1 /* 2 * Copyright 2012 Red Hat Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 * Authors: Ben Skeggs 23 */ 24 #include "gf100.h" 25 #include "ctxgf100.h" 26 #include "fuc/os.h" 27 28 #include <core/client.h> 29 #include <core/option.h> 30 #include <core/firmware.h> 31 #include <subdev/secboot.h> 32 #include <subdev/fb.h> 33 #include <subdev/mc.h> 34 #include <subdev/pmu.h> 35 #include <subdev/timer.h> 36 #include <engine/fifo.h> 37 38 #include <nvif/class.h> 39 #include <nvif/cl9097.h> 40 #include <nvif/unpack.h> 41 42 /******************************************************************************* 43 * Zero Bandwidth Clear 44 ******************************************************************************/ 45 46 static void 47 gf100_gr_zbc_clear_color(struct gf100_gr *gr, int zbc) 48 { 49 struct nvkm_device *device = gr->base.engine.subdev.device; 50 if (gr->zbc_color[zbc].format) { 51 nvkm_wr32(device, 0x405804, gr->zbc_color[zbc].ds[0]); 52 nvkm_wr32(device, 0x405808, gr->zbc_color[zbc].ds[1]); 53 nvkm_wr32(device, 0x40580c, gr->zbc_color[zbc].ds[2]); 54 nvkm_wr32(device, 0x405810, gr->zbc_color[zbc].ds[3]); 55 } 56 nvkm_wr32(device, 0x405814, gr->zbc_color[zbc].format); 57 nvkm_wr32(device, 0x405820, zbc); 58 nvkm_wr32(device, 0x405824, 0x00000004); /* TRIGGER | WRITE | COLOR */ 59 } 60 61 static int 62 gf100_gr_zbc_color_get(struct gf100_gr *gr, int format, 63 const u32 ds[4], const u32 l2[4]) 64 { 65 struct nvkm_ltc *ltc = gr->base.engine.subdev.device->ltc; 66 int zbc = -ENOSPC, i; 67 68 for (i = ltc->zbc_min; i <= ltc->zbc_max; i++) { 69 if (gr->zbc_color[i].format) { 70 if (gr->zbc_color[i].format != format) 71 continue; 72 if (memcmp(gr->zbc_color[i].ds, ds, sizeof( 73 gr->zbc_color[i].ds))) 74 continue; 75 if (memcmp(gr->zbc_color[i].l2, l2, sizeof( 76 gr->zbc_color[i].l2))) { 77 WARN_ON(1); 78 return -EINVAL; 79 } 80 return i; 81 } else { 82 zbc = (zbc < 0) ? i : zbc; 83 } 84 } 85 86 if (zbc < 0) 87 return zbc; 88 89 memcpy(gr->zbc_color[zbc].ds, ds, sizeof(gr->zbc_color[zbc].ds)); 90 memcpy(gr->zbc_color[zbc].l2, l2, sizeof(gr->zbc_color[zbc].l2)); 91 gr->zbc_color[zbc].format = format; 92 nvkm_ltc_zbc_color_get(ltc, zbc, l2); 93 gf100_gr_zbc_clear_color(gr, zbc); 94 return zbc; 95 } 96 97 static void 98 gf100_gr_zbc_clear_depth(struct gf100_gr *gr, int zbc) 99 { 100 struct nvkm_device *device = gr->base.engine.subdev.device; 101 if (gr->zbc_depth[zbc].format) 102 nvkm_wr32(device, 0x405818, gr->zbc_depth[zbc].ds); 103 nvkm_wr32(device, 0x40581c, gr->zbc_depth[zbc].format); 104 nvkm_wr32(device, 0x405820, zbc); 105 nvkm_wr32(device, 0x405824, 0x00000005); /* TRIGGER | WRITE | DEPTH */ 106 } 107 108 static int 109 gf100_gr_zbc_depth_get(struct gf100_gr *gr, int format, 110 const u32 ds, const u32 l2) 111 { 112 struct nvkm_ltc *ltc = gr->base.engine.subdev.device->ltc; 113 int zbc = -ENOSPC, i; 114 115 for (i = ltc->zbc_min; i <= ltc->zbc_max; i++) { 116 if (gr->zbc_depth[i].format) { 117 if (gr->zbc_depth[i].format != format) 118 continue; 119 if (gr->zbc_depth[i].ds != ds) 120 continue; 121 if (gr->zbc_depth[i].l2 != l2) { 122 WARN_ON(1); 123 return -EINVAL; 124 } 125 return i; 126 } else { 127 zbc = (zbc < 0) ? i : zbc; 128 } 129 } 130 131 if (zbc < 0) 132 return zbc; 133 134 gr->zbc_depth[zbc].format = format; 135 gr->zbc_depth[zbc].ds = ds; 136 gr->zbc_depth[zbc].l2 = l2; 137 nvkm_ltc_zbc_depth_get(ltc, zbc, l2); 138 gf100_gr_zbc_clear_depth(gr, zbc); 139 return zbc; 140 } 141 142 /******************************************************************************* 143 * Graphics object classes 144 ******************************************************************************/ 145 #define gf100_gr_object(p) container_of((p), struct gf100_gr_object, object) 146 147 struct gf100_gr_object { 148 struct nvkm_object object; 149 struct gf100_gr_chan *chan; 150 }; 151 152 static int 153 gf100_fermi_mthd_zbc_color(struct nvkm_object *object, void *data, u32 size) 154 { 155 struct gf100_gr *gr = gf100_gr(nvkm_gr(object->engine)); 156 union { 157 struct fermi_a_zbc_color_v0 v0; 158 } *args = data; 159 int ret = -ENOSYS; 160 161 if (!(ret = nvif_unpack(ret, &data, &size, args->v0, 0, 0, false))) { 162 switch (args->v0.format) { 163 case FERMI_A_ZBC_COLOR_V0_FMT_ZERO: 164 case FERMI_A_ZBC_COLOR_V0_FMT_UNORM_ONE: 165 case FERMI_A_ZBC_COLOR_V0_FMT_RF32_GF32_BF32_AF32: 166 case FERMI_A_ZBC_COLOR_V0_FMT_R16_G16_B16_A16: 167 case FERMI_A_ZBC_COLOR_V0_FMT_RN16_GN16_BN16_AN16: 168 case FERMI_A_ZBC_COLOR_V0_FMT_RS16_GS16_BS16_AS16: 169 case FERMI_A_ZBC_COLOR_V0_FMT_RU16_GU16_BU16_AU16: 170 case FERMI_A_ZBC_COLOR_V0_FMT_RF16_GF16_BF16_AF16: 171 case FERMI_A_ZBC_COLOR_V0_FMT_A8R8G8B8: 172 case FERMI_A_ZBC_COLOR_V0_FMT_A8RL8GL8BL8: 173 case FERMI_A_ZBC_COLOR_V0_FMT_A2B10G10R10: 174 case FERMI_A_ZBC_COLOR_V0_FMT_AU2BU10GU10RU10: 175 case FERMI_A_ZBC_COLOR_V0_FMT_A8B8G8R8: 176 case FERMI_A_ZBC_COLOR_V0_FMT_A8BL8GL8RL8: 177 case FERMI_A_ZBC_COLOR_V0_FMT_AN8BN8GN8RN8: 178 case FERMI_A_ZBC_COLOR_V0_FMT_AS8BS8GS8RS8: 179 case FERMI_A_ZBC_COLOR_V0_FMT_AU8BU8GU8RU8: 180 case FERMI_A_ZBC_COLOR_V0_FMT_A2R10G10B10: 181 case FERMI_A_ZBC_COLOR_V0_FMT_BF10GF11RF11: 182 ret = gf100_gr_zbc_color_get(gr, args->v0.format, 183 args->v0.ds, 184 args->v0.l2); 185 if (ret >= 0) { 186 args->v0.index = ret; 187 return 0; 188 } 189 break; 190 default: 191 return -EINVAL; 192 } 193 } 194 195 return ret; 196 } 197 198 static int 199 gf100_fermi_mthd_zbc_depth(struct nvkm_object *object, void *data, u32 size) 200 { 201 struct gf100_gr *gr = gf100_gr(nvkm_gr(object->engine)); 202 union { 203 struct fermi_a_zbc_depth_v0 v0; 204 } *args = data; 205 int ret = -ENOSYS; 206 207 if (!(ret = nvif_unpack(ret, &data, &size, args->v0, 0, 0, false))) { 208 switch (args->v0.format) { 209 case FERMI_A_ZBC_DEPTH_V0_FMT_FP32: 210 ret = gf100_gr_zbc_depth_get(gr, args->v0.format, 211 args->v0.ds, 212 args->v0.l2); 213 return (ret >= 0) ? 0 : -ENOSPC; 214 default: 215 return -EINVAL; 216 } 217 } 218 219 return ret; 220 } 221 222 static int 223 gf100_fermi_mthd(struct nvkm_object *object, u32 mthd, void *data, u32 size) 224 { 225 nvif_ioctl(object, "fermi mthd %08x\n", mthd); 226 switch (mthd) { 227 case FERMI_A_ZBC_COLOR: 228 return gf100_fermi_mthd_zbc_color(object, data, size); 229 case FERMI_A_ZBC_DEPTH: 230 return gf100_fermi_mthd_zbc_depth(object, data, size); 231 default: 232 break; 233 } 234 return -EINVAL; 235 } 236 237 const struct nvkm_object_func 238 gf100_fermi = { 239 .mthd = gf100_fermi_mthd, 240 }; 241 242 static void 243 gf100_gr_mthd_set_shader_exceptions(struct nvkm_device *device, u32 data) 244 { 245 nvkm_wr32(device, 0x419e44, data ? 0xffffffff : 0x00000000); 246 nvkm_wr32(device, 0x419e4c, data ? 0xffffffff : 0x00000000); 247 } 248 249 static bool 250 gf100_gr_mthd_sw(struct nvkm_device *device, u16 class, u32 mthd, u32 data) 251 { 252 switch (class & 0x00ff) { 253 case 0x97: 254 case 0xc0: 255 switch (mthd) { 256 case 0x1528: 257 gf100_gr_mthd_set_shader_exceptions(device, data); 258 return true; 259 default: 260 break; 261 } 262 break; 263 default: 264 break; 265 } 266 return false; 267 } 268 269 static const struct nvkm_object_func 270 gf100_gr_object_func = { 271 }; 272 273 static int 274 gf100_gr_object_new(const struct nvkm_oclass *oclass, void *data, u32 size, 275 struct nvkm_object **pobject) 276 { 277 struct gf100_gr_chan *chan = gf100_gr_chan(oclass->parent); 278 struct gf100_gr_object *object; 279 280 if (!(object = kzalloc(sizeof(*object), GFP_KERNEL))) 281 return -ENOMEM; 282 *pobject = &object->object; 283 284 nvkm_object_ctor(oclass->base.func ? oclass->base.func : 285 &gf100_gr_object_func, oclass, &object->object); 286 object->chan = chan; 287 return 0; 288 } 289 290 static int 291 gf100_gr_object_get(struct nvkm_gr *base, int index, struct nvkm_sclass *sclass) 292 { 293 struct gf100_gr *gr = gf100_gr(base); 294 int c = 0; 295 296 while (gr->func->sclass[c].oclass) { 297 if (c++ == index) { 298 *sclass = gr->func->sclass[index]; 299 sclass->ctor = gf100_gr_object_new; 300 return index; 301 } 302 } 303 304 return c; 305 } 306 307 /******************************************************************************* 308 * PGRAPH context 309 ******************************************************************************/ 310 311 static int 312 gf100_gr_chan_bind(struct nvkm_object *object, struct nvkm_gpuobj *parent, 313 int align, struct nvkm_gpuobj **pgpuobj) 314 { 315 struct gf100_gr_chan *chan = gf100_gr_chan(object); 316 struct gf100_gr *gr = chan->gr; 317 int ret, i; 318 319 ret = nvkm_gpuobj_new(gr->base.engine.subdev.device, gr->size, 320 align, false, parent, pgpuobj); 321 if (ret) 322 return ret; 323 324 nvkm_kmap(*pgpuobj); 325 for (i = 0; i < gr->size; i += 4) 326 nvkm_wo32(*pgpuobj, i, gr->data[i / 4]); 327 328 if (!gr->firmware) { 329 nvkm_wo32(*pgpuobj, 0x00, chan->mmio_nr / 2); 330 nvkm_wo32(*pgpuobj, 0x04, chan->mmio_vma.offset >> 8); 331 } else { 332 nvkm_wo32(*pgpuobj, 0xf4, 0); 333 nvkm_wo32(*pgpuobj, 0xf8, 0); 334 nvkm_wo32(*pgpuobj, 0x10, chan->mmio_nr / 2); 335 nvkm_wo32(*pgpuobj, 0x14, lower_32_bits(chan->mmio_vma.offset)); 336 nvkm_wo32(*pgpuobj, 0x18, upper_32_bits(chan->mmio_vma.offset)); 337 nvkm_wo32(*pgpuobj, 0x1c, 1); 338 nvkm_wo32(*pgpuobj, 0x20, 0); 339 nvkm_wo32(*pgpuobj, 0x28, 0); 340 nvkm_wo32(*pgpuobj, 0x2c, 0); 341 } 342 nvkm_done(*pgpuobj); 343 return 0; 344 } 345 346 static void * 347 gf100_gr_chan_dtor(struct nvkm_object *object) 348 { 349 struct gf100_gr_chan *chan = gf100_gr_chan(object); 350 int i; 351 352 for (i = 0; i < ARRAY_SIZE(chan->data); i++) { 353 if (chan->data[i].vma.node) { 354 nvkm_vm_unmap(&chan->data[i].vma); 355 nvkm_vm_put(&chan->data[i].vma); 356 } 357 nvkm_memory_del(&chan->data[i].mem); 358 } 359 360 if (chan->mmio_vma.node) { 361 nvkm_vm_unmap(&chan->mmio_vma); 362 nvkm_vm_put(&chan->mmio_vma); 363 } 364 nvkm_memory_del(&chan->mmio); 365 return chan; 366 } 367 368 static const struct nvkm_object_func 369 gf100_gr_chan = { 370 .dtor = gf100_gr_chan_dtor, 371 .bind = gf100_gr_chan_bind, 372 }; 373 374 static int 375 gf100_gr_chan_new(struct nvkm_gr *base, struct nvkm_fifo_chan *fifoch, 376 const struct nvkm_oclass *oclass, 377 struct nvkm_object **pobject) 378 { 379 struct gf100_gr *gr = gf100_gr(base); 380 struct gf100_gr_data *data = gr->mmio_data; 381 struct gf100_gr_mmio *mmio = gr->mmio_list; 382 struct gf100_gr_chan *chan; 383 struct nvkm_device *device = gr->base.engine.subdev.device; 384 int ret, i; 385 386 if (!(chan = kzalloc(sizeof(*chan), GFP_KERNEL))) 387 return -ENOMEM; 388 nvkm_object_ctor(&gf100_gr_chan, oclass, &chan->object); 389 chan->gr = gr; 390 *pobject = &chan->object; 391 392 /* allocate memory for a "mmio list" buffer that's used by the HUB 393 * fuc to modify some per-context register settings on first load 394 * of the context. 395 */ 396 ret = nvkm_memory_new(device, NVKM_MEM_TARGET_INST, 0x1000, 0x100, 397 false, &chan->mmio); 398 if (ret) 399 return ret; 400 401 ret = nvkm_vm_get(fifoch->vm, 0x1000, 12, NV_MEM_ACCESS_RW | 402 NV_MEM_ACCESS_SYS, &chan->mmio_vma); 403 if (ret) 404 return ret; 405 406 nvkm_memory_map(chan->mmio, &chan->mmio_vma, 0); 407 408 /* allocate buffers referenced by mmio list */ 409 for (i = 0; data->size && i < ARRAY_SIZE(gr->mmio_data); i++) { 410 ret = nvkm_memory_new(device, NVKM_MEM_TARGET_INST, 411 data->size, data->align, false, 412 &chan->data[i].mem); 413 if (ret) 414 return ret; 415 416 ret = nvkm_vm_get(fifoch->vm, 417 nvkm_memory_size(chan->data[i].mem), 12, 418 data->access, &chan->data[i].vma); 419 if (ret) 420 return ret; 421 422 nvkm_memory_map(chan->data[i].mem, &chan->data[i].vma, 0); 423 data++; 424 } 425 426 /* finally, fill in the mmio list and point the context at it */ 427 nvkm_kmap(chan->mmio); 428 for (i = 0; mmio->addr && i < ARRAY_SIZE(gr->mmio_list); i++) { 429 u32 addr = mmio->addr; 430 u32 data = mmio->data; 431 432 if (mmio->buffer >= 0) { 433 u64 info = chan->data[mmio->buffer].vma.offset; 434 data |= info >> mmio->shift; 435 } 436 437 nvkm_wo32(chan->mmio, chan->mmio_nr++ * 4, addr); 438 nvkm_wo32(chan->mmio, chan->mmio_nr++ * 4, data); 439 mmio++; 440 } 441 nvkm_done(chan->mmio); 442 return 0; 443 } 444 445 /******************************************************************************* 446 * PGRAPH register lists 447 ******************************************************************************/ 448 449 const struct gf100_gr_init 450 gf100_gr_init_main_0[] = { 451 { 0x400080, 1, 0x04, 0x003083c2 }, 452 { 0x400088, 1, 0x04, 0x00006fe7 }, 453 { 0x40008c, 1, 0x04, 0x00000000 }, 454 { 0x400090, 1, 0x04, 0x00000030 }, 455 { 0x40013c, 1, 0x04, 0x013901f7 }, 456 { 0x400140, 1, 0x04, 0x00000100 }, 457 { 0x400144, 1, 0x04, 0x00000000 }, 458 { 0x400148, 1, 0x04, 0x00000110 }, 459 { 0x400138, 1, 0x04, 0x00000000 }, 460 { 0x400130, 2, 0x04, 0x00000000 }, 461 { 0x400124, 1, 0x04, 0x00000002 }, 462 {} 463 }; 464 465 const struct gf100_gr_init 466 gf100_gr_init_fe_0[] = { 467 { 0x40415c, 1, 0x04, 0x00000000 }, 468 { 0x404170, 1, 0x04, 0x00000000 }, 469 {} 470 }; 471 472 const struct gf100_gr_init 473 gf100_gr_init_pri_0[] = { 474 { 0x404488, 2, 0x04, 0x00000000 }, 475 {} 476 }; 477 478 const struct gf100_gr_init 479 gf100_gr_init_rstr2d_0[] = { 480 { 0x407808, 1, 0x04, 0x00000000 }, 481 {} 482 }; 483 484 const struct gf100_gr_init 485 gf100_gr_init_pd_0[] = { 486 { 0x406024, 1, 0x04, 0x00000000 }, 487 {} 488 }; 489 490 const struct gf100_gr_init 491 gf100_gr_init_ds_0[] = { 492 { 0x405844, 1, 0x04, 0x00ffffff }, 493 { 0x405850, 1, 0x04, 0x00000000 }, 494 { 0x405908, 1, 0x04, 0x00000000 }, 495 {} 496 }; 497 498 const struct gf100_gr_init 499 gf100_gr_init_scc_0[] = { 500 { 0x40803c, 1, 0x04, 0x00000000 }, 501 {} 502 }; 503 504 const struct gf100_gr_init 505 gf100_gr_init_prop_0[] = { 506 { 0x4184a0, 1, 0x04, 0x00000000 }, 507 {} 508 }; 509 510 const struct gf100_gr_init 511 gf100_gr_init_gpc_unk_0[] = { 512 { 0x418604, 1, 0x04, 0x00000000 }, 513 { 0x418680, 1, 0x04, 0x00000000 }, 514 { 0x418714, 1, 0x04, 0x80000000 }, 515 { 0x418384, 1, 0x04, 0x00000000 }, 516 {} 517 }; 518 519 const struct gf100_gr_init 520 gf100_gr_init_setup_0[] = { 521 { 0x418814, 3, 0x04, 0x00000000 }, 522 {} 523 }; 524 525 const struct gf100_gr_init 526 gf100_gr_init_crstr_0[] = { 527 { 0x418b04, 1, 0x04, 0x00000000 }, 528 {} 529 }; 530 531 const struct gf100_gr_init 532 gf100_gr_init_setup_1[] = { 533 { 0x4188c8, 1, 0x04, 0x80000000 }, 534 { 0x4188cc, 1, 0x04, 0x00000000 }, 535 { 0x4188d0, 1, 0x04, 0x00010000 }, 536 { 0x4188d4, 1, 0x04, 0x00000001 }, 537 {} 538 }; 539 540 const struct gf100_gr_init 541 gf100_gr_init_zcull_0[] = { 542 { 0x418910, 1, 0x04, 0x00010001 }, 543 { 0x418914, 1, 0x04, 0x00000301 }, 544 { 0x418918, 1, 0x04, 0x00800000 }, 545 { 0x418980, 1, 0x04, 0x77777770 }, 546 { 0x418984, 3, 0x04, 0x77777777 }, 547 {} 548 }; 549 550 const struct gf100_gr_init 551 gf100_gr_init_gpm_0[] = { 552 { 0x418c04, 1, 0x04, 0x00000000 }, 553 { 0x418c88, 1, 0x04, 0x00000000 }, 554 {} 555 }; 556 557 const struct gf100_gr_init 558 gf100_gr_init_gpc_unk_1[] = { 559 { 0x418d00, 1, 0x04, 0x00000000 }, 560 { 0x418f08, 1, 0x04, 0x00000000 }, 561 { 0x418e00, 1, 0x04, 0x00000050 }, 562 { 0x418e08, 1, 0x04, 0x00000000 }, 563 {} 564 }; 565 566 const struct gf100_gr_init 567 gf100_gr_init_gcc_0[] = { 568 { 0x41900c, 1, 0x04, 0x00000000 }, 569 { 0x419018, 1, 0x04, 0x00000000 }, 570 {} 571 }; 572 573 const struct gf100_gr_init 574 gf100_gr_init_tpccs_0[] = { 575 { 0x419d08, 2, 0x04, 0x00000000 }, 576 { 0x419d10, 1, 0x04, 0x00000014 }, 577 {} 578 }; 579 580 const struct gf100_gr_init 581 gf100_gr_init_tex_0[] = { 582 { 0x419ab0, 1, 0x04, 0x00000000 }, 583 { 0x419ab8, 1, 0x04, 0x000000e7 }, 584 { 0x419abc, 2, 0x04, 0x00000000 }, 585 {} 586 }; 587 588 const struct gf100_gr_init 589 gf100_gr_init_pe_0[] = { 590 { 0x41980c, 3, 0x04, 0x00000000 }, 591 { 0x419844, 1, 0x04, 0x00000000 }, 592 { 0x41984c, 1, 0x04, 0x00005bc5 }, 593 { 0x419850, 4, 0x04, 0x00000000 }, 594 {} 595 }; 596 597 const struct gf100_gr_init 598 gf100_gr_init_l1c_0[] = { 599 { 0x419c98, 1, 0x04, 0x00000000 }, 600 { 0x419ca8, 1, 0x04, 0x80000000 }, 601 { 0x419cb4, 1, 0x04, 0x00000000 }, 602 { 0x419cb8, 1, 0x04, 0x00008bf4 }, 603 { 0x419cbc, 1, 0x04, 0x28137606 }, 604 { 0x419cc0, 2, 0x04, 0x00000000 }, 605 {} 606 }; 607 608 const struct gf100_gr_init 609 gf100_gr_init_wwdx_0[] = { 610 { 0x419bd4, 1, 0x04, 0x00800000 }, 611 { 0x419bdc, 1, 0x04, 0x00000000 }, 612 {} 613 }; 614 615 const struct gf100_gr_init 616 gf100_gr_init_tpccs_1[] = { 617 { 0x419d2c, 1, 0x04, 0x00000000 }, 618 {} 619 }; 620 621 const struct gf100_gr_init 622 gf100_gr_init_mpc_0[] = { 623 { 0x419c0c, 1, 0x04, 0x00000000 }, 624 {} 625 }; 626 627 static const struct gf100_gr_init 628 gf100_gr_init_sm_0[] = { 629 { 0x419e00, 1, 0x04, 0x00000000 }, 630 { 0x419ea0, 1, 0x04, 0x00000000 }, 631 { 0x419ea4, 1, 0x04, 0x00000100 }, 632 { 0x419ea8, 1, 0x04, 0x00001100 }, 633 { 0x419eac, 1, 0x04, 0x11100702 }, 634 { 0x419eb0, 1, 0x04, 0x00000003 }, 635 { 0x419eb4, 4, 0x04, 0x00000000 }, 636 { 0x419ec8, 1, 0x04, 0x06060618 }, 637 { 0x419ed0, 1, 0x04, 0x0eff0e38 }, 638 { 0x419ed4, 1, 0x04, 0x011104f1 }, 639 { 0x419edc, 1, 0x04, 0x00000000 }, 640 { 0x419f00, 1, 0x04, 0x00000000 }, 641 { 0x419f2c, 1, 0x04, 0x00000000 }, 642 {} 643 }; 644 645 const struct gf100_gr_init 646 gf100_gr_init_be_0[] = { 647 { 0x40880c, 1, 0x04, 0x00000000 }, 648 { 0x408910, 9, 0x04, 0x00000000 }, 649 { 0x408950, 1, 0x04, 0x00000000 }, 650 { 0x408954, 1, 0x04, 0x0000ffff }, 651 { 0x408984, 1, 0x04, 0x00000000 }, 652 { 0x408988, 1, 0x04, 0x08040201 }, 653 { 0x40898c, 1, 0x04, 0x80402010 }, 654 {} 655 }; 656 657 const struct gf100_gr_init 658 gf100_gr_init_fe_1[] = { 659 { 0x4040f0, 1, 0x04, 0x00000000 }, 660 {} 661 }; 662 663 const struct gf100_gr_init 664 gf100_gr_init_pe_1[] = { 665 { 0x419880, 1, 0x04, 0x00000002 }, 666 {} 667 }; 668 669 static const struct gf100_gr_pack 670 gf100_gr_pack_mmio[] = { 671 { gf100_gr_init_main_0 }, 672 { gf100_gr_init_fe_0 }, 673 { gf100_gr_init_pri_0 }, 674 { gf100_gr_init_rstr2d_0 }, 675 { gf100_gr_init_pd_0 }, 676 { gf100_gr_init_ds_0 }, 677 { gf100_gr_init_scc_0 }, 678 { gf100_gr_init_prop_0 }, 679 { gf100_gr_init_gpc_unk_0 }, 680 { gf100_gr_init_setup_0 }, 681 { gf100_gr_init_crstr_0 }, 682 { gf100_gr_init_setup_1 }, 683 { gf100_gr_init_zcull_0 }, 684 { gf100_gr_init_gpm_0 }, 685 { gf100_gr_init_gpc_unk_1 }, 686 { gf100_gr_init_gcc_0 }, 687 { gf100_gr_init_tpccs_0 }, 688 { gf100_gr_init_tex_0 }, 689 { gf100_gr_init_pe_0 }, 690 { gf100_gr_init_l1c_0 }, 691 { gf100_gr_init_wwdx_0 }, 692 { gf100_gr_init_tpccs_1 }, 693 { gf100_gr_init_mpc_0 }, 694 { gf100_gr_init_sm_0 }, 695 { gf100_gr_init_be_0 }, 696 { gf100_gr_init_fe_1 }, 697 { gf100_gr_init_pe_1 }, 698 {} 699 }; 700 701 /******************************************************************************* 702 * PGRAPH engine/subdev functions 703 ******************************************************************************/ 704 705 int 706 gf100_gr_rops(struct gf100_gr *gr) 707 { 708 struct nvkm_device *device = gr->base.engine.subdev.device; 709 return (nvkm_rd32(device, 0x409604) & 0x001f0000) >> 16; 710 } 711 712 void 713 gf100_gr_zbc_init(struct gf100_gr *gr) 714 { 715 const u32 zero[] = { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 716 0x00000000, 0x00000000, 0x00000000, 0x00000000 }; 717 const u32 one[] = { 0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000, 718 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff }; 719 const u32 f32_0[] = { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 720 0x00000000, 0x00000000, 0x00000000, 0x00000000 }; 721 const u32 f32_1[] = { 0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000, 722 0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000 }; 723 struct nvkm_ltc *ltc = gr->base.engine.subdev.device->ltc; 724 int index; 725 726 if (!gr->zbc_color[0].format) { 727 gf100_gr_zbc_color_get(gr, 1, & zero[0], &zero[4]); 728 gf100_gr_zbc_color_get(gr, 2, & one[0], &one[4]); 729 gf100_gr_zbc_color_get(gr, 4, &f32_0[0], &f32_0[4]); 730 gf100_gr_zbc_color_get(gr, 4, &f32_1[0], &f32_1[4]); 731 gf100_gr_zbc_depth_get(gr, 1, 0x00000000, 0x00000000); 732 gf100_gr_zbc_depth_get(gr, 1, 0x3f800000, 0x3f800000); 733 } 734 735 for (index = ltc->zbc_min; index <= ltc->zbc_max; index++) 736 gf100_gr_zbc_clear_color(gr, index); 737 for (index = ltc->zbc_min; index <= ltc->zbc_max; index++) 738 gf100_gr_zbc_clear_depth(gr, index); 739 } 740 741 /** 742 * Wait until GR goes idle. GR is considered idle if it is disabled by the 743 * MC (0x200) register, or GR is not busy and a context switch is not in 744 * progress. 745 */ 746 int 747 gf100_gr_wait_idle(struct gf100_gr *gr) 748 { 749 struct nvkm_subdev *subdev = &gr->base.engine.subdev; 750 struct nvkm_device *device = subdev->device; 751 unsigned long end_jiffies = jiffies + msecs_to_jiffies(2000); 752 bool gr_enabled, ctxsw_active, gr_busy; 753 754 do { 755 /* 756 * required to make sure FIFO_ENGINE_STATUS (0x2640) is 757 * up-to-date 758 */ 759 nvkm_rd32(device, 0x400700); 760 761 gr_enabled = nvkm_rd32(device, 0x200) & 0x1000; 762 ctxsw_active = nvkm_rd32(device, 0x2640) & 0x8000; 763 gr_busy = nvkm_rd32(device, 0x40060c) & 0x1; 764 765 if (!gr_enabled || (!gr_busy && !ctxsw_active)) 766 return 0; 767 } while (time_before(jiffies, end_jiffies)); 768 769 nvkm_error(subdev, 770 "wait for idle timeout (en: %d, ctxsw: %d, busy: %d)\n", 771 gr_enabled, ctxsw_active, gr_busy); 772 return -EAGAIN; 773 } 774 775 void 776 gf100_gr_mmio(struct gf100_gr *gr, const struct gf100_gr_pack *p) 777 { 778 struct nvkm_device *device = gr->base.engine.subdev.device; 779 const struct gf100_gr_pack *pack; 780 const struct gf100_gr_init *init; 781 782 pack_for_each_init(init, pack, p) { 783 u32 next = init->addr + init->count * init->pitch; 784 u32 addr = init->addr; 785 while (addr < next) { 786 nvkm_wr32(device, addr, init->data); 787 addr += init->pitch; 788 } 789 } 790 } 791 792 void 793 gf100_gr_icmd(struct gf100_gr *gr, const struct gf100_gr_pack *p) 794 { 795 struct nvkm_device *device = gr->base.engine.subdev.device; 796 const struct gf100_gr_pack *pack; 797 const struct gf100_gr_init *init; 798 u32 data = 0; 799 800 nvkm_wr32(device, 0x400208, 0x80000000); 801 802 pack_for_each_init(init, pack, p) { 803 u32 next = init->addr + init->count * init->pitch; 804 u32 addr = init->addr; 805 806 if ((pack == p && init == p->init) || data != init->data) { 807 nvkm_wr32(device, 0x400204, init->data); 808 data = init->data; 809 } 810 811 while (addr < next) { 812 nvkm_wr32(device, 0x400200, addr); 813 /** 814 * Wait for GR to go idle after submitting a 815 * GO_IDLE bundle 816 */ 817 if ((addr & 0xffff) == 0xe100) 818 gf100_gr_wait_idle(gr); 819 nvkm_msec(device, 2000, 820 if (!(nvkm_rd32(device, 0x400700) & 0x00000004)) 821 break; 822 ); 823 addr += init->pitch; 824 } 825 } 826 827 nvkm_wr32(device, 0x400208, 0x00000000); 828 } 829 830 void 831 gf100_gr_mthd(struct gf100_gr *gr, const struct gf100_gr_pack *p) 832 { 833 struct nvkm_device *device = gr->base.engine.subdev.device; 834 const struct gf100_gr_pack *pack; 835 const struct gf100_gr_init *init; 836 u32 data = 0; 837 838 pack_for_each_init(init, pack, p) { 839 u32 ctrl = 0x80000000 | pack->type; 840 u32 next = init->addr + init->count * init->pitch; 841 u32 addr = init->addr; 842 843 if ((pack == p && init == p->init) || data != init->data) { 844 nvkm_wr32(device, 0x40448c, init->data); 845 data = init->data; 846 } 847 848 while (addr < next) { 849 nvkm_wr32(device, 0x404488, ctrl | (addr << 14)); 850 addr += init->pitch; 851 } 852 } 853 } 854 855 u64 856 gf100_gr_units(struct nvkm_gr *base) 857 { 858 struct gf100_gr *gr = gf100_gr(base); 859 u64 cfg; 860 861 cfg = (u32)gr->gpc_nr; 862 cfg |= (u32)gr->tpc_total << 8; 863 cfg |= (u64)gr->rop_nr << 32; 864 865 return cfg; 866 } 867 868 static const struct nvkm_bitfield gf100_dispatch_error[] = { 869 { 0x00000001, "INJECTED_BUNDLE_ERROR" }, 870 { 0x00000002, "CLASS_SUBCH_MISMATCH" }, 871 { 0x00000004, "SUBCHSW_DURING_NOTIFY" }, 872 {} 873 }; 874 875 static const struct nvkm_bitfield gf100_m2mf_error[] = { 876 { 0x00000001, "PUSH_TOO_MUCH_DATA" }, 877 { 0x00000002, "PUSH_NOT_ENOUGH_DATA" }, 878 {} 879 }; 880 881 static const struct nvkm_bitfield gf100_unk6_error[] = { 882 { 0x00000001, "TEMP_TOO_SMALL" }, 883 {} 884 }; 885 886 static const struct nvkm_bitfield gf100_ccache_error[] = { 887 { 0x00000001, "INTR" }, 888 { 0x00000002, "LDCONST_OOB" }, 889 {} 890 }; 891 892 static const struct nvkm_bitfield gf100_macro_error[] = { 893 { 0x00000001, "TOO_FEW_PARAMS" }, 894 { 0x00000002, "TOO_MANY_PARAMS" }, 895 { 0x00000004, "ILLEGAL_OPCODE" }, 896 { 0x00000008, "DOUBLE_BRANCH" }, 897 { 0x00000010, "WATCHDOG" }, 898 {} 899 }; 900 901 static const struct nvkm_bitfield gk104_sked_error[] = { 902 { 0x00000040, "CTA_RESUME" }, 903 { 0x00000080, "CONSTANT_BUFFER_SIZE" }, 904 { 0x00000200, "LOCAL_MEMORY_SIZE_POS" }, 905 { 0x00000400, "LOCAL_MEMORY_SIZE_NEG" }, 906 { 0x00000800, "WARP_CSTACK_SIZE" }, 907 { 0x00001000, "TOTAL_TEMP_SIZE" }, 908 { 0x00002000, "REGISTER_COUNT" }, 909 { 0x00040000, "TOTAL_THREADS" }, 910 { 0x00100000, "PROGRAM_OFFSET" }, 911 { 0x00200000, "SHARED_MEMORY_SIZE" }, 912 { 0x00800000, "CTA_THREAD_DIMENSION_ZERO" }, 913 { 0x01000000, "MEMORY_WINDOW_OVERLAP" }, 914 { 0x02000000, "SHARED_CONFIG_TOO_SMALL" }, 915 { 0x04000000, "TOTAL_REGISTER_COUNT" }, 916 {} 917 }; 918 919 static const struct nvkm_bitfield gf100_gpc_rop_error[] = { 920 { 0x00000002, "RT_PITCH_OVERRUN" }, 921 { 0x00000010, "RT_WIDTH_OVERRUN" }, 922 { 0x00000020, "RT_HEIGHT_OVERRUN" }, 923 { 0x00000080, "ZETA_STORAGE_TYPE_MISMATCH" }, 924 { 0x00000100, "RT_STORAGE_TYPE_MISMATCH" }, 925 { 0x00000400, "RT_LINEAR_MISMATCH" }, 926 {} 927 }; 928 929 static void 930 gf100_gr_trap_gpc_rop(struct gf100_gr *gr, int gpc) 931 { 932 struct nvkm_subdev *subdev = &gr->base.engine.subdev; 933 struct nvkm_device *device = subdev->device; 934 char error[128]; 935 u32 trap[4]; 936 937 trap[0] = nvkm_rd32(device, GPC_UNIT(gpc, 0x0420)) & 0x3fffffff; 938 trap[1] = nvkm_rd32(device, GPC_UNIT(gpc, 0x0434)); 939 trap[2] = nvkm_rd32(device, GPC_UNIT(gpc, 0x0438)); 940 trap[3] = nvkm_rd32(device, GPC_UNIT(gpc, 0x043c)); 941 942 nvkm_snprintbf(error, sizeof(error), gf100_gpc_rop_error, trap[0]); 943 944 nvkm_error(subdev, "GPC%d/PROP trap: %08x [%s] x = %u, y = %u, " 945 "format = %x, storage type = %x\n", 946 gpc, trap[0], error, trap[1] & 0xffff, trap[1] >> 16, 947 (trap[2] >> 8) & 0x3f, trap[3] & 0xff); 948 nvkm_wr32(device, GPC_UNIT(gpc, 0x0420), 0xc0000000); 949 } 950 951 static const struct nvkm_enum gf100_mp_warp_error[] = { 952 { 0x01, "STACK_ERROR" }, 953 { 0x02, "API_STACK_ERROR" }, 954 { 0x03, "RET_EMPTY_STACK_ERROR" }, 955 { 0x04, "PC_WRAP" }, 956 { 0x05, "MISALIGNED_PC" }, 957 { 0x06, "PC_OVERFLOW" }, 958 { 0x07, "MISALIGNED_IMMC_ADDR" }, 959 { 0x08, "MISALIGNED_REG" }, 960 { 0x09, "ILLEGAL_INSTR_ENCODING" }, 961 { 0x0a, "ILLEGAL_SPH_INSTR_COMBO" }, 962 { 0x0b, "ILLEGAL_INSTR_PARAM" }, 963 { 0x0c, "INVALID_CONST_ADDR" }, 964 { 0x0d, "OOR_REG" }, 965 { 0x0e, "OOR_ADDR" }, 966 { 0x0f, "MISALIGNED_ADDR" }, 967 { 0x10, "INVALID_ADDR_SPACE" }, 968 { 0x11, "ILLEGAL_INSTR_PARAM2" }, 969 { 0x12, "INVALID_CONST_ADDR_LDC" }, 970 { 0x13, "GEOMETRY_SM_ERROR" }, 971 { 0x14, "DIVERGENT" }, 972 { 0x15, "WARP_EXIT" }, 973 {} 974 }; 975 976 static const struct nvkm_bitfield gf100_mp_global_error[] = { 977 { 0x00000001, "SM_TO_SM_FAULT" }, 978 { 0x00000002, "L1_ERROR" }, 979 { 0x00000004, "MULTIPLE_WARP_ERRORS" }, 980 { 0x00000008, "PHYSICAL_STACK_OVERFLOW" }, 981 { 0x00000010, "BPT_INT" }, 982 { 0x00000020, "BPT_PAUSE" }, 983 { 0x00000040, "SINGLE_STEP_COMPLETE" }, 984 { 0x20000000, "ECC_SEC_ERROR" }, 985 { 0x40000000, "ECC_DED_ERROR" }, 986 { 0x80000000, "TIMEOUT" }, 987 {} 988 }; 989 990 static void 991 gf100_gr_trap_mp(struct gf100_gr *gr, int gpc, int tpc) 992 { 993 struct nvkm_subdev *subdev = &gr->base.engine.subdev; 994 struct nvkm_device *device = subdev->device; 995 u32 werr = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x648)); 996 u32 gerr = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x650)); 997 const struct nvkm_enum *warp; 998 char glob[128]; 999 1000 nvkm_snprintbf(glob, sizeof(glob), gf100_mp_global_error, gerr); 1001 warp = nvkm_enum_find(gf100_mp_warp_error, werr & 0xffff); 1002 1003 nvkm_error(subdev, "GPC%i/TPC%i/MP trap: " 1004 "global %08x [%s] warp %04x [%s]\n", 1005 gpc, tpc, gerr, glob, werr, warp ? warp->name : ""); 1006 1007 nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x648), 0x00000000); 1008 nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x650), gerr); 1009 } 1010 1011 static void 1012 gf100_gr_trap_tpc(struct gf100_gr *gr, int gpc, int tpc) 1013 { 1014 struct nvkm_subdev *subdev = &gr->base.engine.subdev; 1015 struct nvkm_device *device = subdev->device; 1016 u32 stat = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x0508)); 1017 1018 if (stat & 0x00000001) { 1019 u32 trap = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x0224)); 1020 nvkm_error(subdev, "GPC%d/TPC%d/TEX: %08x\n", gpc, tpc, trap); 1021 nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x0224), 0xc0000000); 1022 stat &= ~0x00000001; 1023 } 1024 1025 if (stat & 0x00000002) { 1026 gf100_gr_trap_mp(gr, gpc, tpc); 1027 stat &= ~0x00000002; 1028 } 1029 1030 if (stat & 0x00000004) { 1031 u32 trap = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x0084)); 1032 nvkm_error(subdev, "GPC%d/TPC%d/POLY: %08x\n", gpc, tpc, trap); 1033 nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x0084), 0xc0000000); 1034 stat &= ~0x00000004; 1035 } 1036 1037 if (stat & 0x00000008) { 1038 u32 trap = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x048c)); 1039 nvkm_error(subdev, "GPC%d/TPC%d/L1C: %08x\n", gpc, tpc, trap); 1040 nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x048c), 0xc0000000); 1041 stat &= ~0x00000008; 1042 } 1043 1044 if (stat) { 1045 nvkm_error(subdev, "GPC%d/TPC%d/%08x: unknown\n", gpc, tpc, stat); 1046 } 1047 } 1048 1049 static void 1050 gf100_gr_trap_gpc(struct gf100_gr *gr, int gpc) 1051 { 1052 struct nvkm_subdev *subdev = &gr->base.engine.subdev; 1053 struct nvkm_device *device = subdev->device; 1054 u32 stat = nvkm_rd32(device, GPC_UNIT(gpc, 0x2c90)); 1055 int tpc; 1056 1057 if (stat & 0x00000001) { 1058 gf100_gr_trap_gpc_rop(gr, gpc); 1059 stat &= ~0x00000001; 1060 } 1061 1062 if (stat & 0x00000002) { 1063 u32 trap = nvkm_rd32(device, GPC_UNIT(gpc, 0x0900)); 1064 nvkm_error(subdev, "GPC%d/ZCULL: %08x\n", gpc, trap); 1065 nvkm_wr32(device, GPC_UNIT(gpc, 0x0900), 0xc0000000); 1066 stat &= ~0x00000002; 1067 } 1068 1069 if (stat & 0x00000004) { 1070 u32 trap = nvkm_rd32(device, GPC_UNIT(gpc, 0x1028)); 1071 nvkm_error(subdev, "GPC%d/CCACHE: %08x\n", gpc, trap); 1072 nvkm_wr32(device, GPC_UNIT(gpc, 0x1028), 0xc0000000); 1073 stat &= ~0x00000004; 1074 } 1075 1076 if (stat & 0x00000008) { 1077 u32 trap = nvkm_rd32(device, GPC_UNIT(gpc, 0x0824)); 1078 nvkm_error(subdev, "GPC%d/ESETUP: %08x\n", gpc, trap); 1079 nvkm_wr32(device, GPC_UNIT(gpc, 0x0824), 0xc0000000); 1080 stat &= ~0x00000009; 1081 } 1082 1083 for (tpc = 0; tpc < gr->tpc_nr[gpc]; tpc++) { 1084 u32 mask = 0x00010000 << tpc; 1085 if (stat & mask) { 1086 gf100_gr_trap_tpc(gr, gpc, tpc); 1087 nvkm_wr32(device, GPC_UNIT(gpc, 0x2c90), mask); 1088 stat &= ~mask; 1089 } 1090 } 1091 1092 if (stat) { 1093 nvkm_error(subdev, "GPC%d/%08x: unknown\n", gpc, stat); 1094 } 1095 } 1096 1097 static void 1098 gf100_gr_trap_intr(struct gf100_gr *gr) 1099 { 1100 struct nvkm_subdev *subdev = &gr->base.engine.subdev; 1101 struct nvkm_device *device = subdev->device; 1102 char error[128]; 1103 u32 trap = nvkm_rd32(device, 0x400108); 1104 int rop, gpc; 1105 1106 if (trap & 0x00000001) { 1107 u32 stat = nvkm_rd32(device, 0x404000); 1108 1109 nvkm_snprintbf(error, sizeof(error), gf100_dispatch_error, 1110 stat & 0x3fffffff); 1111 nvkm_error(subdev, "DISPATCH %08x [%s]\n", stat, error); 1112 nvkm_wr32(device, 0x404000, 0xc0000000); 1113 nvkm_wr32(device, 0x400108, 0x00000001); 1114 trap &= ~0x00000001; 1115 } 1116 1117 if (trap & 0x00000002) { 1118 u32 stat = nvkm_rd32(device, 0x404600); 1119 1120 nvkm_snprintbf(error, sizeof(error), gf100_m2mf_error, 1121 stat & 0x3fffffff); 1122 nvkm_error(subdev, "M2MF %08x [%s]\n", stat, error); 1123 1124 nvkm_wr32(device, 0x404600, 0xc0000000); 1125 nvkm_wr32(device, 0x400108, 0x00000002); 1126 trap &= ~0x00000002; 1127 } 1128 1129 if (trap & 0x00000008) { 1130 u32 stat = nvkm_rd32(device, 0x408030); 1131 1132 nvkm_snprintbf(error, sizeof(error), gf100_m2mf_error, 1133 stat & 0x3fffffff); 1134 nvkm_error(subdev, "CCACHE %08x [%s]\n", stat, error); 1135 nvkm_wr32(device, 0x408030, 0xc0000000); 1136 nvkm_wr32(device, 0x400108, 0x00000008); 1137 trap &= ~0x00000008; 1138 } 1139 1140 if (trap & 0x00000010) { 1141 u32 stat = nvkm_rd32(device, 0x405840); 1142 nvkm_error(subdev, "SHADER %08x, sph: 0x%06x, stage: 0x%02x\n", 1143 stat, stat & 0xffffff, (stat >> 24) & 0x3f); 1144 nvkm_wr32(device, 0x405840, 0xc0000000); 1145 nvkm_wr32(device, 0x400108, 0x00000010); 1146 trap &= ~0x00000010; 1147 } 1148 1149 if (trap & 0x00000040) { 1150 u32 stat = nvkm_rd32(device, 0x40601c); 1151 1152 nvkm_snprintbf(error, sizeof(error), gf100_unk6_error, 1153 stat & 0x3fffffff); 1154 nvkm_error(subdev, "UNK6 %08x [%s]\n", stat, error); 1155 1156 nvkm_wr32(device, 0x40601c, 0xc0000000); 1157 nvkm_wr32(device, 0x400108, 0x00000040); 1158 trap &= ~0x00000040; 1159 } 1160 1161 if (trap & 0x00000080) { 1162 u32 stat = nvkm_rd32(device, 0x404490); 1163 u32 pc = nvkm_rd32(device, 0x404494); 1164 u32 op = nvkm_rd32(device, 0x40449c); 1165 1166 nvkm_snprintbf(error, sizeof(error), gf100_macro_error, 1167 stat & 0x1fffffff); 1168 nvkm_error(subdev, "MACRO %08x [%s], pc: 0x%03x%s, op: 0x%08x\n", 1169 stat, error, pc & 0x7ff, 1170 (pc & 0x10000000) ? "" : " (invalid)", 1171 op); 1172 1173 nvkm_wr32(device, 0x404490, 0xc0000000); 1174 nvkm_wr32(device, 0x400108, 0x00000080); 1175 trap &= ~0x00000080; 1176 } 1177 1178 if (trap & 0x00000100) { 1179 u32 stat = nvkm_rd32(device, 0x407020) & 0x3fffffff; 1180 1181 nvkm_snprintbf(error, sizeof(error), gk104_sked_error, stat); 1182 nvkm_error(subdev, "SKED: %08x [%s]\n", stat, error); 1183 1184 if (stat) 1185 nvkm_wr32(device, 0x407020, 0x40000000); 1186 nvkm_wr32(device, 0x400108, 0x00000100); 1187 trap &= ~0x00000100; 1188 } 1189 1190 if (trap & 0x01000000) { 1191 u32 stat = nvkm_rd32(device, 0x400118); 1192 for (gpc = 0; stat && gpc < gr->gpc_nr; gpc++) { 1193 u32 mask = 0x00000001 << gpc; 1194 if (stat & mask) { 1195 gf100_gr_trap_gpc(gr, gpc); 1196 nvkm_wr32(device, 0x400118, mask); 1197 stat &= ~mask; 1198 } 1199 } 1200 nvkm_wr32(device, 0x400108, 0x01000000); 1201 trap &= ~0x01000000; 1202 } 1203 1204 if (trap & 0x02000000) { 1205 for (rop = 0; rop < gr->rop_nr; rop++) { 1206 u32 statz = nvkm_rd32(device, ROP_UNIT(rop, 0x070)); 1207 u32 statc = nvkm_rd32(device, ROP_UNIT(rop, 0x144)); 1208 nvkm_error(subdev, "ROP%d %08x %08x\n", 1209 rop, statz, statc); 1210 nvkm_wr32(device, ROP_UNIT(rop, 0x070), 0xc0000000); 1211 nvkm_wr32(device, ROP_UNIT(rop, 0x144), 0xc0000000); 1212 } 1213 nvkm_wr32(device, 0x400108, 0x02000000); 1214 trap &= ~0x02000000; 1215 } 1216 1217 if (trap) { 1218 nvkm_error(subdev, "TRAP UNHANDLED %08x\n", trap); 1219 nvkm_wr32(device, 0x400108, trap); 1220 } 1221 } 1222 1223 static void 1224 gf100_gr_ctxctl_debug_unit(struct gf100_gr *gr, u32 base) 1225 { 1226 struct nvkm_subdev *subdev = &gr->base.engine.subdev; 1227 struct nvkm_device *device = subdev->device; 1228 nvkm_error(subdev, "%06x - done %08x\n", base, 1229 nvkm_rd32(device, base + 0x400)); 1230 nvkm_error(subdev, "%06x - stat %08x %08x %08x %08x\n", base, 1231 nvkm_rd32(device, base + 0x800), 1232 nvkm_rd32(device, base + 0x804), 1233 nvkm_rd32(device, base + 0x808), 1234 nvkm_rd32(device, base + 0x80c)); 1235 nvkm_error(subdev, "%06x - stat %08x %08x %08x %08x\n", base, 1236 nvkm_rd32(device, base + 0x810), 1237 nvkm_rd32(device, base + 0x814), 1238 nvkm_rd32(device, base + 0x818), 1239 nvkm_rd32(device, base + 0x81c)); 1240 } 1241 1242 void 1243 gf100_gr_ctxctl_debug(struct gf100_gr *gr) 1244 { 1245 struct nvkm_device *device = gr->base.engine.subdev.device; 1246 u32 gpcnr = nvkm_rd32(device, 0x409604) & 0xffff; 1247 u32 gpc; 1248 1249 gf100_gr_ctxctl_debug_unit(gr, 0x409000); 1250 for (gpc = 0; gpc < gpcnr; gpc++) 1251 gf100_gr_ctxctl_debug_unit(gr, 0x502000 + (gpc * 0x8000)); 1252 } 1253 1254 static void 1255 gf100_gr_ctxctl_isr(struct gf100_gr *gr) 1256 { 1257 struct nvkm_subdev *subdev = &gr->base.engine.subdev; 1258 struct nvkm_device *device = subdev->device; 1259 u32 stat = nvkm_rd32(device, 0x409c18); 1260 1261 if (stat & 0x00000001) { 1262 u32 code = nvkm_rd32(device, 0x409814); 1263 if (code == E_BAD_FWMTHD) { 1264 u32 class = nvkm_rd32(device, 0x409808); 1265 u32 addr = nvkm_rd32(device, 0x40980c); 1266 u32 subc = (addr & 0x00070000) >> 16; 1267 u32 mthd = (addr & 0x00003ffc); 1268 u32 data = nvkm_rd32(device, 0x409810); 1269 1270 nvkm_error(subdev, "FECS MTHD subc %d class %04x " 1271 "mthd %04x data %08x\n", 1272 subc, class, mthd, data); 1273 1274 nvkm_wr32(device, 0x409c20, 0x00000001); 1275 stat &= ~0x00000001; 1276 } else { 1277 nvkm_error(subdev, "FECS ucode error %d\n", code); 1278 } 1279 } 1280 1281 if (stat & 0x00080000) { 1282 nvkm_error(subdev, "FECS watchdog timeout\n"); 1283 gf100_gr_ctxctl_debug(gr); 1284 nvkm_wr32(device, 0x409c20, 0x00080000); 1285 stat &= ~0x00080000; 1286 } 1287 1288 if (stat) { 1289 nvkm_error(subdev, "FECS %08x\n", stat); 1290 gf100_gr_ctxctl_debug(gr); 1291 nvkm_wr32(device, 0x409c20, stat); 1292 } 1293 } 1294 1295 static void 1296 gf100_gr_intr(struct nvkm_gr *base) 1297 { 1298 struct gf100_gr *gr = gf100_gr(base); 1299 struct nvkm_subdev *subdev = &gr->base.engine.subdev; 1300 struct nvkm_device *device = subdev->device; 1301 struct nvkm_fifo_chan *chan; 1302 unsigned long flags; 1303 u64 inst = nvkm_rd32(device, 0x409b00) & 0x0fffffff; 1304 u32 stat = nvkm_rd32(device, 0x400100); 1305 u32 addr = nvkm_rd32(device, 0x400704); 1306 u32 mthd = (addr & 0x00003ffc); 1307 u32 subc = (addr & 0x00070000) >> 16; 1308 u32 data = nvkm_rd32(device, 0x400708); 1309 u32 code = nvkm_rd32(device, 0x400110); 1310 u32 class; 1311 const char *name = "unknown"; 1312 int chid = -1; 1313 1314 chan = nvkm_fifo_chan_inst(device->fifo, (u64)inst << 12, &flags); 1315 if (chan) { 1316 name = chan->object.client->name; 1317 chid = chan->chid; 1318 } 1319 1320 if (device->card_type < NV_E0 || subc < 4) 1321 class = nvkm_rd32(device, 0x404200 + (subc * 4)); 1322 else 1323 class = 0x0000; 1324 1325 if (stat & 0x00000001) { 1326 /* 1327 * notifier interrupt, only needed for cyclestats 1328 * can be safely ignored 1329 */ 1330 nvkm_wr32(device, 0x400100, 0x00000001); 1331 stat &= ~0x00000001; 1332 } 1333 1334 if (stat & 0x00000010) { 1335 if (!gf100_gr_mthd_sw(device, class, mthd, data)) { 1336 nvkm_error(subdev, "ILLEGAL_MTHD ch %d [%010llx %s] " 1337 "subc %d class %04x mthd %04x data %08x\n", 1338 chid, inst << 12, name, subc, 1339 class, mthd, data); 1340 } 1341 nvkm_wr32(device, 0x400100, 0x00000010); 1342 stat &= ~0x00000010; 1343 } 1344 1345 if (stat & 0x00000020) { 1346 nvkm_error(subdev, "ILLEGAL_CLASS ch %d [%010llx %s] " 1347 "subc %d class %04x mthd %04x data %08x\n", 1348 chid, inst << 12, name, subc, class, mthd, data); 1349 nvkm_wr32(device, 0x400100, 0x00000020); 1350 stat &= ~0x00000020; 1351 } 1352 1353 if (stat & 0x00100000) { 1354 const struct nvkm_enum *en = 1355 nvkm_enum_find(nv50_data_error_names, code); 1356 nvkm_error(subdev, "DATA_ERROR %08x [%s] ch %d [%010llx %s] " 1357 "subc %d class %04x mthd %04x data %08x\n", 1358 code, en ? en->name : "", chid, inst << 12, 1359 name, subc, class, mthd, data); 1360 nvkm_wr32(device, 0x400100, 0x00100000); 1361 stat &= ~0x00100000; 1362 } 1363 1364 if (stat & 0x00200000) { 1365 nvkm_error(subdev, "TRAP ch %d [%010llx %s]\n", 1366 chid, inst << 12, name); 1367 gf100_gr_trap_intr(gr); 1368 nvkm_wr32(device, 0x400100, 0x00200000); 1369 stat &= ~0x00200000; 1370 } 1371 1372 if (stat & 0x00080000) { 1373 gf100_gr_ctxctl_isr(gr); 1374 nvkm_wr32(device, 0x400100, 0x00080000); 1375 stat &= ~0x00080000; 1376 } 1377 1378 if (stat) { 1379 nvkm_error(subdev, "intr %08x\n", stat); 1380 nvkm_wr32(device, 0x400100, stat); 1381 } 1382 1383 nvkm_wr32(device, 0x400500, 0x00010001); 1384 nvkm_fifo_chan_put(device->fifo, flags, &chan); 1385 } 1386 1387 void 1388 gf100_gr_init_fw(struct gf100_gr *gr, u32 fuc_base, 1389 struct gf100_gr_fuc *code, struct gf100_gr_fuc *data) 1390 { 1391 struct nvkm_device *device = gr->base.engine.subdev.device; 1392 int i; 1393 1394 nvkm_wr32(device, fuc_base + 0x01c0, 0x01000000); 1395 for (i = 0; i < data->size / 4; i++) 1396 nvkm_wr32(device, fuc_base + 0x01c4, data->data[i]); 1397 1398 nvkm_wr32(device, fuc_base + 0x0180, 0x01000000); 1399 for (i = 0; i < code->size / 4; i++) { 1400 if ((i & 0x3f) == 0) 1401 nvkm_wr32(device, fuc_base + 0x0188, i >> 6); 1402 nvkm_wr32(device, fuc_base + 0x0184, code->data[i]); 1403 } 1404 1405 /* code must be padded to 0x40 words */ 1406 for (; i & 0x3f; i++) 1407 nvkm_wr32(device, fuc_base + 0x0184, 0); 1408 } 1409 1410 static void 1411 gf100_gr_init_csdata(struct gf100_gr *gr, 1412 const struct gf100_gr_pack *pack, 1413 u32 falcon, u32 starstar, u32 base) 1414 { 1415 struct nvkm_device *device = gr->base.engine.subdev.device; 1416 const struct gf100_gr_pack *iter; 1417 const struct gf100_gr_init *init; 1418 u32 addr = ~0, prev = ~0, xfer = 0; 1419 u32 star, temp; 1420 1421 nvkm_wr32(device, falcon + 0x01c0, 0x02000000 + starstar); 1422 star = nvkm_rd32(device, falcon + 0x01c4); 1423 temp = nvkm_rd32(device, falcon + 0x01c4); 1424 if (temp > star) 1425 star = temp; 1426 nvkm_wr32(device, falcon + 0x01c0, 0x01000000 + star); 1427 1428 pack_for_each_init(init, iter, pack) { 1429 u32 head = init->addr - base; 1430 u32 tail = head + init->count * init->pitch; 1431 while (head < tail) { 1432 if (head != prev + 4 || xfer >= 32) { 1433 if (xfer) { 1434 u32 data = ((--xfer << 26) | addr); 1435 nvkm_wr32(device, falcon + 0x01c4, data); 1436 star += 4; 1437 } 1438 addr = head; 1439 xfer = 0; 1440 } 1441 prev = head; 1442 xfer = xfer + 1; 1443 head = head + init->pitch; 1444 } 1445 } 1446 1447 nvkm_wr32(device, falcon + 0x01c4, (--xfer << 26) | addr); 1448 nvkm_wr32(device, falcon + 0x01c0, 0x01000004 + starstar); 1449 nvkm_wr32(device, falcon + 0x01c4, star + 4); 1450 } 1451 1452 int 1453 gf100_gr_init_ctxctl(struct gf100_gr *gr) 1454 { 1455 const struct gf100_grctx_func *grctx = gr->func->grctx; 1456 struct nvkm_subdev *subdev = &gr->base.engine.subdev; 1457 struct nvkm_device *device = subdev->device; 1458 struct nvkm_secboot *sb = device->secboot; 1459 int i; 1460 int ret = 0; 1461 1462 if (gr->firmware) { 1463 /* load fuc microcode */ 1464 nvkm_mc_unk260(device, 0); 1465 1466 /* securely-managed falcons must be reset using secure boot */ 1467 if (nvkm_secboot_is_managed(sb, NVKM_SECBOOT_FALCON_FECS)) 1468 ret = nvkm_secboot_reset(sb, NVKM_SECBOOT_FALCON_FECS); 1469 else 1470 gf100_gr_init_fw(gr, 0x409000, &gr->fuc409c, 1471 &gr->fuc409d); 1472 if (ret) 1473 return ret; 1474 1475 if (nvkm_secboot_is_managed(sb, NVKM_SECBOOT_FALCON_GPCCS)) 1476 ret = nvkm_secboot_reset(sb, NVKM_SECBOOT_FALCON_GPCCS); 1477 else 1478 gf100_gr_init_fw(gr, 0x41a000, &gr->fuc41ac, 1479 &gr->fuc41ad); 1480 if (ret) 1481 return ret; 1482 1483 nvkm_mc_unk260(device, 1); 1484 1485 /* start both of them running */ 1486 nvkm_wr32(device, 0x409840, 0xffffffff); 1487 nvkm_wr32(device, 0x41a10c, 0x00000000); 1488 nvkm_wr32(device, 0x40910c, 0x00000000); 1489 1490 if (nvkm_secboot_is_managed(sb, NVKM_SECBOOT_FALCON_GPCCS)) 1491 nvkm_secboot_start(sb, NVKM_SECBOOT_FALCON_GPCCS); 1492 else 1493 nvkm_wr32(device, 0x41a100, 0x00000002); 1494 if (nvkm_secboot_is_managed(sb, NVKM_SECBOOT_FALCON_FECS)) 1495 nvkm_secboot_start(sb, NVKM_SECBOOT_FALCON_FECS); 1496 else 1497 nvkm_wr32(device, 0x409100, 0x00000002); 1498 if (nvkm_msec(device, 2000, 1499 if (nvkm_rd32(device, 0x409800) & 0x00000001) 1500 break; 1501 ) < 0) 1502 return -EBUSY; 1503 1504 nvkm_wr32(device, 0x409840, 0xffffffff); 1505 nvkm_wr32(device, 0x409500, 0x7fffffff); 1506 nvkm_wr32(device, 0x409504, 0x00000021); 1507 1508 nvkm_wr32(device, 0x409840, 0xffffffff); 1509 nvkm_wr32(device, 0x409500, 0x00000000); 1510 nvkm_wr32(device, 0x409504, 0x00000010); 1511 if (nvkm_msec(device, 2000, 1512 if ((gr->size = nvkm_rd32(device, 0x409800))) 1513 break; 1514 ) < 0) 1515 return -EBUSY; 1516 1517 nvkm_wr32(device, 0x409840, 0xffffffff); 1518 nvkm_wr32(device, 0x409500, 0x00000000); 1519 nvkm_wr32(device, 0x409504, 0x00000016); 1520 if (nvkm_msec(device, 2000, 1521 if (nvkm_rd32(device, 0x409800)) 1522 break; 1523 ) < 0) 1524 return -EBUSY; 1525 1526 nvkm_wr32(device, 0x409840, 0xffffffff); 1527 nvkm_wr32(device, 0x409500, 0x00000000); 1528 nvkm_wr32(device, 0x409504, 0x00000025); 1529 if (nvkm_msec(device, 2000, 1530 if (nvkm_rd32(device, 0x409800)) 1531 break; 1532 ) < 0) 1533 return -EBUSY; 1534 1535 if (device->chipset >= 0xe0) { 1536 nvkm_wr32(device, 0x409800, 0x00000000); 1537 nvkm_wr32(device, 0x409500, 0x00000001); 1538 nvkm_wr32(device, 0x409504, 0x00000030); 1539 if (nvkm_msec(device, 2000, 1540 if (nvkm_rd32(device, 0x409800)) 1541 break; 1542 ) < 0) 1543 return -EBUSY; 1544 1545 nvkm_wr32(device, 0x409810, 0xb00095c8); 1546 nvkm_wr32(device, 0x409800, 0x00000000); 1547 nvkm_wr32(device, 0x409500, 0x00000001); 1548 nvkm_wr32(device, 0x409504, 0x00000031); 1549 if (nvkm_msec(device, 2000, 1550 if (nvkm_rd32(device, 0x409800)) 1551 break; 1552 ) < 0) 1553 return -EBUSY; 1554 1555 nvkm_wr32(device, 0x409810, 0x00080420); 1556 nvkm_wr32(device, 0x409800, 0x00000000); 1557 nvkm_wr32(device, 0x409500, 0x00000001); 1558 nvkm_wr32(device, 0x409504, 0x00000032); 1559 if (nvkm_msec(device, 2000, 1560 if (nvkm_rd32(device, 0x409800)) 1561 break; 1562 ) < 0) 1563 return -EBUSY; 1564 1565 nvkm_wr32(device, 0x409614, 0x00000070); 1566 nvkm_wr32(device, 0x409614, 0x00000770); 1567 nvkm_wr32(device, 0x40802c, 0x00000001); 1568 } 1569 1570 if (gr->data == NULL) { 1571 int ret = gf100_grctx_generate(gr); 1572 if (ret) { 1573 nvkm_error(subdev, "failed to construct context\n"); 1574 return ret; 1575 } 1576 } 1577 1578 return 0; 1579 } else 1580 if (!gr->func->fecs.ucode) { 1581 return -ENOSYS; 1582 } 1583 1584 /* load HUB microcode */ 1585 nvkm_mc_unk260(device, 0); 1586 nvkm_wr32(device, 0x4091c0, 0x01000000); 1587 for (i = 0; i < gr->func->fecs.ucode->data.size / 4; i++) 1588 nvkm_wr32(device, 0x4091c4, gr->func->fecs.ucode->data.data[i]); 1589 1590 nvkm_wr32(device, 0x409180, 0x01000000); 1591 for (i = 0; i < gr->func->fecs.ucode->code.size / 4; i++) { 1592 if ((i & 0x3f) == 0) 1593 nvkm_wr32(device, 0x409188, i >> 6); 1594 nvkm_wr32(device, 0x409184, gr->func->fecs.ucode->code.data[i]); 1595 } 1596 1597 /* load GPC microcode */ 1598 nvkm_wr32(device, 0x41a1c0, 0x01000000); 1599 for (i = 0; i < gr->func->gpccs.ucode->data.size / 4; i++) 1600 nvkm_wr32(device, 0x41a1c4, gr->func->gpccs.ucode->data.data[i]); 1601 1602 nvkm_wr32(device, 0x41a180, 0x01000000); 1603 for (i = 0; i < gr->func->gpccs.ucode->code.size / 4; i++) { 1604 if ((i & 0x3f) == 0) 1605 nvkm_wr32(device, 0x41a188, i >> 6); 1606 nvkm_wr32(device, 0x41a184, gr->func->gpccs.ucode->code.data[i]); 1607 } 1608 nvkm_mc_unk260(device, 1); 1609 1610 /* load register lists */ 1611 gf100_gr_init_csdata(gr, grctx->hub, 0x409000, 0x000, 0x000000); 1612 gf100_gr_init_csdata(gr, grctx->gpc, 0x41a000, 0x000, 0x418000); 1613 gf100_gr_init_csdata(gr, grctx->tpc, 0x41a000, 0x004, 0x419800); 1614 gf100_gr_init_csdata(gr, grctx->ppc, 0x41a000, 0x008, 0x41be00); 1615 1616 /* start HUB ucode running, it'll init the GPCs */ 1617 nvkm_wr32(device, 0x40910c, 0x00000000); 1618 nvkm_wr32(device, 0x409100, 0x00000002); 1619 if (nvkm_msec(device, 2000, 1620 if (nvkm_rd32(device, 0x409800) & 0x80000000) 1621 break; 1622 ) < 0) { 1623 gf100_gr_ctxctl_debug(gr); 1624 return -EBUSY; 1625 } 1626 1627 gr->size = nvkm_rd32(device, 0x409804); 1628 if (gr->data == NULL) { 1629 int ret = gf100_grctx_generate(gr); 1630 if (ret) { 1631 nvkm_error(subdev, "failed to construct context\n"); 1632 return ret; 1633 } 1634 } 1635 1636 return 0; 1637 } 1638 1639 static int 1640 gf100_gr_oneinit(struct nvkm_gr *base) 1641 { 1642 struct gf100_gr *gr = gf100_gr(base); 1643 struct nvkm_device *device = gr->base.engine.subdev.device; 1644 int i, j; 1645 1646 nvkm_pmu_pgob(device->pmu, false); 1647 1648 gr->rop_nr = gr->func->rops(gr); 1649 gr->gpc_nr = nvkm_rd32(device, 0x409604) & 0x0000001f; 1650 for (i = 0; i < gr->gpc_nr; i++) { 1651 gr->tpc_nr[i] = nvkm_rd32(device, GPC_UNIT(i, 0x2608)); 1652 gr->tpc_total += gr->tpc_nr[i]; 1653 gr->ppc_nr[i] = gr->func->ppc_nr; 1654 for (j = 0; j < gr->ppc_nr[i]; j++) { 1655 u8 mask = nvkm_rd32(device, GPC_UNIT(i, 0x0c30 + (j * 4))); 1656 if (mask) 1657 gr->ppc_mask[i] |= (1 << j); 1658 gr->ppc_tpc_nr[i][j] = hweight8(mask); 1659 } 1660 } 1661 1662 /*XXX: these need figuring out... though it might not even matter */ 1663 switch (device->chipset) { 1664 case 0xc0: 1665 if (gr->tpc_total == 11) { /* 465, 3/4/4/0, 4 */ 1666 gr->screen_tile_row_offset = 0x07; 1667 } else 1668 if (gr->tpc_total == 14) { /* 470, 3/3/4/4, 5 */ 1669 gr->screen_tile_row_offset = 0x05; 1670 } else 1671 if (gr->tpc_total == 15) { /* 480, 3/4/4/4, 6 */ 1672 gr->screen_tile_row_offset = 0x06; 1673 } 1674 break; 1675 case 0xc3: /* 450, 4/0/0/0, 2 */ 1676 gr->screen_tile_row_offset = 0x03; 1677 break; 1678 case 0xc4: /* 460, 3/4/0/0, 4 */ 1679 gr->screen_tile_row_offset = 0x01; 1680 break; 1681 case 0xc1: /* 2/0/0/0, 1 */ 1682 gr->screen_tile_row_offset = 0x01; 1683 break; 1684 case 0xc8: /* 4/4/3/4, 5 */ 1685 gr->screen_tile_row_offset = 0x06; 1686 break; 1687 case 0xce: /* 4/4/0/0, 4 */ 1688 gr->screen_tile_row_offset = 0x03; 1689 break; 1690 case 0xcf: /* 4/0/0/0, 3 */ 1691 gr->screen_tile_row_offset = 0x03; 1692 break; 1693 case 0xd7: 1694 case 0xd9: /* 1/0/0/0, 1 */ 1695 case 0xea: /* gk20a */ 1696 case 0x12b: /* gm20b */ 1697 gr->screen_tile_row_offset = 0x01; 1698 break; 1699 } 1700 1701 return 0; 1702 } 1703 1704 int 1705 gf100_gr_init_(struct nvkm_gr *base) 1706 { 1707 struct gf100_gr *gr = gf100_gr(base); 1708 nvkm_pmu_pgob(gr->base.engine.subdev.device->pmu, false); 1709 return gr->func->init(gr); 1710 } 1711 1712 void 1713 gf100_gr_dtor_fw(struct gf100_gr_fuc *fuc) 1714 { 1715 kfree(fuc->data); 1716 fuc->data = NULL; 1717 } 1718 1719 static void 1720 gf100_gr_dtor_init(struct gf100_gr_pack *pack) 1721 { 1722 vfree(pack); 1723 } 1724 1725 void * 1726 gf100_gr_dtor(struct nvkm_gr *base) 1727 { 1728 struct gf100_gr *gr = gf100_gr(base); 1729 1730 if (gr->func->dtor) 1731 gr->func->dtor(gr); 1732 kfree(gr->data); 1733 1734 gf100_gr_dtor_fw(&gr->fuc409c); 1735 gf100_gr_dtor_fw(&gr->fuc409d); 1736 gf100_gr_dtor_fw(&gr->fuc41ac); 1737 gf100_gr_dtor_fw(&gr->fuc41ad); 1738 1739 gf100_gr_dtor_init(gr->fuc_bundle); 1740 gf100_gr_dtor_init(gr->fuc_method); 1741 gf100_gr_dtor_init(gr->fuc_sw_ctx); 1742 gf100_gr_dtor_init(gr->fuc_sw_nonctx); 1743 1744 return gr; 1745 } 1746 1747 static const struct nvkm_gr_func 1748 gf100_gr_ = { 1749 .dtor = gf100_gr_dtor, 1750 .oneinit = gf100_gr_oneinit, 1751 .init = gf100_gr_init_, 1752 .intr = gf100_gr_intr, 1753 .units = gf100_gr_units, 1754 .chan_new = gf100_gr_chan_new, 1755 .object_get = gf100_gr_object_get, 1756 }; 1757 1758 int 1759 gf100_gr_ctor_fw(struct gf100_gr *gr, const char *fwname, 1760 struct gf100_gr_fuc *fuc) 1761 { 1762 struct nvkm_subdev *subdev = &gr->base.engine.subdev; 1763 struct nvkm_device *device = subdev->device; 1764 const struct firmware *fw; 1765 int ret; 1766 1767 ret = nvkm_firmware_get(device, fwname, &fw); 1768 if (ret) { 1769 nvkm_error(subdev, "failed to load %s\n", fwname); 1770 return ret; 1771 } 1772 1773 fuc->size = fw->size; 1774 fuc->data = kmemdup(fw->data, fuc->size, GFP_KERNEL); 1775 nvkm_firmware_put(fw); 1776 return (fuc->data != NULL) ? 0 : -ENOMEM; 1777 } 1778 1779 int 1780 gf100_gr_ctor(const struct gf100_gr_func *func, struct nvkm_device *device, 1781 int index, struct gf100_gr *gr) 1782 { 1783 int ret; 1784 1785 gr->func = func; 1786 gr->firmware = nvkm_boolopt(device->cfgopt, "NvGrUseFW", 1787 func->fecs.ucode == NULL); 1788 1789 ret = nvkm_gr_ctor(&gf100_gr_, device, index, 1790 gr->firmware || func->fecs.ucode != NULL, 1791 &gr->base); 1792 if (ret) 1793 return ret; 1794 1795 return 0; 1796 } 1797 1798 int 1799 gf100_gr_new_(const struct gf100_gr_func *func, struct nvkm_device *device, 1800 int index, struct nvkm_gr **pgr) 1801 { 1802 struct gf100_gr *gr; 1803 int ret; 1804 1805 if (!(gr = kzalloc(sizeof(*gr), GFP_KERNEL))) 1806 return -ENOMEM; 1807 *pgr = &gr->base; 1808 1809 ret = gf100_gr_ctor(func, device, index, gr); 1810 if (ret) 1811 return ret; 1812 1813 if (gr->firmware) { 1814 if (gf100_gr_ctor_fw(gr, "fecs_inst", &gr->fuc409c) || 1815 gf100_gr_ctor_fw(gr, "fecs_data", &gr->fuc409d) || 1816 gf100_gr_ctor_fw(gr, "gpccs_inst", &gr->fuc41ac) || 1817 gf100_gr_ctor_fw(gr, "gpccs_data", &gr->fuc41ad)) 1818 return -ENODEV; 1819 } 1820 1821 return 0; 1822 } 1823 1824 int 1825 gf100_gr_init(struct gf100_gr *gr) 1826 { 1827 struct nvkm_device *device = gr->base.engine.subdev.device; 1828 struct nvkm_fb *fb = device->fb; 1829 const u32 magicgpc918 = DIV_ROUND_UP(0x00800000, gr->tpc_total); 1830 u32 data[TPC_MAX / 8] = {}; 1831 u8 tpcnr[GPC_MAX]; 1832 int gpc, tpc, rop; 1833 int i; 1834 1835 nvkm_wr32(device, GPC_BCAST(0x0880), 0x00000000); 1836 nvkm_wr32(device, GPC_BCAST(0x08a4), 0x00000000); 1837 nvkm_wr32(device, GPC_BCAST(0x0888), 0x00000000); 1838 nvkm_wr32(device, GPC_BCAST(0x088c), 0x00000000); 1839 nvkm_wr32(device, GPC_BCAST(0x0890), 0x00000000); 1840 nvkm_wr32(device, GPC_BCAST(0x0894), 0x00000000); 1841 nvkm_wr32(device, GPC_BCAST(0x08b4), nvkm_memory_addr(fb->mmu_wr) >> 8); 1842 nvkm_wr32(device, GPC_BCAST(0x08b8), nvkm_memory_addr(fb->mmu_rd) >> 8); 1843 1844 gf100_gr_mmio(gr, gr->func->mmio); 1845 1846 nvkm_mask(device, TPC_UNIT(0, 0, 0x05c), 0x00000001, 0x00000001); 1847 1848 memcpy(tpcnr, gr->tpc_nr, sizeof(gr->tpc_nr)); 1849 for (i = 0, gpc = -1; i < gr->tpc_total; i++) { 1850 do { 1851 gpc = (gpc + 1) % gr->gpc_nr; 1852 } while (!tpcnr[gpc]); 1853 tpc = gr->tpc_nr[gpc] - tpcnr[gpc]--; 1854 1855 data[i / 8] |= tpc << ((i % 8) * 4); 1856 } 1857 1858 nvkm_wr32(device, GPC_BCAST(0x0980), data[0]); 1859 nvkm_wr32(device, GPC_BCAST(0x0984), data[1]); 1860 nvkm_wr32(device, GPC_BCAST(0x0988), data[2]); 1861 nvkm_wr32(device, GPC_BCAST(0x098c), data[3]); 1862 1863 for (gpc = 0; gpc < gr->gpc_nr; gpc++) { 1864 nvkm_wr32(device, GPC_UNIT(gpc, 0x0914), 1865 gr->screen_tile_row_offset << 8 | gr->tpc_nr[gpc]); 1866 nvkm_wr32(device, GPC_UNIT(gpc, 0x0910), 0x00040000 | 1867 gr->tpc_total); 1868 nvkm_wr32(device, GPC_UNIT(gpc, 0x0918), magicgpc918); 1869 } 1870 1871 if (device->chipset != 0xd7) 1872 nvkm_wr32(device, GPC_BCAST(0x1bd4), magicgpc918); 1873 else 1874 nvkm_wr32(device, GPC_BCAST(0x3fd4), magicgpc918); 1875 1876 nvkm_wr32(device, GPC_BCAST(0x08ac), nvkm_rd32(device, 0x100800)); 1877 1878 nvkm_wr32(device, 0x400500, 0x00010001); 1879 1880 nvkm_wr32(device, 0x400100, 0xffffffff); 1881 nvkm_wr32(device, 0x40013c, 0xffffffff); 1882 1883 nvkm_wr32(device, 0x409c24, 0x000f0000); 1884 nvkm_wr32(device, 0x404000, 0xc0000000); 1885 nvkm_wr32(device, 0x404600, 0xc0000000); 1886 nvkm_wr32(device, 0x408030, 0xc0000000); 1887 nvkm_wr32(device, 0x40601c, 0xc0000000); 1888 nvkm_wr32(device, 0x404490, 0xc0000000); 1889 nvkm_wr32(device, 0x406018, 0xc0000000); 1890 nvkm_wr32(device, 0x405840, 0xc0000000); 1891 nvkm_wr32(device, 0x405844, 0x00ffffff); 1892 nvkm_mask(device, 0x419cc0, 0x00000008, 0x00000008); 1893 nvkm_mask(device, 0x419eb4, 0x00001000, 0x00001000); 1894 1895 for (gpc = 0; gpc < gr->gpc_nr; gpc++) { 1896 nvkm_wr32(device, GPC_UNIT(gpc, 0x0420), 0xc0000000); 1897 nvkm_wr32(device, GPC_UNIT(gpc, 0x0900), 0xc0000000); 1898 nvkm_wr32(device, GPC_UNIT(gpc, 0x1028), 0xc0000000); 1899 nvkm_wr32(device, GPC_UNIT(gpc, 0x0824), 0xc0000000); 1900 for (tpc = 0; tpc < gr->tpc_nr[gpc]; tpc++) { 1901 nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x508), 0xffffffff); 1902 nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x50c), 0xffffffff); 1903 nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x224), 0xc0000000); 1904 nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x48c), 0xc0000000); 1905 nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x084), 0xc0000000); 1906 nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x644), 0x001ffffe); 1907 nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x64c), 0x0000000f); 1908 } 1909 nvkm_wr32(device, GPC_UNIT(gpc, 0x2c90), 0xffffffff); 1910 nvkm_wr32(device, GPC_UNIT(gpc, 0x2c94), 0xffffffff); 1911 } 1912 1913 for (rop = 0; rop < gr->rop_nr; rop++) { 1914 nvkm_wr32(device, ROP_UNIT(rop, 0x144), 0xc0000000); 1915 nvkm_wr32(device, ROP_UNIT(rop, 0x070), 0xc0000000); 1916 nvkm_wr32(device, ROP_UNIT(rop, 0x204), 0xffffffff); 1917 nvkm_wr32(device, ROP_UNIT(rop, 0x208), 0xffffffff); 1918 } 1919 1920 nvkm_wr32(device, 0x400108, 0xffffffff); 1921 nvkm_wr32(device, 0x400138, 0xffffffff); 1922 nvkm_wr32(device, 0x400118, 0xffffffff); 1923 nvkm_wr32(device, 0x400130, 0xffffffff); 1924 nvkm_wr32(device, 0x40011c, 0xffffffff); 1925 nvkm_wr32(device, 0x400134, 0xffffffff); 1926 1927 nvkm_wr32(device, 0x400054, 0x34ce3464); 1928 1929 gf100_gr_zbc_init(gr); 1930 1931 return gf100_gr_init_ctxctl(gr); 1932 } 1933 1934 #include "fuc/hubgf100.fuc3.h" 1935 1936 struct gf100_gr_ucode 1937 gf100_gr_fecs_ucode = { 1938 .code.data = gf100_grhub_code, 1939 .code.size = sizeof(gf100_grhub_code), 1940 .data.data = gf100_grhub_data, 1941 .data.size = sizeof(gf100_grhub_data), 1942 }; 1943 1944 #include "fuc/gpcgf100.fuc3.h" 1945 1946 struct gf100_gr_ucode 1947 gf100_gr_gpccs_ucode = { 1948 .code.data = gf100_grgpc_code, 1949 .code.size = sizeof(gf100_grgpc_code), 1950 .data.data = gf100_grgpc_data, 1951 .data.size = sizeof(gf100_grgpc_data), 1952 }; 1953 1954 static const struct gf100_gr_func 1955 gf100_gr = { 1956 .init = gf100_gr_init, 1957 .mmio = gf100_gr_pack_mmio, 1958 .fecs.ucode = &gf100_gr_fecs_ucode, 1959 .gpccs.ucode = &gf100_gr_gpccs_ucode, 1960 .rops = gf100_gr_rops, 1961 .grctx = &gf100_grctx, 1962 .sclass = { 1963 { -1, -1, FERMI_TWOD_A }, 1964 { -1, -1, FERMI_MEMORY_TO_MEMORY_FORMAT_A }, 1965 { -1, -1, FERMI_A, &gf100_fermi }, 1966 { -1, -1, FERMI_COMPUTE_A }, 1967 {} 1968 } 1969 }; 1970 1971 int 1972 gf100_gr_new(struct nvkm_device *device, int index, struct nvkm_gr **pgr) 1973 { 1974 return gf100_gr_new_(&gf100_gr, device, index, pgr); 1975 } 1976