1 /*
2  * Copyright 2012 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Ben Skeggs
23  */
24 #include "gf100.h"
25 #include "ctxgf100.h"
26 #include "fuc/os.h"
27 
28 #include <core/client.h>
29 #include <core/option.h>
30 #include <core/firmware.h>
31 #include <subdev/secboot.h>
32 #include <subdev/fb.h>
33 #include <subdev/mc.h>
34 #include <subdev/pmu.h>
35 #include <subdev/timer.h>
36 #include <engine/fifo.h>
37 
38 #include <nvif/class.h>
39 #include <nvif/cl9097.h>
40 #include <nvif/unpack.h>
41 
42 /*******************************************************************************
43  * Zero Bandwidth Clear
44  ******************************************************************************/
45 
46 static void
47 gf100_gr_zbc_clear_color(struct gf100_gr *gr, int zbc)
48 {
49 	struct nvkm_device *device = gr->base.engine.subdev.device;
50 	if (gr->zbc_color[zbc].format) {
51 		nvkm_wr32(device, 0x405804, gr->zbc_color[zbc].ds[0]);
52 		nvkm_wr32(device, 0x405808, gr->zbc_color[zbc].ds[1]);
53 		nvkm_wr32(device, 0x40580c, gr->zbc_color[zbc].ds[2]);
54 		nvkm_wr32(device, 0x405810, gr->zbc_color[zbc].ds[3]);
55 	}
56 	nvkm_wr32(device, 0x405814, gr->zbc_color[zbc].format);
57 	nvkm_wr32(device, 0x405820, zbc);
58 	nvkm_wr32(device, 0x405824, 0x00000004); /* TRIGGER | WRITE | COLOR */
59 }
60 
61 static int
62 gf100_gr_zbc_color_get(struct gf100_gr *gr, int format,
63 		       const u32 ds[4], const u32 l2[4])
64 {
65 	struct nvkm_ltc *ltc = gr->base.engine.subdev.device->ltc;
66 	int zbc = -ENOSPC, i;
67 
68 	for (i = ltc->zbc_min; i <= ltc->zbc_max; i++) {
69 		if (gr->zbc_color[i].format) {
70 			if (gr->zbc_color[i].format != format)
71 				continue;
72 			if (memcmp(gr->zbc_color[i].ds, ds, sizeof(
73 				   gr->zbc_color[i].ds)))
74 				continue;
75 			if (memcmp(gr->zbc_color[i].l2, l2, sizeof(
76 				   gr->zbc_color[i].l2))) {
77 				WARN_ON(1);
78 				return -EINVAL;
79 			}
80 			return i;
81 		} else {
82 			zbc = (zbc < 0) ? i : zbc;
83 		}
84 	}
85 
86 	if (zbc < 0)
87 		return zbc;
88 
89 	memcpy(gr->zbc_color[zbc].ds, ds, sizeof(gr->zbc_color[zbc].ds));
90 	memcpy(gr->zbc_color[zbc].l2, l2, sizeof(gr->zbc_color[zbc].l2));
91 	gr->zbc_color[zbc].format = format;
92 	nvkm_ltc_zbc_color_get(ltc, zbc, l2);
93 	gf100_gr_zbc_clear_color(gr, zbc);
94 	return zbc;
95 }
96 
97 static void
98 gf100_gr_zbc_clear_depth(struct gf100_gr *gr, int zbc)
99 {
100 	struct nvkm_device *device = gr->base.engine.subdev.device;
101 	if (gr->zbc_depth[zbc].format)
102 		nvkm_wr32(device, 0x405818, gr->zbc_depth[zbc].ds);
103 	nvkm_wr32(device, 0x40581c, gr->zbc_depth[zbc].format);
104 	nvkm_wr32(device, 0x405820, zbc);
105 	nvkm_wr32(device, 0x405824, 0x00000005); /* TRIGGER | WRITE | DEPTH */
106 }
107 
108 static int
109 gf100_gr_zbc_depth_get(struct gf100_gr *gr, int format,
110 		       const u32 ds, const u32 l2)
111 {
112 	struct nvkm_ltc *ltc = gr->base.engine.subdev.device->ltc;
113 	int zbc = -ENOSPC, i;
114 
115 	for (i = ltc->zbc_min; i <= ltc->zbc_max; i++) {
116 		if (gr->zbc_depth[i].format) {
117 			if (gr->zbc_depth[i].format != format)
118 				continue;
119 			if (gr->zbc_depth[i].ds != ds)
120 				continue;
121 			if (gr->zbc_depth[i].l2 != l2) {
122 				WARN_ON(1);
123 				return -EINVAL;
124 			}
125 			return i;
126 		} else {
127 			zbc = (zbc < 0) ? i : zbc;
128 		}
129 	}
130 
131 	if (zbc < 0)
132 		return zbc;
133 
134 	gr->zbc_depth[zbc].format = format;
135 	gr->zbc_depth[zbc].ds = ds;
136 	gr->zbc_depth[zbc].l2 = l2;
137 	nvkm_ltc_zbc_depth_get(ltc, zbc, l2);
138 	gf100_gr_zbc_clear_depth(gr, zbc);
139 	return zbc;
140 }
141 
142 /*******************************************************************************
143  * Graphics object classes
144  ******************************************************************************/
145 #define gf100_gr_object(p) container_of((p), struct gf100_gr_object, object)
146 
147 struct gf100_gr_object {
148 	struct nvkm_object object;
149 	struct gf100_gr_chan *chan;
150 };
151 
152 static int
153 gf100_fermi_mthd_zbc_color(struct nvkm_object *object, void *data, u32 size)
154 {
155 	struct gf100_gr *gr = gf100_gr(nvkm_gr(object->engine));
156 	union {
157 		struct fermi_a_zbc_color_v0 v0;
158 	} *args = data;
159 	int ret = -ENOSYS;
160 
161 	if (!(ret = nvif_unpack(ret, &data, &size, args->v0, 0, 0, false))) {
162 		switch (args->v0.format) {
163 		case FERMI_A_ZBC_COLOR_V0_FMT_ZERO:
164 		case FERMI_A_ZBC_COLOR_V0_FMT_UNORM_ONE:
165 		case FERMI_A_ZBC_COLOR_V0_FMT_RF32_GF32_BF32_AF32:
166 		case FERMI_A_ZBC_COLOR_V0_FMT_R16_G16_B16_A16:
167 		case FERMI_A_ZBC_COLOR_V0_FMT_RN16_GN16_BN16_AN16:
168 		case FERMI_A_ZBC_COLOR_V0_FMT_RS16_GS16_BS16_AS16:
169 		case FERMI_A_ZBC_COLOR_V0_FMT_RU16_GU16_BU16_AU16:
170 		case FERMI_A_ZBC_COLOR_V0_FMT_RF16_GF16_BF16_AF16:
171 		case FERMI_A_ZBC_COLOR_V0_FMT_A8R8G8B8:
172 		case FERMI_A_ZBC_COLOR_V0_FMT_A8RL8GL8BL8:
173 		case FERMI_A_ZBC_COLOR_V0_FMT_A2B10G10R10:
174 		case FERMI_A_ZBC_COLOR_V0_FMT_AU2BU10GU10RU10:
175 		case FERMI_A_ZBC_COLOR_V0_FMT_A8B8G8R8:
176 		case FERMI_A_ZBC_COLOR_V0_FMT_A8BL8GL8RL8:
177 		case FERMI_A_ZBC_COLOR_V0_FMT_AN8BN8GN8RN8:
178 		case FERMI_A_ZBC_COLOR_V0_FMT_AS8BS8GS8RS8:
179 		case FERMI_A_ZBC_COLOR_V0_FMT_AU8BU8GU8RU8:
180 		case FERMI_A_ZBC_COLOR_V0_FMT_A2R10G10B10:
181 		case FERMI_A_ZBC_COLOR_V0_FMT_BF10GF11RF11:
182 			ret = gf100_gr_zbc_color_get(gr, args->v0.format,
183 							   args->v0.ds,
184 							   args->v0.l2);
185 			if (ret >= 0) {
186 				args->v0.index = ret;
187 				return 0;
188 			}
189 			break;
190 		default:
191 			return -EINVAL;
192 		}
193 	}
194 
195 	return ret;
196 }
197 
198 static int
199 gf100_fermi_mthd_zbc_depth(struct nvkm_object *object, void *data, u32 size)
200 {
201 	struct gf100_gr *gr = gf100_gr(nvkm_gr(object->engine));
202 	union {
203 		struct fermi_a_zbc_depth_v0 v0;
204 	} *args = data;
205 	int ret = -ENOSYS;
206 
207 	if (!(ret = nvif_unpack(ret, &data, &size, args->v0, 0, 0, false))) {
208 		switch (args->v0.format) {
209 		case FERMI_A_ZBC_DEPTH_V0_FMT_FP32:
210 			ret = gf100_gr_zbc_depth_get(gr, args->v0.format,
211 							   args->v0.ds,
212 							   args->v0.l2);
213 			return (ret >= 0) ? 0 : -ENOSPC;
214 		default:
215 			return -EINVAL;
216 		}
217 	}
218 
219 	return ret;
220 }
221 
222 static int
223 gf100_fermi_mthd(struct nvkm_object *object, u32 mthd, void *data, u32 size)
224 {
225 	nvif_ioctl(object, "fermi mthd %08x\n", mthd);
226 	switch (mthd) {
227 	case FERMI_A_ZBC_COLOR:
228 		return gf100_fermi_mthd_zbc_color(object, data, size);
229 	case FERMI_A_ZBC_DEPTH:
230 		return gf100_fermi_mthd_zbc_depth(object, data, size);
231 	default:
232 		break;
233 	}
234 	return -EINVAL;
235 }
236 
237 const struct nvkm_object_func
238 gf100_fermi = {
239 	.mthd = gf100_fermi_mthd,
240 };
241 
242 static void
243 gf100_gr_mthd_set_shader_exceptions(struct nvkm_device *device, u32 data)
244 {
245 	nvkm_wr32(device, 0x419e44, data ? 0xffffffff : 0x00000000);
246 	nvkm_wr32(device, 0x419e4c, data ? 0xffffffff : 0x00000000);
247 }
248 
249 static bool
250 gf100_gr_mthd_sw(struct nvkm_device *device, u16 class, u32 mthd, u32 data)
251 {
252 	switch (class & 0x00ff) {
253 	case 0x97:
254 	case 0xc0:
255 		switch (mthd) {
256 		case 0x1528:
257 			gf100_gr_mthd_set_shader_exceptions(device, data);
258 			return true;
259 		default:
260 			break;
261 		}
262 		break;
263 	default:
264 		break;
265 	}
266 	return false;
267 }
268 
269 static const struct nvkm_object_func
270 gf100_gr_object_func = {
271 };
272 
273 static int
274 gf100_gr_object_new(const struct nvkm_oclass *oclass, void *data, u32 size,
275 		    struct nvkm_object **pobject)
276 {
277 	struct gf100_gr_chan *chan = gf100_gr_chan(oclass->parent);
278 	struct gf100_gr_object *object;
279 
280 	if (!(object = kzalloc(sizeof(*object), GFP_KERNEL)))
281 		return -ENOMEM;
282 	*pobject = &object->object;
283 
284 	nvkm_object_ctor(oclass->base.func ? oclass->base.func :
285 			 &gf100_gr_object_func, oclass, &object->object);
286 	object->chan = chan;
287 	return 0;
288 }
289 
290 static int
291 gf100_gr_object_get(struct nvkm_gr *base, int index, struct nvkm_sclass *sclass)
292 {
293 	struct gf100_gr *gr = gf100_gr(base);
294 	int c = 0;
295 
296 	while (gr->func->sclass[c].oclass) {
297 		if (c++ == index) {
298 			*sclass = gr->func->sclass[index];
299 			sclass->ctor = gf100_gr_object_new;
300 			return index;
301 		}
302 	}
303 
304 	return c;
305 }
306 
307 /*******************************************************************************
308  * PGRAPH context
309  ******************************************************************************/
310 
311 static int
312 gf100_gr_chan_bind(struct nvkm_object *object, struct nvkm_gpuobj *parent,
313 		   int align, struct nvkm_gpuobj **pgpuobj)
314 {
315 	struct gf100_gr_chan *chan = gf100_gr_chan(object);
316 	struct gf100_gr *gr = chan->gr;
317 	int ret, i;
318 
319 	ret = nvkm_gpuobj_new(gr->base.engine.subdev.device, gr->size,
320 			      align, false, parent, pgpuobj);
321 	if (ret)
322 		return ret;
323 
324 	nvkm_kmap(*pgpuobj);
325 	for (i = 0; i < gr->size; i += 4)
326 		nvkm_wo32(*pgpuobj, i, gr->data[i / 4]);
327 
328 	if (!gr->firmware) {
329 		nvkm_wo32(*pgpuobj, 0x00, chan->mmio_nr / 2);
330 		nvkm_wo32(*pgpuobj, 0x04, chan->mmio_vma.offset >> 8);
331 	} else {
332 		nvkm_wo32(*pgpuobj, 0xf4, 0);
333 		nvkm_wo32(*pgpuobj, 0xf8, 0);
334 		nvkm_wo32(*pgpuobj, 0x10, chan->mmio_nr / 2);
335 		nvkm_wo32(*pgpuobj, 0x14, lower_32_bits(chan->mmio_vma.offset));
336 		nvkm_wo32(*pgpuobj, 0x18, upper_32_bits(chan->mmio_vma.offset));
337 		nvkm_wo32(*pgpuobj, 0x1c, 1);
338 		nvkm_wo32(*pgpuobj, 0x20, 0);
339 		nvkm_wo32(*pgpuobj, 0x28, 0);
340 		nvkm_wo32(*pgpuobj, 0x2c, 0);
341 	}
342 	nvkm_done(*pgpuobj);
343 	return 0;
344 }
345 
346 static void *
347 gf100_gr_chan_dtor(struct nvkm_object *object)
348 {
349 	struct gf100_gr_chan *chan = gf100_gr_chan(object);
350 	int i;
351 
352 	for (i = 0; i < ARRAY_SIZE(chan->data); i++) {
353 		if (chan->data[i].vma.node) {
354 			nvkm_vm_unmap(&chan->data[i].vma);
355 			nvkm_vm_put(&chan->data[i].vma);
356 		}
357 		nvkm_memory_del(&chan->data[i].mem);
358 	}
359 
360 	if (chan->mmio_vma.node) {
361 		nvkm_vm_unmap(&chan->mmio_vma);
362 		nvkm_vm_put(&chan->mmio_vma);
363 	}
364 	nvkm_memory_del(&chan->mmio);
365 	return chan;
366 }
367 
368 static const struct nvkm_object_func
369 gf100_gr_chan = {
370 	.dtor = gf100_gr_chan_dtor,
371 	.bind = gf100_gr_chan_bind,
372 };
373 
374 static int
375 gf100_gr_chan_new(struct nvkm_gr *base, struct nvkm_fifo_chan *fifoch,
376 		  const struct nvkm_oclass *oclass,
377 		  struct nvkm_object **pobject)
378 {
379 	struct gf100_gr *gr = gf100_gr(base);
380 	struct gf100_gr_data *data = gr->mmio_data;
381 	struct gf100_gr_mmio *mmio = gr->mmio_list;
382 	struct gf100_gr_chan *chan;
383 	struct nvkm_device *device = gr->base.engine.subdev.device;
384 	int ret, i;
385 
386 	if (!(chan = kzalloc(sizeof(*chan), GFP_KERNEL)))
387 		return -ENOMEM;
388 	nvkm_object_ctor(&gf100_gr_chan, oclass, &chan->object);
389 	chan->gr = gr;
390 	*pobject = &chan->object;
391 
392 	/* allocate memory for a "mmio list" buffer that's used by the HUB
393 	 * fuc to modify some per-context register settings on first load
394 	 * of the context.
395 	 */
396 	ret = nvkm_memory_new(device, NVKM_MEM_TARGET_INST, 0x1000, 0x100,
397 			      false, &chan->mmio);
398 	if (ret)
399 		return ret;
400 
401 	ret = nvkm_vm_get(fifoch->vm, 0x1000, 12, NV_MEM_ACCESS_RW |
402 			  NV_MEM_ACCESS_SYS, &chan->mmio_vma);
403 	if (ret)
404 		return ret;
405 
406 	nvkm_memory_map(chan->mmio, &chan->mmio_vma, 0);
407 
408 	/* allocate buffers referenced by mmio list */
409 	for (i = 0; data->size && i < ARRAY_SIZE(gr->mmio_data); i++) {
410 		ret = nvkm_memory_new(device, NVKM_MEM_TARGET_INST,
411 				      data->size, data->align, false,
412 				      &chan->data[i].mem);
413 		if (ret)
414 			return ret;
415 
416 		ret = nvkm_vm_get(fifoch->vm,
417 				  nvkm_memory_size(chan->data[i].mem), 12,
418 				  data->access, &chan->data[i].vma);
419 		if (ret)
420 			return ret;
421 
422 		nvkm_memory_map(chan->data[i].mem, &chan->data[i].vma, 0);
423 		data++;
424 	}
425 
426 	/* finally, fill in the mmio list and point the context at it */
427 	nvkm_kmap(chan->mmio);
428 	for (i = 0; mmio->addr && i < ARRAY_SIZE(gr->mmio_list); i++) {
429 		u32 addr = mmio->addr;
430 		u32 data = mmio->data;
431 
432 		if (mmio->buffer >= 0) {
433 			u64 info = chan->data[mmio->buffer].vma.offset;
434 			data |= info >> mmio->shift;
435 		}
436 
437 		nvkm_wo32(chan->mmio, chan->mmio_nr++ * 4, addr);
438 		nvkm_wo32(chan->mmio, chan->mmio_nr++ * 4, data);
439 		mmio++;
440 	}
441 	nvkm_done(chan->mmio);
442 	return 0;
443 }
444 
445 /*******************************************************************************
446  * PGRAPH register lists
447  ******************************************************************************/
448 
449 const struct gf100_gr_init
450 gf100_gr_init_main_0[] = {
451 	{ 0x400080,   1, 0x04, 0x003083c2 },
452 	{ 0x400088,   1, 0x04, 0x00006fe7 },
453 	{ 0x40008c,   1, 0x04, 0x00000000 },
454 	{ 0x400090,   1, 0x04, 0x00000030 },
455 	{ 0x40013c,   1, 0x04, 0x013901f7 },
456 	{ 0x400140,   1, 0x04, 0x00000100 },
457 	{ 0x400144,   1, 0x04, 0x00000000 },
458 	{ 0x400148,   1, 0x04, 0x00000110 },
459 	{ 0x400138,   1, 0x04, 0x00000000 },
460 	{ 0x400130,   2, 0x04, 0x00000000 },
461 	{ 0x400124,   1, 0x04, 0x00000002 },
462 	{}
463 };
464 
465 const struct gf100_gr_init
466 gf100_gr_init_fe_0[] = {
467 	{ 0x40415c,   1, 0x04, 0x00000000 },
468 	{ 0x404170,   1, 0x04, 0x00000000 },
469 	{}
470 };
471 
472 const struct gf100_gr_init
473 gf100_gr_init_pri_0[] = {
474 	{ 0x404488,   2, 0x04, 0x00000000 },
475 	{}
476 };
477 
478 const struct gf100_gr_init
479 gf100_gr_init_rstr2d_0[] = {
480 	{ 0x407808,   1, 0x04, 0x00000000 },
481 	{}
482 };
483 
484 const struct gf100_gr_init
485 gf100_gr_init_pd_0[] = {
486 	{ 0x406024,   1, 0x04, 0x00000000 },
487 	{}
488 };
489 
490 const struct gf100_gr_init
491 gf100_gr_init_ds_0[] = {
492 	{ 0x405844,   1, 0x04, 0x00ffffff },
493 	{ 0x405850,   1, 0x04, 0x00000000 },
494 	{ 0x405908,   1, 0x04, 0x00000000 },
495 	{}
496 };
497 
498 const struct gf100_gr_init
499 gf100_gr_init_scc_0[] = {
500 	{ 0x40803c,   1, 0x04, 0x00000000 },
501 	{}
502 };
503 
504 const struct gf100_gr_init
505 gf100_gr_init_prop_0[] = {
506 	{ 0x4184a0,   1, 0x04, 0x00000000 },
507 	{}
508 };
509 
510 const struct gf100_gr_init
511 gf100_gr_init_gpc_unk_0[] = {
512 	{ 0x418604,   1, 0x04, 0x00000000 },
513 	{ 0x418680,   1, 0x04, 0x00000000 },
514 	{ 0x418714,   1, 0x04, 0x80000000 },
515 	{ 0x418384,   1, 0x04, 0x00000000 },
516 	{}
517 };
518 
519 const struct gf100_gr_init
520 gf100_gr_init_setup_0[] = {
521 	{ 0x418814,   3, 0x04, 0x00000000 },
522 	{}
523 };
524 
525 const struct gf100_gr_init
526 gf100_gr_init_crstr_0[] = {
527 	{ 0x418b04,   1, 0x04, 0x00000000 },
528 	{}
529 };
530 
531 const struct gf100_gr_init
532 gf100_gr_init_setup_1[] = {
533 	{ 0x4188c8,   1, 0x04, 0x80000000 },
534 	{ 0x4188cc,   1, 0x04, 0x00000000 },
535 	{ 0x4188d0,   1, 0x04, 0x00010000 },
536 	{ 0x4188d4,   1, 0x04, 0x00000001 },
537 	{}
538 };
539 
540 const struct gf100_gr_init
541 gf100_gr_init_zcull_0[] = {
542 	{ 0x418910,   1, 0x04, 0x00010001 },
543 	{ 0x418914,   1, 0x04, 0x00000301 },
544 	{ 0x418918,   1, 0x04, 0x00800000 },
545 	{ 0x418980,   1, 0x04, 0x77777770 },
546 	{ 0x418984,   3, 0x04, 0x77777777 },
547 	{}
548 };
549 
550 const struct gf100_gr_init
551 gf100_gr_init_gpm_0[] = {
552 	{ 0x418c04,   1, 0x04, 0x00000000 },
553 	{ 0x418c88,   1, 0x04, 0x00000000 },
554 	{}
555 };
556 
557 const struct gf100_gr_init
558 gf100_gr_init_gpc_unk_1[] = {
559 	{ 0x418d00,   1, 0x04, 0x00000000 },
560 	{ 0x418f08,   1, 0x04, 0x00000000 },
561 	{ 0x418e00,   1, 0x04, 0x00000050 },
562 	{ 0x418e08,   1, 0x04, 0x00000000 },
563 	{}
564 };
565 
566 const struct gf100_gr_init
567 gf100_gr_init_gcc_0[] = {
568 	{ 0x41900c,   1, 0x04, 0x00000000 },
569 	{ 0x419018,   1, 0x04, 0x00000000 },
570 	{}
571 };
572 
573 const struct gf100_gr_init
574 gf100_gr_init_tpccs_0[] = {
575 	{ 0x419d08,   2, 0x04, 0x00000000 },
576 	{ 0x419d10,   1, 0x04, 0x00000014 },
577 	{}
578 };
579 
580 const struct gf100_gr_init
581 gf100_gr_init_tex_0[] = {
582 	{ 0x419ab0,   1, 0x04, 0x00000000 },
583 	{ 0x419ab8,   1, 0x04, 0x000000e7 },
584 	{ 0x419abc,   2, 0x04, 0x00000000 },
585 	{}
586 };
587 
588 const struct gf100_gr_init
589 gf100_gr_init_pe_0[] = {
590 	{ 0x41980c,   3, 0x04, 0x00000000 },
591 	{ 0x419844,   1, 0x04, 0x00000000 },
592 	{ 0x41984c,   1, 0x04, 0x00005bc5 },
593 	{ 0x419850,   4, 0x04, 0x00000000 },
594 	{}
595 };
596 
597 const struct gf100_gr_init
598 gf100_gr_init_l1c_0[] = {
599 	{ 0x419c98,   1, 0x04, 0x00000000 },
600 	{ 0x419ca8,   1, 0x04, 0x80000000 },
601 	{ 0x419cb4,   1, 0x04, 0x00000000 },
602 	{ 0x419cb8,   1, 0x04, 0x00008bf4 },
603 	{ 0x419cbc,   1, 0x04, 0x28137606 },
604 	{ 0x419cc0,   2, 0x04, 0x00000000 },
605 	{}
606 };
607 
608 const struct gf100_gr_init
609 gf100_gr_init_wwdx_0[] = {
610 	{ 0x419bd4,   1, 0x04, 0x00800000 },
611 	{ 0x419bdc,   1, 0x04, 0x00000000 },
612 	{}
613 };
614 
615 const struct gf100_gr_init
616 gf100_gr_init_tpccs_1[] = {
617 	{ 0x419d2c,   1, 0x04, 0x00000000 },
618 	{}
619 };
620 
621 const struct gf100_gr_init
622 gf100_gr_init_mpc_0[] = {
623 	{ 0x419c0c,   1, 0x04, 0x00000000 },
624 	{}
625 };
626 
627 static const struct gf100_gr_init
628 gf100_gr_init_sm_0[] = {
629 	{ 0x419e00,   1, 0x04, 0x00000000 },
630 	{ 0x419ea0,   1, 0x04, 0x00000000 },
631 	{ 0x419ea4,   1, 0x04, 0x00000100 },
632 	{ 0x419ea8,   1, 0x04, 0x00001100 },
633 	{ 0x419eac,   1, 0x04, 0x11100702 },
634 	{ 0x419eb0,   1, 0x04, 0x00000003 },
635 	{ 0x419eb4,   4, 0x04, 0x00000000 },
636 	{ 0x419ec8,   1, 0x04, 0x06060618 },
637 	{ 0x419ed0,   1, 0x04, 0x0eff0e38 },
638 	{ 0x419ed4,   1, 0x04, 0x011104f1 },
639 	{ 0x419edc,   1, 0x04, 0x00000000 },
640 	{ 0x419f00,   1, 0x04, 0x00000000 },
641 	{ 0x419f2c,   1, 0x04, 0x00000000 },
642 	{}
643 };
644 
645 const struct gf100_gr_init
646 gf100_gr_init_be_0[] = {
647 	{ 0x40880c,   1, 0x04, 0x00000000 },
648 	{ 0x408910,   9, 0x04, 0x00000000 },
649 	{ 0x408950,   1, 0x04, 0x00000000 },
650 	{ 0x408954,   1, 0x04, 0x0000ffff },
651 	{ 0x408984,   1, 0x04, 0x00000000 },
652 	{ 0x408988,   1, 0x04, 0x08040201 },
653 	{ 0x40898c,   1, 0x04, 0x80402010 },
654 	{}
655 };
656 
657 const struct gf100_gr_init
658 gf100_gr_init_fe_1[] = {
659 	{ 0x4040f0,   1, 0x04, 0x00000000 },
660 	{}
661 };
662 
663 const struct gf100_gr_init
664 gf100_gr_init_pe_1[] = {
665 	{ 0x419880,   1, 0x04, 0x00000002 },
666 	{}
667 };
668 
669 static const struct gf100_gr_pack
670 gf100_gr_pack_mmio[] = {
671 	{ gf100_gr_init_main_0 },
672 	{ gf100_gr_init_fe_0 },
673 	{ gf100_gr_init_pri_0 },
674 	{ gf100_gr_init_rstr2d_0 },
675 	{ gf100_gr_init_pd_0 },
676 	{ gf100_gr_init_ds_0 },
677 	{ gf100_gr_init_scc_0 },
678 	{ gf100_gr_init_prop_0 },
679 	{ gf100_gr_init_gpc_unk_0 },
680 	{ gf100_gr_init_setup_0 },
681 	{ gf100_gr_init_crstr_0 },
682 	{ gf100_gr_init_setup_1 },
683 	{ gf100_gr_init_zcull_0 },
684 	{ gf100_gr_init_gpm_0 },
685 	{ gf100_gr_init_gpc_unk_1 },
686 	{ gf100_gr_init_gcc_0 },
687 	{ gf100_gr_init_tpccs_0 },
688 	{ gf100_gr_init_tex_0 },
689 	{ gf100_gr_init_pe_0 },
690 	{ gf100_gr_init_l1c_0 },
691 	{ gf100_gr_init_wwdx_0 },
692 	{ gf100_gr_init_tpccs_1 },
693 	{ gf100_gr_init_mpc_0 },
694 	{ gf100_gr_init_sm_0 },
695 	{ gf100_gr_init_be_0 },
696 	{ gf100_gr_init_fe_1 },
697 	{ gf100_gr_init_pe_1 },
698 	{}
699 };
700 
701 /*******************************************************************************
702  * PGRAPH engine/subdev functions
703  ******************************************************************************/
704 
705 int
706 gf100_gr_rops(struct gf100_gr *gr)
707 {
708 	struct nvkm_device *device = gr->base.engine.subdev.device;
709 	return (nvkm_rd32(device, 0x409604) & 0x001f0000) >> 16;
710 }
711 
712 void
713 gf100_gr_zbc_init(struct gf100_gr *gr)
714 {
715 	const u32  zero[] = { 0x00000000, 0x00000000, 0x00000000, 0x00000000,
716 			      0x00000000, 0x00000000, 0x00000000, 0x00000000 };
717 	const u32   one[] = { 0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000,
718 			      0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff };
719 	const u32 f32_0[] = { 0x00000000, 0x00000000, 0x00000000, 0x00000000,
720 			      0x00000000, 0x00000000, 0x00000000, 0x00000000 };
721 	const u32 f32_1[] = { 0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000,
722 			      0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000 };
723 	struct nvkm_ltc *ltc = gr->base.engine.subdev.device->ltc;
724 	int index;
725 
726 	if (!gr->zbc_color[0].format) {
727 		gf100_gr_zbc_color_get(gr, 1,  & zero[0],   &zero[4]);
728 		gf100_gr_zbc_color_get(gr, 2,  &  one[0],    &one[4]);
729 		gf100_gr_zbc_color_get(gr, 4,  &f32_0[0],  &f32_0[4]);
730 		gf100_gr_zbc_color_get(gr, 4,  &f32_1[0],  &f32_1[4]);
731 		gf100_gr_zbc_depth_get(gr, 1, 0x00000000, 0x00000000);
732 		gf100_gr_zbc_depth_get(gr, 1, 0x3f800000, 0x3f800000);
733 	}
734 
735 	for (index = ltc->zbc_min; index <= ltc->zbc_max; index++)
736 		gf100_gr_zbc_clear_color(gr, index);
737 	for (index = ltc->zbc_min; index <= ltc->zbc_max; index++)
738 		gf100_gr_zbc_clear_depth(gr, index);
739 }
740 
741 /**
742  * Wait until GR goes idle. GR is considered idle if it is disabled by the
743  * MC (0x200) register, or GR is not busy and a context switch is not in
744  * progress.
745  */
746 int
747 gf100_gr_wait_idle(struct gf100_gr *gr)
748 {
749 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
750 	struct nvkm_device *device = subdev->device;
751 	unsigned long end_jiffies = jiffies + msecs_to_jiffies(2000);
752 	bool gr_enabled, ctxsw_active, gr_busy;
753 
754 	do {
755 		/*
756 		 * required to make sure FIFO_ENGINE_STATUS (0x2640) is
757 		 * up-to-date
758 		 */
759 		nvkm_rd32(device, 0x400700);
760 
761 		gr_enabled = nvkm_rd32(device, 0x200) & 0x1000;
762 		ctxsw_active = nvkm_rd32(device, 0x2640) & 0x8000;
763 		gr_busy = nvkm_rd32(device, 0x40060c) & 0x1;
764 
765 		if (!gr_enabled || (!gr_busy && !ctxsw_active))
766 			return 0;
767 	} while (time_before(jiffies, end_jiffies));
768 
769 	nvkm_error(subdev,
770 		   "wait for idle timeout (en: %d, ctxsw: %d, busy: %d)\n",
771 		   gr_enabled, ctxsw_active, gr_busy);
772 	return -EAGAIN;
773 }
774 
775 void
776 gf100_gr_mmio(struct gf100_gr *gr, const struct gf100_gr_pack *p)
777 {
778 	struct nvkm_device *device = gr->base.engine.subdev.device;
779 	const struct gf100_gr_pack *pack;
780 	const struct gf100_gr_init *init;
781 
782 	pack_for_each_init(init, pack, p) {
783 		u32 next = init->addr + init->count * init->pitch;
784 		u32 addr = init->addr;
785 		while (addr < next) {
786 			nvkm_wr32(device, addr, init->data);
787 			addr += init->pitch;
788 		}
789 	}
790 }
791 
792 void
793 gf100_gr_icmd(struct gf100_gr *gr, const struct gf100_gr_pack *p)
794 {
795 	struct nvkm_device *device = gr->base.engine.subdev.device;
796 	const struct gf100_gr_pack *pack;
797 	const struct gf100_gr_init *init;
798 	u32 data = 0;
799 
800 	nvkm_wr32(device, 0x400208, 0x80000000);
801 
802 	pack_for_each_init(init, pack, p) {
803 		u32 next = init->addr + init->count * init->pitch;
804 		u32 addr = init->addr;
805 
806 		if ((pack == p && init == p->init) || data != init->data) {
807 			nvkm_wr32(device, 0x400204, init->data);
808 			data = init->data;
809 		}
810 
811 		while (addr < next) {
812 			nvkm_wr32(device, 0x400200, addr);
813 			/**
814 			 * Wait for GR to go idle after submitting a
815 			 * GO_IDLE bundle
816 			 */
817 			if ((addr & 0xffff) == 0xe100)
818 				gf100_gr_wait_idle(gr);
819 			nvkm_msec(device, 2000,
820 				if (!(nvkm_rd32(device, 0x400700) & 0x00000004))
821 					break;
822 			);
823 			addr += init->pitch;
824 		}
825 	}
826 
827 	nvkm_wr32(device, 0x400208, 0x00000000);
828 }
829 
830 void
831 gf100_gr_mthd(struct gf100_gr *gr, const struct gf100_gr_pack *p)
832 {
833 	struct nvkm_device *device = gr->base.engine.subdev.device;
834 	const struct gf100_gr_pack *pack;
835 	const struct gf100_gr_init *init;
836 	u32 data = 0;
837 
838 	pack_for_each_init(init, pack, p) {
839 		u32 ctrl = 0x80000000 | pack->type;
840 		u32 next = init->addr + init->count * init->pitch;
841 		u32 addr = init->addr;
842 
843 		if ((pack == p && init == p->init) || data != init->data) {
844 			nvkm_wr32(device, 0x40448c, init->data);
845 			data = init->data;
846 		}
847 
848 		while (addr < next) {
849 			nvkm_wr32(device, 0x404488, ctrl | (addr << 14));
850 			addr += init->pitch;
851 		}
852 	}
853 }
854 
855 u64
856 gf100_gr_units(struct nvkm_gr *base)
857 {
858 	struct gf100_gr *gr = gf100_gr(base);
859 	u64 cfg;
860 
861 	cfg  = (u32)gr->gpc_nr;
862 	cfg |= (u32)gr->tpc_total << 8;
863 	cfg |= (u64)gr->rop_nr << 32;
864 
865 	return cfg;
866 }
867 
868 static const struct nvkm_bitfield gf100_dispatch_error[] = {
869 	{ 0x00000001, "INJECTED_BUNDLE_ERROR" },
870 	{ 0x00000002, "CLASS_SUBCH_MISMATCH" },
871 	{ 0x00000004, "SUBCHSW_DURING_NOTIFY" },
872 	{}
873 };
874 
875 static const struct nvkm_bitfield gf100_m2mf_error[] = {
876 	{ 0x00000001, "PUSH_TOO_MUCH_DATA" },
877 	{ 0x00000002, "PUSH_NOT_ENOUGH_DATA" },
878 	{}
879 };
880 
881 static const struct nvkm_bitfield gf100_unk6_error[] = {
882 	{ 0x00000001, "TEMP_TOO_SMALL" },
883 	{}
884 };
885 
886 static const struct nvkm_bitfield gf100_ccache_error[] = {
887 	{ 0x00000001, "INTR" },
888 	{ 0x00000002, "LDCONST_OOB" },
889 	{}
890 };
891 
892 static const struct nvkm_bitfield gf100_macro_error[] = {
893 	{ 0x00000001, "TOO_FEW_PARAMS" },
894 	{ 0x00000002, "TOO_MANY_PARAMS" },
895 	{ 0x00000004, "ILLEGAL_OPCODE" },
896 	{ 0x00000008, "DOUBLE_BRANCH" },
897 	{ 0x00000010, "WATCHDOG" },
898 	{}
899 };
900 
901 static const struct nvkm_bitfield gk104_sked_error[] = {
902 	{ 0x00000040, "CTA_RESUME" },
903 	{ 0x00000080, "CONSTANT_BUFFER_SIZE" },
904 	{ 0x00000200, "LOCAL_MEMORY_SIZE_POS" },
905 	{ 0x00000400, "LOCAL_MEMORY_SIZE_NEG" },
906 	{ 0x00000800, "WARP_CSTACK_SIZE" },
907 	{ 0x00001000, "TOTAL_TEMP_SIZE" },
908 	{ 0x00002000, "REGISTER_COUNT" },
909 	{ 0x00040000, "TOTAL_THREADS" },
910 	{ 0x00100000, "PROGRAM_OFFSET" },
911 	{ 0x00200000, "SHARED_MEMORY_SIZE" },
912 	{ 0x00800000, "CTA_THREAD_DIMENSION_ZERO" },
913 	{ 0x01000000, "MEMORY_WINDOW_OVERLAP" },
914 	{ 0x02000000, "SHARED_CONFIG_TOO_SMALL" },
915 	{ 0x04000000, "TOTAL_REGISTER_COUNT" },
916 	{}
917 };
918 
919 static const struct nvkm_bitfield gf100_gpc_rop_error[] = {
920 	{ 0x00000002, "RT_PITCH_OVERRUN" },
921 	{ 0x00000010, "RT_WIDTH_OVERRUN" },
922 	{ 0x00000020, "RT_HEIGHT_OVERRUN" },
923 	{ 0x00000080, "ZETA_STORAGE_TYPE_MISMATCH" },
924 	{ 0x00000100, "RT_STORAGE_TYPE_MISMATCH" },
925 	{ 0x00000400, "RT_LINEAR_MISMATCH" },
926 	{}
927 };
928 
929 static void
930 gf100_gr_trap_gpc_rop(struct gf100_gr *gr, int gpc)
931 {
932 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
933 	struct nvkm_device *device = subdev->device;
934 	char error[128];
935 	u32 trap[4];
936 
937 	trap[0] = nvkm_rd32(device, GPC_UNIT(gpc, 0x0420)) & 0x3fffffff;
938 	trap[1] = nvkm_rd32(device, GPC_UNIT(gpc, 0x0434));
939 	trap[2] = nvkm_rd32(device, GPC_UNIT(gpc, 0x0438));
940 	trap[3] = nvkm_rd32(device, GPC_UNIT(gpc, 0x043c));
941 
942 	nvkm_snprintbf(error, sizeof(error), gf100_gpc_rop_error, trap[0]);
943 
944 	nvkm_error(subdev, "GPC%d/PROP trap: %08x [%s] x = %u, y = %u, "
945 			   "format = %x, storage type = %x\n",
946 		   gpc, trap[0], error, trap[1] & 0xffff, trap[1] >> 16,
947 		   (trap[2] >> 8) & 0x3f, trap[3] & 0xff);
948 	nvkm_wr32(device, GPC_UNIT(gpc, 0x0420), 0xc0000000);
949 }
950 
951 static const struct nvkm_enum gf100_mp_warp_error[] = {
952 	{ 0x01, "STACK_ERROR" },
953 	{ 0x02, "API_STACK_ERROR" },
954 	{ 0x03, "RET_EMPTY_STACK_ERROR" },
955 	{ 0x04, "PC_WRAP" },
956 	{ 0x05, "MISALIGNED_PC" },
957 	{ 0x06, "PC_OVERFLOW" },
958 	{ 0x07, "MISALIGNED_IMMC_ADDR" },
959 	{ 0x08, "MISALIGNED_REG" },
960 	{ 0x09, "ILLEGAL_INSTR_ENCODING" },
961 	{ 0x0a, "ILLEGAL_SPH_INSTR_COMBO" },
962 	{ 0x0b, "ILLEGAL_INSTR_PARAM" },
963 	{ 0x0c, "INVALID_CONST_ADDR" },
964 	{ 0x0d, "OOR_REG" },
965 	{ 0x0e, "OOR_ADDR" },
966 	{ 0x0f, "MISALIGNED_ADDR" },
967 	{ 0x10, "INVALID_ADDR_SPACE" },
968 	{ 0x11, "ILLEGAL_INSTR_PARAM2" },
969 	{ 0x12, "INVALID_CONST_ADDR_LDC" },
970 	{ 0x13, "GEOMETRY_SM_ERROR" },
971 	{ 0x14, "DIVERGENT" },
972 	{ 0x15, "WARP_EXIT" },
973 	{}
974 };
975 
976 static const struct nvkm_bitfield gf100_mp_global_error[] = {
977 	{ 0x00000001, "SM_TO_SM_FAULT" },
978 	{ 0x00000002, "L1_ERROR" },
979 	{ 0x00000004, "MULTIPLE_WARP_ERRORS" },
980 	{ 0x00000008, "PHYSICAL_STACK_OVERFLOW" },
981 	{ 0x00000010, "BPT_INT" },
982 	{ 0x00000020, "BPT_PAUSE" },
983 	{ 0x00000040, "SINGLE_STEP_COMPLETE" },
984 	{ 0x20000000, "ECC_SEC_ERROR" },
985 	{ 0x40000000, "ECC_DED_ERROR" },
986 	{ 0x80000000, "TIMEOUT" },
987 	{}
988 };
989 
990 static void
991 gf100_gr_trap_mp(struct gf100_gr *gr, int gpc, int tpc)
992 {
993 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
994 	struct nvkm_device *device = subdev->device;
995 	u32 werr = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x648));
996 	u32 gerr = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x650));
997 	const struct nvkm_enum *warp;
998 	char glob[128];
999 
1000 	nvkm_snprintbf(glob, sizeof(glob), gf100_mp_global_error, gerr);
1001 	warp = nvkm_enum_find(gf100_mp_warp_error, werr & 0xffff);
1002 
1003 	nvkm_error(subdev, "GPC%i/TPC%i/MP trap: "
1004 			   "global %08x [%s] warp %04x [%s]\n",
1005 		   gpc, tpc, gerr, glob, werr, warp ? warp->name : "");
1006 
1007 	nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x648), 0x00000000);
1008 	nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x650), gerr);
1009 }
1010 
1011 static void
1012 gf100_gr_trap_tpc(struct gf100_gr *gr, int gpc, int tpc)
1013 {
1014 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1015 	struct nvkm_device *device = subdev->device;
1016 	u32 stat = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x0508));
1017 
1018 	if (stat & 0x00000001) {
1019 		u32 trap = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x0224));
1020 		nvkm_error(subdev, "GPC%d/TPC%d/TEX: %08x\n", gpc, tpc, trap);
1021 		nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x0224), 0xc0000000);
1022 		stat &= ~0x00000001;
1023 	}
1024 
1025 	if (stat & 0x00000002) {
1026 		gf100_gr_trap_mp(gr, gpc, tpc);
1027 		stat &= ~0x00000002;
1028 	}
1029 
1030 	if (stat & 0x00000004) {
1031 		u32 trap = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x0084));
1032 		nvkm_error(subdev, "GPC%d/TPC%d/POLY: %08x\n", gpc, tpc, trap);
1033 		nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x0084), 0xc0000000);
1034 		stat &= ~0x00000004;
1035 	}
1036 
1037 	if (stat & 0x00000008) {
1038 		u32 trap = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x048c));
1039 		nvkm_error(subdev, "GPC%d/TPC%d/L1C: %08x\n", gpc, tpc, trap);
1040 		nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x048c), 0xc0000000);
1041 		stat &= ~0x00000008;
1042 	}
1043 
1044 	if (stat) {
1045 		nvkm_error(subdev, "GPC%d/TPC%d/%08x: unknown\n", gpc, tpc, stat);
1046 	}
1047 }
1048 
1049 static void
1050 gf100_gr_trap_gpc(struct gf100_gr *gr, int gpc)
1051 {
1052 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1053 	struct nvkm_device *device = subdev->device;
1054 	u32 stat = nvkm_rd32(device, GPC_UNIT(gpc, 0x2c90));
1055 	int tpc;
1056 
1057 	if (stat & 0x00000001) {
1058 		gf100_gr_trap_gpc_rop(gr, gpc);
1059 		stat &= ~0x00000001;
1060 	}
1061 
1062 	if (stat & 0x00000002) {
1063 		u32 trap = nvkm_rd32(device, GPC_UNIT(gpc, 0x0900));
1064 		nvkm_error(subdev, "GPC%d/ZCULL: %08x\n", gpc, trap);
1065 		nvkm_wr32(device, GPC_UNIT(gpc, 0x0900), 0xc0000000);
1066 		stat &= ~0x00000002;
1067 	}
1068 
1069 	if (stat & 0x00000004) {
1070 		u32 trap = nvkm_rd32(device, GPC_UNIT(gpc, 0x1028));
1071 		nvkm_error(subdev, "GPC%d/CCACHE: %08x\n", gpc, trap);
1072 		nvkm_wr32(device, GPC_UNIT(gpc, 0x1028), 0xc0000000);
1073 		stat &= ~0x00000004;
1074 	}
1075 
1076 	if (stat & 0x00000008) {
1077 		u32 trap = nvkm_rd32(device, GPC_UNIT(gpc, 0x0824));
1078 		nvkm_error(subdev, "GPC%d/ESETUP: %08x\n", gpc, trap);
1079 		nvkm_wr32(device, GPC_UNIT(gpc, 0x0824), 0xc0000000);
1080 		stat &= ~0x00000009;
1081 	}
1082 
1083 	for (tpc = 0; tpc < gr->tpc_nr[gpc]; tpc++) {
1084 		u32 mask = 0x00010000 << tpc;
1085 		if (stat & mask) {
1086 			gf100_gr_trap_tpc(gr, gpc, tpc);
1087 			nvkm_wr32(device, GPC_UNIT(gpc, 0x2c90), mask);
1088 			stat &= ~mask;
1089 		}
1090 	}
1091 
1092 	if (stat) {
1093 		nvkm_error(subdev, "GPC%d/%08x: unknown\n", gpc, stat);
1094 	}
1095 }
1096 
1097 static void
1098 gf100_gr_trap_intr(struct gf100_gr *gr)
1099 {
1100 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1101 	struct nvkm_device *device = subdev->device;
1102 	char error[128];
1103 	u32 trap = nvkm_rd32(device, 0x400108);
1104 	int rop, gpc;
1105 
1106 	if (trap & 0x00000001) {
1107 		u32 stat = nvkm_rd32(device, 0x404000);
1108 
1109 		nvkm_snprintbf(error, sizeof(error), gf100_dispatch_error,
1110 			       stat & 0x3fffffff);
1111 		nvkm_error(subdev, "DISPATCH %08x [%s]\n", stat, error);
1112 		nvkm_wr32(device, 0x404000, 0xc0000000);
1113 		nvkm_wr32(device, 0x400108, 0x00000001);
1114 		trap &= ~0x00000001;
1115 	}
1116 
1117 	if (trap & 0x00000002) {
1118 		u32 stat = nvkm_rd32(device, 0x404600);
1119 
1120 		nvkm_snprintbf(error, sizeof(error), gf100_m2mf_error,
1121 			       stat & 0x3fffffff);
1122 		nvkm_error(subdev, "M2MF %08x [%s]\n", stat, error);
1123 
1124 		nvkm_wr32(device, 0x404600, 0xc0000000);
1125 		nvkm_wr32(device, 0x400108, 0x00000002);
1126 		trap &= ~0x00000002;
1127 	}
1128 
1129 	if (trap & 0x00000008) {
1130 		u32 stat = nvkm_rd32(device, 0x408030);
1131 
1132 		nvkm_snprintbf(error, sizeof(error), gf100_m2mf_error,
1133 			       stat & 0x3fffffff);
1134 		nvkm_error(subdev, "CCACHE %08x [%s]\n", stat, error);
1135 		nvkm_wr32(device, 0x408030, 0xc0000000);
1136 		nvkm_wr32(device, 0x400108, 0x00000008);
1137 		trap &= ~0x00000008;
1138 	}
1139 
1140 	if (trap & 0x00000010) {
1141 		u32 stat = nvkm_rd32(device, 0x405840);
1142 		nvkm_error(subdev, "SHADER %08x, sph: 0x%06x, stage: 0x%02x\n",
1143 			   stat, stat & 0xffffff, (stat >> 24) & 0x3f);
1144 		nvkm_wr32(device, 0x405840, 0xc0000000);
1145 		nvkm_wr32(device, 0x400108, 0x00000010);
1146 		trap &= ~0x00000010;
1147 	}
1148 
1149 	if (trap & 0x00000040) {
1150 		u32 stat = nvkm_rd32(device, 0x40601c);
1151 
1152 		nvkm_snprintbf(error, sizeof(error), gf100_unk6_error,
1153 			       stat & 0x3fffffff);
1154 		nvkm_error(subdev, "UNK6 %08x [%s]\n", stat, error);
1155 
1156 		nvkm_wr32(device, 0x40601c, 0xc0000000);
1157 		nvkm_wr32(device, 0x400108, 0x00000040);
1158 		trap &= ~0x00000040;
1159 	}
1160 
1161 	if (trap & 0x00000080) {
1162 		u32 stat = nvkm_rd32(device, 0x404490);
1163 		u32 pc = nvkm_rd32(device, 0x404494);
1164 		u32 op = nvkm_rd32(device, 0x40449c);
1165 
1166 		nvkm_snprintbf(error, sizeof(error), gf100_macro_error,
1167 			       stat & 0x1fffffff);
1168 		nvkm_error(subdev, "MACRO %08x [%s], pc: 0x%03x%s, op: 0x%08x\n",
1169 			   stat, error, pc & 0x7ff,
1170 			   (pc & 0x10000000) ? "" : " (invalid)",
1171 			   op);
1172 
1173 		nvkm_wr32(device, 0x404490, 0xc0000000);
1174 		nvkm_wr32(device, 0x400108, 0x00000080);
1175 		trap &= ~0x00000080;
1176 	}
1177 
1178 	if (trap & 0x00000100) {
1179 		u32 stat = nvkm_rd32(device, 0x407020) & 0x3fffffff;
1180 
1181 		nvkm_snprintbf(error, sizeof(error), gk104_sked_error, stat);
1182 		nvkm_error(subdev, "SKED: %08x [%s]\n", stat, error);
1183 
1184 		if (stat)
1185 			nvkm_wr32(device, 0x407020, 0x40000000);
1186 		nvkm_wr32(device, 0x400108, 0x00000100);
1187 		trap &= ~0x00000100;
1188 	}
1189 
1190 	if (trap & 0x01000000) {
1191 		u32 stat = nvkm_rd32(device, 0x400118);
1192 		for (gpc = 0; stat && gpc < gr->gpc_nr; gpc++) {
1193 			u32 mask = 0x00000001 << gpc;
1194 			if (stat & mask) {
1195 				gf100_gr_trap_gpc(gr, gpc);
1196 				nvkm_wr32(device, 0x400118, mask);
1197 				stat &= ~mask;
1198 			}
1199 		}
1200 		nvkm_wr32(device, 0x400108, 0x01000000);
1201 		trap &= ~0x01000000;
1202 	}
1203 
1204 	if (trap & 0x02000000) {
1205 		for (rop = 0; rop < gr->rop_nr; rop++) {
1206 			u32 statz = nvkm_rd32(device, ROP_UNIT(rop, 0x070));
1207 			u32 statc = nvkm_rd32(device, ROP_UNIT(rop, 0x144));
1208 			nvkm_error(subdev, "ROP%d %08x %08x\n",
1209 				 rop, statz, statc);
1210 			nvkm_wr32(device, ROP_UNIT(rop, 0x070), 0xc0000000);
1211 			nvkm_wr32(device, ROP_UNIT(rop, 0x144), 0xc0000000);
1212 		}
1213 		nvkm_wr32(device, 0x400108, 0x02000000);
1214 		trap &= ~0x02000000;
1215 	}
1216 
1217 	if (trap) {
1218 		nvkm_error(subdev, "TRAP UNHANDLED %08x\n", trap);
1219 		nvkm_wr32(device, 0x400108, trap);
1220 	}
1221 }
1222 
1223 static void
1224 gf100_gr_ctxctl_debug_unit(struct gf100_gr *gr, u32 base)
1225 {
1226 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1227 	struct nvkm_device *device = subdev->device;
1228 	nvkm_error(subdev, "%06x - done %08x\n", base,
1229 		   nvkm_rd32(device, base + 0x400));
1230 	nvkm_error(subdev, "%06x - stat %08x %08x %08x %08x\n", base,
1231 		   nvkm_rd32(device, base + 0x800),
1232 		   nvkm_rd32(device, base + 0x804),
1233 		   nvkm_rd32(device, base + 0x808),
1234 		   nvkm_rd32(device, base + 0x80c));
1235 	nvkm_error(subdev, "%06x - stat %08x %08x %08x %08x\n", base,
1236 		   nvkm_rd32(device, base + 0x810),
1237 		   nvkm_rd32(device, base + 0x814),
1238 		   nvkm_rd32(device, base + 0x818),
1239 		   nvkm_rd32(device, base + 0x81c));
1240 }
1241 
1242 void
1243 gf100_gr_ctxctl_debug(struct gf100_gr *gr)
1244 {
1245 	struct nvkm_device *device = gr->base.engine.subdev.device;
1246 	u32 gpcnr = nvkm_rd32(device, 0x409604) & 0xffff;
1247 	u32 gpc;
1248 
1249 	gf100_gr_ctxctl_debug_unit(gr, 0x409000);
1250 	for (gpc = 0; gpc < gpcnr; gpc++)
1251 		gf100_gr_ctxctl_debug_unit(gr, 0x502000 + (gpc * 0x8000));
1252 }
1253 
1254 static void
1255 gf100_gr_ctxctl_isr(struct gf100_gr *gr)
1256 {
1257 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1258 	struct nvkm_device *device = subdev->device;
1259 	u32 stat = nvkm_rd32(device, 0x409c18);
1260 
1261 	if (stat & 0x00000001) {
1262 		u32 code = nvkm_rd32(device, 0x409814);
1263 		if (code == E_BAD_FWMTHD) {
1264 			u32 class = nvkm_rd32(device, 0x409808);
1265 			u32  addr = nvkm_rd32(device, 0x40980c);
1266 			u32  subc = (addr & 0x00070000) >> 16;
1267 			u32  mthd = (addr & 0x00003ffc);
1268 			u32  data = nvkm_rd32(device, 0x409810);
1269 
1270 			nvkm_error(subdev, "FECS MTHD subc %d class %04x "
1271 					   "mthd %04x data %08x\n",
1272 				   subc, class, mthd, data);
1273 
1274 			nvkm_wr32(device, 0x409c20, 0x00000001);
1275 			stat &= ~0x00000001;
1276 		} else {
1277 			nvkm_error(subdev, "FECS ucode error %d\n", code);
1278 		}
1279 	}
1280 
1281 	if (stat & 0x00080000) {
1282 		nvkm_error(subdev, "FECS watchdog timeout\n");
1283 		gf100_gr_ctxctl_debug(gr);
1284 		nvkm_wr32(device, 0x409c20, 0x00080000);
1285 		stat &= ~0x00080000;
1286 	}
1287 
1288 	if (stat) {
1289 		nvkm_error(subdev, "FECS %08x\n", stat);
1290 		gf100_gr_ctxctl_debug(gr);
1291 		nvkm_wr32(device, 0x409c20, stat);
1292 	}
1293 }
1294 
1295 static void
1296 gf100_gr_intr(struct nvkm_gr *base)
1297 {
1298 	struct gf100_gr *gr = gf100_gr(base);
1299 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1300 	struct nvkm_device *device = subdev->device;
1301 	struct nvkm_fifo_chan *chan;
1302 	unsigned long flags;
1303 	u64 inst = nvkm_rd32(device, 0x409b00) & 0x0fffffff;
1304 	u32 stat = nvkm_rd32(device, 0x400100);
1305 	u32 addr = nvkm_rd32(device, 0x400704);
1306 	u32 mthd = (addr & 0x00003ffc);
1307 	u32 subc = (addr & 0x00070000) >> 16;
1308 	u32 data = nvkm_rd32(device, 0x400708);
1309 	u32 code = nvkm_rd32(device, 0x400110);
1310 	u32 class;
1311 	const char *name = "unknown";
1312 	int chid = -1;
1313 
1314 	chan = nvkm_fifo_chan_inst(device->fifo, (u64)inst << 12, &flags);
1315 	if (chan) {
1316 		name = chan->object.client->name;
1317 		chid = chan->chid;
1318 	}
1319 
1320 	if (device->card_type < NV_E0 || subc < 4)
1321 		class = nvkm_rd32(device, 0x404200 + (subc * 4));
1322 	else
1323 		class = 0x0000;
1324 
1325 	if (stat & 0x00000001) {
1326 		/*
1327 		 * notifier interrupt, only needed for cyclestats
1328 		 * can be safely ignored
1329 		 */
1330 		nvkm_wr32(device, 0x400100, 0x00000001);
1331 		stat &= ~0x00000001;
1332 	}
1333 
1334 	if (stat & 0x00000010) {
1335 		if (!gf100_gr_mthd_sw(device, class, mthd, data)) {
1336 			nvkm_error(subdev, "ILLEGAL_MTHD ch %d [%010llx %s] "
1337 				   "subc %d class %04x mthd %04x data %08x\n",
1338 				   chid, inst << 12, name, subc,
1339 				   class, mthd, data);
1340 		}
1341 		nvkm_wr32(device, 0x400100, 0x00000010);
1342 		stat &= ~0x00000010;
1343 	}
1344 
1345 	if (stat & 0x00000020) {
1346 		nvkm_error(subdev, "ILLEGAL_CLASS ch %d [%010llx %s] "
1347 			   "subc %d class %04x mthd %04x data %08x\n",
1348 			   chid, inst << 12, name, subc, class, mthd, data);
1349 		nvkm_wr32(device, 0x400100, 0x00000020);
1350 		stat &= ~0x00000020;
1351 	}
1352 
1353 	if (stat & 0x00100000) {
1354 		const struct nvkm_enum *en =
1355 			nvkm_enum_find(nv50_data_error_names, code);
1356 		nvkm_error(subdev, "DATA_ERROR %08x [%s] ch %d [%010llx %s] "
1357 				   "subc %d class %04x mthd %04x data %08x\n",
1358 			   code, en ? en->name : "", chid, inst << 12,
1359 			   name, subc, class, mthd, data);
1360 		nvkm_wr32(device, 0x400100, 0x00100000);
1361 		stat &= ~0x00100000;
1362 	}
1363 
1364 	if (stat & 0x00200000) {
1365 		nvkm_error(subdev, "TRAP ch %d [%010llx %s]\n",
1366 			   chid, inst << 12, name);
1367 		gf100_gr_trap_intr(gr);
1368 		nvkm_wr32(device, 0x400100, 0x00200000);
1369 		stat &= ~0x00200000;
1370 	}
1371 
1372 	if (stat & 0x00080000) {
1373 		gf100_gr_ctxctl_isr(gr);
1374 		nvkm_wr32(device, 0x400100, 0x00080000);
1375 		stat &= ~0x00080000;
1376 	}
1377 
1378 	if (stat) {
1379 		nvkm_error(subdev, "intr %08x\n", stat);
1380 		nvkm_wr32(device, 0x400100, stat);
1381 	}
1382 
1383 	nvkm_wr32(device, 0x400500, 0x00010001);
1384 	nvkm_fifo_chan_put(device->fifo, flags, &chan);
1385 }
1386 
1387 void
1388 gf100_gr_init_fw(struct gf100_gr *gr, u32 fuc_base,
1389 		 struct gf100_gr_fuc *code, struct gf100_gr_fuc *data)
1390 {
1391 	struct nvkm_device *device = gr->base.engine.subdev.device;
1392 	int i;
1393 
1394 	nvkm_wr32(device, fuc_base + 0x01c0, 0x01000000);
1395 	for (i = 0; i < data->size / 4; i++)
1396 		nvkm_wr32(device, fuc_base + 0x01c4, data->data[i]);
1397 
1398 	nvkm_wr32(device, fuc_base + 0x0180, 0x01000000);
1399 	for (i = 0; i < code->size / 4; i++) {
1400 		if ((i & 0x3f) == 0)
1401 			nvkm_wr32(device, fuc_base + 0x0188, i >> 6);
1402 		nvkm_wr32(device, fuc_base + 0x0184, code->data[i]);
1403 	}
1404 
1405 	/* code must be padded to 0x40 words */
1406 	for (; i & 0x3f; i++)
1407 		nvkm_wr32(device, fuc_base + 0x0184, 0);
1408 }
1409 
1410 static void
1411 gf100_gr_init_csdata(struct gf100_gr *gr,
1412 		     const struct gf100_gr_pack *pack,
1413 		     u32 falcon, u32 starstar, u32 base)
1414 {
1415 	struct nvkm_device *device = gr->base.engine.subdev.device;
1416 	const struct gf100_gr_pack *iter;
1417 	const struct gf100_gr_init *init;
1418 	u32 addr = ~0, prev = ~0, xfer = 0;
1419 	u32 star, temp;
1420 
1421 	nvkm_wr32(device, falcon + 0x01c0, 0x02000000 + starstar);
1422 	star = nvkm_rd32(device, falcon + 0x01c4);
1423 	temp = nvkm_rd32(device, falcon + 0x01c4);
1424 	if (temp > star)
1425 		star = temp;
1426 	nvkm_wr32(device, falcon + 0x01c0, 0x01000000 + star);
1427 
1428 	pack_for_each_init(init, iter, pack) {
1429 		u32 head = init->addr - base;
1430 		u32 tail = head + init->count * init->pitch;
1431 		while (head < tail) {
1432 			if (head != prev + 4 || xfer >= 32) {
1433 				if (xfer) {
1434 					u32 data = ((--xfer << 26) | addr);
1435 					nvkm_wr32(device, falcon + 0x01c4, data);
1436 					star += 4;
1437 				}
1438 				addr = head;
1439 				xfer = 0;
1440 			}
1441 			prev = head;
1442 			xfer = xfer + 1;
1443 			head = head + init->pitch;
1444 		}
1445 	}
1446 
1447 	nvkm_wr32(device, falcon + 0x01c4, (--xfer << 26) | addr);
1448 	nvkm_wr32(device, falcon + 0x01c0, 0x01000004 + starstar);
1449 	nvkm_wr32(device, falcon + 0x01c4, star + 4);
1450 }
1451 
1452 int
1453 gf100_gr_init_ctxctl(struct gf100_gr *gr)
1454 {
1455 	const struct gf100_grctx_func *grctx = gr->func->grctx;
1456 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1457 	struct nvkm_device *device = subdev->device;
1458 	struct nvkm_secboot *sb = device->secboot;
1459 	int i;
1460 
1461 	if (gr->firmware) {
1462 		/* load fuc microcode */
1463 		nvkm_mc_unk260(device->mc, 0);
1464 
1465 		/* securely-managed falcons must be reset using secure boot */
1466 		if (nvkm_secboot_is_managed(sb, NVKM_SECBOOT_FALCON_FECS))
1467 			nvkm_secboot_reset(sb, NVKM_SECBOOT_FALCON_FECS);
1468 		else
1469 			gf100_gr_init_fw(gr, 0x409000, &gr->fuc409c,
1470 					 &gr->fuc409d);
1471 		if (nvkm_secboot_is_managed(sb, NVKM_SECBOOT_FALCON_GPCCS))
1472 			nvkm_secboot_reset(sb, NVKM_SECBOOT_FALCON_GPCCS);
1473 		else
1474 			gf100_gr_init_fw(gr, 0x41a000, &gr->fuc41ac,
1475 					 &gr->fuc41ad);
1476 
1477 		nvkm_mc_unk260(device->mc, 1);
1478 
1479 		/* start both of them running */
1480 		nvkm_wr32(device, 0x409840, 0xffffffff);
1481 		nvkm_wr32(device, 0x41a10c, 0x00000000);
1482 		nvkm_wr32(device, 0x40910c, 0x00000000);
1483 
1484 		if (nvkm_secboot_is_managed(sb, NVKM_SECBOOT_FALCON_GPCCS))
1485 			nvkm_secboot_start(sb, NVKM_SECBOOT_FALCON_GPCCS);
1486 		else
1487 			nvkm_wr32(device, 0x41a100, 0x00000002);
1488 		if (nvkm_secboot_is_managed(sb, NVKM_SECBOOT_FALCON_FECS))
1489 			nvkm_secboot_start(sb, NVKM_SECBOOT_FALCON_FECS);
1490 		else
1491 			nvkm_wr32(device, 0x409100, 0x00000002);
1492 		if (nvkm_msec(device, 2000,
1493 			if (nvkm_rd32(device, 0x409800) & 0x00000001)
1494 				break;
1495 		) < 0)
1496 			return -EBUSY;
1497 
1498 		nvkm_wr32(device, 0x409840, 0xffffffff);
1499 		nvkm_wr32(device, 0x409500, 0x7fffffff);
1500 		nvkm_wr32(device, 0x409504, 0x00000021);
1501 
1502 		nvkm_wr32(device, 0x409840, 0xffffffff);
1503 		nvkm_wr32(device, 0x409500, 0x00000000);
1504 		nvkm_wr32(device, 0x409504, 0x00000010);
1505 		if (nvkm_msec(device, 2000,
1506 			if ((gr->size = nvkm_rd32(device, 0x409800)))
1507 				break;
1508 		) < 0)
1509 			return -EBUSY;
1510 
1511 		nvkm_wr32(device, 0x409840, 0xffffffff);
1512 		nvkm_wr32(device, 0x409500, 0x00000000);
1513 		nvkm_wr32(device, 0x409504, 0x00000016);
1514 		if (nvkm_msec(device, 2000,
1515 			if (nvkm_rd32(device, 0x409800))
1516 				break;
1517 		) < 0)
1518 			return -EBUSY;
1519 
1520 		nvkm_wr32(device, 0x409840, 0xffffffff);
1521 		nvkm_wr32(device, 0x409500, 0x00000000);
1522 		nvkm_wr32(device, 0x409504, 0x00000025);
1523 		if (nvkm_msec(device, 2000,
1524 			if (nvkm_rd32(device, 0x409800))
1525 				break;
1526 		) < 0)
1527 			return -EBUSY;
1528 
1529 		if (device->chipset >= 0xe0) {
1530 			nvkm_wr32(device, 0x409800, 0x00000000);
1531 			nvkm_wr32(device, 0x409500, 0x00000001);
1532 			nvkm_wr32(device, 0x409504, 0x00000030);
1533 			if (nvkm_msec(device, 2000,
1534 				if (nvkm_rd32(device, 0x409800))
1535 					break;
1536 			) < 0)
1537 				return -EBUSY;
1538 
1539 			nvkm_wr32(device, 0x409810, 0xb00095c8);
1540 			nvkm_wr32(device, 0x409800, 0x00000000);
1541 			nvkm_wr32(device, 0x409500, 0x00000001);
1542 			nvkm_wr32(device, 0x409504, 0x00000031);
1543 			if (nvkm_msec(device, 2000,
1544 				if (nvkm_rd32(device, 0x409800))
1545 					break;
1546 			) < 0)
1547 				return -EBUSY;
1548 
1549 			nvkm_wr32(device, 0x409810, 0x00080420);
1550 			nvkm_wr32(device, 0x409800, 0x00000000);
1551 			nvkm_wr32(device, 0x409500, 0x00000001);
1552 			nvkm_wr32(device, 0x409504, 0x00000032);
1553 			if (nvkm_msec(device, 2000,
1554 				if (nvkm_rd32(device, 0x409800))
1555 					break;
1556 			) < 0)
1557 				return -EBUSY;
1558 
1559 			nvkm_wr32(device, 0x409614, 0x00000070);
1560 			nvkm_wr32(device, 0x409614, 0x00000770);
1561 			nvkm_wr32(device, 0x40802c, 0x00000001);
1562 		}
1563 
1564 		if (gr->data == NULL) {
1565 			int ret = gf100_grctx_generate(gr);
1566 			if (ret) {
1567 				nvkm_error(subdev, "failed to construct context\n");
1568 				return ret;
1569 			}
1570 		}
1571 
1572 		return 0;
1573 	} else
1574 	if (!gr->func->fecs.ucode) {
1575 		return -ENOSYS;
1576 	}
1577 
1578 	/* load HUB microcode */
1579 	nvkm_mc_unk260(device->mc, 0);
1580 	nvkm_wr32(device, 0x4091c0, 0x01000000);
1581 	for (i = 0; i < gr->func->fecs.ucode->data.size / 4; i++)
1582 		nvkm_wr32(device, 0x4091c4, gr->func->fecs.ucode->data.data[i]);
1583 
1584 	nvkm_wr32(device, 0x409180, 0x01000000);
1585 	for (i = 0; i < gr->func->fecs.ucode->code.size / 4; i++) {
1586 		if ((i & 0x3f) == 0)
1587 			nvkm_wr32(device, 0x409188, i >> 6);
1588 		nvkm_wr32(device, 0x409184, gr->func->fecs.ucode->code.data[i]);
1589 	}
1590 
1591 	/* load GPC microcode */
1592 	nvkm_wr32(device, 0x41a1c0, 0x01000000);
1593 	for (i = 0; i < gr->func->gpccs.ucode->data.size / 4; i++)
1594 		nvkm_wr32(device, 0x41a1c4, gr->func->gpccs.ucode->data.data[i]);
1595 
1596 	nvkm_wr32(device, 0x41a180, 0x01000000);
1597 	for (i = 0; i < gr->func->gpccs.ucode->code.size / 4; i++) {
1598 		if ((i & 0x3f) == 0)
1599 			nvkm_wr32(device, 0x41a188, i >> 6);
1600 		nvkm_wr32(device, 0x41a184, gr->func->gpccs.ucode->code.data[i]);
1601 	}
1602 	nvkm_mc_unk260(device->mc, 1);
1603 
1604 	/* load register lists */
1605 	gf100_gr_init_csdata(gr, grctx->hub, 0x409000, 0x000, 0x000000);
1606 	gf100_gr_init_csdata(gr, grctx->gpc, 0x41a000, 0x000, 0x418000);
1607 	gf100_gr_init_csdata(gr, grctx->tpc, 0x41a000, 0x004, 0x419800);
1608 	gf100_gr_init_csdata(gr, grctx->ppc, 0x41a000, 0x008, 0x41be00);
1609 
1610 	/* start HUB ucode running, it'll init the GPCs */
1611 	nvkm_wr32(device, 0x40910c, 0x00000000);
1612 	nvkm_wr32(device, 0x409100, 0x00000002);
1613 	if (nvkm_msec(device, 2000,
1614 		if (nvkm_rd32(device, 0x409800) & 0x80000000)
1615 			break;
1616 	) < 0) {
1617 		gf100_gr_ctxctl_debug(gr);
1618 		return -EBUSY;
1619 	}
1620 
1621 	gr->size = nvkm_rd32(device, 0x409804);
1622 	if (gr->data == NULL) {
1623 		int ret = gf100_grctx_generate(gr);
1624 		if (ret) {
1625 			nvkm_error(subdev, "failed to construct context\n");
1626 			return ret;
1627 		}
1628 	}
1629 
1630 	return 0;
1631 }
1632 
1633 static int
1634 gf100_gr_oneinit(struct nvkm_gr *base)
1635 {
1636 	struct gf100_gr *gr = gf100_gr(base);
1637 	struct nvkm_device *device = gr->base.engine.subdev.device;
1638 	int i, j;
1639 
1640 	nvkm_pmu_pgob(device->pmu, false);
1641 
1642 	gr->rop_nr = gr->func->rops(gr);
1643 	gr->gpc_nr = nvkm_rd32(device, 0x409604) & 0x0000001f;
1644 	for (i = 0; i < gr->gpc_nr; i++) {
1645 		gr->tpc_nr[i]  = nvkm_rd32(device, GPC_UNIT(i, 0x2608));
1646 		gr->tpc_total += gr->tpc_nr[i];
1647 		gr->ppc_nr[i]  = gr->func->ppc_nr;
1648 		for (j = 0; j < gr->ppc_nr[i]; j++) {
1649 			u8 mask = nvkm_rd32(device, GPC_UNIT(i, 0x0c30 + (j * 4)));
1650 			if (mask)
1651 				gr->ppc_mask[i] |= (1 << j);
1652 			gr->ppc_tpc_nr[i][j] = hweight8(mask);
1653 		}
1654 	}
1655 
1656 	/*XXX: these need figuring out... though it might not even matter */
1657 	switch (device->chipset) {
1658 	case 0xc0:
1659 		if (gr->tpc_total == 11) { /* 465, 3/4/4/0, 4 */
1660 			gr->screen_tile_row_offset = 0x07;
1661 		} else
1662 		if (gr->tpc_total == 14) { /* 470, 3/3/4/4, 5 */
1663 			gr->screen_tile_row_offset = 0x05;
1664 		} else
1665 		if (gr->tpc_total == 15) { /* 480, 3/4/4/4, 6 */
1666 			gr->screen_tile_row_offset = 0x06;
1667 		}
1668 		break;
1669 	case 0xc3: /* 450, 4/0/0/0, 2 */
1670 		gr->screen_tile_row_offset = 0x03;
1671 		break;
1672 	case 0xc4: /* 460, 3/4/0/0, 4 */
1673 		gr->screen_tile_row_offset = 0x01;
1674 		break;
1675 	case 0xc1: /* 2/0/0/0, 1 */
1676 		gr->screen_tile_row_offset = 0x01;
1677 		break;
1678 	case 0xc8: /* 4/4/3/4, 5 */
1679 		gr->screen_tile_row_offset = 0x06;
1680 		break;
1681 	case 0xce: /* 4/4/0/0, 4 */
1682 		gr->screen_tile_row_offset = 0x03;
1683 		break;
1684 	case 0xcf: /* 4/0/0/0, 3 */
1685 		gr->screen_tile_row_offset = 0x03;
1686 		break;
1687 	case 0xd7:
1688 	case 0xd9: /* 1/0/0/0, 1 */
1689 	case 0xea: /* gk20a */
1690 	case 0x12b: /* gm20b */
1691 		gr->screen_tile_row_offset = 0x01;
1692 		break;
1693 	}
1694 
1695 	return 0;
1696 }
1697 
1698 int
1699 gf100_gr_init_(struct nvkm_gr *base)
1700 {
1701 	struct gf100_gr *gr = gf100_gr(base);
1702 	nvkm_pmu_pgob(gr->base.engine.subdev.device->pmu, false);
1703 	return gr->func->init(gr);
1704 }
1705 
1706 void
1707 gf100_gr_dtor_fw(struct gf100_gr_fuc *fuc)
1708 {
1709 	kfree(fuc->data);
1710 	fuc->data = NULL;
1711 }
1712 
1713 static void
1714 gf100_gr_dtor_init(struct gf100_gr_pack *pack)
1715 {
1716 	vfree(pack);
1717 }
1718 
1719 void *
1720 gf100_gr_dtor(struct nvkm_gr *base)
1721 {
1722 	struct gf100_gr *gr = gf100_gr(base);
1723 
1724 	if (gr->func->dtor)
1725 		gr->func->dtor(gr);
1726 	kfree(gr->data);
1727 
1728 	gf100_gr_dtor_fw(&gr->fuc409c);
1729 	gf100_gr_dtor_fw(&gr->fuc409d);
1730 	gf100_gr_dtor_fw(&gr->fuc41ac);
1731 	gf100_gr_dtor_fw(&gr->fuc41ad);
1732 
1733 	gf100_gr_dtor_init(gr->fuc_bundle);
1734 	gf100_gr_dtor_init(gr->fuc_method);
1735 	gf100_gr_dtor_init(gr->fuc_sw_ctx);
1736 	gf100_gr_dtor_init(gr->fuc_sw_nonctx);
1737 
1738 	return gr;
1739 }
1740 
1741 static const struct nvkm_gr_func
1742 gf100_gr_ = {
1743 	.dtor = gf100_gr_dtor,
1744 	.oneinit = gf100_gr_oneinit,
1745 	.init = gf100_gr_init_,
1746 	.intr = gf100_gr_intr,
1747 	.units = gf100_gr_units,
1748 	.chan_new = gf100_gr_chan_new,
1749 	.object_get = gf100_gr_object_get,
1750 };
1751 
1752 int
1753 gf100_gr_ctor_fw(struct gf100_gr *gr, const char *fwname,
1754 		 struct gf100_gr_fuc *fuc)
1755 {
1756 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1757 	struct nvkm_device *device = subdev->device;
1758 	const struct firmware *fw;
1759 	int ret;
1760 
1761 	ret = nvkm_firmware_get(device, fwname, &fw);
1762 	if (ret) {
1763 		nvkm_error(subdev, "failed to load %s\n", fwname);
1764 		return ret;
1765 	}
1766 
1767 	fuc->size = fw->size;
1768 	fuc->data = kmemdup(fw->data, fuc->size, GFP_KERNEL);
1769 	nvkm_firmware_put(fw);
1770 	return (fuc->data != NULL) ? 0 : -ENOMEM;
1771 }
1772 
1773 int
1774 gf100_gr_ctor(const struct gf100_gr_func *func, struct nvkm_device *device,
1775 	      int index, struct gf100_gr *gr)
1776 {
1777 	int ret;
1778 
1779 	gr->func = func;
1780 	gr->firmware = nvkm_boolopt(device->cfgopt, "NvGrUseFW",
1781 				    func->fecs.ucode == NULL);
1782 
1783 	ret = nvkm_gr_ctor(&gf100_gr_, device, index,
1784 			   gr->firmware || func->fecs.ucode != NULL,
1785 			   &gr->base);
1786 	if (ret)
1787 		return ret;
1788 
1789 	return 0;
1790 }
1791 
1792 int
1793 gf100_gr_new_(const struct gf100_gr_func *func, struct nvkm_device *device,
1794 	      int index, struct nvkm_gr **pgr)
1795 {
1796 	struct gf100_gr *gr;
1797 	int ret;
1798 
1799 	if (!(gr = kzalloc(sizeof(*gr), GFP_KERNEL)))
1800 		return -ENOMEM;
1801 	*pgr = &gr->base;
1802 
1803 	ret = gf100_gr_ctor(func, device, index, gr);
1804 	if (ret)
1805 		return ret;
1806 
1807 	if (gr->firmware) {
1808 		if (gf100_gr_ctor_fw(gr, "fecs_inst", &gr->fuc409c) ||
1809 		    gf100_gr_ctor_fw(gr, "fecs_data", &gr->fuc409d) ||
1810 		    gf100_gr_ctor_fw(gr, "gpccs_inst", &gr->fuc41ac) ||
1811 		    gf100_gr_ctor_fw(gr, "gpccs_data", &gr->fuc41ad))
1812 			return -ENODEV;
1813 	}
1814 
1815 	return 0;
1816 }
1817 
1818 int
1819 gf100_gr_init(struct gf100_gr *gr)
1820 {
1821 	struct nvkm_device *device = gr->base.engine.subdev.device;
1822 	struct nvkm_fb *fb = device->fb;
1823 	const u32 magicgpc918 = DIV_ROUND_UP(0x00800000, gr->tpc_total);
1824 	u32 data[TPC_MAX / 8] = {};
1825 	u8  tpcnr[GPC_MAX];
1826 	int gpc, tpc, rop;
1827 	int i;
1828 
1829 	nvkm_wr32(device, GPC_BCAST(0x0880), 0x00000000);
1830 	nvkm_wr32(device, GPC_BCAST(0x08a4), 0x00000000);
1831 	nvkm_wr32(device, GPC_BCAST(0x0888), 0x00000000);
1832 	nvkm_wr32(device, GPC_BCAST(0x088c), 0x00000000);
1833 	nvkm_wr32(device, GPC_BCAST(0x0890), 0x00000000);
1834 	nvkm_wr32(device, GPC_BCAST(0x0894), 0x00000000);
1835 	nvkm_wr32(device, GPC_BCAST(0x08b4), nvkm_memory_addr(fb->mmu_wr) >> 8);
1836 	nvkm_wr32(device, GPC_BCAST(0x08b8), nvkm_memory_addr(fb->mmu_rd) >> 8);
1837 
1838 	gf100_gr_mmio(gr, gr->func->mmio);
1839 
1840 	nvkm_mask(device, TPC_UNIT(0, 0, 0x05c), 0x00000001, 0x00000001);
1841 
1842 	memcpy(tpcnr, gr->tpc_nr, sizeof(gr->tpc_nr));
1843 	for (i = 0, gpc = -1; i < gr->tpc_total; i++) {
1844 		do {
1845 			gpc = (gpc + 1) % gr->gpc_nr;
1846 		} while (!tpcnr[gpc]);
1847 		tpc = gr->tpc_nr[gpc] - tpcnr[gpc]--;
1848 
1849 		data[i / 8] |= tpc << ((i % 8) * 4);
1850 	}
1851 
1852 	nvkm_wr32(device, GPC_BCAST(0x0980), data[0]);
1853 	nvkm_wr32(device, GPC_BCAST(0x0984), data[1]);
1854 	nvkm_wr32(device, GPC_BCAST(0x0988), data[2]);
1855 	nvkm_wr32(device, GPC_BCAST(0x098c), data[3]);
1856 
1857 	for (gpc = 0; gpc < gr->gpc_nr; gpc++) {
1858 		nvkm_wr32(device, GPC_UNIT(gpc, 0x0914),
1859 			  gr->screen_tile_row_offset << 8 | gr->tpc_nr[gpc]);
1860 		nvkm_wr32(device, GPC_UNIT(gpc, 0x0910), 0x00040000 |
1861 							 gr->tpc_total);
1862 		nvkm_wr32(device, GPC_UNIT(gpc, 0x0918), magicgpc918);
1863 	}
1864 
1865 	if (device->chipset != 0xd7)
1866 		nvkm_wr32(device, GPC_BCAST(0x1bd4), magicgpc918);
1867 	else
1868 		nvkm_wr32(device, GPC_BCAST(0x3fd4), magicgpc918);
1869 
1870 	nvkm_wr32(device, GPC_BCAST(0x08ac), nvkm_rd32(device, 0x100800));
1871 
1872 	nvkm_wr32(device, 0x400500, 0x00010001);
1873 
1874 	nvkm_wr32(device, 0x400100, 0xffffffff);
1875 	nvkm_wr32(device, 0x40013c, 0xffffffff);
1876 
1877 	nvkm_wr32(device, 0x409c24, 0x000f0000);
1878 	nvkm_wr32(device, 0x404000, 0xc0000000);
1879 	nvkm_wr32(device, 0x404600, 0xc0000000);
1880 	nvkm_wr32(device, 0x408030, 0xc0000000);
1881 	nvkm_wr32(device, 0x40601c, 0xc0000000);
1882 	nvkm_wr32(device, 0x404490, 0xc0000000);
1883 	nvkm_wr32(device, 0x406018, 0xc0000000);
1884 	nvkm_wr32(device, 0x405840, 0xc0000000);
1885 	nvkm_wr32(device, 0x405844, 0x00ffffff);
1886 	nvkm_mask(device, 0x419cc0, 0x00000008, 0x00000008);
1887 	nvkm_mask(device, 0x419eb4, 0x00001000, 0x00001000);
1888 
1889 	for (gpc = 0; gpc < gr->gpc_nr; gpc++) {
1890 		nvkm_wr32(device, GPC_UNIT(gpc, 0x0420), 0xc0000000);
1891 		nvkm_wr32(device, GPC_UNIT(gpc, 0x0900), 0xc0000000);
1892 		nvkm_wr32(device, GPC_UNIT(gpc, 0x1028), 0xc0000000);
1893 		nvkm_wr32(device, GPC_UNIT(gpc, 0x0824), 0xc0000000);
1894 		for (tpc = 0; tpc < gr->tpc_nr[gpc]; tpc++) {
1895 			nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x508), 0xffffffff);
1896 			nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x50c), 0xffffffff);
1897 			nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x224), 0xc0000000);
1898 			nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x48c), 0xc0000000);
1899 			nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x084), 0xc0000000);
1900 			nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x644), 0x001ffffe);
1901 			nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x64c), 0x0000000f);
1902 		}
1903 		nvkm_wr32(device, GPC_UNIT(gpc, 0x2c90), 0xffffffff);
1904 		nvkm_wr32(device, GPC_UNIT(gpc, 0x2c94), 0xffffffff);
1905 	}
1906 
1907 	for (rop = 0; rop < gr->rop_nr; rop++) {
1908 		nvkm_wr32(device, ROP_UNIT(rop, 0x144), 0xc0000000);
1909 		nvkm_wr32(device, ROP_UNIT(rop, 0x070), 0xc0000000);
1910 		nvkm_wr32(device, ROP_UNIT(rop, 0x204), 0xffffffff);
1911 		nvkm_wr32(device, ROP_UNIT(rop, 0x208), 0xffffffff);
1912 	}
1913 
1914 	nvkm_wr32(device, 0x400108, 0xffffffff);
1915 	nvkm_wr32(device, 0x400138, 0xffffffff);
1916 	nvkm_wr32(device, 0x400118, 0xffffffff);
1917 	nvkm_wr32(device, 0x400130, 0xffffffff);
1918 	nvkm_wr32(device, 0x40011c, 0xffffffff);
1919 	nvkm_wr32(device, 0x400134, 0xffffffff);
1920 
1921 	nvkm_wr32(device, 0x400054, 0x34ce3464);
1922 
1923 	gf100_gr_zbc_init(gr);
1924 
1925 	return gf100_gr_init_ctxctl(gr);
1926 }
1927 
1928 #include "fuc/hubgf100.fuc3.h"
1929 
1930 struct gf100_gr_ucode
1931 gf100_gr_fecs_ucode = {
1932 	.code.data = gf100_grhub_code,
1933 	.code.size = sizeof(gf100_grhub_code),
1934 	.data.data = gf100_grhub_data,
1935 	.data.size = sizeof(gf100_grhub_data),
1936 };
1937 
1938 #include "fuc/gpcgf100.fuc3.h"
1939 
1940 struct gf100_gr_ucode
1941 gf100_gr_gpccs_ucode = {
1942 	.code.data = gf100_grgpc_code,
1943 	.code.size = sizeof(gf100_grgpc_code),
1944 	.data.data = gf100_grgpc_data,
1945 	.data.size = sizeof(gf100_grgpc_data),
1946 };
1947 
1948 static const struct gf100_gr_func
1949 gf100_gr = {
1950 	.init = gf100_gr_init,
1951 	.mmio = gf100_gr_pack_mmio,
1952 	.fecs.ucode = &gf100_gr_fecs_ucode,
1953 	.gpccs.ucode = &gf100_gr_gpccs_ucode,
1954 	.rops = gf100_gr_rops,
1955 	.grctx = &gf100_grctx,
1956 	.sclass = {
1957 		{ -1, -1, FERMI_TWOD_A },
1958 		{ -1, -1, FERMI_MEMORY_TO_MEMORY_FORMAT_A },
1959 		{ -1, -1, FERMI_A, &gf100_fermi },
1960 		{ -1, -1, FERMI_COMPUTE_A },
1961 		{}
1962 	}
1963 };
1964 
1965 int
1966 gf100_gr_new(struct nvkm_device *device, int index, struct nvkm_gr **pgr)
1967 {
1968 	return gf100_gr_new_(&gf100_gr, device, index, pgr);
1969 }
1970