1 /*
2  * Copyright 2018 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 #include "nouveau_svm.h"
23 #include "nouveau_drv.h"
24 #include "nouveau_chan.h"
25 #include "nouveau_dmem.h"
26 
27 #include <nvif/notify.h>
28 #include <nvif/object.h>
29 #include <nvif/vmm.h>
30 
31 #include <nvif/class.h>
32 #include <nvif/clb069.h>
33 #include <nvif/ifc00d.h>
34 
35 #include <linux/sched/mm.h>
36 #include <linux/sort.h>
37 #include <linux/hmm.h>
38 
39 struct nouveau_svm {
40 	struct nouveau_drm *drm;
41 	struct mutex mutex;
42 	struct list_head inst;
43 
44 	struct nouveau_svm_fault_buffer {
45 		int id;
46 		struct nvif_object object;
47 		u32 entries;
48 		u32 getaddr;
49 		u32 putaddr;
50 		u32 get;
51 		u32 put;
52 		struct nvif_notify notify;
53 
54 		struct nouveau_svm_fault {
55 			u64 inst;
56 			u64 addr;
57 			u64 time;
58 			u32 engine;
59 			u8  gpc;
60 			u8  hub;
61 			u8  access;
62 			u8  client;
63 			u8  fault;
64 			struct nouveau_svmm *svmm;
65 		} **fault;
66 		int fault_nr;
67 	} buffer[1];
68 };
69 
70 #define SVM_DBG(s,f,a...) NV_DEBUG((s)->drm, "svm: "f"\n", ##a)
71 #define SVM_ERR(s,f,a...) NV_WARN((s)->drm, "svm: "f"\n", ##a)
72 
73 struct nouveau_ivmm {
74 	struct nouveau_svmm *svmm;
75 	u64 inst;
76 	struct list_head head;
77 };
78 
79 static struct nouveau_ivmm *
80 nouveau_ivmm_find(struct nouveau_svm *svm, u64 inst)
81 {
82 	struct nouveau_ivmm *ivmm;
83 	list_for_each_entry(ivmm, &svm->inst, head) {
84 		if (ivmm->inst == inst)
85 			return ivmm;
86 	}
87 	return NULL;
88 }
89 
90 struct nouveau_svmm {
91 	struct nouveau_vmm *vmm;
92 	struct {
93 		unsigned long start;
94 		unsigned long limit;
95 	} unmanaged;
96 
97 	struct mutex mutex;
98 
99 	struct mm_struct *mm;
100 	struct hmm_mirror mirror;
101 };
102 
103 #define SVMM_DBG(s,f,a...)                                                     \
104 	NV_DEBUG((s)->vmm->cli->drm, "svm-%p: "f"\n", (s), ##a)
105 #define SVMM_ERR(s,f,a...)                                                     \
106 	NV_WARN((s)->vmm->cli->drm, "svm-%p: "f"\n", (s), ##a)
107 
108 int
109 nouveau_svmm_bind(struct drm_device *dev, void *data,
110 		  struct drm_file *file_priv)
111 {
112 	struct nouveau_cli *cli = nouveau_cli(file_priv);
113 	struct drm_nouveau_svm_bind *args = data;
114 	unsigned target, cmd, priority;
115 	unsigned long addr, end, size;
116 	struct mm_struct *mm;
117 
118 	args->va_start &= PAGE_MASK;
119 	args->va_end &= PAGE_MASK;
120 
121 	/* Sanity check arguments */
122 	if (args->reserved0 || args->reserved1)
123 		return -EINVAL;
124 	if (args->header & (~NOUVEAU_SVM_BIND_VALID_MASK))
125 		return -EINVAL;
126 	if (args->va_start >= args->va_end)
127 		return -EINVAL;
128 	if (!args->npages)
129 		return -EINVAL;
130 
131 	cmd = args->header >> NOUVEAU_SVM_BIND_COMMAND_SHIFT;
132 	cmd &= NOUVEAU_SVM_BIND_COMMAND_MASK;
133 	switch (cmd) {
134 	case NOUVEAU_SVM_BIND_COMMAND__MIGRATE:
135 		break;
136 	default:
137 		return -EINVAL;
138 	}
139 
140 	priority = args->header >> NOUVEAU_SVM_BIND_PRIORITY_SHIFT;
141 	priority &= NOUVEAU_SVM_BIND_PRIORITY_MASK;
142 
143 	/* FIXME support CPU target ie all target value < GPU_VRAM */
144 	target = args->header >> NOUVEAU_SVM_BIND_TARGET_SHIFT;
145 	target &= NOUVEAU_SVM_BIND_TARGET_MASK;
146 	switch (target) {
147 	case NOUVEAU_SVM_BIND_TARGET__GPU_VRAM:
148 		break;
149 	default:
150 		return -EINVAL;
151 	}
152 
153 	/*
154 	 * FIXME: For now refuse non 0 stride, we need to change the migrate
155 	 * kernel function to handle stride to avoid to create a mess within
156 	 * each device driver.
157 	 */
158 	if (args->stride)
159 		return -EINVAL;
160 
161 	size = ((unsigned long)args->npages) << PAGE_SHIFT;
162 	if ((args->va_start + size) <= args->va_start)
163 		return -EINVAL;
164 	if ((args->va_start + size) > args->va_end)
165 		return -EINVAL;
166 
167 	/*
168 	 * Ok we are ask to do something sane, for now we only support migrate
169 	 * commands but we will add things like memory policy (what to do on
170 	 * page fault) and maybe some other commands.
171 	 */
172 
173 	mm = get_task_mm(current);
174 	down_read(&mm->mmap_sem);
175 
176 	for (addr = args->va_start, end = args->va_start + size; addr < end;) {
177 		struct vm_area_struct *vma;
178 		unsigned long next;
179 
180 		vma = find_vma_intersection(mm, addr, end);
181 		if (!vma)
182 			break;
183 
184 		next = min(vma->vm_end, end);
185 		/* This is a best effort so we ignore errors */
186 		nouveau_dmem_migrate_vma(cli->drm, vma, addr, next);
187 		addr = next;
188 	}
189 
190 	/*
191 	 * FIXME Return the number of page we have migrated, again we need to
192 	 * update the migrate API to return that information so that we can
193 	 * report it to user space.
194 	 */
195 	args->result = 0;
196 
197 	up_read(&mm->mmap_sem);
198 	mmput(mm);
199 
200 	return 0;
201 }
202 
203 /* Unlink channel instance from SVMM. */
204 void
205 nouveau_svmm_part(struct nouveau_svmm *svmm, u64 inst)
206 {
207 	struct nouveau_ivmm *ivmm;
208 	if (svmm) {
209 		mutex_lock(&svmm->vmm->cli->drm->svm->mutex);
210 		ivmm = nouveau_ivmm_find(svmm->vmm->cli->drm->svm, inst);
211 		if (ivmm) {
212 			list_del(&ivmm->head);
213 			kfree(ivmm);
214 		}
215 		mutex_unlock(&svmm->vmm->cli->drm->svm->mutex);
216 	}
217 }
218 
219 /* Link channel instance to SVMM. */
220 int
221 nouveau_svmm_join(struct nouveau_svmm *svmm, u64 inst)
222 {
223 	struct nouveau_ivmm *ivmm;
224 	if (svmm) {
225 		if (!(ivmm = kmalloc(sizeof(*ivmm), GFP_KERNEL)))
226 			return -ENOMEM;
227 		ivmm->svmm = svmm;
228 		ivmm->inst = inst;
229 
230 		mutex_lock(&svmm->vmm->cli->drm->svm->mutex);
231 		list_add(&ivmm->head, &svmm->vmm->cli->drm->svm->inst);
232 		mutex_unlock(&svmm->vmm->cli->drm->svm->mutex);
233 	}
234 	return 0;
235 }
236 
237 /* Invalidate SVMM address-range on GPU. */
238 static void
239 nouveau_svmm_invalidate(struct nouveau_svmm *svmm, u64 start, u64 limit)
240 {
241 	if (limit > start) {
242 		bool super = svmm->vmm->vmm.object.client->super;
243 		svmm->vmm->vmm.object.client->super = true;
244 		nvif_object_mthd(&svmm->vmm->vmm.object, NVIF_VMM_V0_PFNCLR,
245 				 &(struct nvif_vmm_pfnclr_v0) {
246 					.addr = start,
247 					.size = limit - start,
248 				 }, sizeof(struct nvif_vmm_pfnclr_v0));
249 		svmm->vmm->vmm.object.client->super = super;
250 	}
251 }
252 
253 static int
254 nouveau_svmm_sync_cpu_device_pagetables(struct hmm_mirror *mirror,
255 					const struct hmm_update *update)
256 {
257 	struct nouveau_svmm *svmm = container_of(mirror, typeof(*svmm), mirror);
258 	unsigned long start = update->start;
259 	unsigned long limit = update->end;
260 
261 	if (!update->blockable)
262 		return -EAGAIN;
263 
264 	SVMM_DBG(svmm, "invalidate %016lx-%016lx", start, limit);
265 
266 	mutex_lock(&svmm->mutex);
267 	if (limit > svmm->unmanaged.start && start < svmm->unmanaged.limit) {
268 		if (start < svmm->unmanaged.start) {
269 			nouveau_svmm_invalidate(svmm, start,
270 						svmm->unmanaged.limit);
271 		}
272 		start = svmm->unmanaged.limit;
273 	}
274 
275 	nouveau_svmm_invalidate(svmm, start, limit);
276 	mutex_unlock(&svmm->mutex);
277 	return 0;
278 }
279 
280 static void
281 nouveau_svmm_release(struct hmm_mirror *mirror)
282 {
283 }
284 
285 static const struct hmm_mirror_ops
286 nouveau_svmm = {
287 	.sync_cpu_device_pagetables = nouveau_svmm_sync_cpu_device_pagetables,
288 	.release = nouveau_svmm_release,
289 };
290 
291 void
292 nouveau_svmm_fini(struct nouveau_svmm **psvmm)
293 {
294 	struct nouveau_svmm *svmm = *psvmm;
295 	if (svmm) {
296 		hmm_mirror_unregister(&svmm->mirror);
297 		kfree(*psvmm);
298 		*psvmm = NULL;
299 	}
300 }
301 
302 int
303 nouveau_svmm_init(struct drm_device *dev, void *data,
304 		  struct drm_file *file_priv)
305 {
306 	struct nouveau_cli *cli = nouveau_cli(file_priv);
307 	struct nouveau_svmm *svmm;
308 	struct drm_nouveau_svm_init *args = data;
309 	int ret;
310 
311 	/* Allocate tracking for SVM-enabled VMM. */
312 	if (!(svmm = kzalloc(sizeof(*svmm), GFP_KERNEL)))
313 		return -ENOMEM;
314 	svmm->vmm = &cli->svm;
315 	svmm->unmanaged.start = args->unmanaged_addr;
316 	svmm->unmanaged.limit = args->unmanaged_addr + args->unmanaged_size;
317 	mutex_init(&svmm->mutex);
318 
319 	/* Check that SVM isn't already enabled for the client. */
320 	mutex_lock(&cli->mutex);
321 	if (cli->svm.cli) {
322 		ret = -EBUSY;
323 		goto done;
324 	}
325 
326 	/* Allocate a new GPU VMM that can support SVM (managed by the
327 	 * client, with replayable faults enabled).
328 	 *
329 	 * All future channel/memory allocations will make use of this
330 	 * VMM instead of the standard one.
331 	 */
332 	ret = nvif_vmm_init(&cli->mmu, cli->vmm.vmm.object.oclass, true,
333 			    args->unmanaged_addr, args->unmanaged_size,
334 			    &(struct gp100_vmm_v0) {
335 				.fault_replay = true,
336 			    }, sizeof(struct gp100_vmm_v0), &cli->svm.vmm);
337 	if (ret)
338 		goto done;
339 
340 	/* Enable HMM mirroring of CPU address-space to VMM. */
341 	svmm->mm = get_task_mm(current);
342 	down_write(&svmm->mm->mmap_sem);
343 	svmm->mirror.ops = &nouveau_svmm;
344 	ret = hmm_mirror_register(&svmm->mirror, svmm->mm);
345 	if (ret == 0) {
346 		cli->svm.svmm = svmm;
347 		cli->svm.cli = cli;
348 	}
349 	up_write(&svmm->mm->mmap_sem);
350 	mmput(svmm->mm);
351 
352 done:
353 	if (ret)
354 		nouveau_svmm_fini(&svmm);
355 	mutex_unlock(&cli->mutex);
356 	return ret;
357 }
358 
359 static const u64
360 nouveau_svm_pfn_flags[HMM_PFN_FLAG_MAX] = {
361 	[HMM_PFN_VALID         ] = NVIF_VMM_PFNMAP_V0_V,
362 	[HMM_PFN_WRITE         ] = NVIF_VMM_PFNMAP_V0_W,
363 	[HMM_PFN_DEVICE_PRIVATE] = NVIF_VMM_PFNMAP_V0_VRAM,
364 };
365 
366 static const u64
367 nouveau_svm_pfn_values[HMM_PFN_VALUE_MAX] = {
368 	[HMM_PFN_ERROR  ] = ~NVIF_VMM_PFNMAP_V0_V,
369 	[HMM_PFN_NONE   ] =  NVIF_VMM_PFNMAP_V0_NONE,
370 	[HMM_PFN_SPECIAL] = ~NVIF_VMM_PFNMAP_V0_V,
371 };
372 
373 /* Issue fault replay for GPU to retry accesses that faulted previously. */
374 static void
375 nouveau_svm_fault_replay(struct nouveau_svm *svm)
376 {
377 	SVM_DBG(svm, "replay");
378 	WARN_ON(nvif_object_mthd(&svm->drm->client.vmm.vmm.object,
379 				 GP100_VMM_VN_FAULT_REPLAY,
380 				 &(struct gp100_vmm_fault_replay_vn) {},
381 				 sizeof(struct gp100_vmm_fault_replay_vn)));
382 }
383 
384 /* Cancel a replayable fault that could not be handled.
385  *
386  * Cancelling the fault will trigger recovery to reset the engine
387  * and kill the offending channel (ie. GPU SIGSEGV).
388  */
389 static void
390 nouveau_svm_fault_cancel(struct nouveau_svm *svm,
391 			 u64 inst, u8 hub, u8 gpc, u8 client)
392 {
393 	SVM_DBG(svm, "cancel %016llx %d %02x %02x", inst, hub, gpc, client);
394 	WARN_ON(nvif_object_mthd(&svm->drm->client.vmm.vmm.object,
395 				 GP100_VMM_VN_FAULT_CANCEL,
396 				 &(struct gp100_vmm_fault_cancel_v0) {
397 					.hub = hub,
398 					.gpc = gpc,
399 					.client = client,
400 					.inst = inst,
401 				 }, sizeof(struct gp100_vmm_fault_cancel_v0)));
402 }
403 
404 static void
405 nouveau_svm_fault_cancel_fault(struct nouveau_svm *svm,
406 			       struct nouveau_svm_fault *fault)
407 {
408 	nouveau_svm_fault_cancel(svm, fault->inst,
409 				      fault->hub,
410 				      fault->gpc,
411 				      fault->client);
412 }
413 
414 static int
415 nouveau_svm_fault_cmp(const void *a, const void *b)
416 {
417 	const struct nouveau_svm_fault *fa = *(struct nouveau_svm_fault **)a;
418 	const struct nouveau_svm_fault *fb = *(struct nouveau_svm_fault **)b;
419 	int ret;
420 	if ((ret = (s64)fa->inst - fb->inst))
421 		return ret;
422 	if ((ret = (s64)fa->addr - fb->addr))
423 		return ret;
424 	/*XXX: atomic? */
425 	return (fa->access == 0 || fa->access == 3) -
426 	       (fb->access == 0 || fb->access == 3);
427 }
428 
429 static void
430 nouveau_svm_fault_cache(struct nouveau_svm *svm,
431 			struct nouveau_svm_fault_buffer *buffer, u32 offset)
432 {
433 	struct nvif_object *memory = &buffer->object;
434 	const u32 instlo = nvif_rd32(memory, offset + 0x00);
435 	const u32 insthi = nvif_rd32(memory, offset + 0x04);
436 	const u32 addrlo = nvif_rd32(memory, offset + 0x08);
437 	const u32 addrhi = nvif_rd32(memory, offset + 0x0c);
438 	const u32 timelo = nvif_rd32(memory, offset + 0x10);
439 	const u32 timehi = nvif_rd32(memory, offset + 0x14);
440 	const u32 engine = nvif_rd32(memory, offset + 0x18);
441 	const u32   info = nvif_rd32(memory, offset + 0x1c);
442 	const u64   inst = (u64)insthi << 32 | instlo;
443 	const u8     gpc = (info & 0x1f000000) >> 24;
444 	const u8     hub = (info & 0x00100000) >> 20;
445 	const u8  client = (info & 0x00007f00) >> 8;
446 	struct nouveau_svm_fault *fault;
447 
448 	//XXX: i think we're supposed to spin waiting */
449 	if (WARN_ON(!(info & 0x80000000)))
450 		return;
451 
452 	nvif_mask(memory, offset + 0x1c, 0x80000000, 0x00000000);
453 
454 	if (!buffer->fault[buffer->fault_nr]) {
455 		fault = kmalloc(sizeof(*fault), GFP_KERNEL);
456 		if (WARN_ON(!fault)) {
457 			nouveau_svm_fault_cancel(svm, inst, hub, gpc, client);
458 			return;
459 		}
460 		buffer->fault[buffer->fault_nr] = fault;
461 	}
462 
463 	fault = buffer->fault[buffer->fault_nr++];
464 	fault->inst   = inst;
465 	fault->addr   = (u64)addrhi << 32 | addrlo;
466 	fault->time   = (u64)timehi << 32 | timelo;
467 	fault->engine = engine;
468 	fault->gpc    = gpc;
469 	fault->hub    = hub;
470 	fault->access = (info & 0x000f0000) >> 16;
471 	fault->client = client;
472 	fault->fault  = (info & 0x0000001f);
473 
474 	SVM_DBG(svm, "fault %016llx %016llx %02x",
475 		fault->inst, fault->addr, fault->access);
476 }
477 
478 static int
479 nouveau_svm_fault(struct nvif_notify *notify)
480 {
481 	struct nouveau_svm_fault_buffer *buffer =
482 		container_of(notify, typeof(*buffer), notify);
483 	struct nouveau_svm *svm =
484 		container_of(buffer, typeof(*svm), buffer[buffer->id]);
485 	struct nvif_object *device = &svm->drm->client.device.object;
486 	struct nouveau_svmm *svmm;
487 	struct {
488 		struct {
489 			struct nvif_ioctl_v0 i;
490 			struct nvif_ioctl_mthd_v0 m;
491 			struct nvif_vmm_pfnmap_v0 p;
492 		} i;
493 		u64 phys[16];
494 	} args;
495 	struct hmm_range range;
496 	struct vm_area_struct *vma;
497 	u64 inst, start, limit;
498 	int fi, fn, pi, fill;
499 	int replay = 0, ret;
500 
501 	/* Parse available fault buffer entries into a cache, and update
502 	 * the GET pointer so HW can reuse the entries.
503 	 */
504 	SVM_DBG(svm, "fault handler");
505 	if (buffer->get == buffer->put) {
506 		buffer->put = nvif_rd32(device, buffer->putaddr);
507 		buffer->get = nvif_rd32(device, buffer->getaddr);
508 		if (buffer->get == buffer->put)
509 			return NVIF_NOTIFY_KEEP;
510 	}
511 	buffer->fault_nr = 0;
512 
513 	SVM_DBG(svm, "get %08x put %08x", buffer->get, buffer->put);
514 	while (buffer->get != buffer->put) {
515 		nouveau_svm_fault_cache(svm, buffer, buffer->get * 0x20);
516 		if (++buffer->get == buffer->entries)
517 			buffer->get = 0;
518 	}
519 	nvif_wr32(device, buffer->getaddr, buffer->get);
520 	SVM_DBG(svm, "%d fault(s) pending", buffer->fault_nr);
521 
522 	/* Sort parsed faults by instance pointer to prevent unnecessary
523 	 * instance to SVMM translations, followed by address and access
524 	 * type to reduce the amount of work when handling the faults.
525 	 */
526 	sort(buffer->fault, buffer->fault_nr, sizeof(*buffer->fault),
527 	     nouveau_svm_fault_cmp, NULL);
528 
529 	/* Lookup SVMM structure for each unique instance pointer. */
530 	mutex_lock(&svm->mutex);
531 	for (fi = 0, svmm = NULL; fi < buffer->fault_nr; fi++) {
532 		if (!svmm || buffer->fault[fi]->inst != inst) {
533 			struct nouveau_ivmm *ivmm =
534 				nouveau_ivmm_find(svm, buffer->fault[fi]->inst);
535 			svmm = ivmm ? ivmm->svmm : NULL;
536 			inst = buffer->fault[fi]->inst;
537 			SVM_DBG(svm, "inst %016llx -> svm-%p", inst, svmm);
538 		}
539 		buffer->fault[fi]->svmm = svmm;
540 	}
541 	mutex_unlock(&svm->mutex);
542 
543 	/* Process list of faults. */
544 	args.i.i.version = 0;
545 	args.i.i.type = NVIF_IOCTL_V0_MTHD;
546 	args.i.m.version = 0;
547 	args.i.m.method = NVIF_VMM_V0_PFNMAP;
548 	args.i.p.version = 0;
549 
550 	for (fi = 0; fn = fi + 1, fi < buffer->fault_nr; fi = fn) {
551 		/* Cancel any faults from non-SVM channels. */
552 		if (!(svmm = buffer->fault[fi]->svmm)) {
553 			nouveau_svm_fault_cancel_fault(svm, buffer->fault[fi]);
554 			continue;
555 		}
556 		SVMM_DBG(svmm, "addr %016llx", buffer->fault[fi]->addr);
557 
558 		/* We try and group handling of faults within a small
559 		 * window into a single update.
560 		 */
561 		start = buffer->fault[fi]->addr;
562 		limit = start + (ARRAY_SIZE(args.phys) << PAGE_SHIFT);
563 		if (start < svmm->unmanaged.limit)
564 			limit = min_t(u64, limit, svmm->unmanaged.start);
565 		else
566 		if (limit > svmm->unmanaged.start)
567 			start = max_t(u64, start, svmm->unmanaged.limit);
568 		SVMM_DBG(svmm, "wndw %016llx-%016llx", start, limit);
569 
570 		/* Intersect fault window with the CPU VMA, cancelling
571 		 * the fault if the address is invalid.
572 		 */
573 		down_read(&svmm->mm->mmap_sem);
574 		vma = find_vma_intersection(svmm->mm, start, limit);
575 		if (!vma) {
576 			SVMM_ERR(svmm, "wndw %016llx-%016llx", start, limit);
577 			up_read(&svmm->mm->mmap_sem);
578 			nouveau_svm_fault_cancel_fault(svm, buffer->fault[fi]);
579 			continue;
580 		}
581 		start = max_t(u64, start, vma->vm_start);
582 		limit = min_t(u64, limit, vma->vm_end);
583 		SVMM_DBG(svmm, "wndw %016llx-%016llx", start, limit);
584 
585 		if (buffer->fault[fi]->addr != start) {
586 			SVMM_ERR(svmm, "addr %016llx", buffer->fault[fi]->addr);
587 			up_read(&svmm->mm->mmap_sem);
588 			nouveau_svm_fault_cancel_fault(svm, buffer->fault[fi]);
589 			continue;
590 		}
591 
592 		/* Prepare the GPU-side update of all pages within the
593 		 * fault window, determining required pages and access
594 		 * permissions based on pending faults.
595 		 */
596 		args.i.p.page = PAGE_SHIFT;
597 		args.i.p.addr = start;
598 		for (fn = fi, pi = 0;;) {
599 			/* Determine required permissions based on GPU fault
600 			 * access flags.
601 			 *XXX: atomic?
602 			 */
603 			if (buffer->fault[fn]->access != 0 /* READ. */ &&
604 			    buffer->fault[fn]->access != 3 /* PREFETCH. */) {
605 				args.phys[pi++] = NVIF_VMM_PFNMAP_V0_V |
606 						  NVIF_VMM_PFNMAP_V0_W;
607 			} else {
608 				args.phys[pi++] = NVIF_VMM_PFNMAP_V0_V;
609 			}
610 			args.i.p.size = pi << PAGE_SHIFT;
611 
612 			/* It's okay to skip over duplicate addresses from the
613 			 * same SVMM as faults are ordered by access type such
614 			 * that only the first one needs to be handled.
615 			 *
616 			 * ie. WRITE faults appear first, thus any handling of
617 			 * pending READ faults will already be satisfied.
618 			 */
619 			while (++fn < buffer->fault_nr &&
620 			       buffer->fault[fn]->svmm == svmm &&
621 			       buffer->fault[fn    ]->addr ==
622 			       buffer->fault[fn - 1]->addr);
623 
624 			/* If the next fault is outside the window, or all GPU
625 			 * faults have been dealt with, we're done here.
626 			 */
627 			if (fn >= buffer->fault_nr ||
628 			    buffer->fault[fn]->svmm != svmm ||
629 			    buffer->fault[fn]->addr >= limit)
630 				break;
631 
632 			/* Fill in the gap between this fault and the next. */
633 			fill = (buffer->fault[fn    ]->addr -
634 				buffer->fault[fn - 1]->addr) >> PAGE_SHIFT;
635 			while (--fill)
636 				args.phys[pi++] = NVIF_VMM_PFNMAP_V0_NONE;
637 		}
638 
639 		SVMM_DBG(svmm, "wndw %016llx-%016llx covering %d fault(s)",
640 			 args.i.p.addr,
641 			 args.i.p.addr + args.i.p.size, fn - fi);
642 
643 		/* Have HMM fault pages within the fault window to the GPU. */
644 		range.vma = vma;
645 		range.start = args.i.p.addr;
646 		range.end = args.i.p.addr + args.i.p.size;
647 		range.pfns = args.phys;
648 		range.flags = nouveau_svm_pfn_flags;
649 		range.values = nouveau_svm_pfn_values;
650 		range.pfn_shift = NVIF_VMM_PFNMAP_V0_ADDR_SHIFT;
651 again:
652 		ret = hmm_vma_fault(&range, true);
653 		if (ret == 0) {
654 			mutex_lock(&svmm->mutex);
655 			if (!hmm_vma_range_done(&range)) {
656 				mutex_unlock(&svmm->mutex);
657 				goto again;
658 			}
659 
660 			nouveau_dmem_convert_pfn(svm->drm, &range);
661 
662 			svmm->vmm->vmm.object.client->super = true;
663 			ret = nvif_object_ioctl(&svmm->vmm->vmm.object,
664 						&args, sizeof(args.i) +
665 						pi * sizeof(args.phys[0]),
666 						NULL);
667 			svmm->vmm->vmm.object.client->super = false;
668 			mutex_unlock(&svmm->mutex);
669 		}
670 		up_read(&svmm->mm->mmap_sem);
671 
672 		/* Cancel any faults in the window whose pages didn't manage
673 		 * to keep their valid bit, or stay writeable when required.
674 		 *
675 		 * If handling failed completely, cancel all faults.
676 		 */
677 		while (fi < fn) {
678 			struct nouveau_svm_fault *fault = buffer->fault[fi++];
679 			pi = (fault->addr - range.start) >> PAGE_SHIFT;
680 			if (ret ||
681 			     !(range.pfns[pi] & NVIF_VMM_PFNMAP_V0_V) ||
682 			    (!(range.pfns[pi] & NVIF_VMM_PFNMAP_V0_W) &&
683 			     fault->access != 0 && fault->access != 3)) {
684 				nouveau_svm_fault_cancel_fault(svm, fault);
685 				continue;
686 			}
687 			replay++;
688 		}
689 	}
690 
691 	/* Issue fault replay to the GPU. */
692 	if (replay)
693 		nouveau_svm_fault_replay(svm);
694 	return NVIF_NOTIFY_KEEP;
695 }
696 
697 static void
698 nouveau_svm_fault_buffer_fini(struct nouveau_svm *svm, int id)
699 {
700 	struct nouveau_svm_fault_buffer *buffer = &svm->buffer[id];
701 	nvif_notify_put(&buffer->notify);
702 }
703 
704 static int
705 nouveau_svm_fault_buffer_init(struct nouveau_svm *svm, int id)
706 {
707 	struct nouveau_svm_fault_buffer *buffer = &svm->buffer[id];
708 	struct nvif_object *device = &svm->drm->client.device.object;
709 	buffer->get = nvif_rd32(device, buffer->getaddr);
710 	buffer->put = nvif_rd32(device, buffer->putaddr);
711 	SVM_DBG(svm, "get %08x put %08x (init)", buffer->get, buffer->put);
712 	return nvif_notify_get(&buffer->notify);
713 }
714 
715 static void
716 nouveau_svm_fault_buffer_dtor(struct nouveau_svm *svm, int id)
717 {
718 	struct nouveau_svm_fault_buffer *buffer = &svm->buffer[id];
719 	int i;
720 
721 	if (buffer->fault) {
722 		for (i = 0; buffer->fault[i] && i < buffer->entries; i++)
723 			kfree(buffer->fault[i]);
724 		kvfree(buffer->fault);
725 	}
726 
727 	nouveau_svm_fault_buffer_fini(svm, id);
728 
729 	nvif_notify_fini(&buffer->notify);
730 	nvif_object_fini(&buffer->object);
731 }
732 
733 static int
734 nouveau_svm_fault_buffer_ctor(struct nouveau_svm *svm, s32 oclass, int id)
735 {
736 	struct nouveau_svm_fault_buffer *buffer = &svm->buffer[id];
737 	struct nouveau_drm *drm = svm->drm;
738 	struct nvif_object *device = &drm->client.device.object;
739 	struct nvif_clb069_v0 args = {};
740 	int ret;
741 
742 	buffer->id = id;
743 
744 	ret = nvif_object_init(device, 0, oclass, &args, sizeof(args),
745 			       &buffer->object);
746 	if (ret < 0) {
747 		SVM_ERR(svm, "Fault buffer allocation failed: %d", ret);
748 		return ret;
749 	}
750 
751 	nvif_object_map(&buffer->object, NULL, 0);
752 	buffer->entries = args.entries;
753 	buffer->getaddr = args.get;
754 	buffer->putaddr = args.put;
755 
756 	ret = nvif_notify_init(&buffer->object, nouveau_svm_fault, true,
757 			       NVB069_V0_NTFY_FAULT, NULL, 0, 0,
758 			       &buffer->notify);
759 	if (ret)
760 		return ret;
761 
762 	buffer->fault = kvzalloc(sizeof(*buffer->fault) * buffer->entries, GFP_KERNEL);
763 	if (!buffer->fault)
764 		return -ENOMEM;
765 
766 	return nouveau_svm_fault_buffer_init(svm, id);
767 }
768 
769 void
770 nouveau_svm_resume(struct nouveau_drm *drm)
771 {
772 	struct nouveau_svm *svm = drm->svm;
773 	if (svm)
774 		nouveau_svm_fault_buffer_init(svm, 0);
775 }
776 
777 void
778 nouveau_svm_suspend(struct nouveau_drm *drm)
779 {
780 	struct nouveau_svm *svm = drm->svm;
781 	if (svm)
782 		nouveau_svm_fault_buffer_fini(svm, 0);
783 }
784 
785 void
786 nouveau_svm_fini(struct nouveau_drm *drm)
787 {
788 	struct nouveau_svm *svm = drm->svm;
789 	if (svm) {
790 		nouveau_svm_fault_buffer_dtor(svm, 0);
791 		kfree(drm->svm);
792 		drm->svm = NULL;
793 	}
794 }
795 
796 void
797 nouveau_svm_init(struct nouveau_drm *drm)
798 {
799 	static const struct nvif_mclass buffers[] = {
800 		{   VOLTA_FAULT_BUFFER_A, 0 },
801 		{ MAXWELL_FAULT_BUFFER_A, 0 },
802 		{}
803 	};
804 	struct nouveau_svm *svm;
805 	int ret;
806 
807 	/* Disable on Volta and newer until channel recovery is fixed,
808 	 * otherwise clients will have a trivial way to trash the GPU
809 	 * for everyone.
810 	 */
811 	if (drm->client.device.info.family > NV_DEVICE_INFO_V0_PASCAL)
812 		return;
813 
814 	if (!(drm->svm = svm = kzalloc(sizeof(*drm->svm), GFP_KERNEL)))
815 		return;
816 
817 	drm->svm->drm = drm;
818 	mutex_init(&drm->svm->mutex);
819 	INIT_LIST_HEAD(&drm->svm->inst);
820 
821 	ret = nvif_mclass(&drm->client.device.object, buffers);
822 	if (ret < 0) {
823 		SVM_DBG(svm, "No supported fault buffer class");
824 		nouveau_svm_fini(drm);
825 		return;
826 	}
827 
828 	ret = nouveau_svm_fault_buffer_ctor(svm, buffers[ret].oclass, 0);
829 	if (ret) {
830 		nouveau_svm_fini(drm);
831 		return;
832 	}
833 
834 	SVM_DBG(svm, "Initialised");
835 }
836