1 /* 2 * Copyright 2018 Red Hat Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 */ 22 #include "nouveau_svm.h" 23 #include "nouveau_drv.h" 24 #include "nouveau_chan.h" 25 #include "nouveau_dmem.h" 26 27 #include <nvif/event.h> 28 #include <nvif/object.h> 29 #include <nvif/vmm.h> 30 31 #include <nvif/class.h> 32 #include <nvif/clb069.h> 33 #include <nvif/ifc00d.h> 34 35 #include <linux/sched/mm.h> 36 #include <linux/sort.h> 37 #include <linux/hmm.h> 38 #include <linux/memremap.h> 39 #include <linux/rmap.h> 40 41 struct nouveau_svm { 42 struct nouveau_drm *drm; 43 struct mutex mutex; 44 struct list_head inst; 45 46 struct nouveau_svm_fault_buffer { 47 int id; 48 struct nvif_object object; 49 u32 entries; 50 u32 getaddr; 51 u32 putaddr; 52 u32 get; 53 u32 put; 54 struct nvif_event notify; 55 struct work_struct work; 56 57 struct nouveau_svm_fault { 58 u64 inst; 59 u64 addr; 60 u64 time; 61 u32 engine; 62 u8 gpc; 63 u8 hub; 64 u8 access; 65 u8 client; 66 u8 fault; 67 struct nouveau_svmm *svmm; 68 } **fault; 69 int fault_nr; 70 } buffer[1]; 71 }; 72 73 #define FAULT_ACCESS_READ 0 74 #define FAULT_ACCESS_WRITE 1 75 #define FAULT_ACCESS_ATOMIC 2 76 #define FAULT_ACCESS_PREFETCH 3 77 78 #define SVM_DBG(s,f,a...) NV_DEBUG((s)->drm, "svm: "f"\n", ##a) 79 #define SVM_ERR(s,f,a...) NV_WARN((s)->drm, "svm: "f"\n", ##a) 80 81 struct nouveau_pfnmap_args { 82 struct nvif_ioctl_v0 i; 83 struct nvif_ioctl_mthd_v0 m; 84 struct nvif_vmm_pfnmap_v0 p; 85 }; 86 87 struct nouveau_ivmm { 88 struct nouveau_svmm *svmm; 89 u64 inst; 90 struct list_head head; 91 }; 92 93 static struct nouveau_ivmm * 94 nouveau_ivmm_find(struct nouveau_svm *svm, u64 inst) 95 { 96 struct nouveau_ivmm *ivmm; 97 list_for_each_entry(ivmm, &svm->inst, head) { 98 if (ivmm->inst == inst) 99 return ivmm; 100 } 101 return NULL; 102 } 103 104 #define SVMM_DBG(s,f,a...) \ 105 NV_DEBUG((s)->vmm->cli->drm, "svm-%p: "f"\n", (s), ##a) 106 #define SVMM_ERR(s,f,a...) \ 107 NV_WARN((s)->vmm->cli->drm, "svm-%p: "f"\n", (s), ##a) 108 109 int 110 nouveau_svmm_bind(struct drm_device *dev, void *data, 111 struct drm_file *file_priv) 112 { 113 struct nouveau_cli *cli = nouveau_cli(file_priv); 114 struct drm_nouveau_svm_bind *args = data; 115 unsigned target, cmd, priority; 116 unsigned long addr, end; 117 struct mm_struct *mm; 118 119 args->va_start &= PAGE_MASK; 120 args->va_end = ALIGN(args->va_end, PAGE_SIZE); 121 122 /* Sanity check arguments */ 123 if (args->reserved0 || args->reserved1) 124 return -EINVAL; 125 if (args->header & (~NOUVEAU_SVM_BIND_VALID_MASK)) 126 return -EINVAL; 127 if (args->va_start >= args->va_end) 128 return -EINVAL; 129 130 cmd = args->header >> NOUVEAU_SVM_BIND_COMMAND_SHIFT; 131 cmd &= NOUVEAU_SVM_BIND_COMMAND_MASK; 132 switch (cmd) { 133 case NOUVEAU_SVM_BIND_COMMAND__MIGRATE: 134 break; 135 default: 136 return -EINVAL; 137 } 138 139 priority = args->header >> NOUVEAU_SVM_BIND_PRIORITY_SHIFT; 140 priority &= NOUVEAU_SVM_BIND_PRIORITY_MASK; 141 142 /* FIXME support CPU target ie all target value < GPU_VRAM */ 143 target = args->header >> NOUVEAU_SVM_BIND_TARGET_SHIFT; 144 target &= NOUVEAU_SVM_BIND_TARGET_MASK; 145 switch (target) { 146 case NOUVEAU_SVM_BIND_TARGET__GPU_VRAM: 147 break; 148 default: 149 return -EINVAL; 150 } 151 152 /* 153 * FIXME: For now refuse non 0 stride, we need to change the migrate 154 * kernel function to handle stride to avoid to create a mess within 155 * each device driver. 156 */ 157 if (args->stride) 158 return -EINVAL; 159 160 /* 161 * Ok we are ask to do something sane, for now we only support migrate 162 * commands but we will add things like memory policy (what to do on 163 * page fault) and maybe some other commands. 164 */ 165 166 mm = get_task_mm(current); 167 if (!mm) { 168 return -EINVAL; 169 } 170 mmap_read_lock(mm); 171 172 if (!cli->svm.svmm) { 173 mmap_read_unlock(mm); 174 mmput(mm); 175 return -EINVAL; 176 } 177 178 for (addr = args->va_start, end = args->va_end; addr < end;) { 179 struct vm_area_struct *vma; 180 unsigned long next; 181 182 vma = find_vma_intersection(mm, addr, end); 183 if (!vma) 184 break; 185 186 addr = max(addr, vma->vm_start); 187 next = min(vma->vm_end, end); 188 /* This is a best effort so we ignore errors */ 189 nouveau_dmem_migrate_vma(cli->drm, cli->svm.svmm, vma, addr, 190 next); 191 addr = next; 192 } 193 194 /* 195 * FIXME Return the number of page we have migrated, again we need to 196 * update the migrate API to return that information so that we can 197 * report it to user space. 198 */ 199 args->result = 0; 200 201 mmap_read_unlock(mm); 202 mmput(mm); 203 204 return 0; 205 } 206 207 /* Unlink channel instance from SVMM. */ 208 void 209 nouveau_svmm_part(struct nouveau_svmm *svmm, u64 inst) 210 { 211 struct nouveau_ivmm *ivmm; 212 if (svmm) { 213 mutex_lock(&svmm->vmm->cli->drm->svm->mutex); 214 ivmm = nouveau_ivmm_find(svmm->vmm->cli->drm->svm, inst); 215 if (ivmm) { 216 list_del(&ivmm->head); 217 kfree(ivmm); 218 } 219 mutex_unlock(&svmm->vmm->cli->drm->svm->mutex); 220 } 221 } 222 223 /* Link channel instance to SVMM. */ 224 int 225 nouveau_svmm_join(struct nouveau_svmm *svmm, u64 inst) 226 { 227 struct nouveau_ivmm *ivmm; 228 if (svmm) { 229 if (!(ivmm = kmalloc(sizeof(*ivmm), GFP_KERNEL))) 230 return -ENOMEM; 231 ivmm->svmm = svmm; 232 ivmm->inst = inst; 233 234 mutex_lock(&svmm->vmm->cli->drm->svm->mutex); 235 list_add(&ivmm->head, &svmm->vmm->cli->drm->svm->inst); 236 mutex_unlock(&svmm->vmm->cli->drm->svm->mutex); 237 } 238 return 0; 239 } 240 241 /* Invalidate SVMM address-range on GPU. */ 242 void 243 nouveau_svmm_invalidate(struct nouveau_svmm *svmm, u64 start, u64 limit) 244 { 245 if (limit > start) { 246 nvif_object_mthd(&svmm->vmm->vmm.object, NVIF_VMM_V0_PFNCLR, 247 &(struct nvif_vmm_pfnclr_v0) { 248 .addr = start, 249 .size = limit - start, 250 }, sizeof(struct nvif_vmm_pfnclr_v0)); 251 } 252 } 253 254 static int 255 nouveau_svmm_invalidate_range_start(struct mmu_notifier *mn, 256 const struct mmu_notifier_range *update) 257 { 258 struct nouveau_svmm *svmm = 259 container_of(mn, struct nouveau_svmm, notifier); 260 unsigned long start = update->start; 261 unsigned long limit = update->end; 262 263 if (!mmu_notifier_range_blockable(update)) 264 return -EAGAIN; 265 266 SVMM_DBG(svmm, "invalidate %016lx-%016lx", start, limit); 267 268 mutex_lock(&svmm->mutex); 269 if (unlikely(!svmm->vmm)) 270 goto out; 271 272 /* 273 * Ignore invalidation callbacks for device private pages since 274 * the invalidation is handled as part of the migration process. 275 */ 276 if (update->event == MMU_NOTIFY_MIGRATE && 277 update->owner == svmm->vmm->cli->drm->dev) 278 goto out; 279 280 if (limit > svmm->unmanaged.start && start < svmm->unmanaged.limit) { 281 if (start < svmm->unmanaged.start) { 282 nouveau_svmm_invalidate(svmm, start, 283 svmm->unmanaged.limit); 284 } 285 start = svmm->unmanaged.limit; 286 } 287 288 nouveau_svmm_invalidate(svmm, start, limit); 289 290 out: 291 mutex_unlock(&svmm->mutex); 292 return 0; 293 } 294 295 static void nouveau_svmm_free_notifier(struct mmu_notifier *mn) 296 { 297 kfree(container_of(mn, struct nouveau_svmm, notifier)); 298 } 299 300 static const struct mmu_notifier_ops nouveau_mn_ops = { 301 .invalidate_range_start = nouveau_svmm_invalidate_range_start, 302 .free_notifier = nouveau_svmm_free_notifier, 303 }; 304 305 void 306 nouveau_svmm_fini(struct nouveau_svmm **psvmm) 307 { 308 struct nouveau_svmm *svmm = *psvmm; 309 if (svmm) { 310 mutex_lock(&svmm->mutex); 311 svmm->vmm = NULL; 312 mutex_unlock(&svmm->mutex); 313 mmu_notifier_put(&svmm->notifier); 314 *psvmm = NULL; 315 } 316 } 317 318 int 319 nouveau_svmm_init(struct drm_device *dev, void *data, 320 struct drm_file *file_priv) 321 { 322 struct nouveau_cli *cli = nouveau_cli(file_priv); 323 struct nouveau_svmm *svmm; 324 struct drm_nouveau_svm_init *args = data; 325 int ret; 326 327 /* We need to fail if svm is disabled */ 328 if (!cli->drm->svm) 329 return -ENOSYS; 330 331 /* Allocate tracking for SVM-enabled VMM. */ 332 if (!(svmm = kzalloc(sizeof(*svmm), GFP_KERNEL))) 333 return -ENOMEM; 334 svmm->vmm = &cli->svm; 335 svmm->unmanaged.start = args->unmanaged_addr; 336 svmm->unmanaged.limit = args->unmanaged_addr + args->unmanaged_size; 337 mutex_init(&svmm->mutex); 338 339 /* Check that SVM isn't already enabled for the client. */ 340 mutex_lock(&cli->mutex); 341 if (cli->svm.cli) { 342 ret = -EBUSY; 343 goto out_free; 344 } 345 346 /* Allocate a new GPU VMM that can support SVM (managed by the 347 * client, with replayable faults enabled). 348 * 349 * All future channel/memory allocations will make use of this 350 * VMM instead of the standard one. 351 */ 352 ret = nvif_vmm_ctor(&cli->mmu, "svmVmm", 353 cli->vmm.vmm.object.oclass, MANAGED, 354 args->unmanaged_addr, args->unmanaged_size, 355 &(struct gp100_vmm_v0) { 356 .fault_replay = true, 357 }, sizeof(struct gp100_vmm_v0), &cli->svm.vmm); 358 if (ret) 359 goto out_free; 360 361 mmap_write_lock(current->mm); 362 svmm->notifier.ops = &nouveau_mn_ops; 363 ret = __mmu_notifier_register(&svmm->notifier, current->mm); 364 if (ret) 365 goto out_mm_unlock; 366 /* Note, ownership of svmm transfers to mmu_notifier */ 367 368 cli->svm.svmm = svmm; 369 cli->svm.cli = cli; 370 mmap_write_unlock(current->mm); 371 mutex_unlock(&cli->mutex); 372 return 0; 373 374 out_mm_unlock: 375 mmap_write_unlock(current->mm); 376 out_free: 377 mutex_unlock(&cli->mutex); 378 kfree(svmm); 379 return ret; 380 } 381 382 /* Issue fault replay for GPU to retry accesses that faulted previously. */ 383 static void 384 nouveau_svm_fault_replay(struct nouveau_svm *svm) 385 { 386 SVM_DBG(svm, "replay"); 387 WARN_ON(nvif_object_mthd(&svm->drm->client.vmm.vmm.object, 388 GP100_VMM_VN_FAULT_REPLAY, 389 &(struct gp100_vmm_fault_replay_vn) {}, 390 sizeof(struct gp100_vmm_fault_replay_vn))); 391 } 392 393 /* Cancel a replayable fault that could not be handled. 394 * 395 * Cancelling the fault will trigger recovery to reset the engine 396 * and kill the offending channel (ie. GPU SIGSEGV). 397 */ 398 static void 399 nouveau_svm_fault_cancel(struct nouveau_svm *svm, 400 u64 inst, u8 hub, u8 gpc, u8 client) 401 { 402 SVM_DBG(svm, "cancel %016llx %d %02x %02x", inst, hub, gpc, client); 403 WARN_ON(nvif_object_mthd(&svm->drm->client.vmm.vmm.object, 404 GP100_VMM_VN_FAULT_CANCEL, 405 &(struct gp100_vmm_fault_cancel_v0) { 406 .hub = hub, 407 .gpc = gpc, 408 .client = client, 409 .inst = inst, 410 }, sizeof(struct gp100_vmm_fault_cancel_v0))); 411 } 412 413 static void 414 nouveau_svm_fault_cancel_fault(struct nouveau_svm *svm, 415 struct nouveau_svm_fault *fault) 416 { 417 nouveau_svm_fault_cancel(svm, fault->inst, 418 fault->hub, 419 fault->gpc, 420 fault->client); 421 } 422 423 static int 424 nouveau_svm_fault_priority(u8 fault) 425 { 426 switch (fault) { 427 case FAULT_ACCESS_PREFETCH: 428 return 0; 429 case FAULT_ACCESS_READ: 430 return 1; 431 case FAULT_ACCESS_WRITE: 432 return 2; 433 case FAULT_ACCESS_ATOMIC: 434 return 3; 435 default: 436 WARN_ON_ONCE(1); 437 return -1; 438 } 439 } 440 441 static int 442 nouveau_svm_fault_cmp(const void *a, const void *b) 443 { 444 const struct nouveau_svm_fault *fa = *(struct nouveau_svm_fault **)a; 445 const struct nouveau_svm_fault *fb = *(struct nouveau_svm_fault **)b; 446 int ret; 447 if ((ret = (s64)fa->inst - fb->inst)) 448 return ret; 449 if ((ret = (s64)fa->addr - fb->addr)) 450 return ret; 451 return nouveau_svm_fault_priority(fa->access) - 452 nouveau_svm_fault_priority(fb->access); 453 } 454 455 static void 456 nouveau_svm_fault_cache(struct nouveau_svm *svm, 457 struct nouveau_svm_fault_buffer *buffer, u32 offset) 458 { 459 struct nvif_object *memory = &buffer->object; 460 const u32 instlo = nvif_rd32(memory, offset + 0x00); 461 const u32 insthi = nvif_rd32(memory, offset + 0x04); 462 const u32 addrlo = nvif_rd32(memory, offset + 0x08); 463 const u32 addrhi = nvif_rd32(memory, offset + 0x0c); 464 const u32 timelo = nvif_rd32(memory, offset + 0x10); 465 const u32 timehi = nvif_rd32(memory, offset + 0x14); 466 const u32 engine = nvif_rd32(memory, offset + 0x18); 467 const u32 info = nvif_rd32(memory, offset + 0x1c); 468 const u64 inst = (u64)insthi << 32 | instlo; 469 const u8 gpc = (info & 0x1f000000) >> 24; 470 const u8 hub = (info & 0x00100000) >> 20; 471 const u8 client = (info & 0x00007f00) >> 8; 472 struct nouveau_svm_fault *fault; 473 474 //XXX: i think we're supposed to spin waiting */ 475 if (WARN_ON(!(info & 0x80000000))) 476 return; 477 478 nvif_mask(memory, offset + 0x1c, 0x80000000, 0x00000000); 479 480 if (!buffer->fault[buffer->fault_nr]) { 481 fault = kmalloc(sizeof(*fault), GFP_KERNEL); 482 if (WARN_ON(!fault)) { 483 nouveau_svm_fault_cancel(svm, inst, hub, gpc, client); 484 return; 485 } 486 buffer->fault[buffer->fault_nr] = fault; 487 } 488 489 fault = buffer->fault[buffer->fault_nr++]; 490 fault->inst = inst; 491 fault->addr = (u64)addrhi << 32 | addrlo; 492 fault->time = (u64)timehi << 32 | timelo; 493 fault->engine = engine; 494 fault->gpc = gpc; 495 fault->hub = hub; 496 fault->access = (info & 0x000f0000) >> 16; 497 fault->client = client; 498 fault->fault = (info & 0x0000001f); 499 500 SVM_DBG(svm, "fault %016llx %016llx %02x", 501 fault->inst, fault->addr, fault->access); 502 } 503 504 struct svm_notifier { 505 struct mmu_interval_notifier notifier; 506 struct nouveau_svmm *svmm; 507 }; 508 509 static bool nouveau_svm_range_invalidate(struct mmu_interval_notifier *mni, 510 const struct mmu_notifier_range *range, 511 unsigned long cur_seq) 512 { 513 struct svm_notifier *sn = 514 container_of(mni, struct svm_notifier, notifier); 515 516 if (range->event == MMU_NOTIFY_EXCLUSIVE && 517 range->owner == sn->svmm->vmm->cli->drm->dev) 518 return true; 519 520 /* 521 * serializes the update to mni->invalidate_seq done by caller and 522 * prevents invalidation of the PTE from progressing while HW is being 523 * programmed. This is very hacky and only works because the normal 524 * notifier that does invalidation is always called after the range 525 * notifier. 526 */ 527 if (mmu_notifier_range_blockable(range)) 528 mutex_lock(&sn->svmm->mutex); 529 else if (!mutex_trylock(&sn->svmm->mutex)) 530 return false; 531 mmu_interval_set_seq(mni, cur_seq); 532 mutex_unlock(&sn->svmm->mutex); 533 return true; 534 } 535 536 static const struct mmu_interval_notifier_ops nouveau_svm_mni_ops = { 537 .invalidate = nouveau_svm_range_invalidate, 538 }; 539 540 static void nouveau_hmm_convert_pfn(struct nouveau_drm *drm, 541 struct hmm_range *range, 542 struct nouveau_pfnmap_args *args) 543 { 544 struct page *page; 545 546 /* 547 * The address prepared here is passed through nvif_object_ioctl() 548 * to an eventual DMA map in something like gp100_vmm_pgt_pfn() 549 * 550 * This is all just encoding the internal hmm representation into a 551 * different nouveau internal representation. 552 */ 553 if (!(range->hmm_pfns[0] & HMM_PFN_VALID)) { 554 args->p.phys[0] = 0; 555 return; 556 } 557 558 page = hmm_pfn_to_page(range->hmm_pfns[0]); 559 /* 560 * Only map compound pages to the GPU if the CPU is also mapping the 561 * page as a compound page. Otherwise, the PTE protections might not be 562 * consistent (e.g., CPU only maps part of a compound page). 563 * Note that the underlying page might still be larger than the 564 * CPU mapping (e.g., a PUD sized compound page partially mapped with 565 * a PMD sized page table entry). 566 */ 567 if (hmm_pfn_to_map_order(range->hmm_pfns[0])) { 568 unsigned long addr = args->p.addr; 569 570 args->p.page = hmm_pfn_to_map_order(range->hmm_pfns[0]) + 571 PAGE_SHIFT; 572 args->p.size = 1UL << args->p.page; 573 args->p.addr &= ~(args->p.size - 1); 574 page -= (addr - args->p.addr) >> PAGE_SHIFT; 575 } 576 if (is_device_private_page(page)) 577 args->p.phys[0] = nouveau_dmem_page_addr(page) | 578 NVIF_VMM_PFNMAP_V0_V | 579 NVIF_VMM_PFNMAP_V0_VRAM; 580 else 581 args->p.phys[0] = page_to_phys(page) | 582 NVIF_VMM_PFNMAP_V0_V | 583 NVIF_VMM_PFNMAP_V0_HOST; 584 if (range->hmm_pfns[0] & HMM_PFN_WRITE) 585 args->p.phys[0] |= NVIF_VMM_PFNMAP_V0_W; 586 } 587 588 static int nouveau_atomic_range_fault(struct nouveau_svmm *svmm, 589 struct nouveau_drm *drm, 590 struct nouveau_pfnmap_args *args, u32 size, 591 struct svm_notifier *notifier) 592 { 593 unsigned long timeout = 594 jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT); 595 struct mm_struct *mm = svmm->notifier.mm; 596 struct page *page; 597 unsigned long start = args->p.addr; 598 unsigned long notifier_seq; 599 int ret = 0; 600 601 ret = mmu_interval_notifier_insert(¬ifier->notifier, mm, 602 args->p.addr, args->p.size, 603 &nouveau_svm_mni_ops); 604 if (ret) 605 return ret; 606 607 while (true) { 608 if (time_after(jiffies, timeout)) { 609 ret = -EBUSY; 610 goto out; 611 } 612 613 notifier_seq = mmu_interval_read_begin(¬ifier->notifier); 614 mmap_read_lock(mm); 615 ret = make_device_exclusive_range(mm, start, start + PAGE_SIZE, 616 &page, drm->dev); 617 mmap_read_unlock(mm); 618 if (ret <= 0 || !page) { 619 ret = -EINVAL; 620 goto out; 621 } 622 623 mutex_lock(&svmm->mutex); 624 if (!mmu_interval_read_retry(¬ifier->notifier, 625 notifier_seq)) 626 break; 627 mutex_unlock(&svmm->mutex); 628 } 629 630 /* Map the page on the GPU. */ 631 args->p.page = 12; 632 args->p.size = PAGE_SIZE; 633 args->p.addr = start; 634 args->p.phys[0] = page_to_phys(page) | 635 NVIF_VMM_PFNMAP_V0_V | 636 NVIF_VMM_PFNMAP_V0_W | 637 NVIF_VMM_PFNMAP_V0_A | 638 NVIF_VMM_PFNMAP_V0_HOST; 639 640 ret = nvif_object_ioctl(&svmm->vmm->vmm.object, args, size, NULL); 641 mutex_unlock(&svmm->mutex); 642 643 unlock_page(page); 644 put_page(page); 645 646 out: 647 mmu_interval_notifier_remove(¬ifier->notifier); 648 return ret; 649 } 650 651 static int nouveau_range_fault(struct nouveau_svmm *svmm, 652 struct nouveau_drm *drm, 653 struct nouveau_pfnmap_args *args, u32 size, 654 unsigned long hmm_flags, 655 struct svm_notifier *notifier) 656 { 657 unsigned long timeout = 658 jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT); 659 /* Have HMM fault pages within the fault window to the GPU. */ 660 unsigned long hmm_pfns[1]; 661 struct hmm_range range = { 662 .notifier = ¬ifier->notifier, 663 .default_flags = hmm_flags, 664 .hmm_pfns = hmm_pfns, 665 .dev_private_owner = drm->dev, 666 }; 667 struct mm_struct *mm = svmm->notifier.mm; 668 int ret; 669 670 ret = mmu_interval_notifier_insert(¬ifier->notifier, mm, 671 args->p.addr, args->p.size, 672 &nouveau_svm_mni_ops); 673 if (ret) 674 return ret; 675 676 range.start = notifier->notifier.interval_tree.start; 677 range.end = notifier->notifier.interval_tree.last + 1; 678 679 while (true) { 680 if (time_after(jiffies, timeout)) { 681 ret = -EBUSY; 682 goto out; 683 } 684 685 range.notifier_seq = mmu_interval_read_begin(range.notifier); 686 mmap_read_lock(mm); 687 ret = hmm_range_fault(&range); 688 mmap_read_unlock(mm); 689 if (ret) { 690 if (ret == -EBUSY) 691 continue; 692 goto out; 693 } 694 695 mutex_lock(&svmm->mutex); 696 if (mmu_interval_read_retry(range.notifier, 697 range.notifier_seq)) { 698 mutex_unlock(&svmm->mutex); 699 continue; 700 } 701 break; 702 } 703 704 nouveau_hmm_convert_pfn(drm, &range, args); 705 706 ret = nvif_object_ioctl(&svmm->vmm->vmm.object, args, size, NULL); 707 mutex_unlock(&svmm->mutex); 708 709 out: 710 mmu_interval_notifier_remove(¬ifier->notifier); 711 712 return ret; 713 } 714 715 static void 716 nouveau_svm_fault(struct work_struct *work) 717 { 718 struct nouveau_svm_fault_buffer *buffer = container_of(work, typeof(*buffer), work); 719 struct nouveau_svm *svm = container_of(buffer, typeof(*svm), buffer[buffer->id]); 720 struct nvif_object *device = &svm->drm->client.device.object; 721 struct nouveau_svmm *svmm; 722 struct { 723 struct nouveau_pfnmap_args i; 724 u64 phys[1]; 725 } args; 726 unsigned long hmm_flags; 727 u64 inst, start, limit; 728 int fi, fn; 729 int replay = 0, atomic = 0, ret; 730 731 /* Parse available fault buffer entries into a cache, and update 732 * the GET pointer so HW can reuse the entries. 733 */ 734 SVM_DBG(svm, "fault handler"); 735 if (buffer->get == buffer->put) { 736 buffer->put = nvif_rd32(device, buffer->putaddr); 737 buffer->get = nvif_rd32(device, buffer->getaddr); 738 if (buffer->get == buffer->put) 739 return; 740 } 741 buffer->fault_nr = 0; 742 743 SVM_DBG(svm, "get %08x put %08x", buffer->get, buffer->put); 744 while (buffer->get != buffer->put) { 745 nouveau_svm_fault_cache(svm, buffer, buffer->get * 0x20); 746 if (++buffer->get == buffer->entries) 747 buffer->get = 0; 748 } 749 nvif_wr32(device, buffer->getaddr, buffer->get); 750 SVM_DBG(svm, "%d fault(s) pending", buffer->fault_nr); 751 752 /* Sort parsed faults by instance pointer to prevent unnecessary 753 * instance to SVMM translations, followed by address and access 754 * type to reduce the amount of work when handling the faults. 755 */ 756 sort(buffer->fault, buffer->fault_nr, sizeof(*buffer->fault), 757 nouveau_svm_fault_cmp, NULL); 758 759 /* Lookup SVMM structure for each unique instance pointer. */ 760 mutex_lock(&svm->mutex); 761 for (fi = 0, svmm = NULL; fi < buffer->fault_nr; fi++) { 762 if (!svmm || buffer->fault[fi]->inst != inst) { 763 struct nouveau_ivmm *ivmm = 764 nouveau_ivmm_find(svm, buffer->fault[fi]->inst); 765 svmm = ivmm ? ivmm->svmm : NULL; 766 inst = buffer->fault[fi]->inst; 767 SVM_DBG(svm, "inst %016llx -> svm-%p", inst, svmm); 768 } 769 buffer->fault[fi]->svmm = svmm; 770 } 771 mutex_unlock(&svm->mutex); 772 773 /* Process list of faults. */ 774 args.i.i.version = 0; 775 args.i.i.type = NVIF_IOCTL_V0_MTHD; 776 args.i.m.version = 0; 777 args.i.m.method = NVIF_VMM_V0_PFNMAP; 778 args.i.p.version = 0; 779 780 for (fi = 0; fn = fi + 1, fi < buffer->fault_nr; fi = fn) { 781 struct svm_notifier notifier; 782 struct mm_struct *mm; 783 784 /* Cancel any faults from non-SVM channels. */ 785 if (!(svmm = buffer->fault[fi]->svmm)) { 786 nouveau_svm_fault_cancel_fault(svm, buffer->fault[fi]); 787 continue; 788 } 789 SVMM_DBG(svmm, "addr %016llx", buffer->fault[fi]->addr); 790 791 /* We try and group handling of faults within a small 792 * window into a single update. 793 */ 794 start = buffer->fault[fi]->addr; 795 limit = start + PAGE_SIZE; 796 if (start < svmm->unmanaged.limit) 797 limit = min_t(u64, limit, svmm->unmanaged.start); 798 799 /* 800 * Prepare the GPU-side update of all pages within the 801 * fault window, determining required pages and access 802 * permissions based on pending faults. 803 */ 804 args.i.p.addr = start; 805 args.i.p.page = PAGE_SHIFT; 806 args.i.p.size = PAGE_SIZE; 807 /* 808 * Determine required permissions based on GPU fault 809 * access flags. 810 */ 811 switch (buffer->fault[fi]->access) { 812 case 0: /* READ. */ 813 hmm_flags = HMM_PFN_REQ_FAULT; 814 break; 815 case 2: /* ATOMIC. */ 816 atomic = true; 817 break; 818 case 3: /* PREFETCH. */ 819 hmm_flags = 0; 820 break; 821 default: 822 hmm_flags = HMM_PFN_REQ_FAULT | HMM_PFN_REQ_WRITE; 823 break; 824 } 825 826 mm = svmm->notifier.mm; 827 if (!mmget_not_zero(mm)) { 828 nouveau_svm_fault_cancel_fault(svm, buffer->fault[fi]); 829 continue; 830 } 831 832 notifier.svmm = svmm; 833 if (atomic) 834 ret = nouveau_atomic_range_fault(svmm, svm->drm, 835 &args.i, sizeof(args), 836 ¬ifier); 837 else 838 ret = nouveau_range_fault(svmm, svm->drm, &args.i, 839 sizeof(args), hmm_flags, 840 ¬ifier); 841 mmput(mm); 842 843 limit = args.i.p.addr + args.i.p.size; 844 for (fn = fi; ++fn < buffer->fault_nr; ) { 845 /* It's okay to skip over duplicate addresses from the 846 * same SVMM as faults are ordered by access type such 847 * that only the first one needs to be handled. 848 * 849 * ie. WRITE faults appear first, thus any handling of 850 * pending READ faults will already be satisfied. 851 * But if a large page is mapped, make sure subsequent 852 * fault addresses have sufficient access permission. 853 */ 854 if (buffer->fault[fn]->svmm != svmm || 855 buffer->fault[fn]->addr >= limit || 856 (buffer->fault[fi]->access == FAULT_ACCESS_READ && 857 !(args.phys[0] & NVIF_VMM_PFNMAP_V0_V)) || 858 (buffer->fault[fi]->access != FAULT_ACCESS_READ && 859 buffer->fault[fi]->access != FAULT_ACCESS_PREFETCH && 860 !(args.phys[0] & NVIF_VMM_PFNMAP_V0_W)) || 861 (buffer->fault[fi]->access != FAULT_ACCESS_READ && 862 buffer->fault[fi]->access != FAULT_ACCESS_WRITE && 863 buffer->fault[fi]->access != FAULT_ACCESS_PREFETCH && 864 !(args.phys[0] & NVIF_VMM_PFNMAP_V0_A))) 865 break; 866 } 867 868 /* If handling failed completely, cancel all faults. */ 869 if (ret) { 870 while (fi < fn) { 871 struct nouveau_svm_fault *fault = 872 buffer->fault[fi++]; 873 874 nouveau_svm_fault_cancel_fault(svm, fault); 875 } 876 } else 877 replay++; 878 } 879 880 /* Issue fault replay to the GPU. */ 881 if (replay) 882 nouveau_svm_fault_replay(svm); 883 } 884 885 static int 886 nouveau_svm_event(struct nvif_event *event, void *argv, u32 argc) 887 { 888 struct nouveau_svm_fault_buffer *buffer = container_of(event, typeof(*buffer), notify); 889 890 schedule_work(&buffer->work); 891 return NVIF_EVENT_KEEP; 892 } 893 894 static struct nouveau_pfnmap_args * 895 nouveau_pfns_to_args(void *pfns) 896 { 897 return container_of(pfns, struct nouveau_pfnmap_args, p.phys); 898 } 899 900 u64 * 901 nouveau_pfns_alloc(unsigned long npages) 902 { 903 struct nouveau_pfnmap_args *args; 904 905 args = kzalloc(struct_size(args, p.phys, npages), GFP_KERNEL); 906 if (!args) 907 return NULL; 908 909 args->i.type = NVIF_IOCTL_V0_MTHD; 910 args->m.method = NVIF_VMM_V0_PFNMAP; 911 args->p.page = PAGE_SHIFT; 912 913 return args->p.phys; 914 } 915 916 void 917 nouveau_pfns_free(u64 *pfns) 918 { 919 struct nouveau_pfnmap_args *args = nouveau_pfns_to_args(pfns); 920 921 kfree(args); 922 } 923 924 void 925 nouveau_pfns_map(struct nouveau_svmm *svmm, struct mm_struct *mm, 926 unsigned long addr, u64 *pfns, unsigned long npages) 927 { 928 struct nouveau_pfnmap_args *args = nouveau_pfns_to_args(pfns); 929 int ret; 930 931 args->p.addr = addr; 932 args->p.size = npages << PAGE_SHIFT; 933 934 mutex_lock(&svmm->mutex); 935 936 ret = nvif_object_ioctl(&svmm->vmm->vmm.object, args, 937 struct_size(args, p.phys, npages), NULL); 938 939 mutex_unlock(&svmm->mutex); 940 } 941 942 static void 943 nouveau_svm_fault_buffer_fini(struct nouveau_svm *svm, int id) 944 { 945 struct nouveau_svm_fault_buffer *buffer = &svm->buffer[id]; 946 947 nvif_event_block(&buffer->notify); 948 flush_work(&buffer->work); 949 } 950 951 static int 952 nouveau_svm_fault_buffer_init(struct nouveau_svm *svm, int id) 953 { 954 struct nouveau_svm_fault_buffer *buffer = &svm->buffer[id]; 955 struct nvif_object *device = &svm->drm->client.device.object; 956 957 buffer->get = nvif_rd32(device, buffer->getaddr); 958 buffer->put = nvif_rd32(device, buffer->putaddr); 959 SVM_DBG(svm, "get %08x put %08x (init)", buffer->get, buffer->put); 960 961 return nvif_event_allow(&buffer->notify); 962 } 963 964 static void 965 nouveau_svm_fault_buffer_dtor(struct nouveau_svm *svm, int id) 966 { 967 struct nouveau_svm_fault_buffer *buffer = &svm->buffer[id]; 968 int i; 969 970 if (!nvif_object_constructed(&buffer->object)) 971 return; 972 973 nouveau_svm_fault_buffer_fini(svm, id); 974 975 if (buffer->fault) { 976 for (i = 0; buffer->fault[i] && i < buffer->entries; i++) 977 kfree(buffer->fault[i]); 978 kvfree(buffer->fault); 979 } 980 981 nvif_event_dtor(&buffer->notify); 982 nvif_object_dtor(&buffer->object); 983 } 984 985 static int 986 nouveau_svm_fault_buffer_ctor(struct nouveau_svm *svm, s32 oclass, int id) 987 { 988 struct nouveau_svm_fault_buffer *buffer = &svm->buffer[id]; 989 struct nouveau_drm *drm = svm->drm; 990 struct nvif_object *device = &drm->client.device.object; 991 struct nvif_clb069_v0 args = {}; 992 int ret; 993 994 buffer->id = id; 995 996 ret = nvif_object_ctor(device, "svmFaultBuffer", 0, oclass, &args, 997 sizeof(args), &buffer->object); 998 if (ret < 0) { 999 SVM_ERR(svm, "Fault buffer allocation failed: %d", ret); 1000 return ret; 1001 } 1002 1003 nvif_object_map(&buffer->object, NULL, 0); 1004 buffer->entries = args.entries; 1005 buffer->getaddr = args.get; 1006 buffer->putaddr = args.put; 1007 INIT_WORK(&buffer->work, nouveau_svm_fault); 1008 1009 ret = nvif_event_ctor(&buffer->object, "svmFault", id, nouveau_svm_event, true, NULL, 0, 1010 &buffer->notify); 1011 if (ret) 1012 return ret; 1013 1014 buffer->fault = kvcalloc(sizeof(*buffer->fault), buffer->entries, GFP_KERNEL); 1015 if (!buffer->fault) 1016 return -ENOMEM; 1017 1018 return nouveau_svm_fault_buffer_init(svm, id); 1019 } 1020 1021 void 1022 nouveau_svm_resume(struct nouveau_drm *drm) 1023 { 1024 struct nouveau_svm *svm = drm->svm; 1025 if (svm) 1026 nouveau_svm_fault_buffer_init(svm, 0); 1027 } 1028 1029 void 1030 nouveau_svm_suspend(struct nouveau_drm *drm) 1031 { 1032 struct nouveau_svm *svm = drm->svm; 1033 if (svm) 1034 nouveau_svm_fault_buffer_fini(svm, 0); 1035 } 1036 1037 void 1038 nouveau_svm_fini(struct nouveau_drm *drm) 1039 { 1040 struct nouveau_svm *svm = drm->svm; 1041 if (svm) { 1042 nouveau_svm_fault_buffer_dtor(svm, 0); 1043 kfree(drm->svm); 1044 drm->svm = NULL; 1045 } 1046 } 1047 1048 void 1049 nouveau_svm_init(struct nouveau_drm *drm) 1050 { 1051 static const struct nvif_mclass buffers[] = { 1052 { VOLTA_FAULT_BUFFER_A, 0 }, 1053 { MAXWELL_FAULT_BUFFER_A, 0 }, 1054 {} 1055 }; 1056 struct nouveau_svm *svm; 1057 int ret; 1058 1059 /* Disable on Volta and newer until channel recovery is fixed, 1060 * otherwise clients will have a trivial way to trash the GPU 1061 * for everyone. 1062 */ 1063 if (drm->client.device.info.family > NV_DEVICE_INFO_V0_PASCAL) 1064 return; 1065 1066 if (!(drm->svm = svm = kzalloc(sizeof(*drm->svm), GFP_KERNEL))) 1067 return; 1068 1069 drm->svm->drm = drm; 1070 mutex_init(&drm->svm->mutex); 1071 INIT_LIST_HEAD(&drm->svm->inst); 1072 1073 ret = nvif_mclass(&drm->client.device.object, buffers); 1074 if (ret < 0) { 1075 SVM_DBG(svm, "No supported fault buffer class"); 1076 nouveau_svm_fini(drm); 1077 return; 1078 } 1079 1080 ret = nouveau_svm_fault_buffer_ctor(svm, buffers[ret].oclass, 0); 1081 if (ret) { 1082 nouveau_svm_fini(drm); 1083 return; 1084 } 1085 1086 SVM_DBG(svm, "Initialised"); 1087 } 1088