 			nvkm_vm_unmap(&chan->data[i].vma);
355 			nvkm_vm_put(&chan->data[i].vma);
356 		}
357 		nvkm_memory_del(&chan->data[i].mem);
358 	}
359 
360 	if (chan->mmio_vma.node) {
361 		nvkm_vm_unmap(&chan->mmio_vma);
362 		nvkm_vm_put(&chan->mmio_vma);
363 	}
364 	nvkm_memory_del(&chan->mmio);
365 	return chan;
366 }
367 
368 static const struct nvkm_object_func
369 gf100_gr_chan = {
370 	.dtor = gf100_gr_chan_dtor,
371 	.bind = gf100_gr_chan_bind,
372 };
373 
374 static int
375 gf100_gr_chan_new(struct nvkm_gr *base, struct nvkm_fifo_chan *fifoch,
376 		  const struct nvkm_oclass *oclass,
377 		  struct nvkm_object **pobject)
378 {
379 	struct gf100_gr *gr = gf100_gr(base);
380 	struct gf100_gr_data *data = gr->mmio_data;
381 	struct gf100_gr_mmio *mmio = gr->mmio_list;
382 	struct gf100_gr_chan *chan;
383 	struct nvkm_device *device = gr->base.engine.subdev.device;
384 	int ret, i;
385 
386 	if (!(chan = kzalloc(sizeof(*chan), GFP_KERNEL)))
387 		return -ENOMEM;
388 	nvkm_object_ctor(&gf100_gr_chan, oclass, &chan->object);
389 	chan->gr = gr;
390 	*pobject = &chan->object;
391 
392 	/* allocate memory for a "mmio list" buffer that's used by the HUB
393 	 * fuc to modify some per-context register settings on first load
394 	 * of the context.
395 	 */
396 	ret = nvkm_memory_new(device, NVKM_MEM_TARGET_INST, 0x1000, 0x100,
397 			      false, &chan->mmio);
398 	if (ret)
399 		return ret;
400 
401 	ret = nvkm_vm_get(fifoch->vm, 0x1000, 12, NV_MEM_ACCESS_RW |
402 			  NV_MEM_ACCESS_SYS, &chan->mmio_vma);
403 	if (ret)
404 		return ret;
405 
406 	nvkm_memory_map(chan->mmio, &chan->mmio_vma, 0);
407 
408 	/* allocate buffers referenced by mmio list */
409 	for (i = 0; data->size && i < ARRAY_SIZE(gr->mmio_data); i++) {
410 		ret = nvkm_memory_new(device, NVKM_MEM_TARGET_INST,
411 				      data->size, data->align, false,
412 				      &chan->data[i].mem);
413 		if (ret)
414 			return ret;
415 
416 		ret = nvkm_vm_get(fifoch->vm,
417 				  nvkm_memory_size(chan->data[i].mem), 12,
418 				  data->access, &chan->data[i].vma);
419 		if (ret)
420 			return ret;
421 
422 		nvkm_memory_map(chan->data[i].mem, &chan->data[i].vma, 0);
423 		data++;
424 	}
425 
426 	/* finally, fill in the mmio list and point the context at it */
427 	nvkm_kmap(chan->mmio);
428 	for (i = 0; mmio->addr && i < ARRAY_SIZE(gr->mmio_list); i++) {
429 		u32 addr = mmio->addr;
430 		u32 data = mmio->data;
431 
432 		if (mmio->buffer >= 0) {
433 			u64 info = chan->data[mmio->buffer].vma.offset;
434 			data |= info >> mmio->shift;
435 		}
436 
437 		nvkm_wo32(chan->mmio, chan->mmio_nr++ * 4, addr);
438 		nvkm_wo32(chan->mmio, chan->mmio_nr++ * 4, data);
439 		mmio++;
440 	}
441 	nvkm_done(chan->mmio);
442 	return 0;
443 }
444 
445 /*******************************************************************************
446  * PGRAPH register lists
447  ******************************************************************************/
448 
449 const struct gf100_gr_init
450 gf100_gr_init_main_0[] = {
451 	{ 0x400080,   1, 0x04, 0x003083c2 },
452 	{ 0x400088,   1, 0x04, 0x00006fe7 },
453 	{ 0x40008c,   1, 0x04, 0x00000000 },
454 	{ 0x400090,   1, 0x04, 0x00000030 },
455 	{ 0x40013c,   1, 0x04, 0x013901f7 },
456 	{ 0x400140,   1, 0x04, 0x00000100 },
457 	{ 0x400144,   1, 0x04, 0x00000000 },
458 	{ 0x400148,   1, 0x04, 0x00000110 },
459 	{ 0x400138,   1, 0x04, 0x00000000 },
460 	{ 0x400130,   2, 0x04, 0x00000000 },
461 	{ 0x400124,   1, 0x04, 0x00000002 },
462 	{}
463 };
464 
465 const struct gf100_gr_init
466 gf100_gr_init_fe_0[] = {
467 	{ 0x40415c,   1, 0x04, 0x00000000 },
468 	{ 0x404170,   1, 0x04, 0x00000000 },
469 	{}
470 };
471 
472 const struct gf100_gr_init
473 gf100_gr_init_pri_0[] = {
474 	{ 0x404488,   2, 0x04, 0x00000000 },
475 	{}
476 };
477 
478 const struct gf100_gr_init
479 gf100_gr_init_rstr2d_0[] = {
480 	{ 0x407808,   1, 0x04, 0x00000000 },
481 	{}
482 };
483 
484 const struct gf100_gr_init
485 gf100_gr_init_pd_0[] = {
486 	{ 0x406024,   1, 0x04, 0x00000000 },
487 	{}
488 };
489 
490 const struct gf100_gr_init
491 gf100_gr_init_ds_0[] = {
492 	{ 0x405844,   1, 0x04, 0x00ffffff },
493 	{ 0x405850,   1, 0x04, 0x00000000 },
494 	{ 0x405908,   1, 0x04, 0x00000000 },
495 	{}
496 };
497 
498 const struct gf100_gr_init
499 gf100_gr_init_scc_0[] = {
500 	{ 0x40803c,   1, 0x04, 0x00000000 },
501 	{}
502 };
503 
504 const struct gf100_gr_init
505 gf100_gr_init_prop_0[] = {
506 	{ 0x4184a0,   1, 0x04, 0x00000000 },
507 	{}
508 };
509 
510 const struct gf100_gr_init
511 gf100_gr_init_gpc_unk_0[] = {
512 	{ 0x418604,   1, 0x04, 0x00000000 },
513 	{ 0x418680,   1, 0x04, 0x00000000 },
514 	{ 0x418714,   1, 0x04, 0x80000000 },
515 	{ 0x418384,   1, 0x04, 0x00000000 },
516 	{}
517 };
518 
519 const struct gf100_gr_init
520 gf100_gr_init_setup_0[] = {
521 	{ 0x418814,   3, 0x04, 0x00000000 },
522 	{}
523 };
524 
525 const struct gf100_gr_init
526 gf100_gr_init_crstr_0[] = {
527 	{ 0x418b04,   1, 0x04, 0x00000000 },
528 	{}
529 };
530 
531 const struct gf100_gr_init
532 gf100_gr_init_setup_1[] = {
533 	{ 0x4188c8,   1, 0x04, 0x80000000 },
534 	{ 0x4188cc,   1, 0x04, 0x00000000 },
535 	{ 0x4188d0,   1, 0x04, 0x00010000 },
536 	{ 0x4188d4,   1, 0x04, 0x00000001 },
537 	{}
538 };
539 
540 const struct gf100_gr_init
541 gf100_gr_init_zcull_0[] = {
542 	{ 0x418910,   1, 0x04, 0x00010001 },
543 	{ 0x418914,   1, 0x04, 0x00000301 },
544 	{ 0x418918,   1, 0x04, 0x00800000 },
545 	{ 0x418980,   1, 0x04, 0x77777770 },
546 	{ 0x418984,   3, 0x04, 0x77777777 },
547 	{}
548 };
549 
550 const struct gf100_gr_init
551 gf100_gr_init_gpm_0[] = {
552 	{ 0x418c04,   1, 0x04, 0x00000000 },
553 	{ 0x418c88,   1, 0x04, 0x00000000 },
554 	{}
555 };
556 
557 const struct gf100_gr_init
558 gf100_gr_init_gpc_unk_1[] = {
559 	{ 0x418d00,   1, 0x04, 0x00000000 },
560 	{ 0x418f08,   1, 0x04, 0x00000000 },
561 	{ 0x418e00,   1, 0x04, 0x00000050 },
562 	{ 0x418e08,   1, 0x04, 0x00000000 },
563 	{}
564 };
565 
566 const struct gf100_gr_init
567 gf100_gr_init_gcc_0[] = {
568 	{ 0x41900c,   1, 0x04, 0x00000000 },
569 	{ 0x419018,   1, 0x04, 0x00000000 },
570 	{}
571 };
572 
573 const struct gf100_gr_init
574 gf100_gr_init_tpccs_0[] = {
575 	{ 0x419d08,   2, 0x04, 0x00000000 },
576 	{ 0x419d10,   1, 0x04, 0x00000014 },
577 	{}
578 };
579 
580 const struct gf100_gr_init
581 gf100_gr_init_tex_0[] = {
582 	{ 0x419ab0,   1, 0x04, 0x00000000 },
583 	{ 0x419ab8,   1, 0x04, 0x000000e7 },
584 	{ 0x419abc,   2, 0x04, 0x00000000 },
585 	{}
586 };
587 
588 const struct gf100_gr_init
589 gf100_gr_init_pe_0[] = {
590 	{ 0x41980c,   3, 0x04, 0x00000000 },
591 	{ 0x419844,   1, 0x04, 0x00000000 },
592 	{ 0x41984c,   1, 0x04, 0x00005bc5 },
593 	{ 0x419850,   4, 0x04, 0x00000000 },
594 	{}
595 };
596 
597 const struct gf100_gr_init
598 gf100_gr_init_l1c_0[] = {
599 	{ 0x419c98,   1, 0x04, 0x00000000 },
600 	{ 0x419ca8,   1, 0x04, 0x80000000 },
601 	{ 0x419cb4,   1, 0x04, 0x00000000 },
602 	{ 0x419cb8,   1, 0x04, 0x00008bf4 },
603 	{ 0x419cbc,   1, 0x04, 0x28137606 },
604 	{ 0x419cc0,   2, 0x04, 0x00000000 },
605 	{}
606 };
607 
608 const struct gf100_gr_init
609 gf100_gr_init_wwdx_0[] = {
610 	{ 0x419bd4,   1, 0x04, 0x00800000 },
611 	{ 0x419bdc,   1, 0x04, 0x00000000 },
612 	{}
613 };
614 
615 const struct gf100_gr_init
616 gf100_gr_init_tpccs_1[] = {
617 	{ 0x419d2c,   1, 0x04, 0x00000000 },
618 	{}
619 };
620 
621 const struct gf100_gr_init
622 gf100_gr_init_mpc_0[] = {
623 	{ 0x419c0c,   1, 0x04, 0x00000000 },
624 	{}
625 };
626 
627 static const struct gf100_gr_init
628 gf100_gr_init_sm_0[] = {
629 	{ 0x419e00,   1, 0x04, 0x00000000 },
630 	{ 0x419ea0,   1, 0x04, 0x00000000 },
631 	{ 0x419ea4,   1, 0x04, 0x00000100 },
632 	{ 0x419ea8,   1, 0x04, 0x00001100 },
633 	{ 0x419eac,   1, 0x04, 0x11100702 },
634 	{ 0x419eb0,   1, 0x04, 0x00000003 },
635 	{ 0x419eb4,   4, 0x04, 0x00000000 },
636 	{ 0x419ec8,   1, 0x04, 0x06060618 },
637 	{ 0x419ed0,   1, 0x04, 0x0eff0e38 },
638 	{ 0x419ed4,   1, 0x04, 0x011104f1 },
639 	{ 0x419edc,   1, 0x04, 0x00000000 },
640 	{ 0x419f00,   1, 0x04, 0x00000000 },
641 	{ 0x419f2c,   1, 0x04, 0x00000000 },
642 	{}
643 };
644 
645 const struct gf100_gr_init
646 gf100_gr_init_be_0[] = {
647 	{ 0x40880c,   1, 0x04, 0x00000000 },
648 	{ 0x408910,   9, 0x04, 0x00000000 },
649 	{ 0x408950,   1, 0x04, 0x00000000 },
650 	{ 0x408954,   1, 0x04, 0x0000ffff },
651 	{ 0x408984,   1, 0x04, 0x00000000 },
652 	{ 0x408988,   1, 0x04, 0x08040201 },
653 	{ 0x40898c,   1, 0x04, 0x80402010 },
654 	{}
655 };
656 
657 const struct gf100_gr_init
658 gf100_gr_init_fe_1[] = {
659 	{ 0x4040f0,   1, 0x04, 0x00000000 },
660 	{}
661 };
662 
663 const struct gf100_gr_init
664 gf100_gr_init_pe_1[] = {
665 	{ 0x419880,   1, 0x04, 0x00000002 },
666 	{}
667 };
668 
669 static const struct gf100_gr_pack
670 gf100_gr_pack_mmio[] = {
671 	{ gf100_gr_init_main_0 },
672 	{ gf100_gr_init_fe_0 },
673 	{ gf100_gr_init_pri_0 },
674 	{ gf100_gr_init_rstr2d_0 },
675 	{ gf100_gr_init_pd_0 },
676 	{ gf100_gr_init_ds_0 },
677 	{ gf100_gr_init_scc_0 },
678 	{ gf100_gr_init_prop_0 },
679 	{ gf100_gr_init_gpc_unk_0 },
680 	{ gf100_gr_init_setup_0 },
681 	{ gf100_gr_init_crstr_0 },
682 	{ gf100_gr_init_setup_1 },
683 	{ gf100_gr_init_zcull_0 },
684 	{ gf100_gr_init_gpm_0 },
685 	{ gf100_gr_init_gpc_unk_1 },
686 	{ gf100_gr_init_gcc_0 },
687 	{ gf100_gr_init_tpccs_0 },
688 	{ gf100_gr_init_tex_0 },
689 	{ gf100_gr_init_pe_0 },
690 	{ gf100_gr_init_l1c_0 },
691 	{ gf100_gr_init_wwdx_0 },
692 	{ gf100_gr_init_tpccs_1 },
693 	{ gf100_gr_init_mpc_0 },
694 	{ gf100_gr_init_sm_0 },
695 	{ gf100_gr_init_be_0 },
696 	{ gf100_gr_init_fe_1 },
697 	{ gf100_gr_init_pe_1 },
698 	{}
699 };
700 
701 /*******************************************************************************
702  * PGRAPH engine/subdev functions
703  ******************************************************************************/
704 
705 void
706 gf100_gr_zbc_init(struct gf100_gr *gr)
707 {
708 	const u32  zero[] = { 0x00000000, 0x00000000, 0x00000000, 0x00000000,
709 			      0x00000000, 0x00000000, 0x00000000, 0x00000000 };
710 	const u32   one[] = { 0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000,
711 			      0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff };
712 	const u32 f32_0[] = { 0x00000000, 0x00000000, 0x00000000, 0x00000000,
713 			      0x00000000, 0x00000000, 0x00000000, 0x00000000 };
714 	const u32 f32_1[] = { 0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000,
715 			      0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000 };
716 	struct nvkm_ltc *ltc = gr->base.engine.subdev.device->ltc;
717 	int index;
718 
719 	if (!gr->zbc_color[0].format) {
720 		gf100_gr_zbc_color_get(gr, 1,  & zero[0],   &zero[4]);
721 		gf100_gr_zbc_color_get(gr, 2,  &  one[0],    &one[4]);
722 		gf100_gr_zbc_color_get(gr, 4,  &f32_0[0],  &f32_0[4]);
723 		gf100_gr_zbc_color_get(gr, 4,  &f32_1[0],  &f32_1[4]);
724 		gf100_gr_zbc_depth_get(gr, 1, 0x00000000, 0x00000000);
725 		gf100_gr_zbc_depth_get(gr, 1, 0x3f800000, 0x3f800000);
726 	}
727 
728 	for (index = ltc->zbc_min; index <= ltc->zbc_max; index++)
729 		gf100_gr_zbc_clear_color(gr, index);
730 	for (index = ltc->zbc_min; index <= ltc->zbc_max; index++)
731 		gf100_gr_zbc_clear_depth(gr, index);
732 }
733 
734 /**
735  * Wait until GR goes idle. GR is considered idle if it is disabled by the
736  * MC (0x200) register, or GR is not busy and a context switch is not in
737  * progress.
738  */
739 int
740 gf100_gr_wait_idle(struct gf100_gr *gr)
741 {
742 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
743 	struct nvkm_device *device = subdev->device;
744 	unsigned long end_jiffies = jiffies + msecs_to_jiffies(2000);
745 	bool gr_enabled, ctxsw_active, gr_busy;
746 
747 	do {
748 		/*
749 		 * required to make sure FIFO_ENGINE_STATUS (0x2640) is
750 		 * up-to-date
751 		 */
752 		nvkm_rd32(device, 0x400700);
753 
754 		gr_enabled = nvkm_rd32(device, 0x200) & 0x1000;
755 		ctxsw_active = nvkm_rd32(device, 0x2640) & 0x8000;
756 		gr_busy = nvkm_rd32(device, 0x40060c) & 0x1;
757 
758 		if (!gr_enabled || (!gr_busy && !ctxsw_active))
759 			return 0;
760 	} while (time_before(jiffies, end_jiffies));
761 
762 	nvkm_error(subdev,
763 		   "wait for idle timeout (en: %d, ctxsw: %d, busy: %d)\n",
764 		   gr_enabled, ctxsw_active, gr_busy);
765 	return -EAGAIN;
766 }
767 
768 void
769 gf100_gr_mmio(struct gf100_gr *gr, const struct gf100_gr_pack *p)
770 {
771 	struct nvkm_device *device = gr->base.engine.subdev.device;
772 	const struct gf100_gr_pack *pack;
773 	const struct gf100_gr_init *init;
774 
775 	pack_for_each_init(init, pack, p) {
776 		u32 next = init->addr + init->count * init->pitch;
777 		u32 addr = init->addr;
778 		while (addr < next) {
779 			nvkm_wr32(device, addr, init->data);
780 			addr += init->pitch;
781 		}
782 	}
783 }
784 
785 void
786 gf100_gr_icmd(struct gf100_gr *gr, const struct gf100_gr_pack *p)
787 {
788 	struct nvkm_device *device = gr->base.engine.subdev.device;
789 	const struct gf100_gr_pack *pack;
790 	const struct gf100_gr_init *init;
791 	u32 data = 0;
792 
793 	nvkm_wr32(device, 0x400208, 0x80000000);
794 
795 	pack_for_each_init(init, pack, p) {
796 		u32 next = init->addr + init->count * init->pitch;
797 		u32 addr = init->addr;
798 
799 		if ((pack == p && init == p->init) || data != init->data) {
800 			nvkm_wr32(device, 0x400204, init->data);
801 			data = init->data;
802 		}
803 
804 		while (addr < next) {
805 			nvkm_wr32(device, 0x400200, addr);
806 			/**
807 			 * Wait for GR to go idle after submitting a
808 			 * GO_IDLE bundle
809 			 */
810 			if ((addr & 0xffff) == 0xe100)
811 				gf100_gr_wait_idle(gr);
812 			nvkm_msec(device, 2000,
813 				if (!(nvkm_rd32(device, 0x400700) & 0x00000004))
814 					break;
815 			);
816 			addr += init->pitch;
817 		}
818 	}
819 
820 	nvkm_wr32(device, 0x400208, 0x00000000);
821 }
822 
823 void
824 gf100_gr_mthd(struct gf100_gr *gr, const struct gf100_gr_pack *p)
825 {
826 	struct nvkm_device *device = gr->base.engine.subdev.device;
827 	const struct gf100_gr_pack *pack;
828 	const struct gf100_gr_init *init;
829 	u32 data = 0;
830 
831 	pack_for_each_init(init, pack, p) {
832 		u32 ctrl = 0x80000000 | pack->type;
833 		u32 next = init->addr + init->count * init->pitch;
834 		u32 addr = init->addr;
835 
836 		if ((pack == p && init == p->init) || data != init->data) {
837 			nvkm_wr32(device, 0x40448c, init->data);
838 			data = init->data;
839 		}
840 
841 		while (addr < next) {
842 			nvkm_wr32(device, 0x404488, ctrl | (addr << 14));
843 			addr += init->pitch;
844 		}
845 	}
846 }
847 
848 u64
849 gf100_gr_units(struct nvkm_gr *base)
850 {
851 	struct gf100_gr *gr = gf100_gr(base);
852 	u64 cfg;
853 
854 	cfg  = (u32)gr->gpc_nr;
855 	cfg |= (u32)gr->tpc_total << 8;
856 	cfg |= (u64)gr->rop_nr << 32;
857 
858 	return cfg;
859 }
860 
861 static const struct nvkm_bitfield gf100_dispatch_error[] = {
862 	{ 0x00000001, "INJECTED_BUNDLE_ERROR" },
863 	{ 0x00000002, "CLASS_SUBCH_MISMATCH" },
864 	{ 0x00000004, "SUBCHSW_DURING_NOTIFY" },
865 	{}
866 };
867 
868 static const struct nvkm_bitfield gf100_m2mf_error[] = {
869 	{ 0x00000001, "PUSH_TOO_MUCH_DATA" },
870 	{ 0x00000002, "PUSH_NOT_ENOUGH_DATA" },
871 	{}
872 };
873 
874 static const struct nvkm_bitfield gf100_unk6_error[] = {
875 	{ 0x00000001, "TEMP_TOO_SMALL" },
876 	{}
877 };
878 
879 static const struct nvkm_bitfield gf100_ccache_error[] = {
880 	{ 0x00000001, "INTR" },
881 	{ 0x00000002, "LDCONST_OOB" },
882 	{}
883 };
884 
885 static const struct nvkm_bitfield gf100_macro_error[] = {
886 	{ 0x00000001, "TOO_FEW_PARAMS" },
887 	{ 0x00000002, "TOO_MANY_PARAMS" },
888 	{ 0x00000004, "ILLEGAL_OPCODE" },
889 	{ 0x00000008, "DOUBLE_BRANCH" },
890 	{ 0x00000010, "WATCHDOG" },
891 	{}
892 };
893 
894 static const struct nvkm_bitfield gk104_sked_error[] = {
895 	{ 0x00000040, "CTA_RESUME" },
896 	{ 0x00000080, "CONSTANT_BUFFER_SIZE" },
897 	{ 0x00000200, "LOCAL_MEMORY_SIZE_POS" },
898 	{ 0x00000400, "LOCAL_MEMORY_SIZE_NEG" },
899 	{ 0x00000800, "WARP_CSTACK_SIZE" },
900 	{ 0x00001000, "TOTAL_TEMP_SIZE" },
901 	{ 0x00002000, "REGISTER_COUNT" },
902 	{ 0x00040000, "TOTAL_THREADS" },
903 	{ 0x00100000, "PROGRAM_OFFSET" },
904 	{ 0x00200000, "SHARED_MEMORY_SIZE" },
905 	{ 0x00800000, "CTA_THREAD_DIMENSION_ZERO" },
906 	{ 0x01000000, "MEMORY_WINDOW_OVERLAP" },
907 	{ 0x02000000, "SHARED_CONFIG_TOO_SMALL" },
908 	{ 0x04000000, "TOTAL_REGISTER_COUNT" },
909 	{}
910 };
911 
912 static const struct nvkm_bitfield gf100_gpc_rop_error[] = {
913 	{ 0x00000002, "RT_PITCH_OVERRUN" },
914 	{ 0x00000010, "RT_WIDTH_OVERRUN" },
915 	{ 0x00000020, "RT_HEIGHT_OVERRUN" },
916 	{ 0x00000080, "ZETA_STORAGE_TYPE_MISMATCH" },
917 	{ 0x00000100, "RT_STORAGE_TYPE_MISMATCH" },
918 	{ 0x00000400, "RT_LINEAR_MISMATCH" },
919 	{}
920 };
921 
922 static void
923 gf100_gr_trap_gpc_rop(struct gf100_gr *gr, int gpc)
924 {
925 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
926 	struct nvkm_device *device = subdev->device;
927 	char error[128];
928 	u32 trap[4];
929 
930 	trap[0] = nvkm_rd32(device, GPC_UNIT(gpc, 0x0420)) & 0x3fffffff;
931 	trap[1] = nvkm_rd32(device, GPC_UNIT(gpc, 0x0434));
932 	trap[2] = nvkm_rd32(device, GPC_UNIT(gpc, 0x0438));
933 	trap[3] = nvkm_rd32(device, GPC_UNIT(gpc, 0x043c));
934 
935 	nvkm_snprintbf(error, sizeof(error), gf100_gpc_rop_error, trap[0]);
936 
937 	nvkm_error(subdev, "GPC%d/PROP trap: %08x [%s] x = %u, y = %u, "
938 			   "format = %x, storage type = %x\n",
939 		   gpc, trap[0], error, trap[1] & 0xffff, trap[1] >> 16,
940 		   (trap[2] >> 8) & 0x3f, trap[3] & 0xff);
941 	nvkm_wr32(device, GPC_UNIT(gpc, 0x0420), 0xc0000000);
942 }
943 
944 static const struct nvkm_enum gf100_mp_warp_error[] = {
945 	{ 0x00, "NO_ERROR" },
946 	{ 0x01, "STACK_MISMATCH" },
947 	{ 0x05, "MISALIGNED_PC" },
948 	{ 0x08, "MISALIGNED_GPR" },
949 	{ 0x09, "INVALID_OPCODE" },
950 	{ 0x0d, "GPR_OUT_OF_BOUNDS" },
951 	{ 0x0e, "MEM_OUT_OF_BOUNDS" },
952 	{ 0x0f, "UNALIGNED_MEM_ACCESS" },
953 	{ 0x10, "INVALID_ADDR_SPACE" },
954 	{ 0x11, "INVALID_PARAM" },
955 	{}
956 };
957 
958 static const struct nvkm_bitfield gf100_mp_global_error[] = {
959 	{ 0x00000004, "MULTIPLE_WARP_ERRORS" },
960 	{ 0x00000008, "OUT_OF_STACK_SPACE" },
961 	{}
962 };
963 
964 static void
965 gf100_gr_trap_mp(struct gf100_gr *gr, int gpc, int tpc)
966 {
967 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
968 	struct nvkm_device *device = subdev->device;
969 	u32 werr = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x648));
970 	u32 gerr = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x650));
971 	const struct nvkm_enum *warp;
972 	char glob[128];
973 
974 	nvkm_snprintbf(glob, sizeof(glob), gf100_mp_global_error, gerr);
975 	warp = nvkm_enum_find(gf100_mp_warp_error, werr & 0xffff);
976 
977 	nvkm_error(subdev, "GPC%i/TPC%i/MP trap: "
978 			   "global %08x [%s] warp %04x [%s]\n",
979 		   gpc, tpc, gerr, glob, werr, warp ? warp->name : "");
980 
981 	nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x648), 0x00000000);
982 	nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x650), gerr);
983 }
984 
985 static void
986 gf100_gr_trap_tpc(struct gf100_gr *gr, int gpc, int tpc)
987 {
988 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
989 	struct nvkm_device *device = subdev->device;
990 	u32 stat = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x0508));
991 
992 	if (stat & 0x00000001) {
993 		u32 trap = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x0224));
994 		nvkm_error(subdev, "GPC%d/TPC%d/TEX: %08x\n", gpc, tpc, trap);
995 		nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x0224), 0xc0000000);
996 		stat &= ~0x00000001;
997 	}
998 
999 	if (stat & 0x00000002) {
1000 		gf100_gr_trap_mp(gr, gpc, tpc);
1001 		stat &= ~0x00000002;
1002 	}
1003 
1004 	if (stat & 0x00000004) {
1005 		u32 trap = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x0084));
1006 		nvkm_error(subdev, "GPC%d/TPC%d/POLY: %08x\n", gpc, tpc, trap);
1007 		nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x0084), 0xc0000000);
1008 		stat &= ~0x00000004;
1009 	}
1010 
1011 	if (stat & 0x00000008) {
1012 		u32 trap = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x048c));
1013 		nvkm_error(subdev, "GPC%d/TPC%d/L1C: %08x\n", gpc, tpc, trap);
1014 		nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x048c), 0xc0000000);
1015 		stat &= ~0x00000008;
1016 	}
1017 
1018 	if (stat) {
1019 		nvkm_error(subdev, "GPC%d/TPC%d/%08x: unknown\n", gpc, tpc, stat);
1020 	}
1021 }
1022 
1023 static void
1024 gf100_gr_trap_gpc(struct gf100_gr *gr, int gpc)
1025 {
1026 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1027 	struct nvkm_device *device = subdev->device;
1028 	u32 stat = nvkm_rd32(device, GPC_UNIT(gpc, 0x2c90));
1029 	int tpc;
1030 
1031 	if (stat & 0x00000001) {
1032 		gf100_gr_trap_gpc_rop(gr, gpc);
1033 		stat &= ~0x00000001;
1034 	}
1035 
1036 	if (stat & 0x00000002) {
1037 		u32 trap = nvkm_rd32(device, GPC_UNIT(gpc, 0x0900));
1038 		nvkm_error(subdev, "GPC%d/ZCULL: %08x\n", gpc, trap);
1039 		nvkm_wr32(device, GPC_UNIT(gpc, 0x0900), 0xc0000000);
1040 		stat &= ~0x00000002;
1041 	}
1042 
1043 	if (stat & 0x00000004) {
1044 		u32 trap = nvkm_rd32(device, GPC_UNIT(gpc, 0x1028));
1045 		nvkm_error(subdev, "GPC%d/CCACHE: %08x\n", gpc, trap);
1046 		nvkm_wr32(device, GPC_UNIT(gpc, 0x1028), 0xc0000000);
1047 		stat &= ~0x00000004;
1048 	}
1049 
1050 	if (stat & 0x00000008) {
1051 		u32 trap = nvkm_rd32(device, GPC_UNIT(gpc, 0x0824));
1052 		nvkm_error(subdev, "GPC%d/ESETUP: %08x\n", gpc, trap);
1053 		nvkm_wr32(device, GPC_UNIT(gpc, 0x0824), 0xc0000000);
1054 		stat &= ~0x00000009;
1055 	}
1056 
1057 	for (tpc = 0; tpc < gr->tpc_nr[gpc]; tpc++) {
1058 		u32 mask = 0x00010000 << tpc;
1059 		if (stat & mask) {
1060 			gf100_gr_trap_tpc(gr, gpc, tpc);
1061 			nvkm_wr32(device, GPC_UNIT(gpc, 0x2c90), mask);
1062 			stat &= ~mask;
1063 		}
1064 	}
1065 
1066 	if (stat) {
1067 		nvkm_error(subdev, "GPC%d/%08x: unknown\n", gpc, stat);
1068 	}
1069 }
1070 
1071 static void
1072 gf100_gr_trap_intr(struct gf100_gr *gr)
1073 {
1074 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1075 	struct nvkm_device *device = subdev->device;
1076 	char error[128];
1077 	u32 trap = nvkm_rd32(device, 0x400108);
1078 	int rop, gpc;
1079 
1080 	if (trap & 0x00000001) {
1081 		u32 stat = nvkm_rd32(device, 0x404000);
1082 
1083 		nvkm_snprintbf(error, sizeof(error), gf100_dispatch_error,
1084 			       stat & 0x3fffffff);
1085 		nvkm_error(subdev, "DISPATCH %08x [%s]\n", stat, error);
1086 		nvkm_wr32(device, 0x404000, 0xc0000000);
1087 		nvkm_wr32(device, 0x400108, 0x00000001);
1088 		trap &= ~0x00000001;
1089 	}
1090 
1091 	if (trap & 0x00000002) {
1092 		u32 stat = nvkm_rd32(device, 0x404600);
1093 
1094 		nvkm_snprintbf(error, sizeof(error), gf100_m2mf_error,
1095 			       stat & 0x3fffffff);
1096 		nvkm_error(subdev, "M2MF %08x [%s]\n", stat, error);
1097 
1098 		nvkm_wr32(device, 0x404600, 0xc0000000);
1099 		nvkm_wr32(device, 0x400108, 0x00000002);
1100 		trap &= ~0x00000002;
1101 	}
1102 
1103 	if (trap & 0x00000008) {
1104 		u32 stat = nvkm_rd32(device, 0x408030);
1105 
1106 		nvkm_snprintbf(error, sizeof(error), gf100_m2mf_error,
1107 			       stat & 0x3fffffff);
1108 		nvkm_error(subdev, "CCACHE %08x [%s]\n", stat, error);
1109 		nvkm_wr32(device, 0x408030, 0xc0000000);
1110 		nvkm_wr32(device, 0x400108, 0x00000008);
1111 		trap &= ~0x00000008;
1112 	}
1113 
1114 	if (trap & 0x00000010) {
1115 		u32 stat = nvkm_rd32(device, 0x405840);
1116 		nvkm_error(subdev, "SHADER %08x, sph: 0x%06x, stage: 0x%02x\n",
1117 			   stat, stat & 0xffffff, (stat >> 24) & 0x3f);
1118 		nvkm_wr32(device, 0x405840, 0xc0000000);
1119 		nvkm_wr32(device, 0x400108, 0x00000010);
1120 		trap &= ~0x00000010;
1121 	}
1122 
1123 	if (trap & 0x00000040) {
1124 		u32 stat = nvkm_rd32(device, 0x40601c);
1125 
1126 		nvkm_snprintbf(error, sizeof(error), gf100_unk6_error,
1127 			       stat & 0x3fffffff);
1128 		nvkm_error(subdev, "UNK6 %08x [%s]\n", stat, error);
1129 
1130 		nvkm_wr32(device, 0x40601c, 0xc0000000);
1131 		nvkm_wr32(device, 0x400108, 0x00000040);
1132 		trap &= ~0x00000040;
1133 	}
1134 
1135 	if (trap & 0x00000080) {
1136 		u32 stat = nvkm_rd32(device, 0x404490);
1137 		u32 pc = nvkm_rd32(device, 0x404494);
1138 		u32 op = nvkm_rd32(device, 0x40449c);
1139 
1140 		nvkm_snprintbf(error, sizeof(error), gf100_macro_error,
1141 			       stat & 0x1fffffff);
1142 		nvkm_error(subdev, "MACRO %08x [%s], pc: 0x%03x%s, op: 0x%08x\n",
1143 			   stat, error, pc & 0x7ff,
1144 			   (pc & 0x10000000) ? "" : " (invalid)",
1145 			   op);
1146 
1147 		nvkm_wr32(device, 0x404490, 0xc0000000);
1148 		nvkm_wr32(device, 0x400108, 0x00000080);
1149 		trap &= ~0x00000080;
1150 	}
1151 
1152 	if (trap & 0x00000100) {
1153 		u32 stat = nvkm_rd32(device, 0x407020) & 0x3fffffff;
1154 
1155 		nvkm_snprintbf(error, sizeof(error), gk104_sked_error, stat);
1156 		nvkm_error(subdev, "SKED: %08x [%s]\n", stat, error);
1157 
1158 		if (stat)
1159 			nvkm_wr32(device, 0x407020, 0x40000000);
1160 		nvkm_wr32(device, 0x400108, 0x00000100);
1161 		trap &= ~0x00000100;
1162 	}
1163 
1164 	if (trap & 0x01000000) {
1165 		u32 stat = nvkm_rd32(device, 0x400118);
1166 		for (gpc = 0; stat && gpc < gr->gpc_nr; gpc++) {
1167 			u32 mask = 0x00000001 << gpc;
1168 			if (stat & mask) {
1169 				gf100_gr_trap_gpc(gr, gpc);
1170 				nvkm_wr32(device, 0x400118, mask);
1171 				stat &= ~mask;
1172 			}
1173 		}
1174 		nvkm_wr32(device, 0x400108, 0x01000000);
1175 		trap &= ~0x01000000;
1176 	}
1177 
1178 	if (trap & 0x02000000) {
1179 		for (rop = 0; rop < gr->rop_nr; rop++) {
1180 			u32 statz = nvkm_rd32(device, ROP_UNIT(rop, 0x070));
1181 			u32 statc = nvkm_rd32(device, ROP_UNIT(rop, 0x144));
1182 			nvkm_error(subdev, "ROP%d %08x %08x\n",
1183 				 rop, statz, statc);
1184 			nvkm_wr32(device, ROP_UNIT(rop, 0x070), 0xc0000000);
1185 			nvkm_wr32(device, ROP_UNIT(rop, 0x144), 0xc0000000);
1186 		}
1187 		nvkm_wr32(device, 0x400108, 0x02000000);
1188 		trap &= ~0x02000000;
1189 	}
1190 
1191 	if (trap) {
1192 		nvkm_error(subdev, "TRAP UNHANDLED %08x\n", trap);
1193 		nvkm_wr32(device, 0x400108, trap);
1194 	}
1195 }
1196 
1197 static void
1198 gf100_gr_ctxctl_debug_unit(struct gf100_gr *gr, u32 base)
1199 {
1200 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1201 	struct nvkm_device *device = subdev->device;
1202 	nvkm_error(subdev, "%06x - done %08x\n", base,
1203 		   nvkm_rd32(device, base + 0x400));
1204 	nvkm_error(subdev, "%06x - stat %08x %08x %08x %08x\n", base,
1205 		   nvkm_rd32(device, base + 0x800),
1206 		   nvkm_rd32(device, base + 0x804),
1207 		   nvkm_rd32(device, base + 0x808),
1208 		   nvkm_rd32(device, base + 0x80c));
1209 	nvkm_error(subdev, "%06x - stat %08x %08x %08x %08x\n", base,
1210 		   nvkm_rd32(device, base + 0x810),
1211 		   nvkm_rd32(device, base + 0x814),
1212 		   nvkm_rd32(device, base + 0x818),
1213 		   nvkm_rd32(device, base + 0x81c));
1214 }
1215 
1216 void
1217 gf100_gr_ctxctl_debug(struct gf100_gr *gr)
1218 {
1219 	struct nvkm_device *device = gr->base.engine.subdev.device;
1220 	u32 gpcnr = nvkm_rd32(device, 0x409604) & 0xffff;
1221 	u32 gpc;
1222 
1223 	gf100_gr_ctxctl_debug_unit(gr, 0x409000);
1224 	for (gpc = 0; gpc < gpcnr; gpc++)
1225 		gf100_gr_ctxctl_debug_unit(gr, 0x502000 + (gpc * 0x8000));
1226 }
1227 
1228 static void
1229 gf100_gr_ctxctl_isr(struct gf100_gr *gr)
1230 {
1231 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1232 	struct nvkm_device *device = subdev->device;
1233 	u32 stat = nvkm_rd32(device, 0x409c18);
1234 
1235 	if (stat & 0x00000001) {
1236 		u32 code = nvkm_rd32(device, 0x409814);
1237 		if (code == E_BAD_FWMTHD) {
1238 			u32 class = nvkm_rd32(device, 0x409808);
1239 			u32  addr = nvkm_rd32(device, 0x40980c);
1240 			u32  subc = (addr & 0x00070000) >> 16;
1241 			u32  mthd = (addr & 0x00003ffc);
1242 			u32  data = nvkm_rd32(device, 0x409810);
1243 
1244 			nvkm_error(subdev, "FECS MTHD subc %d class %04x "
1245 					   "mthd %04x data %08x\n",
1246 				   subc, class, mthd, data);
1247 
1248 			nvkm_wr32(device, 0x409c20, 0x00000001);
1249 			stat &= ~0x00000001;
1250 		} else {
1251 			nvkm_error(subdev, "FECS ucode error %d\n", code);
1252 		}
1253 	}
1254 
1255 	if (stat & 0x00080000) {
1256 		nvkm_error(subdev, "FECS watchdog timeout\n");
1257 		gf100_gr_ctxctl_debug(gr);
1258 		nvkm_wr32(device, 0x409c20, 0x00080000);
1259 		stat &= ~0x00080000;
1260 	}
1261 
1262 	if (stat) {
1263 		nvkm_error(subdev, "FECS %08x\n", stat);
1264 		gf100_gr_ctxctl_debug(gr);
1265 		nvkm_wr32(device, 0x409c20, stat);
1266 	}
1267 }
1268 
1269 static void
1270 gf100_gr_intr(struct nvkm_gr *base)
1271 {
1272 	struct gf100_gr *gr = gf100_gr(base);
1273 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1274 	struct nvkm_device *device = subdev->device;
1275 	struct nvkm_fifo_chan *chan;
1276 	unsigned long flags;
1277 	u64 inst = nvkm_rd32(device, 0x409b00) & 0x0fffffff;
1278 	u32 stat = nvkm_rd32(device, 0x400100);
1279 	u32 addr = nvkm_rd32(device, 0x400704);
1280 	u32 mthd = (addr & 0x00003ffc);
1281 	u32 subc = (addr & 0x00070000) >> 16;
1282 	u32 data = nvkm_rd32(device, 0x400708);
1283 	u32 code = nvkm_rd32(device, 0x400110);
1284 	u32 class;
1285 	const char *name = "unknown";
1286 	int chid = -1;
1287 
1288 	chan = nvkm_fifo_chan_inst(device->fifo, (u64)inst << 12, &flags);
1289 	if (chan) {
1290 		name = chan->object.client->name;
1291 		chid = chan->chid;
1292 	}
1293 
1294 	if (device->card_type < NV_E0 || subc < 4)
1295 		class = nvkm_rd32(device, 0x404200 + (subc * 4));
1296 	else
1297 		class = 0x0000;
1298 
1299 	if (stat & 0x00000001) {
1300 		/*
1301 		 * notifier interrupt, only needed for cyclestats
1302 		 * can be safely ignored
1303 		 */
1304 		nvkm_wr32(device, 0x400100, 0x00000001);
1305 		stat &= ~0x00000001;
1306 	}
1307 
1308 	if (stat & 0x00000010) {
1309 		if (!gf100_gr_mthd_sw(device, class, mthd, data)) {
1310 			nvkm_error(subdev, "ILLEGAL_MTHD ch %d [%010llx %s] "
1311 				   "subc %d class %04x mthd %04x data %08x\n",
1312 				   chid, inst << 12, name, subc,
1313 				   class, mthd, data);
1314 		}
1315 		nvkm_wr32(device, 0x400100, 0x00000010);
1316 		stat &= ~0x00000010;
1317 	}
1318 
1319 	if (stat & 0x00000020) {
1320 		nvkm_error(subdev, "ILLEGAL_CLASS ch %d [%010llx %s] "
1321 			   "subc %d class %04x mthd %04x data %08x\n",
1322 			   chid, inst << 12, name, subc, class, mthd, data);
1323 		nvkm_wr32(device, 0x400100, 0x00000020);
1324 		stat &= ~0x00000020;
1325 	}
1326 
1327 	if (stat & 0x00100000) {
1328 		const struct nvkm_enum *en =
1329 			nvkm_enum_find(nv50_data_error_names, code);
1330 		nvkm_error(subdev, "DATA_ERROR %08x [%s] ch %d [%010llx %s] "
1331 				   "subc %d class %04x mthd %04x data %08x\n",
1332 			   code, en ? en->name : "", chid, inst << 12,
1333 			   name, subc, class, mthd, data);
1334 		nvkm_wr32(device, 0x400100, 0x00100000);
1335 		stat &= ~0x00100000;
1336 	}
1337 
1338 	if (stat & 0x00200000) {
1339 		nvkm_error(subdev, "TRAP ch %d [%010llx %s]\n",
1340 			   chid, inst << 12, name);
1341 		gf100_gr_trap_intr(gr);
1342 		nvkm_wr32(device, 0x400100, 0x00200000);
1343 		stat &= ~0x00200000;
1344 	}
1345 
1346 	if (stat & 0x00080000) {
1347 		gf100_gr_ctxctl_isr(gr);
1348 		nvkm_wr32(device, 0x400100, 0x00080000);
1349 		stat &= ~0x00080000;
1350 	}
1351 
1352 	if (stat) {
1353 		nvkm_error(subdev, "intr %08x\n", stat);
1354 		nvkm_wr32(device, 0x400100, stat);
1355 	}
1356 
1357 	nvkm_wr32(device, 0x400500, 0x00010001);
1358 	nvkm_fifo_chan_put(device->fifo, flags, &chan);
1359 }
1360 
1361 void
1362 gf100_gr_init_fw(struct gf100_gr *gr, u32 fuc_base,
1363 		 struct gf100_gr_fuc *code, struct gf100_gr_fuc *data)
1364 {
1365 	struct nvkm_device *device = gr->base.engine.subdev.device;
1366 	int i;
1367 
1368 	nvkm_wr32(device, fuc_base + 0x01c0, 0x01000000);
1369 	for (i = 0; i < data->size / 4; i++)
1370 		nvkm_wr32(device, fuc_base + 0x01c4, data->data[i]);
1371 
1372 	nvkm_wr32(device, fuc_base + 0x0180, 0x01000000);
1373 	for (i = 0; i < code->size / 4; i++) {
1374 		if ((i & 0x3f) == 0)
1375 			nvkm_wr32(device, fuc_base + 0x0188, i >> 6);
1376 		nvkm_wr32(device, fuc_base + 0x0184, code->data[i]);
1377 	}
1378 
1379 	/* code must be padded to 0x40 words */
1380 	for (; i & 0x3f; i++)
1381 		nvkm_wr32(device, fuc_base + 0x0184, 0);
1382 }
1383 
1384 static void
1385 gf100_gr_init_csdata(struct gf100_gr *gr,
1386 		     const struct gf100_gr_pack *pack,
1387 		     u32 falcon, u32 starstar, u32 base)
1388 {
1389 	struct nvkm_device *device = gr->base.engine.subdev.device;
1390 	const struct gf100_gr_pack *iter;
1391 	const struct gf100_gr_init *init;
1392 	u32 addr = ~0, prev = ~0, xfer = 0;
1393 	u32 star, temp;
1394 
1395 	nvkm_wr32(device, falcon + 0x01c0, 0x02000000 + starstar);
1396 	star = nvkm_rd32(device, falcon + 0x01c4);
1397 	temp = nvkm_rd32(device, falcon + 0x01c4);
1398 	if (temp > star)
1399 		star = temp;
1400 	nvkm_wr32(device, falcon + 0x01c0, 0x01000000 + star);
1401 
1402 	pack_for_each_init(init, iter, pack) {
1403 		u32 head = init->addr - base;
1404 		u32 tail = head + init->count * init->pitch;
1405 		while (head < tail) {
1406 			if (head != prev + 4 || xfer >= 32) {
1407 				if (xfer) {
1408 					u32 data = ((--xfer << 26) | addr);
1409 					nvkm_wr32(device, falcon + 0x01c4, data);
1410 					star += 4;
1411 				}
1412 				addr = head;
1413 				xfer = 0;
1414 			}
1415 			prev = head;
1416 			xfer = xfer + 1;
1417 			head = head + init->pitch;
1418 		}
1419 	}
1420 
1421 	nvkm_wr32(device, falcon + 0x01c4, (--xfer << 26) | addr);
1422 	nvkm_wr32(device, falcon + 0x01c0, 0x01000004 + starstar);
1423 	nvkm_wr32(device, falcon + 0x01c4, star + 4);
1424 }
1425 
1426 int
1427 gf100_gr_init_ctxctl(struct gf100_gr *gr)
1428 {
1429 	const struct gf100_grctx_func *grctx = gr->func->grctx;
1430 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1431 	struct nvkm_device *device = subdev->device;
1432 	struct nvkm_secboot *sb = device->secboot;
1433 	int i;
1434 
1435 	if (gr->firmware) {
1436 		/* load fuc microcode */
1437 		nvkm_mc_unk260(device->mc, 0);
1438 
1439 		/* securely-managed falcons must be reset using secure boot */
1440 		if (nvkm_secboot_is_managed(sb, NVKM_SECBOOT_FALCON_FECS))
1441 			nvkm_secboot_reset(sb, NVKM_SECBOOT_FALCON_FECS);
1442 		else
1443 			gf100_gr_init_fw(gr, 0x409000, &gr->fuc409c,
1444 					 &gr->fuc409d);
1445 		if (nvkm_secboot_is_managed(sb, NVKM_SECBOOT_FALCON_GPCCS))
1446 			nvkm_secboot_reset(sb, NVKM_SECBOOT_FALCON_GPCCS);
1447 		else
1448 			gf100_gr_init_fw(gr, 0x41a000, &gr->fuc41ac,
1449 					 &gr->fuc41ad);
1450 
1451 		nvkm_mc_unk260(device->mc, 1);
1452 
1453 		/* start both of them running */
1454 		nvkm_wr32(device, 0x409840, 0xffffffff);
1455 		nvkm_wr32(device, 0x41a10c, 0x00000000);
1456 		nvkm_wr32(device, 0x40910c, 0x00000000);
1457 
1458 		if (nvkm_secboot_is_managed(sb, NVKM_SECBOOT_FALCON_GPCCS))
1459 			nvkm_secboot_start(sb, NVKM_SECBOOT_FALCON_GPCCS);
1460 		else
1461 			nvkm_wr32(device, 0x41a100, 0x00000002);
1462 		if (nvkm_secboot_is_managed(sb, NVKM_SECBOOT_FALCON_FECS))
1463 			nvkm_secboot_start(sb, NVKM_SECBOOT_FALCON_FECS);
1464 		else
1465 			nvkm_wr32(device, 0x409100, 0x00000002);
1466 		if (nvkm_msec(device, 2000,
1467 			if (nvkm_rd32(device, 0x409800) & 0x00000001)
1468 				break;
1469 		) < 0)
1470 			return -EBUSY;
1471 
1472 		nvkm_wr32(device, 0x409840, 0xffffffff);
1473 		nvkm_wr32(device, 0x409500, 0x7fffffff);
1474 		nvkm_wr32(device, 0x409504, 0x00000021);
1475 
1476 		nvkm_wr32(device, 0x409840, 0xffffffff);
1477 		nvkm_wr32(device, 0x409500, 0x00000000);
1478 		nvkm_wr32(device, 0x409504, 0x00000010);
1479 		if (nvkm_msec(device, 2000,
1480 			if ((gr->size = nvkm_rd32(device, 0x409800)))
1481 				break;
1482 		) < 0)
1483 			return -EBUSY;
1484 
1485 		nvkm_wr32(device, 0x409840, 0xffffffff);
1486 		nvkm_wr32(device, 0x409500, 0x00000000);
1487 		nvkm_wr32(device, 0x409504, 0x00000016);
1488 		if (nvkm_msec(device, 2000,
1489 			if (nvkm_rd32(device, 0x409800))
1490 				break;
1491 		) < 0)
1492 			return -EBUSY;
1493 
1494 		nvkm_wr32(device, 0x409840, 0xffffffff);
1495 		nvkm_wr32(device, 0x409500, 0x00000000);
1496 		nvkm_wr32(device, 0x409504, 0x00000025);
1497 		if (nvkm_msec(device, 2000,
1498 			if (nvkm_rd32(device, 0x409800))
1499 				break;
1500 		) < 0)
1501 			return -EBUSY;
1502 
1503 		if (device->chipset >= 0xe0) {
1504 			nvkm_wr32(device, 0x409800, 0x00000000);
1505 			nvkm_wr32(device, 0x409500, 0x00000001);
1506 			nvkm_wr32(device, 0x409504, 0x00000030);
1507 			if (nvkm_msec(device, 2000,
1508 				if (nvkm_rd32(device, 0x409800))
1509 					break;
1510 			) < 0)
1511 				return -EBUSY;
1512 
1513 			nvkm_wr32(device, 0x409810, 0xb00095c8);
1514 			nvkm_wr32(device, 0x409800, 0x00000000);
1515 			nvkm_wr32(device, 0x409500, 0x00000001);
1516 			nvkm_wr32(device, 0x409504, 0x00000031);
1517 			if (nvkm_msec(device, 2000,
1518 				if (nvkm_rd32(device, 0x409800))
1519 					break;
1520 			) < 0)
1521 				return -EBUSY;
1522 
1523 			nvkm_wr32(device, 0x409810, 0x00080420);
1524 			nvkm_wr32(device, 0x409800, 0x00000000);
1525 			nvkm_wr32(device, 0x409500, 0x00000001);
1526 			nvkm_wr32(device, 0x409504, 0x00000032);
1527 			if (nvkm_msec(device, 2000,
1528 				if (nvkm_rd32(device, 0x409800))
1529 					break;
1530 			) < 0)
1531 				return -EBUSY;
1532 
1533 			nvkm_wr32(device, 0x409614, 0x00000070);
1534 			nvkm_wr32(device, 0x409614, 0x00000770);
1535 			nvkm_wr32(device, 0x40802c, 0x00000001);
1536 		}
1537 
1538 		if (gr->data == NULL) {
1539 			int ret = gf100_grctx_generate(gr);
1540 			if (ret) {
1541 				nvkm_error(subdev, "failed to construct context\n");
1542 				return ret;
1543 			}
1544 		}
1545 
1546 		return 0;
1547 	} else
1548 	if (!gr->func->fecs.ucode) {
1549 		return -ENOSYS;
1550 	}
1551 
1552 	/* load HUB microcode */
1553 	nvkm_mc_unk260(device->mc, 0);
1554 	nvkm_wr32(device, 0x4091c0, 0x01000000);
1555 	for (i = 0; i < gr->func->fecs.ucode->data.size / 4; i++)
1556 		nvkm_wr32(device, 0x4091c4, gr->func->fecs.ucode->data.data[i]);
1557 
1558 	nvkm_wr32(device, 0x409180, 0x01000000);
1559 	for (i = 0; i < gr->func->fecs.ucode->code.size / 4; i++) {
1560 		if ((i & 0x3f) == 0)
1561 			nvkm_wr32(device, 0x409188, i >> 6);
1562 		nvkm_wr32(device, 0x409184, gr->func->fecs.ucode->code.data[i]);
1563 	}
1564 
1565 	/* load GPC microcode */
1566 	nvkm_wr32(device, 0x41a1c0, 0x01000000);
1567 	for (i = 0; i < gr->func->gpccs.ucode->data.size / 4; i++)
1568 		nvkm_wr32(device, 0x41a1c4, gr->func->gpccs.ucode->data.data[i]);
1569 
1570 	nvkm_wr32(device, 0x41a180, 0x01000000);
1571 	for (i = 0; i < gr->func->gpccs.ucode->code.size / 4; i++) {
1572 		if ((i & 0x3f) == 0)
1573 			nvkm_wr32(device, 0x41a188, i >> 6);
1574 		nvkm_wr32(device, 0x41a184, gr->func->gpccs.ucode->code.data[i]);
1575 	}
1576 	nvkm_mc_unk260(device->mc, 1);
1577 
1578 	/* load register lists */
1579 	gf100_gr_init_csdata(gr, grctx->hub, 0x409000, 0x000, 0x000000);
1580 	gf100_gr_init_csdata(gr, grctx->gpc, 0x41a000, 0x000, 0x418000);
1581 	gf100_gr_init_csdata(gr, grctx->tpc, 0x41a000, 0x004, 0x419800);
1582 	gf100_gr_init_csdata(gr, grctx->ppc, 0x41a000, 0x008, 0x41be00);
1583 
1584 	/* start HUB ucode running, it'll init the GPCs */
1585 	nvkm_wr32(device, 0x40910c, 0x00000000);
1586 	nvkm_wr32(device, 0x409100, 0x00000002);
1587 	if (nvkm_msec(device, 2000,
1588 		if (nvkm_rd32(device, 0x409800) & 0x80000000)
1589 			break;
1590 	) < 0) {
1591 		gf100_gr_ctxctl_debug(gr);
1592 		return -EBUSY;
1593 	}
1594 
1595 	gr->size = nvkm_rd32(device, 0x409804);
1596 	if (gr->data == NULL) {
1597 		int ret = gf100_grctx_generate(gr);
1598 		if (ret) {
1599 			nvkm_error(subdev, "failed to construct context\n");
1600 			return ret;
1601 		}
1602 	}
1603 
1604 	return 0;
1605 }
1606 
1607 static int
1608 gf100_gr_oneinit(struct nvkm_gr *base)
1609 {
1610 	struct gf100_gr *gr = gf100_gr(base);
1611 	struct nvkm_device *device = gr->base.engine.subdev.device;
1612 	int ret, i, j;
1613 
1614 	nvkm_pmu_pgob(device->pmu, false);
1615 
1616 	ret = nvkm_memory_new(device, NVKM_MEM_TARGET_INST, 0x1000, 256, false,
1617 			      &gr->unk4188b4);
1618 	if (ret)
1619 		return ret;
1620 
1621 	ret = nvkm_memory_new(device, NVKM_MEM_TARGET_INST, 0x1000, 256, false,
1622 			      &gr->unk4188b8);
1623 	if (ret)
1624 		return ret;
1625 
1626 	nvkm_kmap(gr->unk4188b4);
1627 	for (i = 0; i < 0x1000; i += 4)
1628 		nvkm_wo32(gr->unk4188b4, i, 0x00000010);
1629 	nvkm_done(gr->unk4188b4);
1630 
1631 	nvkm_kmap(gr->unk4188b8);
1632 	for (i = 0; i < 0x1000; i += 4)
1633 		nvkm_wo32(gr->unk4188b8, i, 0x00000010);
1634 	nvkm_done(gr->unk4188b8);
1635 
1636 	gr->rop_nr = (nvkm_rd32(device, 0x409604) & 0x001f0000) >> 16;
1637 	gr->gpc_nr =  nvkm_rd32(device, 0x409604) & 0x0000001f;
1638 	for (i = 0; i < gr->gpc_nr; i++) {
1639 		gr->tpc_nr[i]  = nvkm_rd32(device, GPC_UNIT(i, 0x2608));
1640 		gr->tpc_total += gr->tpc_nr[i];
1641 		gr->ppc_nr[i]  = gr->func->ppc_nr;
1642 		for (j = 0; j < gr->ppc_nr[i]; j++) {
1643 			u8 mask = nvkm_rd32(device, GPC_UNIT(i, 0x0c30 + (j * 4)));
1644 			if (mask)
1645 				gr->ppc_mask[i] |= (1 << j);
1646 			gr->ppc_tpc_nr[i][j] = hweight8(mask);
1647 		}
1648 	}
1649 
1650 	/*XXX: these need figuring out... though it might not even matter */
1651 	switch (device->chipset) {
1652 	case 0xc0:
1653 		if (gr->tpc_total == 11) { /* 465, 3/4/4/0, 4 */
1654 			gr->magic_not_rop_nr = 0x07;
1655 		} else
1656 		if (gr->tpc_total == 14) { /* 470, 3/3/4/4, 5 */
1657 			gr->magic_not_rop_nr = 0x05;
1658 		} else
1659 		if (gr->tpc_total == 15) { /* 480, 3/4/4/4, 6 */
1660 			gr->magic_not_rop_nr = 0x06;
1661 		}
1662 		break;
1663 	case 0xc3: /* 450, 4/0/0/0, 2 */
1664 		gr->magic_not_rop_nr = 0x03;
1665 		break;
1666 	case 0xc4: /* 460, 3/4/0/0, 4 */
1667 		gr->magic_not_rop_nr = 0x01;
1668 		break;
1669 	case 0xc1: /* 2/0/0/0, 1 */
1670 		gr->magic_not_rop_nr = 0x01;
1671 		break;
1672 	case 0xc8: /* 4/4/3/4, 5 */
1673 		gr->magic_not_rop_nr = 0x06;
1674 		break;
1675 	case 0xce: /* 4/4/0/0, 4 */
1676 		gr->magic_not_rop_nr = 0x03;
1677 		break;
1678 	case 0xcf: /* 4/0/0/0, 3 */
1679 		gr->magic_not_rop_nr = 0x03;
1680 		break;
1681 	case 0xd7:
1682 	case 0xd9: /* 1/0/0/0, 1 */
1683 	case 0xea: /* gk20a */
1684 	case 0x12b: /* gm20b */
1685 		gr->magic_not_rop_nr = 0x01;
1686 		break;
1687 	}
1688 
1689 	return 0;
1690 }
1691 
1692 int
1693 gf100_gr_init_(struct nvkm_gr *base)
1694 {
1695 	struct gf100_gr *gr = gf100_gr(base);
1696 	nvkm_pmu_pgob(gr->base.engine.subdev.device->pmu, false);
1697 	return gr->func->init(gr);
1698 }
1699 
1700 void
1701 gf100_gr_dtor_fw(struct gf100_gr_fuc *fuc)
1702 {
1703 	kfree(fuc->data);
1704 	fuc->data = NULL;
1705 }
1706 
1707 static void
1708 gf100_gr_dtor_init(struct gf100_gr_pack *pack)
1709 {
1710 	vfree(pack);
1711 }
1712 
1713 void *
1714 gf100_gr_dtor(struct nvkm_gr *base)
1715 {
1716 	struct gf100_gr *gr = gf100_gr(base);
1717 
1718 	if (gr->func->dtor)
1719 		gr->func->dtor(gr);
1720 	kfree(gr->data);
1721 
1722 	gf100_gr_dtor_fw(&gr->fuc409c);
1723 	gf100_gr_dtor_fw(&gr->fuc409d);
1724 	gf100_gr_dtor_fw(&gr->fuc41ac);
1725 	gf100_gr_dtor_fw(&gr->fuc41ad);
1726 
1727 	gf100_gr_dtor_init(gr->fuc_bundle);
1728 	gf100_gr_dtor_init(gr->fuc_method);
1729 	gf100_gr_dtor_init(gr->fuc_sw_ctx);
1730 	gf100_gr_dtor_init(gr->fuc_sw_nonctx);
1731 
1732 	nvkm_memory_del(&gr->unk4188b8);
1733 	nvkm_memory_del(&gr->unk4188b4);
1734 	return gr;
1735 }
1736 
1737 static const struct nvkm_gr_func
1738 gf100_gr_ = {
1739 	.dtor = gf100_gr_dtor,
1740 	.oneinit = gf100_gr_oneinit,
1741 	.init = gf100_gr_init_,
1742 	.intr = gf100_gr_intr,
1743 	.units = gf100_gr_units,
1744 	.chan_new = gf100_gr_chan_new,
1745 	.object_get = gf100_gr_object_get,
1746 };
1747 
1748 int
1749 gf100_gr_ctor_fw(struct gf100_gr *gr, const char *fwname,
1750 		 struct gf100_gr_fuc *fuc)
1751 {
1752 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1753 	struct nvkm_device *device = subdev->device;
1754 	const struct firmware *fw;
1755 	int ret;
1756 
1757 	ret = nvkm_firmware_get(device, fwname, &fw);
1758 	if (ret) {
1759 		nvkm_error(subdev, "failed to load %s\n", fwname);
1760 		return ret;
1761 	}
1762 
1763 	fuc->size = fw->size;
1764 	fuc->data = kmemdup(fw->data, fuc->size, GFP_KERNEL);
1765 	nvkm_firmware_put(fw);
1766 	return (fuc->data != NULL) ? 0 : -ENOMEM;
1767 }
1768 
1769 int
1770 gf100_gr_ctor(const struct gf100_gr_func *func, struct nvkm_device *device,
1771 	      int index, struct gf100_gr *gr)
1772 {
1773 	int ret;
1774 
1775 	gr->func = func;
1776 	gr->firmware = nvkm_boolopt(device->cfgopt, "NvGrUseFW",
1777 				    func->fecs.ucode == NULL);
1778 
1779 	ret = nvkm_gr_ctor(&gf100_gr_, device, index, 0x08001000,
1780 			   gr->firmware || func->fecs.ucode != NULL,
1781 			   &gr->base);
1782 	if (ret)
1783 		return ret;
1784 
1785 	return 0;
1786 }
1787 
1788 int
1789 gf100_gr_new_(const struct gf100_gr_func *func, struct nvkm_device *device,
1790 	      int index, struct nvkm_gr **pgr)
1791 {
1792 	struct gf100_gr *gr;
1793 	int ret;
1794 
1795 	if (!(gr = kzalloc(sizeof(*gr), GFP_KERNEL)))
1796 		return -ENOMEM;
1797 	*pgr = &gr->base;
1798 
1799 	ret = gf100_gr_ctor(func, device, index, gr);
1800 	if (ret)
1801 		return ret;
1802 
1803 	if (gr->firmware) {
1804 		if (gf100_gr_ctor_fw(gr, "fecs_inst", &gr->fuc409c) ||
1805 		    gf100_gr_ctor_fw(gr, "fecs_data", &gr->fuc409d) ||
1806 		    gf100_gr_ctor_fw(gr, "gpccs_inst", &gr->fuc41ac) ||
1807 		    gf100_gr_ctor_fw(gr, "gpccs_data", &gr->fuc41ad))
1808 			return -ENODEV;
1809 	}
1810 
1811 	return 0;
1812 }
1813 
1814 int
1815 gf100_gr_init(struct gf100_gr *gr)
1816 {
1817 	struct nvkm_device *device = gr->base.engine.subdev.device;
1818 	const u32 magicgpc918 = DIV_ROUND_UP(0x00800000, gr->tpc_total);
1819 	u32 data[TPC_MAX / 8] = {};
1820 	u8  tpcnr[GPC_MAX];
1821 	int gpc, tpc, rop;
1822 	int i;
1823 
1824 	nvkm_wr32(device, GPC_BCAST(0x0880), 0x00000000);
1825 	nvkm_wr32(device, GPC_BCAST(0x08a4), 0x00000000);
1826 	nvkm_wr32(device, GPC_BCAST(0x0888), 0x00000000);
1827 	nvkm_wr32(device, GPC_BCAST(0x088c), 0x00000000);
1828 	nvkm_wr32(device, GPC_BCAST(0x0890), 0x00000000);
1829 	nvkm_wr32(device, GPC_BCAST(0x0894), 0x00000000);
1830 	nvkm_wr32(device, GPC_BCAST(0x08b4), nvkm_memory_addr(gr->unk4188b4) >> 8);
1831 	nvkm_wr32(device, GPC_BCAST(0x08b8), nvkm_memory_addr(gr->unk4188b8) >> 8);
1832 
1833 	gf100_gr_mmio(gr, gr->func->mmio);
1834 
1835 	memcpy(tpcnr, gr->tpc_nr, sizeof(gr->tpc_nr));
1836 	for (i = 0, gpc = -1; i < gr->tpc_total; i++) {
1837 		do {
1838 			gpc = (gpc + 1) % gr->gpc_nr;
1839 		} while (!tpcnr[gpc]);
1840 		tpc = gr->tpc_nr[gpc] - tpcnr[gpc]--;
1841 
1842 		data[i / 8] |= tpc << ((i % 8) * 4);
1843 	}
1844 
1845 	nvkm_wr32(device, GPC_BCAST(0x0980), data[0]);
1846 	nvkm_wr32(device, GPC_BCAST(0x0984), data[1]);
1847 	nvkm_wr32(device, GPC_BCAST(0x0988), data[2]);
1848 	nvkm_wr32(device, GPC_BCAST(0x098c), data[3]);
1849 
1850 	for (gpc = 0; gpc < gr->gpc_nr; gpc++) {
1851 		nvkm_wr32(device, GPC_UNIT(gpc, 0x0914),
1852 			gr->magic_not_rop_nr << 8 | gr->tpc_nr[gpc]);
1853 		nvkm_wr32(device, GPC_UNIT(gpc, 0x0910), 0x00040000 |
1854 			gr->tpc_total);
1855 		nvkm_wr32(device, GPC_UNIT(gpc, 0x0918), magicgpc918);
1856 	}
1857 
1858 	if (device->chipset != 0xd7)
1859 		nvkm_wr32(device, GPC_BCAST(0x1bd4), magicgpc918);
1860 	else
1861 		nvkm_wr32(device, GPC_BCAST(0x3fd4), magicgpc918);
1862 
1863 	nvkm_wr32(device, GPC_BCAST(0x08ac), nvkm_rd32(device, 0x100800));
1864 
1865 	nvkm_wr32(device, 0x400500, 0x00010001);
1866 
1867 	nvkm_wr32(device, 0x400100, 0xffffffff);
1868 	nvkm_wr32(device, 0x40013c, 0xffffffff);
1869 
1870 	nvkm_wr32(device, 0x409c24, 0x000f0000);
1871 	nvkm_wr32(device, 0x404000, 0xc0000000);
1872 	nvkm_wr32(device, 0x404600, 0xc0000000);
1873 	nvkm_wr32(device, 0x408030, 0xc0000000);
1874 	nvkm_wr32(device, 0x40601c, 0xc0000000);
1875 	nvkm_wr32(device, 0x404490, 0xc0000000);
1876 	nvkm_wr32(device, 0x406018, 0xc0000000);
1877 	nvkm_wr32(device, 0x405840, 0xc0000000);
1878 	nvkm_wr32(device, 0x405844, 0x00ffffff);
1879 	nvkm_mask(device, 0x419cc0, 0x00000008, 0x00000008);
1880 	nvkm_mask(device, 0x419eb4, 0x00001000, 0x00001000);
1881 
1882 	for (gpc = 0; gpc < gr->gpc_nr; gpc++) {
1883 		nvkm_wr32(device, GPC_UNIT(gpc, 0x0420), 0xc0000000);
1884 		nvkm_wr32(device, GPC_UNIT(gpc, 0x0900), 0xc0000000);
1885 		nvkm_wr32(device, GPC_UNIT(gpc, 0x1028), 0xc0000000);
1886 		nvkm_wr32(device, GPC_UNIT(gpc, 0x0824), 0xc0000000);
1887 		for (tpc = 0; tpc < gr->tpc_nr[gpc]; tpc++) {
1888 			nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x508), 0xffffffff);
1889 			nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x50c), 0xffffffff);
1890 			nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x224), 0xc0000000);
1891 			nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x48c), 0xc0000000);
1892 			nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x084), 0xc0000000);
1893 			nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x644), 0x001ffffe);
1894 			nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x64c), 0x0000000f);
1895 		}
1896 		nvkm_wr32(device, GPC_UNIT(gpc, 0x2c90), 0xffffffff);
1897 		nvkm_wr32(device, GPC_UNIT(gpc, 0x2c94), 0xffffffff);
1898 	}
1899 
1900 	for (rop = 0; rop < gr->rop_nr; rop++) {
1901 		nvkm_wr32(device, ROP_UNIT(rop, 0x144), 0xc0000000);
1902 		nvkm_wr32(device, ROP_UNIT(rop, 0x070), 0xc0000000);
1903 		nvkm_wr32(device, ROP_UNIT(rop, 0x204), 0xffffffff);
1904 		nvkm_wr32(device, ROP_UNIT(rop, 0x208), 0xffffffff);
1905 	}
1906 
1907 	nvkm_wr32(device, 0x400108, 0xffffffff);
1908 	nvkm_wr32(device, 0x400138, 0xffffffff);
1909 	nvkm_wr32(device, 0x400118, 0xffffffff);
1910 	nvkm_wr32(device, 0x400130, 0xffffffff);
1911 	nvkm_wr32(device, 0x40011c, 0xffffffff);
1912 	nvkm_wr32(device, 0x400134, 0xffffffff);
1913 
1914 	nvkm_wr32(device, 0x400054, 0x34ce3464);
1915 
1916 	gf100_gr_zbc_init(gr);
1917 
1918 	return gf100_gr_init_ctxctl(gr);
1919 }
1920 
1921 #include "fuc/hubgf100.fuc3.h"
1922 
1923 struct gf100_gr_ucode
1924 gf100_gr_fecs_ucode = {
1925 	.code.data = gf100_grhub_code,
1926 	.code.size = sizeof(gf100_grhub_code),
1927 	.data.data = gf100_grhub_data,
1928 	.data.size = sizeof(gf100_grhub_data),
1929 };
1930 
1931 #include "fuc/gpcgf100.fuc3.h"
1932 
1933 struct gf100_gr_ucode
1934 gf100_gr_gpccs_ucode = {
1935 	.code.data = gf100_grgpc_code,
1936 	.code.size = sizeof(gf100_grgpc_code),
1937 	.data.data = gf100_grgpc_data,
1938 	.data.size = sizeof(gf100_grgpc_data),
1939 };
1940 
1941 static const struct gf100_gr_func
1942 gf100_gr = {
1943 	.init = gf100_gr_init,
1944 	.mmio = gf100_gr_pack_mmio,
1945 	.fecs.ucode = &gf100_gr_fecs_ucode,
1946 	.gpccs.ucode = &gf100_gr_gpccs_ucode,
1947 	.grctx = &gf100_grctx,
1948 	.sclass = {
1949 		{ -1, -1, FERMI_TWOD_A },
1950 		{ -1, -1, FERMI_MEMORY_TO_MEMORY_FORMAT_A },
1951 		{ -1, -1, FERMI_A, &gf100_fermi },
1952 		{ -1, -1, FERMI_COMPUTE_A },
1953 		{}
1954 	}
1955 };
1956 
1957 int
1958 gf100_gr_new(struct nvkm_device *device, int index, struct nvkm_gr **pgr)
1959 {
1960 	return gf100_gr_new_(&gf100_gr, device, index, pgr);
1961 }
1962